A GENERALIZATION OF JARNÍK'S THEOREM ON DIOPHANTINE APPROXIMATIONS TO RIDOUT TYPE NUMBERS ΒY ## I. BOROSH AND A. S. FRAENKEL ABSTRACT. Let s be a positive integer, c>1, μ_0,\ldots,μ_s reals in $[0,\ 1],\ \sigma=\sum_{i=0}^s\mu_i$, and t the number of nonzero μ_i . Let Π_i $(i=0,\ldots,s)$ be s+1 disjoint sets of primes and S the set of all (s+1)-tuples of integers (p_0,\ldots,p_s) satisfying $p_0>0$, $p_i=p_i^*p_i'$, where the p_i^* are integers satisfying $\left|p_i^*\right| \le c \left|p_i\right|^{\mu_i}$, and all prime factors of p_i' are in Π_i , i=0, ..., s. Let $\lambda>0$ if t=0, $\lambda>\sigma/\min(s,t)$ otherwise, E_λ the set of all real s-tuples $(\alpha_1,\ldots,\alpha_s)$ satisfying $\left|\alpha_i-p_i/p_0\right| < p_0^{-\lambda}$ $(i=1,\ldots,s)$ for an infinite number of $(p_0,\ldots,p_s)\in S$. The main result is that the Hausdorff dimension of E_λ is σ/λ . Related results are obtained when also lower bounds are placed on the p_i^* . The case s=1 was settled previously (Proc. London Math. Soc. 15 (1965), 458-470). The case $\mu_i=1$ $(i=0,\ldots,s)$ gives a well-known theorem of Jarník (Math. Z. 33 (1931), 505-543). 1. Introduction. Jarník [3] proved that the Hausdorff dimension of the set E of all real s-tuples $(\alpha_1, \ldots, \alpha_s)$ satisfying $|\alpha_i - p_i q^{-1}| < q^{-\lambda}$, i = 1, ..., s, for an infinite number of (s+1)-tuples (q, p_1, \ldots, p_s) of integers with q > 0, is $(s+1)\lambda^{-1}$ provided that $\lambda > 1 + s^{-1}$. In this paper we investigate the case where q, p_1, \ldots, p_s are restricted to certain sets of integers which were considered by Ridout in his extension of Roth's theorem [6]. In [1] it was proved that the set E in this case has Lebesgue measure 0. The Hausdorff dimension for the one-dimensional case of the problem was determined by the authors in [2]. 2. Definitions and notation. Let s be a positive integer, $\mu_0, \mu_1, \ldots, \mu_s$ reals in [0, 1] and $\sigma = \sum_{i=0}^{s} \mu_i$. Let $\prod_i = \{P_{i,1}, \ldots, P_{i,n_i}\} (i=0, \ldots, s)$, be s+1 sets of distinct primes, C_i the set of integers all of whose prime factors belong to \prod_i . We say that condition I is satisfied, if there exists $P_i \in \Pi_i$ for i = 0, ..., s, such that (Ia) $$P_i \neq P_0 \ (i = 1, ..., s)$$. Received by the editors March 12, 1973. AMS (MOS) subject classifications (1970). Primary 10K15; Secondary 28A10. Copyright © 1975, American Mathematical Society (Ib) Those among the numbers $(1 - \mu_0)/\log P_0, \ldots, (1 - \mu_s)/\log P_s$ which are not zero are linearly independent over the field of rational numbers. In particular, condition (Ib) is satisfied if $\mu_i = 1$, $i = 0, \ldots, s$. Let c > 1. We define $S = S(c; \mu_0, \ldots, \mu_s; C_0, \ldots, C_s)$ to be the set of all (s + 1)-tuples of integers $(p_0, \ldots, p_s), p_0 > 0$, satisfying (i) $(p_i, p_0) = 1, i = 1, \ldots, s$. (ii) $p_i = p_i^* p_i'$ with $p_i' \in C_i$ and p_i^* any integer satisfying $|p_i^*| < c|p_i|^{\mu_i}$, $i = 0, \ldots, s$. Similarly we define $S^T = S^T(c; \mu_0, \dots, \mu_s; C_0, \dots, C_s)$ by replacing (ii) by the requirement (ii)^T $p_i = p_i^* p_i'$ where $p_i' \in C_i$ and p_i^* is any integer satisfying $$|p_{j}|^{\mu} \le |p_{j}^{*}| \le c|p_{j}|^{\mu}, \quad i = 0, \ldots, s.