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ABSTRACT.   A paraboson analog of the one-dimensional boson field

is discussed and a uniqueness result similar to a result of Putnam is obtained.

It is shown that the paraboson operators must be unbounded.

Introduction.  Green first introduced the parafermion and paraboson field

algebras in 1953 [2].  Much is known about the representation of the parafermion

field operators but there has been little mathematical work concerning representa-

tions in the paraboson case due to the unbounded nature of the operators. No

bounded relations corresponding to the Weyl relations for bosons have been found

so the paraboson operators must be treated in unbounded form.  In one dimension

the paraboson relations reduce to the single relation

C*C2 -C2C* = 2C,

where C is a creation operator and its adjoint C* is an annihilation operator. This

relation cannot be taken literally but must be given a suitable interpretation. We

will prove a uniqueness result parallel to the ones proved by Putnam and Tillmann

for bosons. As a corollary to the proof it will be shown that there are no bounded

operators satisfying the paraboson relations. This is clear when the polar decom-

position of C yields a self-adjoint operator with discrete spectrum, an assumption

which is usually made but is not necessarily satisfied.

Uniqueness of the paraboson field.  Let C be a closed, densely defined

linear operator on a Hilbert space K satisfying

(1) C*C = CC* + 7.

Putnam [5] proved that C*C then has purely discrete spectrum consisting of the

nonnegative integers. Tillmann [8, p. 263] also showed that [C, K} is unitarily

equivalent to a direct sum of one-dimensional free boson fields.  See also [6,

Theorem 4.4.1].
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We will extend this result to the paraboson case but first we will need an

analog of the one-dimensional free boson field.

Definition. A one-dimensional free paraboson field of order p > 0 is a

pair {C, K], where K is a Hubert space with orthonormal basis {e-: / = 0, 1,2,

. . . } and C is the closed, densely defined operator on K such that Ce¡ = 7/e,+,

where

ÍV/+ 1.     / even,

vf+P.     /* odd.

Note that when p = 1, y¡ ■ y/j + 1 and this gives the free boson field, p

can be any nonnegative number and, unlike the parafermion case, need not be an

integer.

We are now able to state our main result.

Theorem. Let C be a closed, densely defined linear operator on a Hubert

space K such that CC* and C*C commute,

(2) C*C2 = C2C* + 2C,

and either CC* + C*C has discrete spectrum or {C, K} is completely reducible.

Then both of the latter two conditions hold and {C, K} is unitarily equivalent to

a direct sum of free paraboson fields.

The relation (1) implies that CC* and C*C commute while (2) only implies

that formally their commutator vanishes. We will need that the spectral projec-

tions of CC* and C*C commute (which can easily be checked in the case of the

free paraboson field) so we are forced to assume the commutativity directly. It

is not sufficient to assume that the commutator of CC* and C*C vanishes on a dense

invariant domain. See, for example, [4, pp. 603-606]. In the boson case the

complete reducibility is automatic while for parabosons it is not. This is because

the operator n = Vi(CC* + C*C) which plays the part of the number operator

may have continuous spectrum in the paraboson case when the representation is

reducible.

The theorem will be proved in two parts. We first handle the discrete

spectrum case and then show that when n has a partially continuous spectrum the

representation is reducible.

Let « = VÁCC* + C*C). n is self-adjoint and nonnegative since CC* and

C*C are nonnegative commuting self-adjoint operators. Let n = fXE(dX) be the

spectral resolution of n.  Define

D = {wGK: E(A)w = w, for some bounded interval A}.
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D is dense in K and zz is essentially self-adjoint on D.  Since CC* and C*C com-

mute with zz, D is invariant under these operators. Thus D is a subset of the

domains of C, C"=, CC*, C*C, C2C*, CC*C and C*CC*. (2) implies that D is

also a subset of the domain of C*C2.  From these domain conditions and (2) it

follows that for w G D,

[C*, C2]w = 2Cw,      [n,C]w = Cw.

Let od(n) be the discrete spectrum of zz and assume od(n) +0. Choose

q G ad(n) such that q - 1 ^ ad(n). Choose vGK such that nv = qv, v # 0.

Then u G D and zzO> = C(zz + l)v = (q + l)Cv, soCvGD.  Similarly, Ckv G D

and nCkv = (q + k)Ckv. Let M be the set of finite linear combinations of Ckv.

MGDsoMG Dom(Q n Dom(C*). Clearly CM CM.  We will show that C*M

C M.  To see this let w G D.

