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ABSTRACT.   The object of this paper is to give asymptotic estimates

for some number theoretic sums over Gaussian integers.   As a consequence of

general estimates, asymptotic estimates with explicit error terms for the

number of Gaussian integers with only "large" prime factors and for the

number of Gaussian integers with only "small" prime factors are given.

1.  Introduction.  Let G represent the set of Gaussian integers and let P

represent the set of Gaussian primes.  Let Px denote the primes of P that are in

the interior of the first quadrant of the complex plane and let P2 denote those

primes of P on the positive real axis.  If x > 1 is a real number, let C(x) denote

the disc of radius x (including the boundary) with center at the origin.  Let D(x)

= G n C(x), Dx(x) = PXD C(x), and £>2(jc) = P2 D C(x). Let k be a fixed

natural number and fix 0 = B0 < Bx < • • • < Bk_x < Bk = +°°.  A Gaussian

integer a G Mn, n — 1,. .., k, if either a = 1 or if all the Gaussian prime factors

of a belong to

(Dx(xBn) U D2(xBn)) n (Dx(xB"-x) U D2(xBn~'i)T

where ~ is the complement operation with respect to the complex plane.   Thus

every a G G can be uniquely expressed in the form

(1.1) a = p- ax • • -ak

where an G Mn, n = 1, . . . , k and p is a unit in G.

Let /„, zz = 1, . . . , k, denote completely multiplicative number theoretic

functions. Then we define for a real number t > 0

(1.2) mf(x')=     Z     f(N°0= Z fx(Nax)---fk(Nak)
a£D(x{) aeD(xt);a=p-ax—ak

where p is a unit, an G Mn, and Na = a • a = a2 + b2 if a = a + bi (the norm

of a).

For example, if we define the function e on the natural numbers by e(zz) =
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1 if n = 1 and e(n) = 0 for n > 1, then with fc = 2, #x = 1,/jfMx) = e(Na),

and f2(Na) = 1, we have

(1.3) mjx*) == *c(*'f x)

where igOe', x) denotes the number of Gaussian integers in C(xt) with no Gaussian

prime divisors in C(x).

Similarly, ifk = 2,Bl = l./.fJVa) = 1, andf2(Na) = e(Na), then

(1.4) m/x*) = ¥c(xf, a:)

where ^(¡(x1, x) denotes the number of Gaussian integers in C(xf) with no Gaussian

prime divisors outside C(x).

As a consequence of some very general asymptotic estimates for (1.2), we

prove asymptotic estimates for (1.3) and (1.4) that are uniform in x and t and

exhibit an explicit error term.   In particular, if Z(t) is a function satisfying the

differential-difference equation

(15) tZ'(t) = aZ(t - 1)

with a a real number and initial condition Z(t) = 1 for 0 < t < 1 (Z(r) = 0 for

t < 0 and Z(r) is continuous at t = 1), then, as a special case of Theorem 2,

(1.6) $G(y, x) = 2J2 W(«/2) </« + O(x2frCl f^-)

uniformly in x and t, where Z(r) satisfies (1.5) with a = 1, Ci is an absolute

constant, and /fix) is defined by (3.8).  We should note that the constants implied

by the use of the O-notation are absolute unless otherwise indicated.

As a special case of Theorem 5, if I < t < (log x)3ls~s where 5 is a posi-

tive real number, then

(1.7)      *G(xt,x) = nx < \z(t) + 0\tC*H(x2) (log xf3 + |Z^"Jce)l)[

uniformly in x and t for t outside the interval (1,1+ e), where e is an arbitrary

positive real number, Z(t) satisfies (1.5) with a = -1, C3 and C4 are absolute

constants, and H(x) is defined by (3.8).  We note that Z(t) in (1.7) is the well-

.nown Dickman function.

Using (1.7) and the estimate by van der Corput in Landau [2] for the

.lumber of Gaussian integers in C(xf),

( .8) Z     1 = ™2' + <****)
aGD(xt)

for b < 2/3, we can give an estimate for the number of Gaussian integers in C(xf)
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with a prime divisor outside C(x) as

(1.9) ztjc2'|i -Z(t) + o(tC*H(x2) (logxf3 + ^y*')}

for 1 < t < (log x)3ls~5, 5 > 0, which is proved by J. H. Jordan [1], but with-

out the explicit error term.

