
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 209, 1975

GLOBAL DIMENSION OF DIFFERENTIAL OPERATOR RINGS. II
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K. R. GOODEARL

ABSTRACT.   The aim of this paper is to find the global homological

dimension of the ring of linear differential operators R[8,,: . . , 8   ] over a

differential ring R with u commuting derivations.   When R is a commutative

noetherian ring with finite global dimension, the main theorem of this paper

(Theorem 21) shows that the global dimension of i?[6j, . . . , 8   ] is the

maximum of k and q + u, where q is the supremum of the ranks of all max-

imal ideals M of R for which R/M has positive characteristic, and fc is the

supremum of the sums rank(P) + diff dimíP) for all prime ideals P of R

such that R/P has characteristic zero.   [The value diff dim(i") is an invariant

measuring the differentiability of P in a manner defined in §3.]   In case we

are considering only a single derivation on R, this theorem leads to the result

that the global dimension of R[8] is the supremum of gl dim(i?) together

with one plus the projective dimensions of the modules R/J, where J is any

primary differential ideal of R.   One application of these results derives the

global dimension of the Weyl algebra in any degree over any commutative

noetherian ring with finite global dimension.

1.  Introduction.  As in [5], we reserve the term differential ring for a

nonzero associative ring R with unit together with a single specified derivation 5

on R.  In case we have specified a finite collection Sj, . . . , 5U of commuting

derivations on R, we shall refer to R as a u-differential ring.   The ring of dif-

ferential operators over a «-differential ring R is additively the group of all poly-

nomials over R in indeterminates 61, . . . , 6U, with multiplication subject to

the requirements 0f0 ■ - 0 6i for all i, /, and d¡a = ad¡ + 8¡a for all i, all a GR.

We denote this ring by R [0 ,, . . . , 6U], or by R [0] in the case of a single

derivation.  The elements of R[9X.0U] are normally written as sums of

monomials of the form rp, where r G R and p is a product of powers of the 6¡,

although for some arguments it is more convenient to use right-hand coefficients.

(Note that when an element of R [0 j, . . . , 6U ] is written with left-hand coef-

ficients, these coefficients will in general be different from those used to express
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the element with right-hand coefficients.) In particular, any element x G R[d]

is written as x = r0 + rß + . . . + rn6n for suitable r¡GR, and when rn # 0

we say that n is the degree oîx and that rn is the leading coefficient of x.  Fin-

ally, for induction purposes we note that

R[dv...,eu]=R[dv...,eu_l][9u],

where 6U has been implicitly extended to R[d1, . . . , du_1] by setting 8U6¡ = 0

for all i.

The objective of this paper is to derive formulas for the global dimension

of R[0t, . . . , 8U], where R is a commutative noetherian «-differential ring with

finite global dimension. Basically, the task breaks down into the problems of

finding suitable lower bounds and upper bounds for the global dimension of

R[dl, . . . , 6U].  Since these two problems require relatively different techniques,

we allot separate sections of the paper to them. In both cases we also require the

techniques of localization: namely ordinary localization of the commutative ring

R at a prime ideal, which induces a natural noncommutative localization on the

ñngR[dl,...,eu].

Our notation for the various homological dimensions involved with a ring

S is as follows: r gl dim S denotes the right global dimension of S, and GWD(5)

denotes the global weak dimension of S. For any S-module A, we use pds(4)

and wds(,4) to stand for the respective projective and weak dimensions of A.

The reason that weak dimensions are useful is that we shall be dealing mostly

with noetherian rings.  For if R is a right and left noetherian differential ring,

then R[d] is right and left noetherian, as observed in [2, p. 68].  By induction,

R[9t, . . . ,6U] is right and left noetherian also. Our basic estimates on homo-

logical dimensions are given in the following two propositions, which follow

automatically by induction from [5, Propositions 2, 3].

Proposition 1. LetR beany u-differential ring, and set T=R[9l.6U].

If A is any right T-module, then

VaR(A)<vAT(A)<u + vàR(A).

Proposition 2.  // R is any u-differential ring with r gl dim R < °°, then

r gl dim/? <r gl dim/?^, . . . , 0J <u + r gl dim R.

The left-hand inequality in Proposition 2 may fail if r gl dim R = °°, as

shown in [5, §2].

We close this section with two propositions which give the basic results on

the localization procedures needed later. The first of these is proved in exactly

the same manner as [5, Lemma 7].
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Proposition 3.   Let R be any commutative u-differential ring, and set

T = R[9X, . . . , 6U]. If S is any multiplicatively closed subset ofR, then the

following are true:

(a) Each d¡ induces a derivation on Rs according to the rule 8¡(r/s) =

[(5¿)s-r(6t.s)]/S2.

(b) The natural map r—>FS[0,,..., 0J makes Rs[9l, . . . , 0J

into a flat right and left T-module such that the multiplication map

Fs[0,, . . . ,0J ®TRs[eit . . . ,0J -*Rs[d1,...,6u] is an isomorphism.

(c) r gl dim Rs[9l,-0 J < r gl dim T.

Proposition 4.   Let R be a commutative noetherian u-differential ring

with gl dim R < °°.   Then

rgldimÄ[01,...,0u]

= sup{r gl dim RM [6l, . . . , 0 J \ M is a maximal ideal of R}.

Proof. Inasmuch as all rings involved in this proposition are right noeth-

erian, it suffices to prove the corresponding statement for global weak dimension.

Just as in the proof of [5, Lemma 7], we see that each of the rings

RM[d1, . . . , 6U] is a classical localization of R[91, . ■ . , 0„] with respect to

the multiplicative set R \M. It is easily checked that these localizations satisfy

the hypotheses of [13, Proposition 1], from which we obtain the desired result.

2.  Lower bounds. In this section we set up our basic tool for finding

lower bounds for the global dimension of R[ôt, . . . , 6U]. This is Theorem 7,

which allows us to compute the projective dimensions of those R[9l, . . . ,BU\-

modules which happen to be finitely generated as Ä-modules. As one consequence,

we find that r gl dim R [0,,..., du] > u + rank(Ai) for any maximal ideal M

of R such that R/M has positive characteristic. We begin with two lemmas, the

first of which is essentially a special case of [6, Lemma, p. 68].

Lemma 5.   Let R be any differential ring, and let A be a right R [0] -mod-

ule. If E: 0 —* K —► F —► A —>• 0 is an exact sequence of right R-modules

with FR free, then K and F can be made into right R [9]-modules such that E

becomes an exact sequence of R[9]-modules.