$$ Let μ'_0 , μ'_1 , ..., μ'_s be reals satisfying (a) $0 \le \mu'_i \le \mu_i$; (b) if $\sigma > 0$, then $0 \le \mu'_j < \mu_j$ for some j. We define a set S' in a similar way to S and S^T , but replacing this time condition (ii) by the requirement (ii) $p_i = p_i^* p_i'$ where $p_i' \in C_i$ and p_i^* is any integer satisfying $$|p_i|^{\mu'_i} \le |p_i^*| < c|p_i|^{\mu_i}, \quad i = 0, \ldots, s.$$ Let λ , D be positive reals, W an s-dimensional interval with edges parallel to the axes. We define the set $E = E(\lambda, W, S, D)$ to be the set of all s-tuples $(\alpha_1, \ldots, \alpha_s) \in W$ satisfying $|\alpha_i - p_i p_0^{-1}| < D p_0^{-\lambda}$, $i = 1, \ldots, s$, for an infinite number of (s+1)-tuples (p_0, \ldots, p_s) from S. Similarly we define $E^T = E^T(\lambda, W, S^T, D)$ and $E' = E'(\lambda, W, S', D)$. By R^s we denote the Euclidean space of s dimensions, and by d(x, y) the distance between two points x, y of R^s . By $\delta(E)$, $\alpha - m^*E$, dim E we denote, respectively, the diameter, the Hausdorff measure with respect to the function t^a and the Hausdorff dimension of the set E. By a cube we mean an s-dimensional interval with edges parallel to the axes. 3. Main results. The main results of this paper are Theorem I. dim $E^T \leq \dim E' \leq \dim E \leq \sigma/\lambda$. Theorem II. Let t be the number of μ_i which are not zero (i = 0, ..., s). Let λ satisfy (1) $$\lambda > 0 \qquad if \quad t = 0,$$ $$\lambda > \sigma/\min(s, t) \quad if \quad t > 0.$$ If condition I holds, then $$\dim E \ge \dim E' \ge \dim E^T \ge \sigma/\lambda$$. Theorem III. If (1) and (Ia) hold then dim $E \ge \dim E' \ge \sigma/\lambda$. These results imply dim $E = \dim E' = \sigma/\lambda$ if (1) and (Ia) hold and dim $E = \dim E' = \dim E^T = \sigma/\lambda$ if (1) holds and condition I is satisfied. The case $\mu_i = 1, i = 0, \ldots, s$, gives Jarník's result. 4. Proof of Theorem I. Let $b_i > 0$, i = 1, ..., s. By symmetry, it is enough to prove the theorem when W is defined by $$W = \{(x_1, \ldots, x_s) | 0 \le x_i \le b_i, i = 1, \ldots, s\}.$$ We shall prove that, for every $\sigma > 0$, if $\rho = (\sigma + \delta)\lambda^{-1}$ then $\rho - m^*E = 0$. We may also assume that $\delta < 1 - \mu_0$ if $\mu_0 < 1$. Let $\epsilon > 0$. The set of all cubes whose center is $(p_1/p_0, \ldots, p_s/p_0) \in W$ with $(p_0, \ldots, p_s) \in S$, $p_0 > q_0$, and length of edge $2Dp_0^{-\lambda}$, is obviously a covering for E. If q_0 is large enough, the diameter of each cube is smaller than ϵ . It remains to prove that the series $M = \sum (p_0^{-\lambda})^{\rho} = \sum p_0^{-\sigma - \delta}$ converges, where the summation is over all sets $(p_0, \ldots, p_s) \in S$ such that $(p_1/p_0, \ldots, p_s/p_0) \in W$. Since $p_i = p_i^* p_i'$ for $i = 0, \ldots, s$, the summation can be broken up into a summation over p_1^*, \ldots, p_s^* , and over p_1^*, \ldots, p_s^* . Therefore, $$M = \sum_{p_0} M_1, \quad M_1 \leq \sum^{\{2\}} p_0^{-\sigma - \delta} \sum^{\{1\}} 1,$$ where $\{1\}$ and $\{2\}$ indicate summations over p_1^*, \ldots, p_s^* and p_1', \ldots, p_s' , respectively. Positive constants depending only on c, δ , μ_i , b_i , Π_i $(0 \le i \le s)$ are denoted by A below. Since $p_i^* < cp_i^{\mu_i} \le cb^{\mu_i}p_0^{\mu_i}$ $(1 \le i \le s)$, we have $\sum_{i=1}^{n} 1 < Ap_0^{\sigma-\mu_0}$. Putting $\eta = \delta/2$, we thus obtain $$M_1 \leq A p_0^{-\mu_0 - \eta} \sum\nolimits^{\left\{2\right\}} p_0^{-\eta} = A p_0^{-\mu_0 - \eta} \prod_{i=1}^s \sum\nolimits^{\left\{3\right\}} p_0^{-\eta/s},$$ where $\{3\}$ denotes summation over $p_i' \in C_i$. Since $p_i' \le p_i \le b_i p_0$ $(1 \le i \le s)$, we obtain $$\sum_{i=1}^{\{3\}} p_0^{-\eta/s} \le A \sum_{i=1}^{\{3\}} p_i'^{-\eta/s} \le A \prod_{j=1}^{n_i} (1 - P_{i,j}^{-\eta/s})^{-1} \le A.$$ Therefore $$M_1 \le A p_0^{-\mu_0 - \eta}$$ and $M \le A \sum_{j=0}^{\{5\}} p_0^{\prime - \mu_0 - \eta} \sum_{j=0}^{\{4\}} p_0^{*-\mu_0 - \eta}$, where {4} and {5} denote summations over all $p_0^* \le R = C \frac{1/(1-\mu_0)}{p_0'} p_0'^{\mu_0/(1-\mu_0)} (\mu_0 < 1)$ and $p_0' \in C_0$, respectively. (If $\mu = 1$, $M < A \sum_{1}^{\infty} p_0^{-1-\eta} \le A$.) $$\sum_{1}^{\{4\}} p_0^{*^{-\mu_0 - \eta}} < 1 + \int_1^R x^{-\mu_0 - \eta} dx \le A p_0^{\mu_0 - \eta_0 / (1 - \mu_0)}.$$ Therefore $M \le A \sum_{j=0}^{\{5\}} p_0' - \eta A < \infty$, completing the proof. 5. Proof that Theorem II implies Theorem III. We may assume that $\sigma > 0$, because otherwise Theorem III is trivially true. Let $P_i \in \Pi_i$, $i = 0, \ldots, s$ and $P_i \neq P_0$, $i = 1, \ldots, s$. If condition I is not satisfied, then $$(1 - \mu_0)/\log P_0, \ldots, (1 - \mu_s)/\log P_s$$ are linearly dependent over the rationals. Let $\epsilon > 0$. There exists j such that $0 \le \mu_j' < \mu_j$. Choose μ_j'' such that $\mu_i' < \mu_j'' < \mu_j$, $\mu_j - \mu_j'' < \epsilon$, and such that the nonzero members among $$(1 - \mu_0)/\log P_0, \ldots, (1 - \mu_i'')/\log P_i, \ldots, (1 - \mu_s)/\log P_s$$ are linearly independent over the rationals. Let $\mu_i'' = \mu_i$ for $i \neq j$, and let S'''T and S''' be the same as S^T and S' respectively, except that in (ii) and (ii), μ_i is replaced by μ_i'' ($0 \leq i \leq s$). Then $$S''^T \subset S''' \subset S' \subset S$$, $E''^T \subset E''' \subset E' \subset E$. By Theorem II, $$\dim E > \dim E' > \dim E'' \geq \dim E''^T > (\sigma - \epsilon)/\lambda$$ Since this holds for every $\epsilon > 0$, we have dim $E \ge \dim E' \ge \sigma/\lambda$, which is Theorem III. Remark. Condition I is, however, essential in proving dim $E^T \ge \sigma/\lambda$, as is shown by the following example. Let P_0 and P_1 be two distinct primes, $C_0 = \{P_0^{m_0}\}, C_1 = \{P_1^{m_1}\}, m_0, m_1$ nonnegative integers. There exist μ_0 and μ_1 in [0, 1) such that $P_1^{1/(1-\mu_1)} = P_0^{1/(1-\mu_0)} = A > 1$. Let $0 < \epsilon < (A-1)/(A+1)$, and $$1 < c < \min((1 + \epsilon)^{1-\mu_1}, (1 - \epsilon)^{-(1-\mu_0)}).