2. Preliminary results.  To estimate sums of the form (1.2), we follow the

manner of B. V. Levin and A. S. Fainleib [3] and define for each function /„,

the function Xfn, by the following relation

(2.1) fn(Na) log Na = Z fn(Nß) Xf (Vf \
ß\a J"\   P/

where the ' indicates that the sum is over only those Gaussian divisors of a that

he either in the interior of the first quadrant or on the positive real axis of the

complex plane.

If/is a convolution of functions fx and/2, then X^ can be very simply ex-

pressed in terms of Xf  and X¡ .

Lemma 1. Let

(2-2) f(Na) = Z /i(W2 (rf).
ß\a \   P/

77zezz

(2.3) V(7Va) = Xfi (Na) + Xf2(Na).

Proof.  Given/ À^is uniquely determined by (2.1). In particular,

01

where / is defined by the relation

Now

4X/(iVa) = £ f(Nß)f ÍNfjlog Nß
ß\a x   **'

lation

Zf(Nß)f(rf)=e(Na).
ß[a \   Pf

zVw)(v,(^)+va(^))

= log Na £ fx(Ny)f2 [N-) = log Naf(Na).
7la \  T/

01-
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Since Xf is uniquely determined, XANa) = Xf.(Na) + Xf2(Na) to prove Lemma 1.

Next we give a characterization of Xf.

Lemma 2. /// is a completely multiplicative function, then

ilog Not f (Na)   ifa = pr,pG P,

(2.4) Xf(Na) = I
(o ifa*pr.

Proof.   It is sufficient to show that Xf defined by (2.4) satisfies (2.1). Now

Z7(^W/3) =   t   f f(N^)Xf(Np')

= £' i; fÍN^iogNpfWpF)
pml|o   /=1    V  PVffl I,
P    He

= f(Na)  £     m log Np = f(Na) log Na.

Pm\\<x

Again, since Xf is uniquely determined, we have proved the lemma.

We shall study the behavior of mJx*) for a class of functions / determined

by the conditional existence of the following two functions

(2.5)    Lf(x,y) = A £ Xf(Npr) = 4 ¿ log Npf(Npr)
pr(ïD(x);p<=D(y) prGD(x);pSD(y)

(we note that pr G D(x) implies p G D(x) and write Lf(x, x) = Lf(x)) and

(2.6) n.r(*)= n fi + ¿ i/(^/)iV
p(ED(x)\ r=\ j

Another class of functions / will be determined by conditions on

(2.7)

and

L*f(x,y) = <* Z *f(Npr)Np-r
prGD(x); p<ED(y)

= 4 £' log Npf (Npytp-
preD(x);p£D(y)

(2.8) n*(*)=    IÏ    (1 + ¿ \f(Npr)\Np-r).
pGD(x)\ r=\ I

We now give the following fundamental requirements imposed on the func-

tions fn, n = \, . . . , k:

(2.9) Lf(x, y) = r„ log min(x, y) + Dn + hn(x2, y2)



SUMS OVER GAUSSIAN INTEGERS 2"

where t„ is a complex number, Dn is an absolute constant, and hn(x, y) =

0(H(x) + H(y)), H(x) is a nonincreasing, nonnegative function; and

(2.10) Y[fn(x) = 0(\ogAnx)

where An is an absolute constant.

We shall now prove the following lemma concerning (2.10) that will be

needed later.

Lemma 3. Let f(Na) = ^afx(Nß)f2(Na/ß) where

Ufx(x) = 0(logAlx)   and  T[h(x) = 0(\ogA2x),

then

(2-11) Uf(x) = 0(logAl+A2x).

Proof.  Let p G Px U F2, then

1 + Z \f(NPr)\ < ¿ ¿ \fx(Np')\ ■ \f2(Npr~l)\
r=l r=0 1=1

< A + Z l/iOVpr)l Vl + Z \f2(Npr)\\

so we conclude (2.11).

We are now ready to state and prove the basic result necessary to estimate mJx*).

