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ABSTRACT. The object of this paper is to give asymptotic estimates
for some number theoretic sums over Gaussian integers. As a consequence of
general estimates, asymptotic estimates with explicit error terms for the
number of Gaussian integers with only “large’” prime factors and for the
number of Gaussian integers with only “small” prime factors are given.

1. Introduction. Let G represent the set of Gaussian integers and let P
represent the set of Gaussian primes. Let P, denote the primes of P that are in
the interior of the first quadrant of the complex plane and let P, denote those
primes of P on the positive real axis. If x > 1 is a real number, let C(x) denote
the disc of radius x (including the boundary) with center at the origin. Let D(x)
=G N C(x), D,(x) = P; N C(x), and D,(x) = P, N C(x). Let k be a fixed
natural number and fix 0 =By <B; <***<B;_; <B; = +. A Gaussian
integer a €M, n =1, ..., k, if either @ = 1 or if all the Gaussian prime factors
of a belong to

@,*") U D,("™) N 0,(""1) U D, Py

where ~ is the complement operation with respect to the complex plane. Thus
every @ € G can be uniquely expressed in the form

(¢B)) Q= R0yt

where ¢, EM,, n =1, ...,k and uis a unit in G.

Letf,,n=1,...,k, denote completely multiplicative number theoretic
functions. Then we define for a real number ¢ = 0
12 mf(xt) = Z f(Na) = Z [ilVay) - - - fr(Noy)

aED(x?) aeD(xt);a=y-a1"'ak

where y is a unit, @, € M,, and No = & - & = a® + b? if & = a + bi (the norm
of a).

For example, if we define the function e on the natural numbers by e(n) =

Received by the editors May 23, 1974.

AMS (MOS) subject classifications (1970). Primary 10-02, 10H15, 10H25, 10H40.

Key words and phrases. Gaussian integers, norms of Gaussian integers, numbers with
small prime factors, numbers with large prime factors, differential-difference equations.

Copyright © 1975, American Mathematical Society
295



296 D. G. HAZLEWOOD

1if n =1 and e(n) = 0 for n > 1, then with k = 2, B, = 1, f;(Na) = e¢(Na),
and f,(Na) = 1, we have

(1.3) me(x') = ;(x", x)

where P (x*, x) denotes the number of Gaussian integers in C(x") with no Gaussian
prime divisors in C(x).

Similarly, if k = 2, B; =1, f;(Na) = 1, and f, (Na) = e(Va), then
14) m(x") = V5 (x", x)
where ¥ (x?, x) denotes the number of Gaussian integers in C(x") with no Gaussian
prime divisors outside C(x).

As a consequence of some very general asymptotic estimates for (1.2), we
prove asymptotic estimates for (1.3) and (1.4) that are uniform in x and ¢ and
exhibit an explicit error term. In particular, if Z(¢) is a function satisfying the
differential-difference equation
1.5 1Z'(t) = aZ(t - 1)
with g a real number and initial condition Z(f) = 1 for 0 <t <1 (Z(¢) = 0 for
t < 0 and Z(¢) is continuous at ¢ = 1), then, as a special case of Theorem 2,

log x

(1.6) CDG(xt’ x) = 2L2txuzr(u/2) du + 0<x2'tcl H!x22)

uniformly in x and ¢, where Z(r) satisfies (1.5) with a = 1, C, is an absolute
constant, and H(x) is defined by (3.8). We should note that the constants implied
by the use of the O-notation are absolute unless otherwise indicated.

As a special case of Theorem 5, if 1 < ¢ < (log x)3/57¢ where § is a posi-
tive real number, then

A7) ¥oe'x) = ”"2'{2(0 + O(tcw(f) (log ) + L= ) }

log x

uniformly in x and ¢ for ¢ outside the interval (1, 1 + €), where € is an arbitrary
positive real number, Z(¢) satisfies (1.5) with a = —1, C5 and C, are absolute
constants, and H(x) is defined by (3.8). We note that Z(¢) in (1.7) is the well-
-nown Dickman function.