$$ If $(p_0, p_1) \in S^T(c; \mu_0, \mu_1; C_0, C_1)$ and $p_0, p_1 > 0$, then $$p_i = p_i^* p_i', \quad p_i^{\mu_i} \le p_i^* < c p_i^{\mu_i}, \quad p_i' = P_i^{m_i}, \quad i = 0, 1.$$ This gives $$p_i^{m_i/(1-\mu_i)} \le p_i < c^{1/(1-\mu_i)} P_i^{m_i/(1-\mu_i)}, \quad i = 0, 1,$$ and (2) $$(1-\epsilon)A^{k} < c^{-1/(1-\mu_{0})}A^{k} < p_{1}/p_{0} < c^{1/(1-\mu_{1})}A^{k} < (1+\epsilon)A^{k},$$ where $k = m_1 - m_0$. The requirement for ϵ implies that $A(1-\epsilon) > 1+\epsilon$. By (2), the interval $(1+\epsilon, A(1-\epsilon))$ does not contain any p_1/p_0 with $(p_0, p_1) \in S^T$ because, if $k \le 0$, then $(1+\epsilon)A^k \le 1+\epsilon$, and if k > 0, then $A(1-\epsilon) \le (1-\epsilon)A^k$. 6. Lemmas for Theorem II. It suffices to prove Theorem II for an interval W of the form $$W = \{(x_1, \ldots, x_s) | a_i \le x_i \le b_i, i = 1, \ldots, s\},\$$ where the a_i are arbitrary positive reals, $b_i = a_i + L_0$, and L_0 is any sufficiently small real number, to be chosen later in the proof (Lemma 4). Lemma 1. It is enough to prove Theorem II for the case $\mu_i \ge \mu_0$, i = 1, ..., s. Proof. If $\mu_i < \mu_0$ for some i > 0, we may assume that $\mu_s = \min(\mu_0, \dots, \mu_s)$. Let $\nu_i = \mu_i$ if $i \neq 0$, s, $\nu_0 = \mu_s$ and $\nu_s = \mu_0$. Let $\psi : W \to R^s$ be defined by $$\psi(x_1,\ldots,x_{s-1},x_s)=(x_1/x_s,\ldots,x_{s-1}/x_s,1/x_s),$$ and let $W_1 = \{(x_1, \ldots, x_s) | a_i' \le x_i \le b_i', 1 \le i \le s\}$ be chosen so that $\psi(W_1) \subset W$. It is easily seen that ψ has Jacobian a_s^{-s-1} , which is bounded away from 0 and ∞ on W_1 , and therefore preserves Hausdorff dimension. Let S^T , E^T be as defined in §2, $$S_1^T = S^T(c; \nu_0, \dots, \nu_s; C_s, C_1, \dots, C_{s-1}, C_0), \quad E_1^T = E^T(\lambda, W_1, S_1^T, D_1),$$ where $D_1>0$ is sufficiently small. The conditions of Theorem II hold for E_1^T , and we have, moreover, $\nu_i\geq\nu_0$ $(1\leq i\leq s)$. Therefore, assuming the validity of the theorem for this case, dim $E_1^T\geq\sigma/\lambda$. We now prove that for a suitable choice of D_1 we have $\psi(E_1^T)\subset E^T$. Let $(\beta_1,\ldots,\beta_s)\in\psi(E_1^T)$. There exists $(\alpha_1,\ldots,\alpha_s)\in E_1^T$ such that $(\alpha_1/\alpha_s,\ldots,\alpha_{s-1}/\alpha_s,1/\alpha_s)=(\beta_2,\ldots,\beta_{s-1},\beta_s)$, and an infinity of $(p_s,p_1,\ldots,p_{s-1},p_0)\in S_1^T$ $(p_i'\in C_i,\ i=0,\ldots,s)$, satisfying $|\alpha_i-p_i/p_s|< D_1p_s^{-\lambda},\ 1\leq i\leq s-1,$ $|\alpha_s-p_0/p_s|< D_1p_s^{-\lambda}$. Let $|\alpha_i-p_i/p_s|+\eta_i$, $|\alpha_i-p_i/p_s|< |\alpha_i-p_i/p_s|+\eta_i$, $|\alpha_i-p_i/p_s|< |\alpha_i-p_i/p_s|$. Let $|\alpha_i-p_i/p_s|< |\alpha_i-p_i/p_s|$, $|\alpha_i-p_i/p_s|< |\alpha_i-p_i/p_s|$, $|\alpha_i-p_i/p_s|< |\alpha_i-p_i/p_s|$. Let $|\alpha_i-p_i/p_s|< |\alpha_i-p_i/p_s|$, $|\alpha_i-p_i/p_s|< |\alpha_i-p_i/p_s|$. Let $|\alpha_i-p_i/p_s|< |\alpha_i-p_i/p_s|$, $|\alpha_i-p_i/p_s|< |\alpha_i-p_i/p_s|$, $|\alpha_i-p_i/p_s|< |\alpha_i-p_i/p_s|$. $$\frac{\alpha_i}{\alpha_s} = \frac{p_i}{p_0} \cdot \frac{1 + \eta_i p_s/p_i}{1 + \eta_s p_s/p_0},$$ $$\begin{split} \left| \frac{\alpha_{i}}{\alpha_{s}} - \frac{p_{i}}{p_{0}} \right| &< \frac{p_{i}}{p_{0}} (1 - D_{1} p_{s}^{1 - \lambda} / p_{0})^{-1} \left(|\eta_{1}| \frac{p_{s}}{p_{i}} + |\eta_{s}| \frac{p_{s}}{p_{0}} \right) \\ &\leq 2 \left(\frac{b_{i}'}{a_{i}'} \right) (1 - D_{1} p_{s}^{1 - \lambda} / p_{0})^{-1} D_{1} p_{s}^{-\lambda} < D p_{0}^{-\lambda}, \end{split}$$ if D_1 is sufficiently small. A similar computation shows that $|\alpha_s^{-1} - p_s p_0^{-1}| < Dp_0^{-\lambda}$ for \bar{D} small enough. Thus $$|\beta_i - p_i/p_0| < Dp_0^{-\lambda}, \quad i = 1, ..., s,$$ which shows that $\psi(E_1^T) \subset E^T$. Therefore, $$\dim E^T \ge \dim \psi(E_1^T) = \dim E_1^T \ge \sigma/\lambda$$. From now on we shall assume $\mu_i \geq \mu_0$ $(1 \leq i \leq s)$. We may also assume that every Π_i contains only one prime P_i such that condition I is satisfied, that not all μ_i are 1 because this is Jarník's theorem, and that not all μ_i are zero because then Theorem II is trivial. These assumptions are not essential but permit a simpler exposition. Let $\delta > 0$, $\rho = (\sigma - \delta)/\lambda$. In order to prove that $\rho - m^*(E^T) > 0$, we use the following special case of a theorem due to P. A. P. Moran [5]. - Lemma 2. Let s be a positive integer, E a bounded set in R^s and $0 \le \rho \le s$. A sufficient condition for $\rho m^*(E)$ to be positive is the existence of a closed subset F of E and an additive function ϕ defined on the ring \Re generated by the semiopen cubes of R^s , satisfying the following properties: - (a) ϕ is nonnegative. - (b) For every $R \in \Re$ and $R \supset F$ we have $\phi(R) > b > 0$ for some fixed b. - (c) There exists a positive constant k such that for every semiopen cube R we have $\phi(R) < k\delta(R)^{\rho}$. Lemma 3. Let $\theta_1, \ldots, \theta_s$ be reals such that $1, \theta_1, \ldots, \theta_s$ are linearly independent over the rationals, $\delta, \eta, n_0 > 0$. There exist real numbers b, B such that for every set of real numbers $\alpha_1, \ldots, \alpha_s$ there is an (s+1)-tuple of integers (m_0, \ldots, m_s) satisfying $|m_0\theta_i - m_i - \alpha_i| < \delta, 1 \le i \le s, n_0 < b < m_0 < B < (1+\eta)b$. Except for the explicit bound on m_0 , this is Kronecker's theorem. The bound can be obtained by introducing a slight change in one of the proofs of Kronecker's theorem, for example, Lettenmeyer's proof [4]. Let t' be the number of nonzero μ_i $(1 \le i \le s)$, $0 < \mu < \min_{\mu_i \ne 0} \mu_i$. We shall now formulate the main lemma. Lemma 4. Let $L < L_0$, θ , η be positive real, $q_0 = q_0(a_i, b_i, \Pi_i, \mu_i, L, \eta)$ a sufficiently large real number. There exist reals a, A such that for every cube $I \subseteq W$ with edge L, there is a subset $S_I \subseteq S^T$ with the