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ABSTRACT.   Formal deformations (expansions and collapses) of dimen-

sion   <, 3 among 2-dimensional polyhedra are explained in terms of a cer-

tain collection of operations on finite group presentations. The results are

valid for any simple homotopy type of 2-dimensional polyhedra, and simpli-

fications are possible within the simply connected simple homotopy types.

1. Introduction. The relationship between finite group presentations

and finite 2-dimensional polyhedra is in evidence at various places in the

literature. Furthermore, the folklore has it that there exists a correspondence

from the category of finite group presentations and certain operations there-

on, to the category of 2-polyhedra and 3-dimensional formal deformations

(expansions and collapses). The purpose of this paper is to give a precise

formulation of the problem, with solutions, thereby exonerating the folk. The

references listed here, with the exception of [2], are articles in which this

problem has been addressed to some extent.

Whitehead showed [5] that any two n-polyhedra having the same simple

homotopy type are formally equivalent under deformations of dimension n +

1, provided n > 2.  For n = 2, one must apparently deform through 4-dimen-

sional polyhedra. The reducibility of the dimension of the deformation to

three is equivalent to the group theoretic problem to be described here.

The author is greatly indebted to the referee for suggesting a proof of

Lemma 2 and for contributing substantially to §8.

2. The complexes. We shall initially restrict our attention to a special

class C of 3-dimensional CW-complexes, defined as follows: If X £ C,

then:

(1) X*   ' consists of a single 0-cell v.

(2) X(1) is the union of Xo and a finite collection \x.\ of  1-cells

whose boundaries are attached to v.

(3) X(2) is obtained from  X(1) by attaching to X(1) a finite collection
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\e.\ of 2-cells, where Bd ek is subdivided into edges and vertices; each

vertex of Bd e¿ is sent to v and each (open) edge of Bd e. is sent either

to v or homeomorphically to some (open) x..

(4)  X(3) is obtained by attaching to X' ' a finite collection \d.\ of

3-cells, where Bd d{ has the structure of a cell complex; each vertex of

Bd d. is sent to v, each edge to v or homeomorphically to some x., and

each (open)  2-celI homeomorphically to some (open) e., subject to the usual

condition that the attaching map be continuous.

3. Elementary expansions and collapses in   C.   An elementary

n-expansion   K/L   in   C  is defined provided   L = K \J,Bn,  where  /

attaches (as in 2 (4)) to  K  all of the boundary of B"  except one (open)

(n - l)-cell.   An elementary  n-collapse in   C  is the inverse of an ele-

mentary w-expansion, written L\ K.

There are no   1-expansions or  1-collapses in  C because each K £ C

has only one vertex.

A formal n-deformation from K to L in  C is a finite sequence \KQ,

... , K   | in  C such that Kn = K, K    = L, K. expands or collapses elemen-
m u m i       * *

tarily to X.+ ,, and dim K. <n fot all 7.

4. Presentations. We depart somewhat from the usual definition of a

presentation in order to obtain a correspondence between presentations and

complexes in  C.  A finite group presentation will herein consist of a set

|x.¡ of distinct symbols, called the generators, together with a set ¡r! of

distinct symbols, called the relators; ,x.| and \r.\ shall be indexed by fin-

ite subsets of the natural numbers.  Associated with each relator r, is a

word p. (not necessarily reduced) in the generators \xA, and the group pre-

sented is the quotient group F\x.\ modulo the normal closure of the i/o - i-

We shall use the standard notation ijx,}|jr.{| for a presentation.

Two presentations  ¡{x.}|,r.}) and {{y.)|{s.}) will be considered equal if

and only if there exist  1-1  correspondences ix!<-»íy¡ and <r.j«->,s.j which

preserve the words associated with the relators.

Associated with each presentation p = \\x.\\\r.\\ is a  2-complex K(p)

£ C, unique up to homeomorphism, which is obtained by attaching  1-cells

lx.| to  v, then attaching 2-cells \e\ along their boundaries by the words

\p\. (If p- is the empty word 0, then de. is attached to v.) Then tt.K(P)

is the group presented by p.

Conversely, if K is an oriented  2-complex in  C, a group presentation

p(K) is induced, which is unique up to indexing of the [x.\ and |r¿¡ and

cyclic permutation of the \p.\.
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Remark 1. If 7 4 j, then r. and r. are distinct relators, even if

p. = p.. For example, let p j = i*,]^! and p2 = l*i|sr s2¡, where the words

associated with r^, sv s2 ate all x,.   Then pj ^p2> anc* ^(p j) *s a 2-cell

while K(p A is a 2-sphere. We shall generally abuse our notation when no

ambiguity is present, and write p2 = ixil*i» XA> tnat Ls' we shall use p.

instead of r. in describing the presentation, suppressing (but not forgetting)

the indexing of the relators.

