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A GENERALIZATION OF JARNÍK'S THEOREM

ON DIOPHANTINE APPROXIMATIONS

TO RIDOUT TYPE NUMBERS
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ABSTRACT. Let s  be a positive integer, c > 1, ¿ip,..., u    reals in

[O, l], °" = 2¿_Q p,    and t the number of nonzero M-. Let II. («'»0,..., s)

be s + 1 disjoint sets of primes and S the set of all (s + l)-tuples of in-

tegers (pn, . .. , ps) satisfying pn >0, p¿ = p*p{, where the pí  are inte-

gers satisfying \p*{\ ̂ clp^ and ail prime factors of p'.  are in n, i = 0,

... , s.  Let  X > 0 if t = 0, X> cr/min(s, t) otherwise, E\   the set of all

real s-tuples (O.J, ... , ap  satisfying |a. - p./p0| < p~   (j = 1.s)

for an infinite number of (pQ, . .. , p ) e S. The main result is that the

Hausdorff dimension of E^  is c/X.  Related results are obtained'when also

lower bounds are placed on the p*.  The case s = 1 was settled previously

(Proc. London Math. Soc. 15 (1965), 458-470). The case p.= 1 (¿ = 0,

..., s) gives a well-known theorem of Jarnik (Math. Z. 33 (1931), 505—543).

1. Introduction.  Jarnik [3l proved that the Hausdorff dimension of the set

E of all real s-tuples (a     .., ., a ) satisfying | a. — p. q~l\ < q~x, z = 1,

... , s, fot an infinite number of (s + l)-tuples (q, pl.ps) of integers

with q > 0, is (s + 1)A-1 provided that A > 1 + s~l.

In this paper we investigate the case where  q, pv ... , ps ate restricted

to certain sets of integers which were considered by Ridout in his extension

of Roth's theorem [6]. In [l] it was proved that the set E in this case has

Lebesgue measure 0. The Hausdorff dimension for the one-dimensional case

of the problem was determined by the authors in [2].

2. Definitions and notation.  Let s be a positive integer, /¿0, /¿j, ... ,p

reals in [0, l] and o = S¿=0 p{. Let U.= \P. p ... , P^.Kz^ 0, ... , s),be

s + 1  sets of distinct primes, C. the set of integers all of whose prime fac-

tors belong to IL.

We say that condition I is satisfied, if there exists  P. e II.  for i = 0,

..., s, such that

(la)  Pi 4 P0(z'=l, ... ,s).
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24 I. BOROSH AND A. S. FRAENKEL

(lb) Those among the numbers  (l -p0)/log Pq, ... , (1 - ps)/log Ps

which are not zero are linearly independent over the field of rational numbers.

In particular, condition (lb) is satisfied if pi = 1, i = 0, ... , s.

Let c> 1. We define 5 = S{c; pQ, ... , ps; CQ, ... , Cs) to be the set

of all (s + l)-tuples of integers {pQ, ... , ps), p0 > 0, satisfying

(i) (p¿, p0) = 1, z'= 1, ... , s.

(ii) pi = p*p'{ with p'¿ eC. and p* any integer satisfying  |p*|<c|p.|   ',

i = 0, ... , s.

Similarly we define ST = ST{c;p0, ... , ps; CQ, ... , Cj by replacing

(ii) by the requirement

(ii)     pi=pipi  where p'. eC. and p.  is any integer satisfying

\Pifi<\p*\<c\pfi,       z'=0,...,s.

Let p'0, p'j, ... , p's   be reals satisfying (a) 0 < //. < p..; (b) if a > 0,

then 0 < p. < p.  for some /'. We define a set 5' in a similar way to S and

S   , but replacing this time condition (ii) by the requirement

(ii)   p¿= p¡p¿ where p¿ £ C; and p.  is any integer satisfying

\pfi<\P*\<c\pi\fli,       z' = 0,...,s.