Proof.  Let f:K —► F and g: F —► A denote the maps in E. Choosing

a decomposition of F as a direct sum of copies of R, and applying Ô to each

copy of R, we obtain an additive map d: F —> F such that d(xr) = (dx)r +

x(ßr) for all x S F,  r G F. Define a map h: F —► A by the rule hx = g(dx) +

(gx)9, and check that h is an F-homomorphism. Then h lifts to an Ä-homo-

morphism k: F —> F such that gk = h.
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Now d' = k - d is an additive endomorphism of F such that d'(xr) =

(d'x)r - x(5r) for ail x G F,  r GR, from which we infer that F can be made

into a right R [d] -module by defining x9 = d'x for all x G F. Computing that

now g(xd) = (gx)6 for all x G F, we see that g is an R [6] -homomorphism.  As

a consequence, ker g is an R [6] -submodule of F, hence K can be made into a

right R[8]-module so that /is an R[6]-homomorphism.

Lemma 6.   Let R be a semiprime left Goldie differential ring. If J is any

essential left ideal of R [6], then J contains an element of R [6] whose leading

coefficient is a regular element of R.

Proof.   Since R is left Goldie, it must contain a finite direct sum Ax ©

. . . ®Ak of nonzero uniform left ideals which is essential in RR.  The essenti-

ality of/ implies that each of the left ideals R[0]A¡ must contain a nonzero

element x¡ from /.  After multiplying the x¡ on the left by suitable powers of

6, we may assume that the x¡ all have the same degree, say n.  Inasmuch as

R[0] =R+6R + 62R + . . . , we see that R[d]A¡ = A¡ + dA¡ + 62A¡ +_

Noting that the degree of x¡ remains the same when x, is written with coeffi-

cients on the right, we see that x¡ ~xi0 + 8xn + . . . + d"~1x¡n_t + d"a¡

for some x¡-, a¡ G A¡, a¡ =£ 0.  Changing back to left-hand coefficients, the

leading coefficient of xt is still a¡, although the other coefficients need not even

belong to A¡.

Now Ra¡ is a nonzero submodule of the uniform left ideal A¡ and hence

is essential in A¡, from which we deduce that Ral © . . . ®Rak is an essential

left ideal of R.  Inasmuch as R is a semiprime left Goldie ring, [8, Lemma 7.2.5]

says that Rax © . . . © Rak must contain a regular element a of R, say a =

rlal + . . . + rkak. Since each x¡ has leading term aß", we now conclude that

rxxx + . . . + rkxk is an element oí J whose leading coefficient is a.

Theorem 7.   Let R be a semiprime right and left noetherian u-differential

ring, and set T = R[6l.6U]. If A is any nonzero right T-module such

that AR is finitely generated, then pdr(^4) = u + pdR(A).

Proof.  Each of the rings T, = R[0lt . . . , 0] is right and left noetherian,

and it is easily checked that each T, is semiprime as well.  Now A is a finitely

generated right ^-module for each /, and we are done if we show that the pro-

jective dimension of A over each Tj+1 is exactly one greater than the projective

dimension of A over T¡. Thus it suffices to consider only the 1-differential

case: here i? is a semiprime right and left noetherian differential ring, A is a

nonzero right R[6]-module such that AR is finitely generated, and we must

prove that pdÄr0,(,4) = 1 + ^àR{A).



DIFFERENTIAL OPERATOR RINGS.   II 69

The case pdR(A) = °° is taken care of by Proposition 1, hence we may

assume that pdR(A) = n < °°, and we induct on n. As noted above, F [0] is a

semiprime right and left noetherian ring, hence the maximal right quotient ring

Q of R[9] coincides with the maximal left quotient ring of F[0] (and is a

classical right and left quotient ring).  Also, R[9] is a semiprime right Goldie

ring, hence [14, Theorem 1.7] shows that R[9] is a right nonsingular ring.

If n = 0, then pdÄf9i(/l) < 1 by Proposition 1; hence it remains to show

that AR{Q] is not projective.  Inasmuch as A ¥> 0 and all projective right

R[9]-modules are nonsingular, it suffices to show that AR,di is singular.  Given

any a G A, set / = {x G R [0] \ax = 0}and note that F [0] // is noetherian as an

Ä-module.  Now any nonzero right ideal K of R[9] contains elements of arbi-

trarily high degree, whence KR cannot be finitely generated. Thus the natural

map K —* R [9] —► F [0] // cannot be a monomorphism, i.e., K r\ J ¥= 0.

Therefore J is an essential right ideal of F[0] and so A is indeed a singular

R[6] -module.

Next assume that n = 1, and choose a positive integer k such that AR can

be generated by k elements.  If S denotes the ring of all k x k matrices over

R, then we obtain a Morita equivalence between the category of all right F-mod-

ules and the category of all right S-modules, where any right F-module B gets

taken to B ®R Rk, i.e., to Bk. We intend to use this equivalence to transfer

our problem to 5-modules, since Ak is a cyclic right 5-module. Now 5 can be

extended to a derivation of S by letting 5 act on each entry of any matrix in

S, and then S[9] may be identified with the ring of all k x k matrices over

F[0]. With this identification, we get another Morita equivalence between the

category of all right F [0] -modules and the category of all right S[9] -modules,

where any right R [9] -module B gets taken to Bk. Because of these equivalences,

pds(Ak) = 1 and pdÄ[9 ¡(A) = pdS[0 ](Ak), hence we may assume without loss

of generality that AR is cyclic.

Therefore we may assume that A = R/I for some right ideal / of F.  Inas-

much as A is also a right F [0] -module, we have 10 = a for some aGR. Then

rd = (a - 8)r for all r G R and consequently (a - 5)(7) Ç /.  Noting that F [0] =

R + (0 -a)R[9], we see that A z*R[9]/J, where / = / + (0 - ot)R[9].

We claim that for any F [0] -homomorphism /: / —> F [0], f\¡ must be

left multiplication by some element of F [0].  Since R [0] is a right nonsingu-

lar ring, its maximal right quotient ring Q is the injective hull ofF[0]A[9],

hence / must be left multiplication by some t G Q. Noting that r(0 - a) G

F [0], we see that t = x{9 - a)~l for some x G F [0]. This element x can be

put in the form x = x0 + xx(9 - a) for suitable x0GR and xx GR[9], whence

t = x0(9 - a)~l + Xj. If x0 = 0, then / itself is left multiplication by the
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element x¡ GR[6] and the claim holds, hence we may assume that xQ =£ 0.