following properties: - (i) If $(p_0, \ldots, p_s) \in S_l$, then $(p_1/p_0, \ldots, p_s/p_0) \in I$, $q_0 < a < p_0 < A < a^{1+\eta}$, $(p_i, p_0) = 1$, $a^{-\mu} < L$, and all the $(p_0, \ldots, p_s) \in S_l$ share the same fixed (s+1)-tuple (p'_0, \ldots, p'_s) . - fixed (s+1)-tuple (p'_0, \ldots, p'_s) . (ii) If $p_0^{(1)} \leq p_0^{(2)}$ and $(p_0^i, \ldots, p_s^i) \in S_l$ (i=1, 2), then there exists at least one j such that (3) $$|p_{j}^{(1)}/p_{0}^{(1)} - p_{j}^{(2)}/p_{0}^{(2)}| \ge (p_{0}^{(1)})^{-(\sigma/s)-\theta}.$$ (iii) Let $a^{-\mu} < l \le L$, I_l any cube with edge length l contained in l, V_l the number of elements (p_0, \ldots, p_s) of S_l such that $(p_1/p_0, \ldots, p_s/p_0)$ $\in I_l$. Then $$V_{l} < K l^{t'} p_{0}^{\prime \sigma / (1 - \mu_{0})} / Y,$$ where $$Y = \begin{cases} \log p'_0 & \text{if } \mu_0 > 0, \\ 1 & \text{if } \mu_0 = 0, \end{cases}$$ K a suitable positive constant depending on S^T , W, λ , D, η , θ . (iv) The total number V_L of elements of S_I satisfies $$V_L > KL^{t'} \frac{p_0^{\sigma/(1-\mu_0)}}{V} \ge KL^{t'} \frac{a^{\sigma}}{V},$$ where $$X = \begin{cases} \log a & \text{if } \mu_0 > 0, \\ 1 & \text{if } \mu_0 = 0. \end{cases}$$ Remark. The convention on K will be used for the rest of the paper, for the sake of simplicity of notation. **Proof.** Let $\epsilon > 0$ be sufficiently small, (4) $$I = \{(x_1, \ldots, x_s) | a_i + \epsilon < \gamma_i \le x_i \le \gamma_i + L < b_i, 1 \le i \le s\},$$ (5) $$1 < c_0 < c_1 < c, c_1 < 1 + \min_i (\epsilon/a_i), c_1/c_0 < 2, c_0 < 2.$$ Since $\mu_i \ge \mu_0$ and not all μ_i are 1, we have $\mu_0 < 1$. Suppose that μ_0, \ldots, μ_b $(b \le s)$ are all the μ_i which are not 1. We assume first b > 0. Let $$\delta = \min_{1 \le i \le h} \frac{1 - \mu_i}{2 \log P_i} \log \left(1 + \frac{L}{b_i} \right),$$ $$\theta_{i} = \frac{(1 - \mu_{i}) \log P_{0}}{(1 - \mu_{0}) \log P_{i}}, \quad \xi_{i} = -\frac{1 - \mu_{i}}{2 \log P_{i}} \log \left(\frac{\gamma_{i}(\gamma_{i} + L)}{c_{1}^{2}}\right), \quad 1 \leq i \leq h.$$ Condition I implies that 1, θ_1 , ..., θ_h are linearly independent over the rationals. By Lemma 3, there exist numbers b, B and an (b+1)-tuple of integers (m_0, \ldots, m_h) satisfying (6) $$|m_0\theta_i - m_i - \xi_i| < \delta, \quad 1 \le i \le h.$$ This with the definition of δ implies Define a set T_i of (s+1)-tuples (p_0, \ldots, p_s) of integers with $p_i = p_i^* p_i'$ $(0 \le i \le s)$ satisfying: - $p_i^*p_i'$ $(0 \le i \le s)$ satisfying: 1. $p_i' = P_i^{m_i} (0 \le i \le h)$, where (m_0, \ldots, m_h) is a fixed (h+1)-tuple of integers satisfying (7), and $p_i' = 1$ for i > h. - 2. If $\mu_0 > 0$, p_0^* ranges over all primes $> \max_i P_i$ satisfying (8) $$c_0 p_0^{\mu_0/(1-\mu_0)} \le p_0^* \le c_1 p_0^{\mu_0/(1-\mu_0)}$$. The existence of such p_0^* is guaranteed if q_0 is sufficiently large. If $\mu_0 = 0$, put $p_0^* = 1$. 3. If $\mu_i > 0$, p_i^* ranges over all integers satisfying (9) $$\gamma_i \frac{p_0}{p'} < p_i^* < (\gamma_i + L) \frac{p_0}{p'}, \quad (p_i^*, p_0 p_i') = 1, \quad 1 \le i \le s.