Let A, D be positive reals,  W an s-dimensional interval with edges

parallel to the axes. We define the set E = E(A, W, S, D) to be the set of all

s-tuples {ax, ... , CLs) £ W satisfying  | ct,. — p.p~ \ < Dp~\ i = 1, ... , s,

fot an infinite number of (s + l)-tuples (pQ, ... , ps) from S. Similarly we

define Er = ET(A, W, ST, D) and E' = E'(A, W, S', D).

By Rs we denote the Euclidean space of s dimensions, and by d{x, y)

the distance between two points x, y of Rs. By 8{E), a- m E, dim E we

denote, respectively, the diameter, the Hausdorff measure with respect to the

function t    and the Hausdorff dimension of the set E. By a cube we mean an

s-dimensional interval with edges parallel to the axes.

3. Main results. The main results of this paper are

Theorem I. dim ET < dim E' < dim E < ct/A.

Theorem II.  Let t be the number of p ■ which are not zero (z = 0,..., s).

Let A satisfy

A > 0 if t » 0,
(1)

A>(7/min(s, t)    if t> 0.
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// condition I holds, then

dim E > dim E' > dim ET > a/A.

Theorem III.  // (1) and (la) hold then dim E > dim E' > a/A.

These results imply dim E = dim E  = cr/A if (1) and (la) hold and dim E

= dim E1 = dim E    = ct/A if (1) holds and condition I is satisfied. The case

p{ - 1, z = 0, ... , s, gives Jarnik's result.

4. Proof of Theorem I. Let b ■> 0, i - 1, ... , s. By symmetry, it is

enough to prove the theorem when W is defined by

W = \(xv ... , xs)\0 < x. < b{,  i m 1, ... , s\.

We shall prove that, for every o > 0, if p = (o + ô)A-1 then p - m E = 0. We

may also assume that 0 < 1 — /¿Q if /¿0 < 1.

Let c > 0. The set of all cubes whose center is (px/pQ,..., pjp¡) £ W

with (p0, ... , ps) £ S, p0> q0, and length of edge 2Dpg A, is obviously a

covering for E. If qQ is large enough, the diameter of each cube is smaller

than f. It remains to prove that the series M = S(pg^)'0= 2 PqCT" conver-

ges, where the summation is over all sets (pQ, ... , p^) e 5 such that

(px/p0, ... , ps/p0) £ W. Since p¿ = p¿p|. for z = 0, ... , s, the summation

can be broken up into a summation over pj, ... , ps, and over pj, ... , ps.

Therefore,

i-1*„ M1sz,2,ir",-€u,i.

where {li and Í2Í indicate summations over pj, ... , p    and pj.ps,

respectively. Positive constants depending only on c, S, /¿;, ¿>¿, IL (0 < i<s)

ate denoted by A below. Since p* < cp^ < cíAp^-   (l < i< s), we have 1^1

< Ap0~  °. Putting r] =8/2, we thus obtain

¿=i

where Í3! denotes summation over p|. £ C¿. Since p¿ < p¿ < e¿p0 (1 < i < s),

we obtain

zh! pn7775 < ¿ zi3! p!',,/* < a ri d - p-^^)-1 < A.
z ~        a*. 1,7

7 = 1

Therefore

M^Ap-o-    and    M^Z151^""^41^",
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where \4] and Í5, denote summations over all p* < R = C 1/(I~'i0^/V<1-'i0>

(fig < 1) and p'0 £ CQ, respectively. (If p = 1, M< A 2~ p~ 1~v < A.)

zi4! f-^-0 < 1 + J« x~^dxS V;0-^0A1-M0)_

Therefore M < A £'5' pg-^    < °°» completing the proof.

5. Proof that Theorem II implies Theorem III. We may assume that ct>0,

because otherwise Theorem III is trivially true. Let  P. e II., i = 0, ... , s

and  P. 4 Pq, z = 1, ... , s. If condition I is not satisfied, then

(l-Z'oVlog P0,...,{l-p5)/log Ps

ate linearly dependent over the rationals.