We have tJ = fJCR [8], and clearly xXJ C R [6] as well, whence x0(ß - a)~ lJ

QR[6].
Inasmuch as Q is also the maximal left quotient ring of R [9], we must

have KxQ(d - a)~ ' Ç R [6] for some essential left ideal K of R [0], and by

Lemma 6, K must contain an element y whose leading coefficient is a regular

element of R. Now>> is clearly a regular element of R[9] and so is invertible

in Q, hence we obtain x0(9 - a)-1 = y~ lz for some z G R [0], or yxQ =

z(0 - a). Since x0 ¥= 0 we have z =£ 0, too, which makes it possible to talk

about the degrees of the elements in this last equation. Obviously deg[z(0 -a)]

= 1 + deg(z), and since the leading coefficient of y is a regular element we ob-

tain deg(yx0) = deg(y); thus deg(y) = 1 + deg(z). Given any r G I, we have

y~ 1zr = x0(6 - a)~ lr G R [0] (because rGJ), whence zr G yR [0].  Since

deg(y) > deg(z), and since deg(yw) > deg(y) for all nonzero w GR[6], this is

possible only when zr = 0. Thus we obtain zl = 0, from which we infer that

x0(0 - a)-1/ = 0. It follows that f\¡ is just left multiplication by the element

jCj G R[6], as claimed.

As right R-modules, J = / © (0 - a)R [0], from which we see that / can

be made into a right R [0] -module so that the projection p: J —► / is an

R [0] -homomorphism. Choose an R [0] -epimorphism g: F —► /, where F is a

finitely generated free right R [0] -module. If we assume that JR re j is pro-

jective, then p must lift to an R [0] -homomorphism h: J —► F such that gh = p.

In view of the claim just proved above, we see that h\j must be left multipli-

cation by some w GF, from which we compute that (gw)r = r for all r GL

Consequently gw is an idempotent and (gw)R = /, hence (R/I)R must be pro-

jective. However, this contradicts the assumption that pdR(A) = 1, and thus

/rio] cannot be projective. This gives us pdÄ[e1C4) > 1, so by Proposition 1

we conclude that pdfirei(^) = 2.

Finally, let n > 1 and assume the theorem holds for n — 1.  Choose an

exact sequence E: 0 —► K —► F —*■ A —► 0 of right R -modules with FR fi-

nitely generated free, and use Lemma 5 to make E into an exact sequence of

right R [0] -modules. Now K is a right R [0] -module which is finitely generated

as an R-module, and pdÄ(/Q = n — 1 > 0 (so that in particular K ¥= 0), hence

we obtain pdR, e i (K) = n from the induction hypothesis.  Inasmuch as n > *1

and pdÄ [ e, (F) < 1 by Proposition 1, it now follows from the long exact se-

quence for Ext that pdR,e^(A) = n + I.   D

Using more homological methods, a stronger version of Theorem 7 has

been proved in [12, Corollary 1.7(b)].
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I am grateful to the referee for pointing out the necessity of condition

(b) in the following corollary.

Corollary 8.   Let R be a semiprime right and left noetherian u-dif-

ferential ring, let J beaproper right ideal of R, and let al, . . . ,au GR such

that

(a) (5f-a,.)(/)Ç//or/ = l,...,M,

(b) (6\ - (*,.)((*,.) - (6, - a/)(a,.) ejfor i,j = 1,..., u.

Then r gl dim F[0j,. . . , 0J > u + \r>dR(R/J).

Proof.  Let A = R/J, which is a nonzero finitely generated right F-mod-

ule.  Using (a) and (b), we infer that A can be made into a right R [9 j,..., 9U] •

module by setting r9¡ = (at - o¡)r for all i and all r GR. (Condition (a) ensures

that xdj is well defined, and condition (b) ensures that x9¡9- = xdSt.  The de-

tails are very straightforward.) Consequently, Theorem 7 says that A is a right

F[0j, . . . , 9U]-module with projective dimension u + pdR(A).   D

Corollary 8 applies in particular to the case when / is a differential right

ideal of F, i.e., 8¡(J) CJ for all i. In this case, condition (b) is trivially satis-

fied.

In order to apply Theorem 7 or Corollary 8 in the case when R is a

commutative noetherian ring of finite global dimension, we must know that

F is semiprime. This is probably well known, as are the other facts in the

following proposition, which we include for completeness.

Proposition 9.  Let R be any commutative noetherian ring with

gl dim F = n < °°.

(a) F is a finite direct product of integral domains, and thus is a semi-

prime ring.

(b) If M is any maximal ideal of R, then gl dim RM = rank(Af) =

pdR(R/M)^n.

(c) 77ie (classical) Krull dimension of R is n.

Proof,  (a)  For each maximal ideal M of F [9, Part III, Theorem 11]

says that gl dim RM < « < °°, hence it follows from [9, Part III, Theorem 13]

that RM is a regular local ring. Thus RM is an integral domain for every maxi-

mal ideal M [10, Theorem 164], whence [10, Theorem 168] says that F is a

finite direct product of integral domains.

(b) As seen in (a), RM is a regular local ring. According to [9, Part III,

Theorem 12], gl dim RM is the same as the Krull dimension of FM, i.e.,

gl dim RM = rank(M)- In view of [10, Theorem 176], we also see that the

projective dimension of RM¡MRM over RM is equal to rank(M). Inasmuch as
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R is noetherian, the projective dimension of any finitely generated R-module A

is the supremum of the projective dimensions of the /2^-modules AK, where K

ranges over all maximal ideals of R. For the case A = R/M, we have AM ■

RM/MRM and AK = 0 for all other K, from which we conclude that $dR(R/M)

= rank(M)-

(c) Since R is noetherian, n is the supremum of the numbers gl dim RM

over all maximal ideals M, hence (c) follows immediately from (b).

We conclude this section by deriving the lower bound u + rank(M) <

r gl dim R [0 j, . . . , 6U ], where M is any maximal ideal of R such that R/M

has  positive   characteristic.  We  must  also   derive  lower  bounds  for

r gl dim R [d1, . . . , 6U] related to maximal ideals M such that R/M has char-

acteristic zero, but this depends on the differential dimension of M, which we

develop in the next section.

Proposition 10. Let R be a commutative noetherian u-differential ring

with gl dim R <°°, and let M be a maximal ideal of R. If R/M has character-

istic p > 0, then

r gl dimR[dv . . . ,0J >u + rank(Af).

Proof.  According to Proposition 9, the simple module R/M satisfies the

property ydR(R/M) = rank(M) < °°.  If A is any nonzero Ä-module with a

composition series such that all the composition factors are isomorphic to R/M,

then it follows from the long exact sequence for Ext (by induction on length)

that pdR04) = rank(M)-

Now let / be the ideal of R generated by pR and £cp \x G M}, and note

that S,.(■/) Ç J for all i = 1, . . . , u. Since char(R/M) = p, we see that J CM,

whence R/J ¥= 0. Inasmuch as M/J is a nil ideal in the noetherian ring R/J,

Levitzki's Theorem says that M/J must be nilpotent, from which we infer that

R/J has a composition series with all composition factors isomorphic to R/M.