Using (1.7) and the estimate by van der Corput in Landau [2] for the
aumber of Gaussian integers in C(x?),

(.8 > 1 =mx?" + o(xb)
aE€ED(x?)

for b < 2/3, we can give an estimate for the number of Gaussian integers in C(x")



SUMS OVER GAUSSIAN INTEGERS 297

with a prime divisor outside C(x) as

(1.9) nx”{l -Z(t) + 0(tc4H(x2) (log x)°? + 29 ) ;g‘xe ')}
for 1 <t < (log x)>/57%, 5 > 0, which is proved by J. H. Jordan [1], but with-
out the explicit error term.

2. Preliminary results. To estimate sums of the form (1.2), we follow the
manner of B. V. Levin and A. S. Fainleib [3] and define for each function f,,,
the function Ay, , by the following relation

B

where the ' indicates that the sum is over only those Gaussian divisors of « that
lie either in the interior of the first quadrant or on the positive real axis of the
complex plane.

If £ is a convolution of functions f; and f,, then Ay can be very simply ex-
pressed in terms of )‘fl and sz.

2.1) £, () log No = 22 £, (NB) A, (Nﬁ)
Bla n

LEMMA 1. Let

@2 100) = T £,00, (V).
Bl B

Then

.3) AWV = >‘f1 Vo) + )\fz(Na).

ProoF. Given f, A is uniquely determined by (2.1). In particular,

4\ (Vo) = g; B F N%) log NB
where ? is defined by the relation
> 107 (5 )= e

Now flo

%" rem (y, (v %) g, (v %))
Z’ N, ( N‘E") 72”3 7 ( Ng) )+ BZIZ Ar, (N§> 2 LWL, (N§>

- Bla I8
= 7% fz(N'Y)‘% [0V, (Nl%) + 2O T 080, (Ni)

5 7l ﬁl% By

=log Na 3 f,(N ), (NE) = log Naf (Va).
7l 7
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Since A, is uniquely determined, Af(Na) = Ar, (Vo) + Ap,(No) to prove Lemma 1.
Next we give a characterization of A,

LEmMA 2. If f is a completely multiplicative function, then

log Naf(Na) ifa=p",pEP,
24 A (Vo) =
0 ifa#p.

ProOF. It is sufficient to show that A defined by (2.4) satisfies (2.1). Now

(o= T Iﬁl f(Nf,>>\f(Np')

Bl Pl 1=
_ ' m
=2 Xf (Nﬁ,) log Npf(Np")
oMl 1=1 p
=f(NVo) z' m log Np = f(Na) log Na.
ol

Again, since A, is uniquely determined, we have proved the lemma.
We shall study the behavior of mf(x’) for a class of functions f determined
by the conditional existence of the following two functions

(2.5) Lix,y)=4 > AWNo) =4 > log No f(Np")
p'€D(x);pED () p"ED (x);pED ()
(we note that p” € D(x) implies p € D(x) and write Ly(x, x) = L(x)) and
’ on
@6) o= I (1 > If(Np’)I>-
PED(x) r=1

Another class of functions f will be determined by conditions on

Licy)=4 X AW

@7 p'E€D(x); PED(y)

=4 )4 log Np f(Np"WNp™"

p"ED(x):pED ()
and

(2:8) Dm= 11 <1 > If(Np’)Wp">-
PED(x) r=1

We now give the following fundamental requirements imposed on the func-
tionsf,,n=1,....k:

2.9) L; (x,y) = 7, log min(x, y) + D,, + h,(x%, »?)
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where 7,, is a complex number, D,, is an absolute constant, and &,(x, y) =
O(H(x) + H(»)), H(x) is a nonincreasing, nonnegative function; and
(2.10) nfn(x) = O(log" "x)
where A, is an absolute constant.
We shall now prove the following lemma concerning (2.10) that will be

needed later.
LemMA 3. Let f(No) = Zg,, f,(NB) £, (No/B) where
A
I1; () = 0ttog" ') and [1, () = 0Clog" %),
then
PROOF. Let p €P; UP,, then

1+ 3 @IS 3 1,0 - 1,0

r=1 r=0 I=1
< (1 +3 If,(Np’)I) (1 +y lfz(Np’)I),
r=1 r=1
so we conclude (2.11).

We are now ready to state and prove the basic result necessary to estimate mf(x').