Let e > 0. There exists /'  suchthat 0 < p. <p.. Choose p".  suchthat

p . < p. < p ., p . — p. < e, and such that the nonzero members among

(1    -   PgVlOg     P,,.(1   -  p'p/lOg     P.,    ....   (1    -  Ps)/lOg    Ps

ate linearly independent over the rationals. Let p . = p ■ fot i 4 j, and let

S"    and S'" be the same as S    and S   respectively, except that in (ii)   and

(ii)', p{ is replaced by p" (0 < i < s). Then

S"T C S'" CS' CS,    E"T C E1" CE'CE.

By Theorem II,

dim E > dim E' > dim E" > dim E"T >{o- e)/A.

Since this holds for every e > 0, we have dim E > dim E   > cr/A, which is

Theorem III.

Remark. Condition I is, however, essential in proving dim E    >o/\, as

is shown by the following example. Let PQ and P,  be two distinct primes,

Cg = ÍPg°!, Cj = \Pj M, Mg,  mx nonnegative infegers. There exist pQ and

px in[0, 1) suchthat P1/0^^ =Pg1/a"íi°)= A > 1. Let 0 <e<(A - l)/(A + l),

and

Kc<min((l+e)1_Ml, (l-i)"(1"Mo)).

If (p0, pj) £ST{c; p0, px; C0, Cj)  and pQ, px > 0,  then

Pt'tVv   P?<P:<^,   P'^P?'     '-«-1-

This gives

m./d-fi.) 1/(1_M)    m/(l_/x)
P. ! '  < p.< c ' P. ,       1 = 0, 1,

l -   r 2 2
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and

(2) (1 - £)Ak < c-U{l-^Ak < Pi/po < cV{X-^Ak < (1 + e)Akf

where  k = m. — mQ.

The requirement for e implies that A(l - e) > 1 + e. By (2), the interval

(l + e, A(l - c)) does not contain any pj/p0 with (p0, pj) £5 because, if

k < 0, then (1 + f)Afe < 1 + e, and if k > 0, then A(l - c) < (l - e)Afe.

6. Lemmas for Theorem II. It suffices to prove Theorem II for an inter-

val W of the form

W = {(xj, ... , *s)|a,-< *f< &z-,  z' = 1, ... , s!,

where the a. ate arbitrary positive reals, b.= a¡ + LQ, and LQ is any suffi-

ciently small real number, to be chosen later in the proof (Lemma 4).

Lemma 1.  7r is enough to prove Theorem II for the case p. > pQ, i = 1,

Proof. If f¿; < p0 for some i > 0, we may assume that ps = min(p0,... ,pj.

Let v. = p{ if i4 0, s, v0 = ps and i^ = pQ. Let ¡p: V¡—*RS be defined by

xp(xv... , xs_v xs) = (xx/xs, ... , xs_x/xs, l/xs),

and let Wl m{(*,,... , x )\a'. < x{ < b\, \<i<s\ be chosen so that <A(Wj)

C W.   It is easily seen that  xp  has Jacobian a~s~ , which is bounded

away from 0 and oo on Wj, and therefore preserves Hausdorff dimension.

Let S   , ET be as defined in §2,

S[ = ST(c; vQ,..., vs; Cf,Cv..., Cs_v CA,      E[ = ET(A, W v s\, Dj',

where D. > 0 is sufficiently small. The conditions of Theorem II hold for

Ej, and we have, moreover, vi > vQ (l < i < s). Therefore, assuming the

validity of the theorem for this case, dim Ej > ct/A. We now prove that for

a suitable choice of Bj we have xp(Ej) C ET. Let (ßv ... , ßs) exp(Ej).

There exists (av ... , aj e ET such that (aj/a^, ... , °-s_i/^s, l/as) =

(ß2, ... , ßs_v ßs),  and an infinity of  (ps, pv ... , ps_v pQ)  £

Sj(p'.eC., z = 0, ...,s), satisfying |a. - p./pj < D^;*, 1 < z < s - 1,

\as-Po/'Ps\<DlPsX' Let ai = Pi/Ps + rli> 1<z'<s~1. as = Po/Ps + 7ls>

\r] .\ < D j p~x (0 < i < s). For 1 < z < s - 1 we then have

*i _ Pi  < l+7ljPjPi

as~  Po       1 + ^/Po'
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4:<>-^vPo>-.(i4;+i,j£)

if Bj is sufficiently small. A similar computation shows that \asl-pspQ I

< DpQX  tot D small enough. Thus

lr3f-Pf/Pol<DPÔ"A'       '-I. ...,»,

which shows that ^{Ej) C ET. Therefore,

dim ET > dim xf/{ETx) = dim E\ > a/X.