Now pdR(R/J) = rank(M), hence the desired inequality follows from Corol-

lary 8.

Corollary 11.   Let R be a commutative noetherian u-differential ring

with   gl dim R   =  n  < °°.  If R   has positive characteristic,   then

rgl dim R[9¡, . . . ,0J = n + u.

Proof.  In view of Proposition 9, we must have rank(Af) = n for some

maximal ideal M, whence Proposition 10 yields r gl dim R [8l, . . . , 6U] >

n + u. According to Proposition 1, we also have r gl dim R[9l, . . . , 6U] <

n + u.
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3.  Differential dimension.  The purpose of this section is to introduce a

concept of differential dimension for prime ideals P of R, and to obtain the

lower bounds

rank(F) + diff dim(P) < r gl dim R [0 ,.0 J .

This differential dimension of P is meant to measure the "differentiability" of

P in the sense that it indicates how large a collection of R-linear combinations

of the derivations 5,, . . . , 8U can map P into itself.  In particular, the dif-

ferential dimension of P will be u if and only if P is closed under all the 5-.

The details follow.

Given any commutative «-differential ring/?, make Homz(/?, R) into a

left R-module by defining (rf)(x) = r(fx) for all r, x G R, /€ Homz(R, R),

and let A denote the left R -submodule of Homz(R, R) generated by 51, ...,

8U. For any prime ideal P of R, the set D(P) - if G A \f(P) Ç P} is a left R-sub-

module of A, and it is clear that A¡D(P).is a torsion-free left (R/P)-module. We

define the differential codimension of P, abbreviated diff codim(P), to be the

rank of this torsion-free (/?/P)-module A/D(P), i.e., the vector space dimension

[Q[A/D(P)] : Q], where Q stands for the quotient field of R/P.   [Alternately,

diff codim(/>) may be defined as the Goldie dimension of the left R-module

A/D(P).]   Finally, we define the differential dimension of P, denoted diff dim(P),

to be u — diff codim(i>).

Proposition 12. Let R be a commutative u-differential ring.  Let P be

any prime ideal of R, and set S = Rp, M = PRP.   Then each 8¡ induces a linear

transformation 5* in the dual space V = Homs ,M(M/M2, S/M), and the subspace

W of V spanned by 8*.5* has dimension exactly diff codim(P).

Proof.  Each 8¡ induces a derivation on S as in Proposition 3, and this

gives us additive maps 8¡: M —* S. Observing that 8((M2) C M, we see that 8¡

induces an additive map 8f: M/M2 —► S/M, and an easy check confirms that

6* is an (S/AO-homomorphism.

There is a left R-homomorphism 0: A —► W such that <p(8¡) = 5* for each

i, and an easy computation shows that ker </> = D(P). Now <$>A is a left module

over the domain T = (R + M)/M = R/P, from which we infer that T(<pA) and

RfP[A/D(P)] have the same rank, i.e., r(0A) has rank diff codim(P).  Inasmuch

as r(0A) is torsion-free and S/M is the quotient field of T, the rank of r(0A)

is just [S(<pA): S/M]. Observing that S(<pA) = W, we conclude that [W: S/M] =

diff codim(P).

Corollary 13.   Let R be a commutative u-differential ring.  If P Q Q

are prime ideals of R, then diff codimiPRn) - diff codim(/').
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Proof.  Inasmuch as the localization of Rq at the prime ideal PRQ is

just RP, this follows immediately from Proposition 12.    D

In particular, Corollary 13 shows that diff codim(P) = diff cod\m(PRp)

for any prime ideal P, which makes it possible to carry out some computations

using the maximal ideal PRP in the local ring Rp. Before proving the inequality

rank(P) + diff dim(P) < r gl dim F[0,, . . . , 0U], we introduce the following

easy lemma, which will also be useful later.

Lemma 14.   (a) Let R be any ring such that r gl dim F = n < °°.  If

A QB are right R-modules with pdR(A) = n, then pdR(B) = n.

(b) Let R be any ring such that GWD(F) = n<°°. If A QB are R-modules

with wdR(A) = n, then wdfi(F) = n.

Proof,  (a)  If pdR(B) < n, then it follows from the long exact sequence

for Ext that pdR(B/A) = n + 1, which is impossible, (b) is proved similarly.

Proposition 15. Let R be a commutative noetherian u-differential ring

with gl dim F < °°. IfP is any prime ideal of R, then

r gl dim F [0,, . . . , 0J > rank(P) + diff dim(P).

Proof. The local ring Rp is a commutative noetherian «-differential ring

with gl dim Rp <°° and certainly rank(PFp) = rank(P).   Inasmuch as

diff dim(PRp) - diff dim(P) by Corollary 13 and r gl dim RP[9t, . . . , 0„] <

r gl dim F[0j., . . . , 9U] by Proposition 3, it suffices to consider the case when

R is local and P is its maximal ideal. According to Proposition 9, we have

gl dim F = rank(F) = pdÄ(F/P); let n denote this common value.

If s = diff codim(P), then Proposition 12 shows that the subspace W of

Hom^j ¡P(P/P2, R/P) spanned by the induced linear transformations 8*, ... ,8*

has dimension s. Thus W must have a basis consisting of s of the 8f, hence we

may arrange the indices I, ... ,u so that S*, . . . , S* is a basis for W.

Since F is semiprime by Proposition 9, the ring Q = F[0,, . . . , 0 ] must

be a semiprime ring, as well as right and left noetherian, and of course

F[01; . . . , 0J = Q[9S+1, . . . , 9U]. NowPQ is a right ideal of Q and

Q/PQ s (R/P) ®R Q, whence pdß(ß/Pß) < pdR(R/P) = n. On the other hand,

since Q/PQ contains an F-submodule isomorphic to R/P, we obtain pdR(Q/PQ)

= n from Lemma 14, and then Proposition 1 says that pdQ(ß/Pß) > n. There-

fore pdß(ß/Pß) = n.

Given any / G {s + 1, ...,«}, we must have 6* = r;16* + . . . + r. 5*

for suitable r« G F, whence (5;- - r;1S t - . . . - rjs8s)(P) C P.  Setting



DIFFERENTIAL OPERATOR RINGS.   II 75

q¡ = rfiet + . . . + r¡s6s G Q, we compute that (5/ - q¡)(PQ) Q PQ. Given any

i, j G {s + 1,...,«}, we have

(»|-¿'*4*)«CJ»   and    («,-gr^WCI».

from which it follows that

[^ty^.-iy,)

-(*',-iy^r±y)]<r>*':

We compute that

hence we obtain

z
fc

: [(«, - g'„«,) (>)*) - (<¡, - t r^ (,„)] 5* - 0.