Remark 2. Cancellation of adjacent inverses within a relator, taken for

granted in word operations, will not be allowed here.  For example, if p, =

{x\0\ and p2= |x|xx-1|, then K(p¿ = S1 V S2 but K(p2) is a pinched S2.

We shall show later that cancellation corresponds to a formal 3-deformation.

Remark 3.  Each relator word p is assumed to be written as a noncollect-

ed word in the generators and their inverses; that is, p = x.xi. should be

written XjXjX x2*2. In constructing 7<(p), the corresponding 2-cell may

have some boundary edges which are identified to v, as long as the remain-

ing edges, taken clockwise from some point, read the word p. The insertion

of edges to be identified with v does not change the homeomorphism type of

7<(p) and corresponds to insertion of the identity element of F(x.,..., x)

at various places within the relator word p.

5. 2-dimensional operations. On a presentation p = {x,,..., x \r.,...,

r, ¡, define the following operations:

(1) Cyclically permute the letters of any p..

(2) Replace p. by p~  .

(3) Add a generator a  and a relator (whose word is) aw, where w is

a word in x,,...,x    (possibly 0).

(4) Delete a generator a  and a relator aw, provided that ex does not

appear in any other relator or in  w.

Of these operations, only (3) and (4) alter the homeomorphism type of

Kip).

Theorem 1.  K2   formally 2-deforms to L2 in C if and only if p(K) can

be transformed to p(L) by operations (1), (2), (3), (4).

Proof. Since there are no   1-deformations in C, it suffices to consider

a single elementary 2-expansion or collapse. A 2-expansion K/L consists

of adding a 1-cell a  and a 2-cell e whose boundary is attached via the

word aw, where w is any word in the  1-cells of K.   By performing (3) on

p(K), followed by (1), (2), if necessary, we obtain p(L). A 2-collapse K\L

corresponds to (4); there must be a free edge a through which to collapse
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a 2-cell e.  In p(K) a  appears once in the relator r corresponding to e,

and in no other relator. Say r = waw . Apply (1) to get aw w, then (4) to

delete the generator a and relator aw w.   Follow with (1), (2) if necessary.

Conversely, each operation on a presentation p may be realized on

K(p) as follows: for (1), (2), do nothing to K(p); for (3), expand; for (4),

collapse.

6. The 3-dimensional operation.  A 3-deformation between K    and L

in C will be called transient if each 3-expansion is followed immediately

by a 3-collapse. There is no accumulation of 3-cells in a transient defor-

mation. Lemma 2 shows that we need devise a presentation operation for

transient 3-deformations only.

Lemma 2. If K    3-de form s to L    in C, then K    transiently 3-deforms

to L2 in C.

Proof. Let a 3-deformation D be given.  Enumerate the 3-cells E,,

..., E    in the order in which they appear in D, and let F. denote the face

through which E. is eventually collapsed.

Construct a transient deformation D   in the following manner. When

E, is attached in D, let it be attached in D   but immediately collapsed via

F..  When E. is attached in D, let it be attached in D   such that any faces

which were attached to F.  in D are now subdivided and attached to dE. —
o L o l

F^ instead, via some map cp, induced by F. C Ej\c9Ej - P.. The face

F. must now be free: this fails only if, in D, Fl CdE- and F- C dE.,

which is impossible since it would block the collapse of both  E,  and E2

in D.  Collapse E2 via F 2.

In a similar fashion, let each subsequent 3-cell  E. be attached in D

via the composition of its attaching map in D and the maps <p._ ,,..., <p,,

then collapsed immediately via F■, which must be free or else there would

exist a circle of inequalities F.CdE,  , P.    CdE,   ,..., F,     C <3E;,
112 m

blocking the collapses of E., E,   ,..., E,     in D.
1 m

We shall now describe an operation on a presentation ixjr.j which

corresponds to an elementary transient 3-deformation K  /773\L .

A word p in x.,..., xn will be called allowable if it is obtained by

the following steps:

(0) Beginning with the empty word, successively insert words of the

form xx      or x~ x at any point in the word, where x is any generator. Call

this word s.
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(1) Choose any relator r., and let p.   be any cyclic permutation of p..

Let s   be any cyclic permutation of s.

(2) Form the product s p¿ .

(3) Optionally perform any cancellations induced by juxtaposition of

s   and p. .

(4) Call the new word s again, and iterate steps (1), (2), (3).

Operation (5). If p is an allowable word in jx¿! and if r+ is some re-

lator which is used exactly once in constructing p, change p^ to p~  .