{nw, C*v) = {Cnw, v) = <(zz - l)Cw, v)

= {Cw, (zz - l)u> = {Cw, (q - l)v)

= {w, (q - l)C*v).

Since zz is essentially self-adjoint on D,  C*v G Dom(zz) and nC*v = (q - l)C*v.

This implies that C*v = 0 since (q - 1) ̂  od(ri).

C*Cv = C*Cv + CC*u = 2nv = 2qv G M.

lfk> 1,

C*Ckv = C*C2(Ck~2v) = C2C*Ck~2v + 2Ck~1v,

(3)
C*Ckiz = C2lC*Ck~2'u + 2jCk~lv   if; < Wc.

Therefore C*Ckv = ßkCk~lv where

Ik, k even,

k-l+2q,   k odd,

Let Kx be the closure of M, and let K2 = ML so that K = KX ®K2. Let v¡ =

aC'v, where a¡ is chosen to make u- a unit vector, i.e.

a0 = Huir1,     ay = Huir1 i IJ M ~ *-     / > l-

Then v¡ G /Cj, and if/ > A:,

(V/, izfc > = ajak {C'v, Cku) = tt¡ak {C'-^v, C*(fe+ !>Cku> = 0,

since C*(k+1)Ckü is proportional to C*v. Therefore <uy-, vk) = §/fc. Simple

calculations yield
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ty=^W/+i;     C*Vj = Vß~vhl,   if/>l;

C*CvJ- = ßj+xvj;     CC*Vj = ßn,   ifj>\.

Let T = \JC*C.  T2Vj = ßj+ xv¡ so Tv¡ = V¡3~¡~¡ v¡. If P¡ projects on the

one-dimensional space spanned by v-, P¡ commutes with all of the spectral pro-

jections of T.  Therefore P = 2J1 xPf does also. Thus FT Ç TP, so if w G

T>om(T) then Pw G DomfT).  Since Dom^ = Dom(C), if w G Dom(C) then Pw

G Dom(C). 7* projects onto Kx so

(4) Dom(C) = Dom(C) n Kx © Dom(C) n 7C2.

A similar argument applied to 5 = \/CC* yields

(5) Dom(C*) = Dom(C*) n AT, © Dom(C*) n 7C2.

It is now a simple matter to prove the following four statements:

(i) w G Dom(C) n K2 implies Cw G K2,

(ii) w G Dom(C*) n K2 implies C*w G K2,

(iii) w G Dom(C) n #, implies Cw G Kx,

(iv) w G Dom(C*) n AT, implies C*w G Kx.

We will prove (ii) and (iii). (i) and (iv) are done similarly.  If w G Dom(C*) fl K2

and x G M,  ( C*w, x > = <w, Cx > = 0 so C*w G M1 = K2 which gives (ii). If

w G Dom(C) n 7^! and x G Dom(C*) fl K2, (Cw, x) = <w, C*x) = 0 by (ii) so

CW G (Dom(C*) n 7C2)1 = 7C^ = Kx since Dom(C*) n K2 is dense in 7<"2 by (5).

For /' = 1,2 define C¡, a linear operator on K¡, as the restriction of C to K¡. We

will next show that Cf is the restriction of C* to K¡.

Let w G Dom(C*) DK¡. If x G Dom(Cf) then

<C,.x, w) = (Cx, w) = (x, C*w),

sow G Dom(Cf) and Cfw = C*w.  Thus C*\K. Ç Cf. Now assume w G Dom(Cf).

If x G Dom(C). * = xx + x2, xx G Dom(C) n Kx, x2 G Dom(C) fl 7C2.

(Cx, w) = (Cxx,w) + (Cx2, w) = (Cx¡, w) = (C¡x¡, w)

= (x¡, Cfw) = (xx, Cfw) + (x2, Cfw) = (x, Cfw),

sow G Dom(C*) and C*w = C/"w. Thus Cf C C*\K.. This shows that C = C,

© C2 where C, and C2 each satisfy the conditions of the theorem and

ci "/ = V^7i "/+1 = T/W/+1 if P = 2q.

By transfinite induction, we may write

k = (Z®k\® k0,    c^X©^© c0,
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where for each p,   {Cß, K^} is a free paraboson field and {C0, K0] satisfies the

conditions of the theorem but y¡.(C0C£ + C£C0) has no point spectrum.