Inasmuch as S*,..., 6* are linearly independent over R/P, we see that

fo-g^W- (•/-t1Ví)°'»)e? forfc=*■ • • • '*

from which we compute that (8¡ - q^q^) - (S;- - <7;-)(í,-) e ^0- According to

Corollary 8, we obtain r gl dim Q[0S+ t, .. . , 0U] > m - s + n. Inasmuch as

u - s = diff dim(P) and « = rank(P), we are done.

4. Upper bounds. The purpose of this section is to introduce two kinds

of upper bounds which are needed in the computation of the global dimension

of R[91.0U].  First, we prove a theorem which shows that the global

dimension of R[9lt . . . , 9U] is the supremum of the projective dimensions of

its simple modules. The second upper bound, which is needed only in the case
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that F is an algebra over the rationals, shows that, for any maximal ideal M of

F, all factor modules ofF[0t, . . . , 0u]/MF[01; . . . , 9U] have projective di-

mension at most rank(M) + diff dim(M).

For the first theorem, we need the concepts of Krull dimension (for non-

commutative rings) and critical modules, as defined in [7].

Theorem 16. Let R be any nonzero right noetherian, left coherent ring.

If r gl dim R = n < °°, then n = sup{pdR(A) \AR is simple}.

Proof.  Since this is clear for n - 0, we may assume that n > 0.  Inas-

much as F is right noetherian, we have GWD(R) = n and pdR(A) = vidR(A)

for all simple modules AR, hence it suffices to show that R has a simple right

module with weak dimension n. According to [3, Theorem 2.1], all direct

products of flat right F-modules are flat, from which we infer that the weak di-

mension of any direct product of right P-modules equals the supremum of the

weak dimensions of the factors.

In view of [7, Proposition 1.3], all finitely generated right R-modules

have Krull dimension, and there certainly exist finitely generated right i?-modules

with weak dimension n. Now let a be minimal among the Krull dimensions of

those finitely generated right R-modules which have weak dimension n, and

choose some finitely generated right F-module B such that K dim(P) = a and

v/dR(B) = n.   Since « > 0, we have B =£ 0. All factor modules of B are finitely

generated and hence have Krull dimension, whence [7, Theorem 2.1] says that

every nonzero factor module of F contains a critical submodule.  Thus B must

have a chain of submodules F0 = 0 < Bx < . . . < Bk = B such that each

#,/#,_ i is critical. Inasmuch as vjdR(B) < sup{wdÄ(P>¡JB,_i)}, we must have

wdR(Bi/Bi_l) = n for some /.  Setting^ =FI/5/_,,we see by [7, Lemma 1.1]

that K dim(/l) < a, hence it follows from the minimality of a that K dim(/l) = a.

We now have a finitely generated a-critical right R-module A such that

wdÄ(,4) = n. We claim that a = 0, i.e., that A is simple.

Assume on the contrary that a > 0. Then every nonzero submodule of

A is a-critical too [7, Proposition 2.3], and thus is not simple; so A has no

simple submodules. Thus the intersection of all nonzero submodules of A is

zero, hence we obtain an embedding A —► P, where P is the direct product of

all proper factors of A.  Since A is a-critical, each proper factor of A is a fi-

nitely generated module with Krull dimension strictly less than a, so by the

minimality of a we see that each proper factor of A has weak dimension at most

« - 1. However, this implies that wdR (P) < « - 1, which contradicts Lemma 14.

Therefore a = 0 and A is simple.

We now turn to considering factors of F [0 j,..., 0tt ] ¡MR [0 j,..., 0 ],
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where M is a maximal ideal of R, and R is an algebra over the rationals.  For

conciseness, we here use the term u-differential Ritt algebra to stand for a com-

mutative »-differential ring which is an algebra over the rationals.  In such a

case, the rings R[9lt . . . , 0] will also be algebras over the rationals, but we

do not refer to them as Ritt algebras since they are usually not commutative.

Lemma 17. Let R be any differential ring which is an algebra over the

rationals, and let M be any maximal right ideal of R. If (5 + a)(M) d M for

all a GR, then MR [8] is a maximal right ideal of R [9].

Proof.  Suppose on the contrary that R [8] has a right ideal J such that

MR [9] < J < R [9], and pick an element xGJ - MR [0] of minimal degree.

Observing that J O R = M, we see that x must have degree n > 0, and we write

x = x0 + . . . + xn9" with x0, . . . ,xn GR and xn + 0.  In view of the mini-

mality of n, we infer that xn Ö M, whence xnr + y = 1 for some r G R, y G M.

Then xr + y9" has leading term 0", hence xr + y9" is an element of / - MR [9]

with degree n. Thus, replacing x by xr + y9", we may assume that xn = 1.

Given any m G M, it is clear that xm - m9" GJ.  Observing that xm -

m9" has degree at most n — 1, we obtain xm - m9" GMR[9], by the mini-

mality of n. Since the coefficient of 9"~l inxm - m9" isxn_lm + n(8m),

we thus get xn_1m + n(8m)GM. But now (5 +xn_1/n)(M)CM, which is

impossible.

Lemma 18.   Let R be a u-differential Ritt algebra, and let M be a maxi-

mal ideal of R. Assume that s is a nonnegative integer such that the induced

maps 8*, ... ,8* G HomR ¡M(M/M2, R/M) are linearly independent over R/M.

Then MR[9V . . . ,9S] is a maximal right ideal of R[91, . . . ,9S].

Proof.  We first prove the following series of statements P0, . . . , Ps_x-

Pf.   UaGR[9l, . . . , 6¡] and rj+1, . . . ,rsGR such that

(a + rj+l8.+ l + ... + rs8s)(M) QMR[9V . . . , 0.],

úitnaGR + MR[9,, . . . ,9¡] andr/+1, . . . ,rsGM.

To prove P0, assume that we have a, rj, . . . , rs G R such that

(a + r18i + . . . + rs8s)(M) C M.   Since aM Q M as well, we obtain

(r18l + . . . + rs8s)(M) C M, for which it follows that rtf + . . . + rs8* = 0.

In view of the linear independence of S*,..., 5* over R/M, this implies that

ry, . . . ,rsGM.  Therefore PQ holds.

Now let 0 </ < s — 1 and assume that P,_i holds.  If P. fails, then there

exist elements a 6R[dl,. .. ,6A and rJ+1, . . . ,rsGR such that
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but either aá/í+ MF[0j, . . . , 0;] or else some r¡ G Ai.  In case a G F +

MR[0!, . . . ,  6f],  then aM ç  A/F^, . . . ,  0.]   and  hence

(r/+1^/+1 + • • • + rs5s)(A/) Ç AfP [0 j, . . . , Oj], from which we obtain

(r/+1S;-+1 + . . . + rs8s)(M) CM. In this situation, however.,P0 says that

r + l, . . . , rs G M, which is impossible.   Thus we must have a Ö F +

MF [0j, . . . , 0], and in particular a#0. We may also assume that a has the

lowest degree in B¡ of those elements of F [01, . . . , 0.] for which there exist

rj+l, . . . ,rsGR with

(fl + r.. ,8.. , +... + !• 5 )(M)ÇAfP[0,,...,0.].