From now on we shall assume p. > p0 (1 < i < s). We may also assume

that every IL contains only one prime  P. such that condition I is satisfied,

that not all p. ate 1 because this is Jarnik's theorem, and that not all p.

are zero because then Theorem II is trivial. These assumptions are not es-

sential but permit a simpler exposition.

Let 8 > 0, p = (a - S)/A. In order to prove that p - m*{ET) > 0, we use

the following special case of a theorem due to P. A. P. Moran [5].

Lemma 2. Let s be a positive integer,  E a bounded set in Rs and 0 <

p < s. A sufficient condition for p — m (E) to be positive is the existence

of a closed subset F of E and an additive function cf> defined on the ring

R generated by the semiopen cubes of Rs, satisfying the following proper-

ties:

(a) <p is nonnegative.

(b) For every R £ 51 and RD F we have <p(R) > b > 0 for some fixed b.

(c) There exists a positive constant k such that for every semiopen

cube R we have tf>{R) < k8{R)p.

Lemma 3.  Let 6,,..., 6    be reals such that 1,9X, ... , 6g are linear-

ly independent over the rationals, 8, 17, bq > 0. There exist real numbers b,

B such that for every set of real numbers ax, ..., as there is an (s + l)-/z¿-

pie of integers {m0, ... , ms) satisfying \m09. - m¡ - a¿| < 5, 1 < i < s, nQ <

b < m0 < B < (1 + 7])b.

Except for the explicit bound on bZq, this is Kronecker's theorem. The

bound can be obtained by introducing a slight change in one of the proofs of

Kronecker's theorem, for example, Lettenmeyer's proof [4].

a.
1

a ¿0



A GENERALIZATION OF JARNIK'S THEOREM 29

Let t   be the number of nonzero p. (1 < i < s), 0 < p < min„ J0 p.. We

shall now formulate the main lemma.

Lemma 4. Let L < LQ, 9, r] be positive real, qQ = q0(a^ b.,U.,p., L,rj)

a sufficiently large real number. There exist reals a, A such that for every

cube I CW with edge L, there is a subset S.C S with the following prop-

erties:

(i) // (p„, ... , ps) eSt, then ipx/p0, ... , ps/p0) el, q0<a<pQ<A

< al+v, (p., p0) = 1, a~^ < L, and all the (p0>... , ps) £ S, share the same

fixed (s + l)-tuple (p'Q, ... , p'J.

(ii) // Pon < p(02) and (pQ, ,.., p's) e S¡ (i = 1, 2),  then there exists at

least one j  such that

(3) \P¡1W1) 'Plßri2y\>ipil>>'lt,/s)-e.

(iii) Let a~^< I < L, I, any cube with edge length I contained in I, V,

the number of elements (pQ, ... , p )  of Sj such that ip^/pQ, ..., p   /pQ)

£/r Then

,i  ,<V(1-Mn)
V;<K/'p'0 °/Y,

where

y =
ilog p'o   if Pq > o,

1 if p0 = 0,

K a suitable positive constant depending on S  , W, A, D, r¡, 9.

(iv) The total number V^ of elements of S¡ satisfies

'   Pn *      ^
V, > KL* —- > KL<   —,

L y - x>
wher

X =
Ílog a    if p0 > 0,

1 z'//¿0 = 0.

Remark. The convention on K will be used for the rest of the paper, for

the sake of simplicity of notation.