$$ Since every interval of length ≥ 5 contains an integer relatively prime to the product of three given primes, integers p_i^* satisfying (9) will exist if Lp_0/p_i' > 6. By (7) this condition is easily seen to hold if q_0 is sufficiently large. If $\mu_i = 0$, put $p_i^* = 1$. Now assume h = 0. Choose $b = m_0 - 1 > (1 - \mu_0) \log_{P_0}(q_0/c_0)$, $B = m_0 + 1$, $p'_0 = P_0^{m_0}$, $p'_i = 1$ $(1 \le i \le s)$, and p_0^* , p_i^* as above. It is clear that such $p_i^* = p_i$ satisfying (9) do in fact exist. Moreover, for q_0 sufficiently large, (6) holds. The definition of T_l implies that if $(p_0, \ldots, p_s) \in T_l$, then $a_i < p_i/p_0 < b_i$, and $(p_i, p_0) = 1$ $(1 \le i \le s)$. This follows from (9) if $h\mu_i > 0$ or h = 0. If h > 0, $\mu_i = \mu_0 = 0$, it follows from (7) and (5). For h > 0, $\mu_i = 0$, $\mu_0 > 0$, we have by (4), (5), (7) and (8), $$a_i < \frac{a_i + \epsilon}{c_1} < \frac{\gamma_i}{c_1} < \frac{p_i}{p_0} < \frac{\gamma_i + L}{c_0} < \gamma_i + L.$$ Let $a = c_0 P_0^{b/(1-\mu_0)}$, $A = c_0 P_0^{B/(1-\mu_0)}$. If q_0 is sufficiently large, we obtain, by (6), (8) and (5) $(\mu_0 \ge 0, h \ge 0)$, $$q_0 < a < p_0 < A < a^{1+\eta}, \quad a^{-\mu} < L.$$ For $\mu_0 > 0$, (8) implies $p_0^{\mu_0} < c_0^{1-\mu_0} p_0^{\mu_0} \le p_0^* < c_1 p_0^{\mu_0} < c p_0^{\mu_0}$, and for $\mu_0 = 0$, $p_0^* = p_0^{\mu_0}$. To prove that $T_I \subset S^T$ it remains to show that (10) $$p_{i}^{\mu_{i}} \leq p_{i}^{*} < c p_{i}^{\mu_{i}}, \quad 1 \leq i \leq s.$$ We may assume $0 < \mu_i < 1$ $(1 \le i \le s)$, because otherwise (10) is trivial. If $\mu_0 > 0$, we obtain, from (7), (8), (9), $$(c_0c_1)^{1-\mu_i}\frac{\gamma_i}{\gamma_i+L}p_i^{\mu_i} < p_i^* < c_1^{(1-\mu_i)^2}\frac{\gamma_i+L}{\gamma_i}p_i^{\mu_i},$$ and for $\mu_0 = 0$, we obtain, from (7) and (9), $$\frac{\gamma_i}{\gamma_i + L} c^{1-\mu_i} p_i^{\mu_i} < p_i^* < \frac{\gamma_i + L}{\gamma_i} c_1^{1-\mu_i} p_i^{\mu_i}.$$ Therefore (10) will hold by choosing L to satisfy $$0 < L < L_0 < \min_{1 \le i \le s} (a_i(c/c_1 - 1), a_i(c_1^{1-\mu_i} - 1)).$$ We thus proved that $T_I \subset S^T$. Let $$I_{l} = \{(x_{1}, \ldots, x_{s}) | \gamma_{i} < \beta_{i} \le x_{i} \le \beta_{i} + l \le \gamma_{i} + L, \ 1 \le i \le s\}, \quad a^{-\mu} < l \le L.$$ Let p_0 be fixed. For $\mu_i > 0$ (i > 0), denote by $W_l^i(p_0)$ the number of integers p_i^* relatively prime to $p_0^* P_0 P_i$, which satisfy $\beta_i p_0 / p_i' < p_i^* < (\beta_i + l) p_0 / p_i'$. Lemma 4 of [2] implies $$\left(\frac{lp_0}{p_i'} - 1\right) \left(1 - \frac{1}{P_i}\right) \left(1 - \frac{1}{P_0}\right) \left(1 - \frac{1}{p_0^*}\right) - 2^3 < W_l^i(p_0) < \left(\frac{lp_0}{p_i'} + 1\right) \left(1 - \frac{1}{P_i}\right) \left(1 - \frac{1}{P_0}\right) \left(1 - \frac{1}{p_0^*}\right) + 2^3,$$ except that the factor $1-1/p_0^*$ is dropped if $\mu_0=0$. Since $l>a^{-\mu}>p_0^{-\mu}$, (9) and (10) imply $lp_0/p_i'>Kp_0^{\mu_i-\mu}$. Since $\mu_i-\mu>0$, 1 is absorbed by lp_0/p_i' . Thus (11) $$Klp_0^{\mu_i} < W_l^i(p_0) < Klp_0^{\dot{\mu}_i}.