Now write a = a0 + aj0;- + . . . + a^O*, where a0, ... ,afc G F [0,,..., 0y_,]

and afc =£ O.'In view of P-_t, we must have k > 0, and then it follows from

the minimality of k that afc GAfFf^,, . . . , 0._i].

If fc > 2, then for any m G M we compute that

(a + r/+15/+1 + ... + rsS>2)

leads off with the terms akm9k + [ak_im + kak(8jm)]9k~l, from which we

obtain

.akm,ak_lm + kak(8.m) G MR [01, . . . , 0y_J.

First, we have a^M CMP[0x, . . . , 0y_j], hence Pj_l says that ak = r + b

forsomerGF,  6 eA/F[0,, . . . , öy.J. Inasmuch as ak G MR[Ol,... ,9j_l],

we see that r G Af.  Second, we have (ak_1 + kak8j)(M) C MR [0 j, . . . , 0;_ t ],

and clearly (kb8j)(M) CMR[9l, . . . , 6j_l] as well, whence

(afc_j + krtjm QMR[ev..., $f_t].

According to P-_ j, we obtain kr G M, and then rGM (because F is a Ritt alge-

bra). This is a contradiction.

Therefore k < 2, so the only possibility left is k = 1. Now a = a0 + ay8¡,

hence for any m G M we have

fr+W/+i'+--,:+W&0

= a^. + [a0m + a^m) + r/+ ,(S/+ {m)+ ... + rßm)].

ThusAiM CAÍR[0,,. . .,6j_1] and also
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<•,+«,«, + !)+,«!+, + • .. + r8s)(M)CMR[9l, . . . ,0.^].

As above, it follows from the first inclusion that a1 - r + b for some r GR - M,

b G MR [0 j, . . . , 9j_ j ], and then we infer from the second inclusion that

(«0 + *t + O+l'l+i + • • • + rA)W QMR[9V..., 0._J .

But now Pj_l gives us r 6M, which is impossible.

Therefore P, must hold, and the induction works.   We now return to

the proof of the lemma and show that for ; = 0, ... , s, MR [9l, . . . , 0] is

a maximal right ideal of R [91, . . . , 9¡]. For ;' = 0, this is part of our hypoth-

eses. Now let 0 < / < s and assume that MR [0 j, . . . , 9,   j ] is a maximal

right ideal of R [0 í, . . . , 8¡_ l ]. In view of P.  j, we must have

(Ô. + a\MR[9v ..., 9j_l])çlMR[9l.fy.J

for all a GR [6l,..., 9f_ l ], whence Lemma 17 shows that MR [9 j,... ,0y] isa

maximal right ideal of R [9 j, . . . , 0,].

Proposition 19. Let R be a noetherian u-differential Ritt algebra, and

set T = R[9l, . . . , 0U ]. Let M be any maximal ideal of R. If J is any right

ideal of T which contains M, then <pdT(T/J) < rank(Af) + diff dim(M).

Proof.  If s = diff codim(Ai), then according to Proposition 12 the sub-

space W of UomR/M(M/M2, R/M) spanned by 6*, '. . . , S* has dimension s;

hence we may arrange the indices 1, . . . ,u so that 5*, . . . , S* is a basis for

W. Setting Q = R [91, . . . , 0s], we now see from Lemma 18 that MQ is a

maximal right ideal of Q.

Given any / e {s + 1, ...,«}, we must have 8f = rfl8* + . . . + r¡s8*

for suitable r/7 G R, whence (5;- - /¿iSj- ... - r¡s8s)(M) C M. Setting q¡ -

rjl9l + . . . + rjs9s G Q, we compute that (0;- - q¡)MQMT. If now X denotes

the set of all products of nonnegative powers of 0J+ x - qs+1, . . . , 9U - qu,

then we obtain XMT C MT.

In particular, XMQ GMTÇ/.  Observing that Tis generated as a right

ß-module by X, we infer that (T/J)q is a sum of homomorphic images of

Q/MQ. Inasmuch as Q/MQ is a simple right ß-module, it follows that {T/J)q

is isomorphic to a direct sum of copies of Q/MQ, whence pde(r//) <

pdö(ß/Mß). Since Q/MQ s (R/M) ®R Q, we also have pdß(ß/Mß) <

pdR(R/M). In addition, pdR(R/M) = rank(M) by Proposition 9, and thus

pdQ(T/J) < rank(Af). According to Proposition 1, pdT(T/J) <u-s + rank(A/)-

Inasmuch as u - s = diff dim(M), this gives us the required inequality.
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5.  Global dimension formulas.

Theorem 20.  Let R be a noetherian u-differential Ritt algebra with

gl dim R <°°.   Then

rgldimF[01,...,0J

= sup{rank(P) + diff dim(P) \ P is a prime ideal of R}.

Proof.  If S = F [0,, . . . , 0J , n = r gl dim S, and

k = sup{rank(P) + diff dim(P) \P is a prime ideal of P},

then n > k by Proposition 15. According to Proposition 2, n < u + gl dim F <

°°. Inasmuch as S is right and left noetherian, Theorem 16 says that there exists

a simple right S-module A with pds(A) = n, and we note that wds(A) = n also.

Choose a nonzero element xGA whose P-annihilator P = [r GR\xr = 0}

is maximal among the F-annihilators of all nonzero elements of A.  According

to [10, Theorem 6], P is a prime ideal of P.  If T = Rp[81, . . . ,0J,then the

right Fp-module Ap can be made into a right P-module by defining (a/s)8¡ =

[a8¡s + a(ô(.s)]/s2 for all / and all a/s GAP. Since the F-annihilator of x is P,

the natural map A —► AP is not zero.  However, this map is an 5-homomorphism

and A is a simple S-module, hence A —► Ap must be a monomorphism.  In view

of Lemma 14, we thus obtain wds(Ap) = n.

Now A = xS and thus Ap = (x/l)T, from which we infer that Ap = T/J

for some right ideal J of T which contains PRP.  According to.Proposition 19,

pdT(Ap) < rank(PPp) + diff dim(PRp).  In view of Corollary 13, we now obtain

v/dT(Ap) < rank(P) + diff dim(P) < k. Inasmuch as Ts is flat 'by Proposition 3,

wds(Ap) < wdT(Ap), and therefore n <k.