Proof. Let c > 0 be sufficiently small,

(4) / . \(xv .... xs)\ a.+ c< yt < x. < y. + L < bf 1 < i < s\,

(5) l<c0<Cj<c,    Cj < 1 + min(e/fl¿),    cl/cQ<2,    cQ < 2.
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Since p. > pg and not all p . are 1, we have pQ < 1. Suppose that pQ, ... ,p,

(A < s) ate all the p. which are not L We assume first A > 0. Let

£         •       2 " Pi   ,o =   min  _L log
1<2<A 2 log P.

(1-p.) log P0

Condition I implies that 1, 9x, ... , 9h ate linearly independent over the ra-

tionals. By Lemma 3, there exist numbers b, B and an (A + l)-tuple of inte-

gers (m0, ... , w.) satisfying

(1 - p0) logp {qQ /eg) <A<bz0<B<(1+ rf)b,

(6)
|m0l9. -m. -£.\ <8,       1 < i < A.

This with the definition of 8 implies

,_. 772./(l-At.) ,      772n/(l-Mn)
(7) Y^^PA l/P0° °  <y.+ L,       l<i<h.

Define a set Tf of (s + l)-tuples {pQ, ... , ps) oí integers with p¿ =

Pfp'- (0 < z < s) satisfying:

1. p'. = Pm' (0 < z < A), where imQ, ... , mh) is a fixed (A + l)-tuple of

integers satisfying (7), and p¿ = 1 for i > A.

2. If p0 > 0, pg ranges over all primes > max¿ P. satisfying

w coPo <P0^ciPo

The existence of such p0 is guaranteed if q0 is sufficiently large. If P0=0,

put pg = 1.

3. If p. > 0, p. ranges over all integers satisfying

(9) Yi!l<p*<iy+L)!l,        (p*,p0p;.) = l,     l<i<s.
P P

Since every interval of length > 5  contains an integer relatively prime to the

product of three given primes, integers p. satisfying (9) will exist if LpQ/p.

> 6. By (7) this condition is easily seen to hold if q0 is sufficiently large.

If p.= 0, put p* = 1.

Now assume A = 0. Choose b = mQ — 1 > (1 -p0) l°gp0(?o/c0^'    ^ =

BZg +1,    pg = P?0,    p' =1    (l < t < s), and p0, p ■ as above. It is clear
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..*
that such p. = p. satisfying (9) do in fact exist. Moreover, for q0 sufficient-

ly large, (6) holds.

The definition of T¡ implies that if (p0, ... , ps) £ T¡, then a¿< pj/pQ

< b., and (p;, pA - 1 (1 < i < s). This follows from (9) if hp. > 0 or h = 0.

If * > 0, /¿. = p0 = 0, it follows from (7) and (5). For h > 0, p. = 0, pQ > 0,

we have by (4), (5), (7) and (8),

ai+e  y i  Pi  yi+L
a.<—-<- < — <-- <y.+ L.

cl       ci    Po       c0

Let a = CqPq u , A = cQP0 . If q0 is sufficiently large, we

obtain, by (6), (8) and (5) (f¿0 > 0, h > 0),

f70<«<p0<A<a1+7',      a~ß<L.

For u0 > 0, (8) implies p^0 < cj-"o^0 < p* < c j p^° < cp^, and for /¿Q= 0,

p0 = p0°. To prove that T{CST it remains to show that

(10) p^ < p* < cp^,       1 < i < s.

We may assume 0 < p. < 1 (1 < z < s), because otherwise (10) is trivial. If

p0 > 0, we obtain, from (7), (8), (9),

y. + L y.

and for p0 = 0, we obtain, from (7) and (9),

—— c    ip.i<p*<~—c,   ip:

Therefore (10) will hold by choosing  L to satisfy

0<L<L0<   min (a^c/cj - 1), fl.(cj     ' - D).
1<1<S

We thus proved that T¡ C S  . Let

Il = \(x1, ... ,xs)\y.<ß.<x.<ß.+ l<yi+L, 1 < z < sj,       a~^<l<L.

Let p0 be fixed. For f¿ • > 0 (z > 0), denote by WJ(pQ) the number of integers

p* relatively prime to PoPqP;, which satisfy ß^^/p^ < p¿ < (/3. + l)p0/p'{.