FUNDAMENTAL LEMMA—LEMMA 4. Suppose the completely multiplicative
functions f,, n =1, ...,k satisfy (2.9). Then mf(x') as defined by (1.2) satis-
fies the equation

2tmf(x') - 2I;mf(x“) du

_1 k t—=Bp -1 u
=2 nz=:1 T"It—B,, my(x") du
D, . 1 x*! 28,
@12)  Fiegx M) il = SORm {5
a€ED(x’)

1 k 2t n
gy 2 T V) {h,, (1’—‘@ xza)

n=2 t-Bp—
x n l)
2t
X 2Bp—-1
-h| == x"" .
n a’

a€D(.
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PRrROOF. Let
f,(NVa) ifaEM,,

> e
TnlVe) {o fag¢M,

then

fN)= 3 FiVey) - - - FuVey).

a=al--°ak
Therefore, using Lemma 1 and (2.9), we see that

Lf(xt)=4 E Af(NP')
p'ED(xt)

=4 nzk: ):' Az (Np") =4 ﬁ > A, NO")

=1 prGD(xt) n=1 p'ED(xt);pEMn

< in(x?, x" 2B
=3 1,log _min(x’, x ") +D, £k xY)

n=1 min(x’, xBn—l)

x
+ Y 6%, x2Bmy—n (2, x2Bn-1y},
n=2

Now using Theorem 1.4 of Prachar [4, p. 371], we have

Y. f(o)logNa= 3 f(Na)log N
aED(xt) Na<x2t

2t
— 2t _ (* v
= mg(x")log x L m, (/o) v

= mg(x")log x2t -2 log xﬂmf(x“) du.

Thus, using the definition of A,

m(x")log x** ~ 2 log xJ:mf(x") du

T X remn (V)

aED(x t) Bla

=i = Tremy()=; T 1 ‘”"’Lf@\cf%)

«€D(x%) Pl peD(x")
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. B,
= X f(Na)-‘li{Zk Th log< min(x'/y/Ne, x )> +D, +hl<);v_% x281>
)

— . t B,_1
aeD(xY) n=1 min(x’//Na, x™"

k 2t 2t
x2* 28 x2t 2B,
v, <h"<N°"x '> _h”<N“'x ' l»}
n=

1S ¥ sew log< ming VIV, 1) )
)

. Bp-
min(x*/\/Na, x~ "1

D, 1 x** 2B,
+ Tmf(xt) + 2 > t fWNa)h, (W, x
aE€ED(x")

1& x** 2B, x** 2B,
+ 4n22 ;_B f(Na){hn (Na’ x -h, Vo X .
= n—-1
aED(x )
Thus changing the first sum on the right-hand side to an integral and changing
the variable, we derive (2.12).
We shall need two other lemmas in §3 that are proved in Levin and

Fainleib [3].

LEMMA 5 [3, LEMMA 12.1]. Let R(t, x) be a complex-valued function of
real variables t and x integrable with respect to t;letaand b, . . ., b,, be com-
plex numbers, C; = 0,and 0 <B, <B, <---<B, <+. Suppose further
that R(t, x) = 0 for t < 0 and that

tRR(@t, x) — (a + 1)jo’R(u, x) du + f; b,,ft_: "_IR(u, x) du = 0(°")
n=1 n

t.—

uniformly in x. If f QlR(u, x)| du = O(1) uniformly in x, where \ is a positive
constant, then there exists a constant C, > 0 such that for all t = \

R(@, x) = 0(:°?)
uniformly in x.

LEMMA 6 (Argument on pp. 174—175 of [3]). Let 0< B, <-:-<B,, <
+eand1,...,T, denote complex numbers. If Z(t) satisfies the equation

m—1
tZ'(t)= Y (Tp4q —T)Z(t—B,)
n=1
with initial condition Z(f) = 1 for 0 < t < B, and Z(t) satisfies the equation

R m-1 ~
t2'(t) = }_:l (Tp = Tp41)2(t = B,)
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with initial condition Z(t) =1for0<t<B,, then
J:Z'(t -2y du +Z'@) + 2'¢) = 0.
Using the fundamental lemma, Lemma 4, we are now ready to derive

asymptotic estimates for mf(x’).

3. Estimates for mf(x'). The first estimate for mf(x') is the special case
where the sum is taken over those Gaussian integers with only “large” prime
factors.