Theorem 21.  Let R be any commutative noetherian u-differential ring

such that gl dim R <°°.  Set

k = sup{rank(P) + diff dim(P) | Pisa prime ideal of R and char(P/P) = 0},

q = sup{rank(Af) \M is a maximal ideal of R and char(P/Af) > 0} .

[In either case, if there are no ideals of the type required, the supremum is con-

sidered to be - °°.]   Then

r gl dim F[0j, . . . , 0 ] = max{&, q + «}.

Proof.  In view of Propositions 10 and 15, we have r gl dim F [0 j,..., 0 ]

> max{fc, q + «}.  According to Proposition 4, the reverse inequality will hold
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provided r gl dim RM[8lt . . . ,6U] < max{«, q + «} for each maximal ideal

M of F.

First consider the case when char(P/Af) > 0.  According to Proposition 9,

gl dim RM   =  rank(Af)  <  q,   hence  Proposition  2   shows  that

rgldimFJlf[01,...,flB] <q+u.

Now assume that char(F/Af) = 0.  Here nRM (L MRM for all nonzero in-

tegers n, hence all nonzero integers are invertible in RM. Thus RM is a Ritt

algebra, and so Theorem 20 is applicable. According to [10, Theorem 34], any

prime ideal of RM must have the form PRM for some prime ideal P of F which

is contained in Af, and since char(F/AT) = 0 we see that char(P/P) = 0, too.  In

view of Corollary 13, we obtain

rank(PFM) + diff dim(PFM) = rank(P) + diff dim(P) < k,

and therefore Theorem 20 shows that r gl dim RM [6j,... , 0U] < k.    D

In particular, Theorem 21 gives a formula for the global dimension of

F[0] when P is only a 1-differential ring.  For this case, the formula can be

improved somewhat as follows, since the differential dimension of any prime

ideal P depends only on whether or not P is a differential ideal.  Also, for this

case it is possible to restrict attention to just the maximal ideals of F.

Theorem 22. Let R be any commutative noetherian differential ring with

gl dim R = n <°°.  Let M denote the collection of all differential maximal ideals

of R, together with all maximal ideals M such that char(F/A/) > 0, and set k =

sup{rank(Af) |Af G M}-   [// M is empty, then k is considered to be - °°.]   Then

r gl dim P [0] = max{«, k + 1}.

Proof.  According to Proposition 2, r gl dim R[9] > n. Inasmuch as

diff dim(M) = 1 for any differential maximal ideal Ai* of P, Theorem 21 shows

that rgldimF[0] >k + I.

Suppose that P is any prime ideal of P with char(P/P) = 0.  If P is not

maximal, then it is clear from Proposition 9 that rank(P) < n. Since diff dim(P)

< 1, we get rank(P) + diff dim(P) < n in this case. Now assume that P is a max-

imal ideal.  If P is not a differential ideal, then diff dim(P) = 0 and rank(P) +

diff dim(P) < n, using Proposition 9 again. On the other hand, if P is a differential

ideal, then rank(P) + diff dim(P) = 1 + rank(P) < k + 1, by definition of k.

Thus we have rank(P) + diff dim(P) < max{«, k + 1} for all prime ideals

P of P such that char(P/P) = 0. In view of Theorem 21, we conclude that

r gl dim P [0] < max{«, k + 1}.

We conclude this section by using Theorem 22 to derive a formula for the

global dimension of P[0] which involves only differential ideals of F. We recall
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that a proper ideal J in a commutative ring R is said to be primary provided all

zero-divisors in the ring R/J are nilpotent. .

Theorem 23.  Let R be any commutative noetherian differential ring with

gl dim R = n <°°, and set k = sup{pdfi(/?/7) \J is a primary differential ideal

of R}. [If R has no primary differential ideals, then k is considered to be - °°.]

Then r gl dim R[9] = max{n, k + 1}.

Proof.  According to Proposition 2, r gl dim R[9] > n. Inasmuch as R

is semiprime by Proposition 9, Corollary 8 shows that r gl dim R[9] > k + 1.

Now consider any maximal ideal M of R such that char(R/M) = p > 0.

If J is the ideal of R generated by pR and {xp \x GM], then as in Proposition 10

we see that M/J is nilpotent and that pdR(R/J) = pdR(R/M). Inasmuch as M/J

is nilpotent, R/J must be local, from which we infer that / is a primary ideal of

R. Also,/ is clearly a differential ideal, whence pdR(R/J) < k. Since pdR(R/M)

= rank(Af) by Proposition 9, we thus obtain rank(Af) < k.

Thus we have rank(M) < k for all maximal ideals M of R such that

chaï(R/M) > 0.  Since any differential maximal ideal M of R is a primary dif-

ferential ideal, we also have rank(M) < k for all differential maximal ideals M.

According to Theorem 22, we thus obtain r gl dim R [9] < max{«, k + 1}.

6. Applications.  For any ring S and any positive integer u, the Weyl al-

gebra of degree u over S is the ring AJS) = S[xl, . . . , xu] [0j, . . . , 8U], where

the x¡ are ordinary polynomial indeterminates, and we use the derivations 8¡ =

dfdXj on S[xl, . . . , xu]. J.-E. Roos has shown that for a field F of character-

istic 0, r gl dim AU(F) = u [13, Theoreme 1], while G. S. Rinehart has shown

that, for a field F of positive characteristic, r gl dim AU(F) = 2u [11, Theorem,

p. 345]. We generalize these results in the following theorem, which has also

been proved (using entirely different methods) in [12, Theorem 2.6].

Theorem 24. Let S be any commutative noetherian ring with gl dim S =

n < °°, and set k = sup{rank(Af) \M is a maximal ideal of S and chai(S/M) > 0}.

[// S has no such maximal ideals, then k is considered to be - °°.]   Then for any

positive integer u,  r gl dim AU(S) - max{« + u, k + 2u}.

Proof.  Set R = S[xt, . . . , xu] and 8¡ = d/dx¡ for / = 1, . . . , u.  Since

gl dim R = n + u, Proposition 2 shows that r gl dim AU(S) > n + u.

If S has any maximal ideals M such that char(5/M) > 0, then we may

choose such an M with rank(Af) = k. Inasmuch as S/M is a field, the ring R/MR

= (5/M)[^i > • • • > *u ] nas Krull dimension u, whence R/MR must have a maximal

ideal K/MR of rank u. Then A" is a maximal ideal of R such that chax(R/K) > 0,

and clearly rank(/f) > k + u,   hence Theorem 21 says that r gl dim AU(S) >

k + 2u.
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Therefore r gl dim AU(S) > max{n +u,k + 2«}. According to Theorem 21,

to prove the reverse inequality it is enough to show that rank(Af) < k + u for

any maximal ideal M of R with char(P/Af) > 0, and that rank(P) + diff dim(P)

< n + « for any prime ideal P of F such that char(P/P) = 0.