Lemma 4 of [2] implies
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£HH)(-ä)H)-'-*>
<CHK)H)HH

except that the factor 1 - l/p0 is dropped if pQ = 0. Since / > a~fl> pg fl,

(9) and (10) imply lp0/p'{ > Kpfr'11. Since p. - p > 0, 1 is absorbed by

lp0/p'¡. Thus

(11) K/Pg''<W;(pg)<K/Pg''.

For fixed p0, denote by W/(pg) the number of elements (p0, ... , ps) £ Tf

such that (pj/pg, ♦.., Ps/p() e 'i> Multiplying together the t   inequalities

(11) and defining WJ(p0) = 1 for p{ = 0, we obtain

(12) k/pI""0   <W/(p0)<K/'Po"M°.

It is easily seen that if s ml, the set T. satisfies all the conditions of

the lemma for Sj. For s > 1, however, condition (ii) is not necessarily satis-

fied. Let (pQ, p(xn, ..., p(siy) and {pQ, p(x2\ ... , p{s2)) be two distinct ele-

ments of Tj with the same p0. By (9) and (10),

Po        Po

There exists /  such that

hence

p["      p<2)
ÍL-  .    '
Po       Po

Condition (ii) Of the lemma is therefore satisfied for two elements of T¡ with

the same pQ. If pQ = 0, then all the elements of T¡ have the same p0 and we

define Sj = T   in this case. If p0 > 0, we define S{ C T¡ by excluding all

those elements {pQ, ... , ps) of T¡ for which there exists pQ ' < pQ and

(pg1^ ... , p^") eT( such that for z = 1.s  we have

= -|P *(1)
pV2)\> -Í > Kp'^,

Po

-u.       -(<Tts)~e

>*Po   7>^Po
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(13)
P{ol)

Pi

Po

<(p(l))-(^5)-e#

Clearly, S¡ satisfies condition (ii) of the lemma. We shall now count the

number of elements of T. which are not in Sf. Let Mp0, p¿>  ) be the num-

ber of elements of T( for a fixed p0 and fixed pg    < p0, for which (13) holds

for some  i. For fixed pn, let Mp0) denote the number of those elements

(p0, ... , ps) oí Tj fot which there exists an element (p0  , ... , pj' ) of T¡

such that (13) holds for every i. Clearly,

mp0)< z n^o'po1^
Pu   <PQ

From (13),

\p*Pi{i)-prvo\<pyoiwip{i)ia/s)+9'

The expression p¿    p0 - p0v  'p. can therefore assume at most

2PoPo1)/p;Po1)(CT/s)+ö

different values. Let « be a fixed integer. The equation pp0      — p.    p0 = a

implies

(14) p*p* <!> = a (mod p*).

Since p0   is a prime, this congruence has exactly one solution p.  in each in-

terval of length pQ. The integer p¿  is to be chosen in the interval [yp0/p-,

(y. + Dp0/p'.] oí length LpQ/p'. = KLp^K Since p* > cj'"°pj° and \ > p0,

the number of solutions of (14) is LpQ/p*p|. < KLpfr'^O. Therefore

h**n>J* .,11)*    I
PqPo   Pu

M,-Mo A"'*'

and hence

ii\k ^of'o  ''o ''o ''o

P,Po vPo ;

N(pQ)<KLsp0 •V

=^r

+M,

-(I)

p(nMi+"
Po

*W»*

<¿>r

+^,

¿>on<»o

a-p. -Os/2       V
'?0

"o   <p0

Po

(1)-f.0-^/2

Po
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The last sum converges as was shown in the proof of Theorem I. Therefore,

/•wi«.-,;-"»-9"2.
Let y,(p0) denote the number of elements {pQ, ... , ps) of 5f such that

(pj/pg, ... , ps/p0) £ 11 for fixed pQ, and let V; be the total number of

those elements in Sf. By (12),

vM-vM-nWi^'p?110

Therefore,

V^Kl'T,  pg     °,       VL>KL' £ pg     °,

where S    denotes summation over all pQ so that (pQ, ... , p ) e 5,. By (8),

^c-v/«-v z* i<E%rMo<^ó(^°)/(l-Mo)z i.
"o

where £ * 1 = 1 if p0 = 0. If p0 > 0, we obtain from (8) and the Prime Num-

ber Theorem,

(ir-Aig)/(l-/x  ) ,        -,* (CT_M^/(l-ix )

Therefore we obtain (pQ > 0)

>o

VL > KU'p'^^'^/Y > KL'aVX,

completing the proof of Lemma 4.