Fundamental lemma-Lemma 4. Suppose the completely multiplicative

functions f„, n = 1, . . . , k, satisfy (2.9). 77zezz mf(xf) as defined by (1.2) satis-

fies the equation

2tmf(xf) - 2§tmf(xu) du

,     k ct~Bn-l

D 1 IX2t      2B\

(2.12)     +4ièr^''+4i47 £,«*o»,^r.» j
aGD(xT)

Z WaAhn(Ê-'*2B)
1      *—*— y

4 l0ë *  n = 2
OlBD(
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Proof.   Lei

ifn(Na)   ifccGMn,

Woe) = <
(O ifa$M„,

then

f(Na)=       Z     UNa^-'-faNaJ.
a=ai-ak

Therefore, using Lemma 1 and (2.9), we see that

¿/(*') = 4     Z     WO
PreD(x{)

= 4Z      Z      XTn(Npr) = AZ Z X/.CtVaO
"_1 preD(xf) n~1 prBD(xt);p£Mn

= Zr„ log/ mfaC«', xB") \ 2f    2*,

{mHx'.x8"-1))      '       '

+ ¿ {^2f,^ß")-^2f,^ß"-1)}.

n = 2

Now using Theorem 1.4 of Prachar [4, p. 371], we have

Z    f(Na)logNa=    Z     f(Na)logNa
aBD(xt) Nu<x2t

x2t H

= mf(xf)log x2t- ^   mf(\ß) y

= mf(x*)\og x2t - 2 log x f m/(x") du.

Thus, using the definition of X^,

mfe*) log x2 f - 2 log x \ mf(xu) du

=   £    L'fWßükM)

ttSD(/)    Pla X     ' e&D(xT) x     ^y
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V     <-m*lfv<      i    / mm(xfIsfÑa, xB") \   ,  _    ,  ,   (x2t    2BX\

-ÎS '.    Z      /(A-a)log/min^/x^;^")\
"=1     aeD(x*) \mm(xtl\/Ñ^,xBn-1)

+ Tw/(^ + ï   Z   /Wife*"1)
ûEO(ï')

a£D(x       "   ') v

Thus changing the first sum on the right-hand side to an integral and changing

the variable, we derive (2.12).

We shall need two other lemmas in §3 that are proved in Levin and

Fainleib [3].

Lemma 5 [3, Lemma 1.2.1]. Let R(t, x) be a complex-valued function of

real variables t and x integrable with respect to t; let a and bx, . . . ,bm be com-

plex numbers, Cx>0, and 0 < B0 < Bx <• • • <Bm < +°°. Suppose further

that R(t, x) = 0fort<0 and that

rt ™        Ct~Bn-l r.
tR(t, x) - (a + \)\R(u, x)du+Z bj R(u, x) du = Oí/1)

J° n=l       t~B"

uniformly in x. If ¡q\R(u, x)\ du = 0(1) uniformly in x, where X is a positive

constant, then there exists a constant C2 > 0 such that for all t>X

R(t, x) = 0(tC2)

uniformly in x.

Lemma 6 (Argument on pp. 174-175 of [3]). Let 0 < Bx < ■ ■ • < Bm <

+ °°and Tj, . . . , Tm denote complex numbers. If Z(t) satisfies the equation

m-\

tZ'(t)= £ (rn+x-rn)Z(t-Bn)
n=\

with initial condition Z(t) = 1 for 0 < t < Bx and Z(t) satisfies the equation

m-l

tZ'V = Z (Tn-rn + l)Z(t-Bn)
n=l
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with initial condition Ê(t) — 1 for 0 < t <2?,, then

\'z'(t - u)Z'(u) du + Z'(t) + Z'(t) = 0.

Using the fundamental lemma, Lemma 4, we are now ready to derive

asymptotic estimates for mAx1).

3. Estimates for mJx{). The first estimate for mf(xf) is the special case

where the sum is taken over those Gaussian integers with only "large" prime

factors.

Theorem 1. Letf„, n — 1, . . . , k, be completely multiplicative functions

satisfying (2.9) and (2.10) where /, (Afa) = e(Nci) and A = s£=1/l„. Then

(3.1) m/jcO = 4Z(r) + 0(tAk'AH(x2Bl) (logx)^1)

uniformly in x and t, where Z(t) satisfies the equation

k Jn Çt-B„-i

n = 2

with initial condition Z(t) = 1 for 0 < t < Bv and

¥= e(Na),

(3.2) tZ(t) - $'oZ(u) du-Z^ ££ lZ(u) du = 0

il    iffk(Na)

(O   iffk(Na)
A = '

(0   iffk(Na) = e(Na).