The theorem is now a consequence of the following statement:   If od(ri) =

0 then {C, K} is reducible. To see that this is true suppose od(ri) = 0. If A is a

bounded set of real numbers and w G E(A)K, then w G Dom(zz) and

{Cw,Cw) + {C*w, C*w) = {w, C*Cw) + <w, CC*w)

ni= <w, 2znvX2||A||

where ||A|| = sup A. Thus, n, C and C* are bounded on E(A)K.  Now assume A

is a bounded open interval, A = (a, b), and suppose E(A)w = w.  We will show that

(6)

(7)

7f(A + 1)CW = Cw,

E(A - \)C*w = C*w,

where A + k = {d + k: d G A}.

Let & be a nonnegative integer and let b = (b - a)/2k.  Assume k is suffi-

ciently large so that S < 1.

Let A¡ = (a + 2/8, a + 20' + 1)S) for / = 0, 1,... , k - 1. Let w¡ =

E(Aj)w so w = S£ow/ and E(Aj)wj = wj- Le* 0¡ = a + 2(j + V¡)b, the midpoint

of A •, and let
fc-i fc-i

z = nw~Y, 6jwj = £ (« - 0/V/.
/=o /=o

/=0

= Zll(»-flyHI
/=o

<52X lk/ll2=52|M|2
/=o

where we have used that the wy's are orthogonal.

Since E(A)z = z,

||Cz||2<2||A||||z||2<2||A||S2||w||2.

Cz = ¿ On - fyVy = ¿ (« - 0, - 1)CW,-
;=0 /=0

This is a sum of orthogonal terms since

{C(n - Oj)Wj, On - 0r)wr ) = {(n- 0¡)w¡, C*C(n - 0r)wr)

and (zz - Of)Wj G E(A¡)K while C*C(n - Oj-Jwj' G E(A¡-)K since C*C commutes

with zz.
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fc-1

Z ll(» - e, - 1KW/II2 = Höh2 < 2||A||S2||W||2.
/=o

Let e¡ = \\(n - B, - l)CWj\\, so 2^6? < 2||A||Ö2|M|2. Let A? = (6, -ty8, 6, +

Vf) so Ay ç A?. Ut y j = E(Af + l)Cw¡ - Cw¡. Then

\\y)\\3 = ||7í((A9 + \)')CWj\\2

1 n /»-Ö/-A        I
< E^¡ + 1)r)V~?g~7CW/l

/»-9,-A      II2      e2

where ' denotes the complement.  Let A0 = Uf=¿ A? and yf = E(A° + lyCw, -

Cwr Then li^9||2 < ||^||2 < ef\/8. Uty = 2j£$yf = E(A° + 1)CW - Cw.

\\y\\2 <kZ Wyfw2 <J5~L ¿f < IIA|l2lMi2v^.

As k -> °°, 8 -> 0, A0 + 1 —► A 4- 1 so ||^|| -> 0, 7;(A0 + l)CVv —> Cw,

E(A° + 1) —» 7J(A + 1) strongly and thus E(A + l)Cw = Cw.  This establishes

(6).
To see that (7) holds, let Aj be a bounded interval disjoint from A - 1 and

assume E(Ax)y = y,

(C*w,y) = (w,Cy) = (E(A)w, E(AX + l)Cy> = 0.

Therefore, C*w G (E((A - l)')^)1 so 7;(A - l)C*w = C*w.

Let q = inf o(n). Choose e, 0 < e < 1, such that E((q + e, q + 1)) ¥= 0.

Let A = (q, q + e). Let M = {wGK: 2£=0£'(A + k)w = w for some m) C D.

Let w G M  Define wk = 7J(A + k)w so w = 2£I=0wfc.  Cw = 2£=0CWfc and so

CwGM. C*w = 2^=0C*wk and E(A + k- l)C*wk = C*wk. Since E(A - 1) = 0,

C*vf G M.  Thus CM CM and C*Af Ç M.  Let Tí, be the closure of 717, K2 = M1

and P = 2~_0/r(A + k) so that P projects on Kx and is a spectral projection of

n.  Since 7 = VG*C and S = \¡CC* commute with n.PTCTP and PS C SP so,

as before,

Dom(C) = Dom(C) D 7CX © Dom(C) n K2,

Dom(C*) = Dom(C*) C\KX® Dom(C*) n AT2,

and C = Cx © C2. ATj # {0} since E(A) ¥= 0 by the definition of <?.  K2 ¥= {0}

since £"((4 + e, q + 1)) # 0. Thus {C, AT} is reducible.
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This completes the proof of the theorem.