To see that (5) corresponds to an elementary transient 3-deformation,

list the relators in the order in which they were used in constructing p, say

'1.   '«

In S , construct a tree / whose edges read counterclockwise (from

S2 - t) the word s of step (0). Construct a 2-cell e¿ , whose boundary edges

read p.    and whose intersection with / corresponds to the cancellations

(if any) in step (3), so that the word read counterclockwise from S   —

(tue. ) is the word s of step (4). (If p.   = 0, let e.    have one boundary
'l 'l A

edge labelled v.)

Modelling on operation (5) we construct in this fashion a collapsible

cell complex / \je.   \j ... Ue.    in S , and the word read counterclockwise
11 lr

from the complement is the wo.'d p. Let e denote the complementary 2-cell;

its clockwise boundary word is p    .

Attach ß3 to K(p) using this subdivision of S , by mapping each ver-

tex of S    to v, each edge to the  1-cell or vertex of K(p) whose letter it

bears, and each open 2-cell e; ■ homeomorphically to its counterpart in K(p).

This move is an elementary expansion, of which  e is the free face.

Let e^ be the 2-cell of K(p) corresponding to r^.  Since r^ was used

exactly once in constructing p, e^ is a free face of the new 3-cell. Col-

lapse the 3-cell via e^.  This transient 3-deformation realizes operation (5).

Conversely, considera 3-deformation K/K\J ,Bi\L. Let p(K) =

U*-i|{r,-}|. The expansion is accomplished by attaching S   - e  to K, where

e is some 2-cell in some cell subdivision of S2. Let p"    be the word read

clockwise from Bd e. Then S   — e is a collapsible complex whose boundary

word (read counterclockwise from e) is p. Collapse the 2-cells of S2 — e

in any order and let t be the remaining tree.  Each edge of t is mapped by

/ to some  1-cell x. of K.  Expand from any vertex of t to t itself; this in-

duces step (0) of operation.(5). The 2-expansion tSS2 - e induces steps

(1), (2), (3) for each  2-cell in the expansion. As a result, the word p is
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built up in an allowable fashion from the presentation p(K). If e^ is thé

free face in the collapse K ij ,B*\L,   it must follow that r^ was used ex-

actly once in constructing p. Apply operation (5) to replace the relator word

t°* by p~  . This operation realizes the transient 3-deformation.

The following theorem has now been established.

Theorem 2.  K    formally 3-deforms to L    in C if and only if p(K) can

be transformed to p(L)  by operations (1) through (5).

7. Consequences of the operations. The following operations can be

performed as a composition of operations (1)—(5).

Cancellation. Suppose some relator r has associated word p = uxx~ v,

where u and v are words in ¡x.¡. We may replace p by uv by the operations

\uxx~ v\ —* \\xx~ w\ —» \a\xx~ w, ax~  j

\a\w~lxa~l, ax"1] —» \a\w, ax~x]

\\w\ —» \\uv\.

Conjugation. To replace p by g~ pg, where g is any word in {x.}, do

repeated applications of the sequence p—»xx~  p—+x~px.

Forming products.  If r., r. are relators and 7 4 j, we may replace p.

by PiPj by

It is necessary for operation (5) that i 4 j, to ensure that r. is used exactly

once in constructing p¿p-

8. Generalization to polyhedra. It is desirable to generalize Theorem 2

to a theorem about polyhedra. The necessary ingredients are the representa-

tion of polyhedra by elements of C, and the invariance of 3-deformation

classes under this representation.

The first generalization is to cell complexes. If K is any cell complex

and T is any tree in K which contains all vertices, then K/T £ C.

Lemma 3.  K2 formally 3-deforms (through cell complexes) to K/T.  If

T., T,  are trees in K, then K/TQ  3-deforms in C to K/T..

Proof. Let K x I have the product structure. Then (K x l)/(T xl)\

(Kxl)/(TxD^K/T.   Also

(K x DAT x 1)\(K x 0)U(T x DAT xl)\Kx0,
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since T\0. Thus K 3-deforms to K/T,

Let v be any vertex of K. Let T = (TQ x 0) U(v x 7) U(Tj x l). Then

X x 7\(X x 0) uT by collapsing K x I vertically to (X x 0) \j'(T l x I),

then collapsing T l x I horizontally to (T, x 0) u(Tj x l) U iv x I). Upon

smashing T, we obtain (X x ¡)/T\iK x 0)/TQ £* K/TQ.  Similarly (K x 7)/T

\(K x 1)/Tj Ç* K/Tv  Since (X x 7)/T has one vertex, X/Tn 3-deforms in

C to K/Tv

Lemma 4. Let K    and L    be cell complexes and let K    3-deform eel-

lularfy to L .  Let T and U be trees in K and L  which contain all ver-

tices.   Then K/T 3-deforms in C to L/U.