,2   „2n =Proof.   Let t1 » Dl = 0, h^x2, y2) = 0.  Therefore (2.12) can be

written as

2tmf(xt)-2$tmf(xu) du - Z 'J.f.ß ""'"»/fr") ¿"

ç,<_.^4(f-i-*.(Ê-i,-)îAC

—=— T
4 lo8 * * = 2

aeO(x

Now n/n(x) = 0(log4"jc) for n = 2, . . . , k so that

W/(*D <     Z     l/(M*)l - 0(tAk'Alog Ax).
aeD(xt)

Hence

2tmf(xt) - 2Vmf(xu)du - ¿ tC!"^/*"^"

= 0(i"fcA(log^-1i/(x2ßl)).
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We let

ztz/xO = 4Z(f) + R(t, x)H(x2Bl) (log jc)"-1

so that

Ttm/x") - 2fmf(xu) du - £ f^'1 mf(x") du

= 8tZ(t) - &^Z(u) du - Ç rSt_B "''¿M du

+ H(x2Bl) (log x)A~l \2tR(t, x) - 2ÇQR(u, x) du

k    j     Ct-Bn-l )
-ziL  R{u'x)du •

„^->  "•    t an \

tR(t, x) - \fR(u, x) du - Y ^- f     " XR(u, x) du = 0(tAk'A)
JO J~-,   o     t-B„

v T
n = 2

Using Lemma 5 with

k    Tn   C'-Bn-I

n = 2

uniformly in x and with X = Bx, /01R(u, x) du = 0(1) uniformly in x, then

there exists an absolute constant C2 such that R(t, x) = 0(t 2) uniformly in x.

Hence we prove Theorem 1.

We note that condition (2.10) is needed only if the fn can be negative; hence

for nonnegative fn we have the following

Corollary.   // the fn are nonnegative, satisfying (2.9) and fx (Na) =

e(Na), then

(tRerk-A H(X2Bl)\

(3.3) ,«^0=4^0 + 0^      loiry

uniformly in x and t.

Using Abel's summation on (3.1), we obtain the following theorem which

gives the asymptotic estimate for $G(xf, x).

Theorem 2. Let fx(Na) = e(Na) and/„, zz = 2, . . . , k, be completely

multiplicative functions satisfying

(3.4) L¿n(x, y) = rn log min(x, y) + Dn + hn(x2, y2)

and

(3-5) H*n(x) = 0(\ogA"x).
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Then

(3.6) «,(**) - 2 J"^ *"Z'(|) «& + 0(*VfcA/f(;c2ßl) (log Xf4'1)

uniformly in x and t, where A, Ak, Z(t), and A are defined in Theorem 1.

For the estimate for ^G(xt, x) given in (1.6), we make the following con-

siderations in Theorem 2:

Let k = 2, Bl - 1,/,(M*) - efM*), /2(A/a) = 1, then

(3.7) Vf (je, j0 = 8 log ™inC*. 7) + ¿> + W*2) + H(y2))
where

(3-8) /ff» = 0(exp(-Gflog x)3'5-*))

with C> 0, 5 > 0 fixed, by the following argument. Now

H(x,y)= Z **f
pr<BD(x);p<BD(y)   NP

(3.9) = y log Npx { log jVp

Npr<x2,Np<y2;pePl   Np Npr<.x2;Np<y2;pGP2   NP*

= ^t+E2.

If pGP2, then p = p is a rational prime with p = 3 (mod 4) and Np = p2.  If

p6?,,p#l + i, then there exists a rational prime p, p = 1 (mod 4), and A^p

p; and conversely, for each rational prime p, p = 1 (mod 4), there exist exactly

two primes pj and p2 in Pt such that p = Np1 = Np2. Using this information,

we see that

£2=2 z
logp

- p
p <x;p<y,p=3(mod4)

where C is an absolute constant, and

2
<C

£, = *>' +
logP

pr<x2;p<;.y2;ps;l(mod4)    P

= 2 log minfx, y) + D" + 0(H(x2) + //(>2))

where D" is an absolute constant and H(x) is defined by (3.8). Hence r2 = 8,

and using this in (3.6), we get (1.6).