Corollary.  There are no bounded representations of Green's paraboson

relations.

Proof. If C were any bounded creator from a representation of the para-

boson relations, it would have to satisfy (2). CC* and C*C commute since their

commutator is formally zero and they are bounded. We may assume that 0 ^

ad(n) since C and C* act trivially on £"({0}). Let M be an even integer greater

than sup a(zz). By (6), CM = 0. Choose q G a(n) such that q > 0 and q - lA <

inf a(zz). Let A = (q - % q + &). If E(A)w = w then C*w = 0 since E(A - l)C*w

= C*w and 7J(A - 1) = 0. Suppose E(A)w = w and ||w|| = 1. By (3),

C*Ckw =

C*Ckw -

zcCk 1w, keven,

(k - l)Ck-1w + Ck~lC*Cw,      k odd.

Let v = nw - qw. C*Cw = 2nw = 2qw + 2v.

kCk~lw, k even,

(k - 1 + 2q)Ck~lw + 2Ck~1u,      k odd.

\\Ckw\\2 = (Ckw, Ckw)

= {Ck~lw,C*Ckw)

Izt||Ck-1w||2, zceven,

(k - 1 + 2<7)||Ck-1w||2 + 2 <Ck_V Ck_1iz>,   k odd.

If k is even and 2 < k < M,

\\Ckw\\2 =k(k-2 + 2<z)||Ck-2u;||2 + 2k {Ck~2w, Ck~2v)

> 2<7/c||Cfc-2Vv1|2 - 2MI|C||2fc-4IM|.

Since IICH2 m \\C*C\\ < 2||r|| < 2M,

\\Ckw\\2 >2qk\\Ck-2wf -(2M)k-i\\v\\

> 2qk(2q(k - 2)||Ck-4w||2 - (2M)k~3M\) ~ {2M)k~l M

> (2q)k/2k(k - 2) • • • (2)||w||2 - \\v\\((2M)k'1 + q(2M)k~2 +•••).

||CMw||2 > (2qyw/2M(M-2) • • • (2) - \\v\\P(M)
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where P(M) is some fixed positive function of M.  Thus

(2gri2M(M-2)---(2) =m * P(M) u'

We can now find a sequence, w-, with E(A)Wj = w¡, \\w¡\\ = 1 and «w- —►

qWj. We then have ||ü|| > Q but v, —* 0. This contradiction completes the

proof of the corollary.

If 77 is a complex Hubert space, a quantum field over 77 is a collection

{K, C, Y, v} where K is a complex Hubert space, C is a complex linear function

from 77 into the closed densely defined operators on K, Y is a continuous represent-

ation of the unitary group of 77 on K and v is a vector in K which is cyclic for

the algebra generated by the C(z) and C*(z) such that

y(U)c(z)Y(U)-1 = auz),    r(U)v = v,

for all unitaries U on 77 and all z G 77.  The quantum field is said to be positive

(or have positive energy) if when A is a nonnegative self-adjoint operator on 77,

the operator dY(A) defined by Y(e'tA) = e'tdr(A) is also nonnegative. In this

case we write dY > 0. The standard parafermion fields are examples of positive

energy quantum fields [7] as are the free boson fields [1, Corollary 2, Theorem

4, Theorem 8].   The one-dimensional free paraboson field can also be given this

structure as follows.

Let 77 be a one-dimensional Hilbert space. 77 is just the field of complex

numbers. Let {C, K] be the one-dimensional free paraboson field. For a G 77,

define C(a) = aC.  A representation Y of the unitary group U(77) of H on K can

then be defined which intertwines with C(a). U(77) is just the set of complex

numbers with absolute value 1. Define Y(ß) for ß G U(77) by Y(ff)e¡ = ß'ej. Y is

then a representation and r(ß)C(a)r(j3)-1e- = C(ßa)ej. If we define v = e0, we

get F(ß)v = v. For any self-adjoint operator A on 77, A is just multiplication by

some real number a and dY(A)ej = /ae;-. Hence, dr(A) > 0 when A > 0. This

implies that {K, C, Y, v} is a positive quantum field over 77.

The order of the paraboson field can be any nonnegative number p.  If p is

an integer then the field can be obtained from the skew product of p free boson

fields by Green's ansatz [3, p. 1157]. When p is not an integer the free paraboson

field of order p cannot be obtained from boson fields. This gives the first example

of a positive quantum field not derivable from boson or fermion fields for which

the creation operators satisfy simple relations.
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