First consider any maximal ideal Af of F for which char(P/Af) > 0.  Choos-

ing a maximal ideal K of S which contains 5 n Af, we have charfS/F) > 0 and

so rank(5 n Af) < rank(F) < &•  By induction on [10, Theorem 149], we find

that rank(Af) < k + w.

Now consider any prime ideal P of F with char(F/P) = 0, and set s =

diff dim(P).  If T = Rp, M = PRP, and W is the subspace of HomT/M(M/M2, T/M)

spanned by 8*, ... , 8*, then by Proposition 12 W has dimension u - s.  Thus

we may arrange the indices 1,...,« so that 8*+1, . . . , S * is a basis for W.

Set Q = P C\(S[xl, . . . ,xs]) and note that S[xt, . . . ,xs]/Q has characteristic

0. We claim that 8¡(Q) C Q for / = 1, . . . , s.   Given 1 < i < s, we must have

ôf = fs+1§f+1 + . . . + tu8* for suitable t¡ G T. Multiplying out the denom-

inators in this equation, we obtain

°*î = rs+i5:+l + ■ ■■ + ruK   for some a GP -P,rj+1, ...,ru GF.

Thus (a8¡ - rs+l8s+1 - ... - ru8u)(M) C Af, from which we infer that

v    I        s+l   s+1 u   t<yv y

Since ß C P and 5J+ j, . . . , 8U all vanish on ß, we thus obtain a§((ß) C P. Now

P is a prime ideal of F and a GR - P, hence it follows that 8¡(Q) Ç P, from

which we conclude that ö,(ß) Ç ß, as claimed.

All of the rings S[xl, . . . , xt] l(Q n S[x1, . . . , x¡] ) (i = 1, . . . , s) have

characteristic 0, hence with the help of the relations 8¡(Q) Ç ß an easy induction

shows that ß n (5[jc15 . . . , x¡\) = (ß n S)[Xj, . . . , x,] for each / = 1.s.

Consequently Q = (Q <~ï S)[xv . . . , xs], whence [10, Theorem 149] shows that

rank(ß) = rank(ß n S). That same theorem also shows that rank(P) < u - s +

rank(ß), and it is clear from Proposition 12 that rank(ß fï S) < n, hence we

obtain rank(P) < n + u - s. Therefore rank(P) + diff dim(P) < n + u.

Corollary 25.   Let S be any commutative noetherian ring with gl dim S =

n<°°, and let u be any positive integer. If S is an algebra over the rationals,

then r gl dim AU(S) = n + it.

Corollary 25 has also been obtained in [1, Corollary 2.6].

Given any ring S and any positive integer u, then following [2] we can

define a ring FU(S) = S[[xl, . . . , xu] ] [0j, . . . , 0J analogous to the Weyl

algebra AU(S). If S is a commutative noetherian ring with gl dim S = n <°°,

and if S is an algebra over the rationals, then J.-E. Björk has shown in [2, The-
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orem 4.2] that r gl dim FU(S) = n + u.  We shall generalize this result, but first

some facts about power series rings must be developed.   [We note that our proofs

do not depend on Björk's result, and our methods are completely different from

his.]

Lemma 26.   Let S be a commutative noetherian ring with gl dim S = n <

°°. If u is any positive integer, then gl dim S[[xl.xu] ] = n + u.

Proof.  It obviously suffices to prove the case n — 1. The indeterminate

x lie's in the Jacobson radical of S[[x] ], and x is not a zero-divisor in S[[x] ].

Since S[[x] ]/xS[[x] ] s S, [9, Part III, Theorem 10] shows that r gl dim S[[x]]

= n + 1.

Lemma 27.  If F is a field and u any positive integer, then F[[x1,... ,xu] ]

has Krull dimension u.

Proof. This is immediate from Lemma 26 and Proposition 9. D

For use in the next lemma, we recall that if S is a commutative local ring

with maximal ideal M, then S[[x]] is a local ring with maximal ideal generated

by M and x. Clearly, the ideal / of S[[x] ] generated by M and x is a maximal

ideal. Also, if p is any element of S[[x] ] which does not belong to /, then the

constant term of p is not in M and so is invertible in S, whence p is invertible

inS[[x]].

Lemma 28.   Let S be a commutative noetherian ring, and let Q be any

prime ideal of S, u any positive integer.   Then Q [ [x 1, . . . , xu ] ] is a prime ideal

of S[[xl, . . . ,xu]] with rank equal to rank(ß). Also, if P is any prime ideal

ofS[[xly..., xu] ] such that P n S = Q, then rank(F) < u + rank(ß).

Proof.   We may obviously assume that rank(ß) < °°. Also, we clearly

need only prove the case u «■ I.  Finally, since P is disjoint from S - Q, all the

ranks we are interested in remain the same after localizing at Q, hence we may

assume, without loss of generality, that S is local with maximal ideal Q. As

remarked above, it follows that S[[x] ] is local with maximal ideal M generated

by Q and x.

Now M is a prime ideal in the noetherian ring S[[x] ], and x is an element

of M which is not a zero-divisor in S[[x] ], hence [10, Theorem 155] says that

the rank of M/xS[[x]] in S[[x]]/xS[[x] ] equals r&nk(M) - 1.  Inasmuch as

S[[x] ] ¡xS[[x] ] Sa S, we infer that mnk(M/xS[[x] ]) ■ rank(ß), and thus

rank(AQ = 1 + rank(ß).  Observing that PCM.we obtain rank(P) < 1 + rank(ß).

Finally, since rank(Af) = 1 + rank(ß) < °° and Q[[x] ] is properly contained in

M, we must have rank(ß[[x] ]) < rank(ß), from which we conclude that

rank(ß[[x]]) = rank(ß).   G
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With the help of these three lemmas, we may use the proof of Theorem 24,

mutatis mutandis, to prove the following generalization of Björk's theorem:

Theorem 29.  Let S be any commutative noetherian ring with gl dim S =

n<°°, and set k = sup{rank(Af) \M is a maximal ideal of S and char(S/Af) > 0}.

[If S has no such maximal ideals, then k is considered to be - °°.]   Then, for

any positive integer u,

r gl dim Fu(S) = max{/? + u, k + 2«}.

J. Cozzens and J. Johnson have shown that for any «-differential field F,

r gl dim F[0j, . . . , 9U] = u [4, Theorem 1(b)]. In view of Corollary 8 and

Proposition 2, this result generalizes to semisimple artinian rings:

Theorem 30. If R is any semisimple artinian u-differential ring, then

vgl dim R[9X, ...,9u]=u.
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