Now we shall give a formula for the general case of m Ax1).
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Theorem 3. Let fn, n = 1, . . . ,k, be completely multiplicative functions

satisfying (2.9) and (2.10).  77zezz

(3.10) mfo*) = mh(xf) + jV(f - «)/",,(*") du + 0(tC4H(x2Bl) (log xf3)

uniformly in x and t, where

(3.11) r"fxW)=     Z    A»
a&D(xt)

Z(t) satisfies the differential-difference equation

(3.12) tZ'(t) = | £ (rn+x- rn)Z(t - Bn)
n=l

with initial condition Z(t) = 1 for 0 < t < Bv and C3 and C4 are absolute

constants.

Proof.  We define functions fn, n = 1, . . . , k, by the relations

(3.13) ¿f„W)fn(N%)=fx(Na).
ß\a V   P'

Hence for zz = 1, (3.13) implies that

(3.14) fx<m m <M*).

Further, using Lemma 1 and (2.9),

Lfnl4,(x> y) = Lfi(x, y) - Lf(x, y)

= (rx - rjlog min(x, y) + Dx-Dn+ 0(H(x2) + H(y2)).

By Lemma 3,

(3-16) Ufn/4(x) = 0(logA"x).

Thus, the conditions of Theorem 1 are satisfied using the functions fx, lA?2, . . . ,

%fk. Therefore

4~k ■ mjix*) = J £ /iC^i) • ÏA(M*2) • • • */*<*«*)
aGD(x );a=M o¡]-..o;fc

(3.17)
= Z(t) + 0(tAl'AH(x2Bl)(log jcy1-1)

where ¿(f) satisfies the equation

(3.18) tZ'(t) = | £ (r„ - rn+ x)Z(t - B„)
n=l

with initial condition ¿(f) = 1 for 0 < t < Bx.

Now we consider the following sum
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"V,(*f)=     Z     A(M*)= Z f1(Nai)---fl(Nak)
t t

ae.D(x ) aGD(x );ot=p.-al—ak

a£D(x
a=n-cti—ak

= 4-*

z' /i(^i)a('vf) ' " ' £fkiNßk)fk (nf)

:     ACW,)---/*CW*)   Z     A^-'-A^)
(*') «^(x*) ^  h' \ hf

ß=H-ßl-ßk a=ß-al—ak
0|a-,l«i«fc

= 4"fc     Z       /A)-/Ä) Z        hWlù---?k(Nyk)
jeD(x\ 7eD(xf/s/Jv?)

4-fc   E    /1w1)'-/ah(¿)= /i-fc

ß=H-ß\-%

Hence, using (3.17),

«V,«-    Z     AC^i)-"/*^«*)^'-^)
aeO()tf)

a=ii-û!j-..<ï^

+ 0"/*4'

W/V

A//(x2ßl)(iog^-1    Z     iA(m*

aeD(x')
a=u-<Vj."C<fc

•f-(log7Va;)/21og^ Ä,__ f f-(logAra)/21ogj:Ä.

rV) +      Z      A(M*i) • ■ • A(M»*)J0 z(")<*"
aeD(xf)

a=M"C<j"-0!fc

+ 0(tC2H(x2Bl)(logxf3),

which is equivalent to

mf(xf) = mfe*) + ^Z'(t - u)mf(x") du

(3.19)
+ 0(rC2//(x2Sl)(logJc)C3).

From Lemma 6 we see that

(3.20) Vz'(t - u)2'(u) du + Z'(t) + Z'(t) = 0.
JO

Using (3.19) and (3.20), it follows that
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J Z'(r - u)mfi(xu) du

= f V(f - u)mf(x") + ^mf(xu)^'UZ'(t - « - v)Z'(v) dv du

+ 0(tC*H(x2Bl)(logxf3)

or

jV(f - u)mfi(x") du = -foZ'(t-u)mf(xu) du + 0(tC*H(x2Bl) (log xf3)

= mf(xt) - mf (x<) + 0(t°4H(x2Bl) (log xf3)

which is (3.10) of Theorem 3.

Using Abel's summation on (3.10), we also derive the following estimate

for functions satisfying (3.4) and (3.5) which we shall use in the next section to

estimate iPG(xt, x).