7. Proof of Theorem II. By (1), A = a/min(s, t) + r, fot some r> 0. We

shall construct by induction a sequence of closed sets EQ D Fx D •• •   and a

sequence of additive functions 0    on Si such that the set E = n„_i P„C B,

and the function <p = lim _00 <p    satisfy the hypothesis of Lemma 2 with p =

{a - 8)/\. Let Eg = W, GQ the set whose unique element is  Eg. Let AQ >

(Lg/D)~I/A  be sufficiently large. For every / e 3? and / C W we define 0O(/)

= V(/)/Lq, where  V(/) denotes the s-dimensional volume of /.

Suppose that for  k = 0, ... , n — 1, a suitable increasing sequence of

positive numbers Afe and sets Gfc of disjoint closed cubes all with edge L^=

2Z)(2A,)-X have already been defined such that every element of Gfe is con-

tained in some element of G,   ,. Let F,  be the union of all elements of G^.
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Suppose also that a sequence cf>,   of additive functions on » has already

been defined for all k < n.

Let I £ G _j, /   the cube concentric with / with edge  L  _j/2. We apply

Lemma 4 with 9, r¡ satisfying 0 < 9 < min (5, r), 0 < r¡ < 8/{a - 8), where 0 <

8 < a; L = Ln_x/2, An_x as q0 and /   as /. There exist reals an, An and a

subset Sji C S'   oí (s + l)-tuples of integers {pQ, ..., p ) satisfying

(P/PO' • • ' ' Ps /Po) e ''•        A„-l <a„<Po<A„< al+V>

and (3).  Let Gn be the set of all closed cubes with centers {px/p0, • • •, ps/p0)

£ I   and length of edge 2D(2A )-Awhere  / ranges over all cubes of G _,.

Note that each /   has its own unique pQ> which induces a number of p0 as

specified by (8) (if p0 > 0), but by Lemma 3 all of these p0 satisfy the in-

equalities of (i) of Lemma 4 for the same a   = a, A   = A.1 72 72

By (3), all cubes in G    are disjoint if A    is sufficiently large, as we

shall assume. Let F    be the union of all cubes in G . Then E    is closed
72 72 72

and F   CE    ,. If / e G , then /C / e G     „ Letting N, be the number of
72 72-1 72' J 72-1 e /

elements of G^ contained in /, we define <£„(/) = <p  _i(/)/^ ;• If ' e 31 and

IC J £Gn, let cpn(/) = <pn(/) • K(/)M/).  If / C W is an arbitrary element of

SR, then / = U/A O Q, where  /fc = / n /fc, /fc e G^, g O E^ = 0. In this case

we define $n(') = 2^ <pn(/^).  The following properties of the functions <p   are

obvious:  They are nonnegative finite additive functions on 3?, and for / £

Gn_x, <f>ni1) = <pn_x{l). If / e », / D En, then <pn(/) = 1. Let 8., i = 0, 1, 2,...,

be positive reals such that the product IL_q(1 + 8.) converges and SQ, S.

sufficiently large. Let  k   = 0 ._0 ( 1 + 8 .).  We shall prove by induction on n

that the sequence A¿ can be chosen such that for every cube I CW,

(15) 4>nit)/dit)p<kn.

For B = 0,

JJíL    V(/)      =5-s/2LriS(/)s-^</<L-',<l+Sn.
o(/)^     LJS(/)P

Let A   = maxf6G   «^„(O. By (iv) of Lemma 4,

!!og «n   if Po > °.

1 if (¿o = 0.