Proof. There is a cell complex 77*  such that K J 773\L .   The com-

plex 77    is obtained by reordering the 3-deformation from  K to  L   so that

all expansions occur first.

Let T, = T u (trail of vertices in 773\X2) and ill = (7 u (trail of ver-

tices in H  \L ). Now  Tj  contains no free edges of 77\X, so this col-

lapse induces a collapse H/T.\K/T in. C.

Let X    be the 2-complex which remains after collapsing the 3-cells

in 77\L.  Then T1 C X, and H/Tl\X/T1 in C.  By Lemma 3, X/T1 3-

deforms in C to X/U., which in turn collapses to L/U in C.

Lemma 5. Let X    be a cell complex and let K   be a cell subdivision

of K.  Let T and T   be trees in K and K   containing all vertices.  Then

K/T 3-deforms to K'/T'  in C.

Proof. Let K x I have the product structure induced from  K, except

on X x 1 where the structure is induced from X .   Then  XSXxO/Xx 7\

X x 1 = X   as cell complexes, and by Lemma 4, K/T 3-deforms to X /T

in C.

For an arbitrary compact connected 2-polyhedron P, a representative

P  of P in C is obtained by triangulating P in any fashion as a cell com-

plex and smashing any tree containing all vertices.  A presentation induced

by P is any presentation p(P), where Pisa representative of P in C.

Theorem 3.  The following are equivalent:

(i) The polyhedron P    formally 3-deforms (polyhedrally) to the poly-

hedron Q .

(ii) For some representatives P, Q in  C, P 3-deforms to Q in C.

(iii) For all representatives P, Q in  C, P  3-deforms to Q in C.

By virtue of Theorem 2, we obtain
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Corollary 3.1.  The polyhedron P    formally 3-deforms to the polyhed-

ron Q    if and only if some (all) induced presentations) of P can be trans-

formed to some (all) induced presentation(s) of Q by operations (1)—(5).

Proof of Theorem 3. (iii)—»(i). Let P, Q be representatives of P, Q

in C.   By Lemma 3, there exist (polyhedral)  3-deformations P—*P, Q—yQ,

and by hypothesis, P  3-deforms to Q. Hence P 3-deforms polyhedrally to

Q.
(i)—*(ii). If P     3-deforms to  Q , there exists a polyhedron Z3  such

that P / Z \Q.   There exist simplicial triangulations 77, X, L  of Z, P, Q

suchthat X/77\L  simplicially. (These may be obtained by triangulating

Z, subdividing to get a simplicial collapse to P, subdividing further to get

a simplicial collapse to Q, and invoking [2] to see that the simplicial col-

lapse to P is not lost.) Since X 3-deforms to L  simplicially, Lemma 4

states that for any representatives P, Q of the form K/T, L/U (for these

particular K, L), P 3-deforms to Q in C.

(ii)—»(iii). If K/T and X /T   ate representatives of P in C, then X

and X   have a common (up to isomorphism) subdivision X .  Let T   be any

tree in X   containing all vertices. Then by Lemma 5, there are 3-deforma-

tions X/T-»X"/T"->X'/T' in C. Hence if P 3-deforms to  Q in C for

some representatives, the same is true for all representatives.

9. Simply connected complexes. If X £ C has 77,(X) = 1 then in p(X)

= {xj,..., Xjjrj,. • >, rk\, the normal closure of r,,..., r.  in the free group

F(x,,..., x ) is the free group F(xj,..., x ). With this extra condition,

the operations (1)—(5) can be simplified to these:

(0)  Cancellation (and its inverse),

(i) Replace r. by rT .

(ii) Replace r. by r.r., i 4 j.

(iii) Replace r¿ by g~1rig, g £ F(xv..., xj.

(iv) Add a generator x and a relator x.

(v) Delete a generator x and relator x if x appears in no other re-

lator.

It is easily seen that operations (1)—(5) imply the new operations. The

converse is also true, and only (3) and (5) present any difficulty. To ob-

tain (3), write w as a product of conjugates of the relators, then add

\a\a] and apply (ii) and (iii) repeatedly to change the relator a to aw.  To

obtain (5), let t¿z   be the word built in the process of constructing p just prior

to the usage of the relator r^.   Since w is a product of conjugates of the

other relators, we can replace p^ by wp^. Then p is constructed without
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using r^ again, so we may replace wp^ by p, then p~    to get (5).

From the foregoing and Corollary 3.1 we have

Corollary 3.2. P    formally 3-deforms to an n-fold wedge of 2-spheres

if and only if all presentations induced by P can be transformed to the

presentation with no generators and n empty relators by the operations

(0), (i),..., (v).

When n = 0, this says that contractible 2-polyhedra 3-deform to a

point if and only if their induced presentations can be transformed to the

empty presentation í |  i by those operations.
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