Theorem 4. Let fn, n = 1, . . . ,k, be completely multiplicative functions

satisfying (3.4) and (3.5).  TTzezz

zzz/xO = mfi(xf) + jV(f-">Z'(i - u)mfi(xu) du

(3.21)

+ 0(x2ttC4H(x2Bl)(logxf3)

uniformly in x and t where Z(t) satisfies (3.12), mfAx1) is defined by (3.11),

and C3 and C4 are absolute constants.

4. The estimate for ^G(xf, x). We recall that we letk = 2,Bx =1,

fx(Na) = l,f2(Na) = e(/Va), then

(4.1) zzz OcO = *G(*f, x),

and also that

(4.2) W/jC*1)-     Z     L
aÇ.D(xf)

and finally that

(4.3) L*fi(x, y) = 8 log min(x, y) + D + 0(H(x2) + H(y2))

where D is an absolute constant and H(x) = 0(exp(~C(logx)3/s-a)) for C> 0,

S > 0 from §3.

As a consequence of Theorem 4, we see that
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*G(xf, x) = rtifix*) + ^x2(t-u)Z'(t - u)mf(xu) du

(4.4)

\+ 0(x2ttC4H(x2)(logxf3)

where Z(t) satisfies (1.5) with a = -1.

Now we let

(4.5) mf(xt) = x2t{7i + R(xt)}.

From (1.8), we see that

(4.6) R(x<) = o(x(h-2)f)

with b < 2/3, an absolute constant.

Using (4.5) in (4.4), we prove the following estimate for *G(jef, x) which

has (1.7) as a special case when N = 0.

Theorem 5. //1 < t < (log x)3/5~s, 5 > 0 an arbitrary real number,

R(x) and H(x) are defined by (4.5) and (3.8), respectively, then

^G(xt,x) = Trx2t{Z(t)+  Z

(4.7)

Áz(f\ i  T1 (-i)m¿(m+1)(0 r/?(«)Qog«r A

for every natural number N.   The estimate is uniform in x and t for t outside the

intervals (n, n + e), where n = 1, 2, . . . , N + 1 are the discontinuities of

Z^N+1\t) and e is an arbitrary positive real number.

Proof.   After substituting (4.5) in (4.4), we have

tfG(*f, x) = Trx2tU + foZ'(t -u)du + TT'tfCxO

(4.8)
+ ir-1 jV(í - u)R(xu) du + 0(tC4H(x2) (log xf3)\.

We note that Z(t) = 1 + ffQZ (t - u) du and after the manner of Levin and

Fainleib [3, Theorem 3.2.3], we let e > 0 be so small that the interval (t - e, t)

does not contain any discontinuities of Z^N+1\v), Nis a natural number.  Hence

for 0 < v < e, we can apply Taylor's theorem to get

N-1 /_ , \m

(4.9)       Z'(t - v) =  Z L-Lf-Z<m+1>(f - v)vm + 0(irv|Z(JV+1)(r - e,)!)
ml

m = 0

for some ex such that 0 < ex < e (we note that the sum in (4.9) is empty if

/V = 0).
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Thus

re JV-1 (_ ,\m -e
Z'(t - u)R(xu) du = T i_Li—^(^ + D(f)f umR(xu)du

*° m = 0    "" J0

(4.10)

+ o(\ZSN+I\t - e^ljV^Qt")! du\.

The sum on the right-hand side of (4.10) is equal to

N-l (-\)m   Z(m + l\t) rR(u)(log u)"- * (-1 y zv,,< T ; >(t) r

~ín   ml    rinc vY" + 1 Jo

(4.11)

du
(log x)"

_ "y* (-\)m Z<m + 1\t) r°°R(u) (log u)m du

„ko ml oog*r+1v    "

and the second sum of (4.11) is

For the O-term of (4.10), we see that

(4,3) ^H,-^¡yw»é) •^(^•).

Now Z(N+I\t - ex) = 0(t\Z<N\t)\) and

jV(f - u)R(xu) du = o(x<>b-Ve£\Z'(t - w)| du\

= 0(x(6-2>e(l + Z(t))).

Hence collecting these results in (4.8), we get (4.7) to complete the proof

of Theorem 5.
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