THEOREM 1. Letf,, n=1,...,k, be completely multiplicative functions
satisfying (2.9) and (2.10) where f,(Ne) = e(Ne) and A = Z¥_ A,,. Then

G.) m(x") = 42() + O ¥ “H(:*P1) (tog x4 ™1)
uniformly in x and t, where Z(t) satzsﬁes the equation
(.2) 12() - [ 20) du - z; —Tg o " 2@y du=0
With initial condition Z(t) = 1 for 0 <t <B,, and

1 if f,(Na) # e(Na),
{0 if f, (Vo) = e(Na).

Proor. Letr, =D, =0, hl(xz, %) = 0. Therefore (2.12) can be
written as

_ t u k Tn t“'Bn_l
2tmy(x") 2jomf(x )du - nz=:z vy L—B,, m(x*) du

K 2t 2¢
X“" 2By} _, (X _2Bp
=7 log g Zt—B,,_l f(Na){hn(Na, x > h, (Na’ x )g .

aED(x )

A=

Now IIf, (x) = OQog'nx) forn =2, ...,k so that

mGN< L 1f N = 0" “log 4x).
Hence «<peh

Bp-1

2tm (") = 2 [ m, () " u
tm(x omf(x) u né:z 435, m(x*) du

= 0" % *(log x)4 1 H(x*B1Y).
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We let
m(x") = 4Z(f) + R(t, HE"1) (log x)* !
so that
t k. Tp (-Bp-1
2tmf(x‘) - 2J.omf(x“) du - nfé:'z 2)im, ™ (x) du

t k t“Bn—l
= 8tZ(t) - 8.[°Z(u) du - 22 Tp L_Bn Z(u) du
n:

+ H*B1) (log x)4™! ; 2AR(t, x) - 2 j;R(u, x) du

k T, (tBn-1
- — R(u, x) du} .
n§2 4 jt"Bn ( ) g
Using Lemma 5 with

k 1, rt—-Bp—1 .
tR(t, x) - j:R(u, x)du - 22 —S'LJ;_B: R(u, x) du = O(tA k A)
n=

uniformly in x and with A = B, fg 1R(u, x) du = O(1) uniformly in x, then
there exists an absolute constant C, such that R(¢, x) = 0(tc2) uniformly in x.
Hence we prove Theorem 1.

We note that condition (2.10) is needed only if the f,, can be negative; hence
for nonnegative f,, we have the following

COROLLARY. If the f, are nonnegative, satisfying (2.9) and f, (Na) =
€(Na), then

ere-a HG* P!
(3.3) mf(x') =4Z(r) + O(tR kA _%C_l)

uniformly in x and t.

Using Abel’s summation on (3.1), we obtain the following theorem which
gives the asymptotic estimate for ®g(x7, x).

THEOREM 2. Let f;(Na) = e(Na) and f,, n = 2, . . ., k, be completely
multiplicative functions satisfying

(3.4 L}‘n(x, ») = 1, log min(x, y) + D, + h,(x%, y?)
and
(3.9) I17,6) = Ollog" ).
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Then

(B6  mGh=2 ;;lx"Z'(%) du + 0021t ¥ 2 H(x*B1) (log x4 1)

uniformly in x and t, where A, A, Z(t), and A are defined in Theorem 1.

For the estimate for &4 (x*, x) given in (1.6), we make the following con-

siderations in Theorem 2:
Let k = 2, B, = 1, f,(Na) = e(Na), f,(Na) = 1, then

(.7) L} (x, ») = 8 log min(x, y) + D + O(H(x*) + HG?))
where
(-8) H(x) = O(exp(- C(log x)*/57%))
with C > 0, § > 0 fixed, by the following argument. Now

1 ! log NV,

ahen= ¥ R

p’eD(x)ipeD(y) VP
3.9 - 5 log Np, log Np
r

2

r
No"<x?;No<y 3PEPy Ne Np’<x2;Np<y2;p€P2 Np

=2+ 2,
If p €P,, then p = p is a rational prime with p = 3 (mod 4) and Np = p? If
pEPy, p#1+i, then there exists a rational prime p, p = 1 (mod 4), and Np =
p; and conversely, for each rational prime p, p = 1 (mod 4), there exist exactly
two primes p, and p, in P, such that p = Np, = Np,. Using this information,
we see that

lo
3,=2 > 2P<c

p'<x;p<y;p£-3(mod4) p
where C is an absolute constant, and
) lIo
2,=D+ 3 —8_2r
p'<x%p<y®p=1(moda) P