For proving (15) we distinguish several cases,

(a) / e G . Then



36 I. BOROSH AND A. S. FRAENKEL

é (ft      A , ,
_!L_ < _2  < KL', A    ,X a-aAXp < KL-'A     ,X fl-"+U+'i >(»-»>.
w,\p        ,p n—1    1-1   «   «       ri n—1    n—1    n  n

n

The exponent of a    is negative. For an large enough, cpl\l)/8(l)p can thus

be made as small as desired.

(b) / C / e Gn.  Then

ÎÂH _ a (r)      V(/)      - t^l(SSH\S-P< t^H
8(l)p       "     V(])8{I)P     8(J)P\S(])J       ~8(])p'

which is reduced to the previous case.

(c) / C / £ G _j and the length / of the edge of / is greater than zz~'x.

Let N! and N. denote the number of elements of G    with nonempty intersec-

tion with / and /   respectively. By (iii) and (iv) of Lemma 4,

*„(!>      <?„_,(/)        N, cPnJj)     /
<-   •  -   < K ■

8(l)p N. 8(I)P ~       8(1)p    1}   .

„iaBlmY- <„.♦■•"'
8(])'p   \8(J)J '   S(])p

since inequality (1) on A implies t — p > 0. For n > 1, the last expression

can be made as small as desired if a    , is large enough, as was shown in

case (a). For n = 1,

- < K-  < — < 1 + o.,

8(I)P 8(J)P     Lp

if Sj is sufficiently large.

(d) / C / £ 6?n_j but the edge / of /  is not greater than a~^. The cubes

concentric to the cubes of G   and with edge of length A~(<r's'~    are dis-

joint by (3), so the number Nj of cubes of G    with nonempty intersection

with /  is at most N. < K8(I)sAa+8s. Therefore,

t^H. < ÜÓ? < KA      r'^a-H'-WW^a-'X .
8(I)P - 8(f)p -      "-1  n_1 "

For 9, n small enough and a    large enough, this can be made as small as

desired.
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(e) / is an arbitrary cube of edge length /. We may assume n > 1, as

the case  n = 1  is settled by the previous cases. We may also assume  />

ViA -_Y's)-0( since otherwise, for An_j large enough, / intersects at most

one element of G  _,, which is also subsumed by the previous cases. Let /

be a cube with the same center as /  and edge length / + 4A-A  . For A     ,

large enough we have

{8{])/8{I))p < 1 + 8,

^<t^J^MV<{i+8)k    x-k,
8{I)p-   8{I)P 8{])p

which proves (15).

Now let e¿, i > 2, be any sequence of positive integers such that X._, e.

converges. For every cube / e », we have

CPn(/)    =   <Pg(/)    +   itpp)   -   <Pg(/))    +   -   •   •    +   (<Pw(/)    -   <?„_//)).

The difference <pfe(fl - "P^..^') IS contributed by those elements of G^_j

which intersect the boundary of /. Let N, be the number of those elements

of Gfe_j. The cubes concentric to the elements of Gk_x and whose length of

edge is ?/£A£_j are disjoint. Therefore,

<16> Ñk < K maxlSUy-KA^s^6**-", 1|,

and

l^-^-i«l<ÑtVr

If the max in (16) is 1, then for «fc_j large enough  10^(0 - (Pit-i(ft\<eit'

Otherwise,

\cpk{I)-cßk_x{l)\ < K5(/)s-1L-/2Afe_2Xjfe_1A^_7^+ö)^-1)-°-(1+7').

For 9 small and A. _}  large enough, this is smaller than e,. This proves

that the functions <pn converge on each cube / e ». Since the functions cp

are additive, they converge also for every / e ». The limit function <p is non-

negative, finite and additive. If / e », / D F, there exists n such that / 3 E

and so </>(/) = <p (/) = 1. For every cube / C W there exists n such that

<p(/)   . cp U) + 8{l)p
\cp{l)-cp{l)\<8{l)p,      -<—- <kn+l<k.

8{l)p 8{I)P

So cp, F, p satisfy the conditions of Lemma 2, and we have p - m*ET > 0.
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