= 2 log min(x, y) + D" + O(H(x?) + H(»?))

where D" is an absolute constant and H(x) is defined by (3.8). Hence T, =8,
and using this in (3.6), we get (1.6).
Now we shall give a formula for the general case of mf(x').
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THEOREM 3. Let f,, n=1,...,k, be completely multiplicative functions
satisfying (2.9) and (2.10). Then

(3.10) m(x") = me &H + j:Z ‘- u)mfl(x“) du + O(tc"H(szl) (log x)°3)

uniformly in x and t, where
(3.11) m &= 3 [V,
a€D(x t)
Z(?) satisfies the differential-difference equation
, 1 k-1
(3.12) Z'() =g Zl (Ta+1 ~ TR)2(t — B,)
n=
with initial condition Z(t) = 1 for 0 <t <B,, and C; and C, are absolute
constants.

Proor. We define functions fn, n=1,...,k,by the relations

(3.13) = f,0m1, (V) = 10w
Bla 6

Hence for n = 1, (3.13) implies that

(3.19) fiNa) = e(Vay).

Further, using Lemma 1 and (2.9),

Lf"/4(x, y)= Lfl(x’ y)-— Lfn(x' y)

G.15) = (r; — ,)log min(x, ) + D, =D, + O(H(x*) + H(»?)).
By Lemma 3,
(3,16) an/4(x) = O(IOgA nx)-

Thus, the conditions of Theorem 1 are satisfied using the functions fl, %f2, cens
Y%f;. Therefore

- 1 1 1~
4% mf‘(x') =2 > fl(Nal) ’ Zfz(Naz) T ka(Nak)
aED(xt);a=u agrag
(3.17)
= 2() + 0" " H(x" 1) log x)47)

where 2(z) satisfies the equation

i 1 pimd
(3.18) 2O =g Ty~ Tny D2t - B,)

n=1

with initial condition Z(f) = 1 for 0 <t <B,.
Now we consider the following sum
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mfl(xt) = Z fl(Na) = Z fl(Nal) o ‘fl(Nak)

aED(xt) aED(xt);a=u~a""ak

y ¥ fl(Nﬁ,)fl(N ) ) fk(Nﬁk)fk< )

aeD(x) Fil Bylay
oo ay
=47k Z fl(Nﬂl) fk(Nﬁk) E fl ( ) fk( )
5eD(x ) a€D(x )
B=pBq"" a=pragtag
Bilop 1 <i<k
=4* ¥ L0B) - [(VB) z A - - Fildyy)
BED(x’ ) vED(x ‘NN
B=p6y =W
=4% ¥ [0B) S NBIm; (W_)
e Wi )

Hence, using (3.17),

log Na
my, &) = Z e "(Na")z( 2 log x)
aED(x')
a=pa) oy

+0[ATHEE Y (og x4 T If,(Ney) - - FVay)

aGD(x')
a=prag -y

= mf(x') + Z fl(Nal) fk(N k)st (logNa)/Zlong( )d

aED(xt)
a=peay ey

+ 02" 1) (log ),

which is equivalent to

me, (") = me(x") + L:Z'(t —uym(x") du
(3.19)

+ O(C2HEP 1) (log x)€3).
From Lemma 6 we see that

(3:20) jo’z'(t - w2'w) du +2'() + 2'() = 0.
Using (3.19) and (3.20), it follows that
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oy N
jOZ G u)mfl (x*) du
(T u t (T, 5
= IOZ (t — wmp(x*) + fomf(x ) J; Z(t-u-v)Z'(v)ydvdu

+ 0(“4H(x*B1) (log x)°?)

or

j:Z (- u)mfl ") du = - I;Z'(t —u)m(x*) du + O H(x*®1) (log x)°3)

=m(x") - my ") + 0 H(x*B1) (log x)¢3)

which is (3.10) of Theorem 3.

Using Abel’s summation on (3.10), we also derive the following estimate
for functions satisfying (3.4) and (3.5) which we shall use in the next section to
estimate ¥ (x’, x).

THEOREM 4. Let f,,n =1, ..., k, be completely multiplicative functions
satisfying (3.4) and (3.5). Then

m(xf) = me )+ _‘:xz(““)z'(t - u)mfl &*) du
(321)
+ O(x? 'tc“H(szl) (log x)c3)

uniformly in x and t where Z(t) satisfies (3.12), m ) (x?) is defined by (3.11),
and C; and C, are absolute constants.

4. The estimate for ¥, (x’, x). We recall that we let & = 2, B, =1,
[1No) = 1, f,(Na) = e(Na), then

@.1) mf(x') =V (x!, x),

and also that

“2) mpH= 3 1,
a€D(x t)

and finally that
4.3) L} (x, ¥) = 8 log min(x, y) + D + O(H(x*) + H(»*))

where D is an absolute constant and H(x) = O(exp(~C(log x)*/57%)) for C > 0,
6 >0 from §3.

As a consequence of Theorem 4, we see that
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t e 4
Vo(xh, x) = mfl(x‘) + Sox“' WZ'(t - u)mfl(x“) du
44
I+ 0(2*1€4H(x?) (log x)°3)
where Z(t) satisfies (1.5) withg =—1.

Now we let
4.5) mfl(x’) = x2'{r + R(x")}.
From (1.8), we see that
(4.6) R(x") = o(x(?~2)%)

with b < 2/3, an absolute constant.
Using (4.5) in (4.4), we prove the following estimate for ¥ (x*, x) which
has (1.7) as a special case when N = 0.

THEOREM 5. If 1 <t < (log x)*/57%, 8 > 0 an arbitrary real number,
R(x) and H(x) are defined by (4.5) and (3.8), respectively, then

N—-1_1ym »(m+1) o0 m
e x)=,,xz,{z(,)+m=o( iy 200 (- g du}

@7

(log x)V*+1

for every natural number N. The estimate is uniform in x and t for t outside the
intervals (n, n + €), where n = 1,2, ..., N + 1 are the discontinuities of
ZW*1)(¢) and e is an arbitrary positive real number.

(N)
+ ON x2t{tc4H(x2) (log X)C3 + M§

PrROOF. After substituting (4.5) in (4.4), we have
t
V(' x) = nxzt{l + foZ'(t - u) du + 7" 'R(x?)

4.8) t,
#7126~ RG) du + O HG) (og 9}
We note that Z(z) =1 + [ ")Z'(t — u) du and after the manner of Levin and
Fainleib [3, Theorem 3.2.3], we let € > O be so small that the interval (¢ — ¢, 7)
does not contain any discontinuities of Z&*1)(v), N is a natural number. Hence
for 0 < v < e, we can apply Taylor’s theorem to get

49 Z@-v)= Nf %}}f ZmmED@ —yp™ + 0N IZV (- €))D)
m=0 °

for some €, such that 0 <€, <e (we note that the sum in (4.9) is empty if
N =0).
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Thus
j:Z'(t — uR(x*) du = Nil %,ﬁ Zm+ 1)) j:umR(x“) du
(4.10) m=0
+ o(;z‘” O - e,)l_[:u” IRGx™)| du).

The sum on the right-hand side of (4.10) is equal to

N ey 2D [FR@ g ,,

o ™ (logx)y"+1Jo u
@.11) m=0 (log x)

VAR )] [R@Gg )
€ u ’

m=o ™ (logxy"*!

and the second sum of (4.11) is

@.12) ON(MJ“; &uﬂ du) _ oN(x("'z’ﬂZ';t;l )

log x log x

For the O-term of (4.10), we see that
N+1)(p —
(4.13) O(IZ(N“)(t ~ el uVIRG) du) - oN('Z (€~ epl )

(log x)Vt1

Now ZW+1)(t - ¢,) = 0(t1Z™(2)l) and
EZ'(t - u)R(x*)du = O(x(b"z)eLtlZ'(t - u)| du)

= 0(x®~2e1 + Z(1))).

Hence collecting these results in (4.8), we get (4.7) to complete the proof
of Theorem 5.
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