$$ For fixed p_0 , denote by $W_l(p_0)$ the number of elements $(p_0, \ldots, p_s) \in T_l$ such that $(p_1/p_0, \ldots, p_s/p_0) \in I_l$. Multiplying together the t' inequalities (11) and defining $W_l^i(p_0) = 1$ for $\mu_i = 0$, we obtain (12) $$Kl^{t'}p_{0}^{\sigma-\mu_{0}} < W_{l}(p_{0}) < Kl^{t'}p_{0}^{\sigma-\mu_{0}}.$$ It is easily seen that if s=1, the set T_I satisfies all the conditions of the lemma for S_I . For s>1, however, condition (ii) is not necessarily satisfied. Let $(p_0, p_1^{(1)}, \ldots, p_s^{(1)})$ and $(p_0, p_1^{(2)}, \ldots, p_s^{(2)})$ be two distinct elements of T_I with the same p_0 . By (9) and (10), $$\left|\frac{p_i^{(1)}}{p_0} - \frac{p_i^{(2)}}{p_0}\right| = \frac{p_i'}{p_0} |p_i^{*(1)} - p_i^{*(2)}| \ge \frac{p_i'}{p_0} > Kp_0^{-\mu_i}.$$ There exists j such that $$\mu_j \leq \frac{1}{s} \sum_{i=1}^s \mu_i \leq \frac{\sigma}{s} < \frac{\sigma}{s} + \theta;$$ hence $$\left| \frac{p_j^{(1)}}{p_0} - \frac{p_j^{(2)}}{p_0} \right| \ge K p_0^{-\mu_j} > K p_0^{-(\sigma/s) - \theta}.$$ Condition (ii) of the lemma is therefore satisfied for two elements of T_I with the same p_0 . If $\mu_0 = 0$, then all the elements of T_I have the same p_0 and we define $S_I = T_I$ in this case. If $\mu_0 > 0$, we define $S_I \subseteq T_I$ by excluding all those elements (p_0, \ldots, p_s) of T_I for which there exists $p_0^{(1)} < p_0$ and $(p_0^{(1)}, \ldots, p_s^{(1)}) \in T_I$ such that for $i = 1, \ldots, s$ we have (13) $$\left| \frac{p_i^{(1)}}{p_0^{(1)}} - \frac{p_i}{p_0} \right| < (p_0^{(1)})^{-(\sigma/s) - \theta}.$$ Clearly, S_I satisfies condition (ii) of the lemma. We shall now count the number of elements of T_I which are not in S_I . Let $N(p_0, p_0^{(1)})$ be the number of elements of T_I for a fixed p_0 and fixed $p_0^{(1)} < p_0$, for which (13) holds for some i. For fixed p_0 , let $N(p_0)$ denote the number of those elements (p_0, \ldots, p_s) of T_I for which there exists an element $(p_0^{(1)}, \ldots, p_s^{(1)})$ of T_I such that (13) holds for every i. Clearly, $$N(p_0) \leq \sum_{p_0^{(1)} \leq p_0} \prod_{i=1}^s N_i(p_0, p_0^{(1)}).$$ From (13), $$|p_i^*p_0^{*(1)} - p_i^{*(1)}p_0^*| < p_0^*p_0^{(1)}/p_i'p_0^{(1)(\sigma/s)+\theta}.$$ The expression $p_i^{*(1)}p_0^* - p_0^{*(1)}p_i^*$ can therefore assume at most $$2p_0p_0^{(1)}/p_i'p_0^{(1)(\sigma/s)+\theta}$$ different values. Let u be a fixed integer. The equation $p_i^* p_0^{*(1)} - p_i^{*(1)} p_0^* = u$ implies (14) $$p_i^* p_0^{* (1)} \equiv u \pmod{p_0^*}.$$ Since p_0^* is a prime, this congruence has exactly one solution p_i^* in each interval of length p_0^* . The integer p_i^* is to be chosen in the interval $[\gamma_i p_0/p_i', (\gamma_i + L)p_0/p_i']$ of length $Lp_0/p_i' = KLp_0^{\mu_i}$. Since $p_0^* > c_0^{1-\mu_0}p_0^{\mu_0}$ and $\mu_i \ge \mu_0$, the number of solutions of (14) is $Lp_0/p_0^*p_i' < KLp_0^{\mu_i-\mu_0}$. Therefore $$N_i(p_0,\,p_0^{(1)}) \leq KL\,\frac{p_0^*\,p_0^{(1)}p_0^{\mu_i-\mu_0}}{p_i'\,p_0^{(1)(\sigma/s)+\theta}} \leq KL\,\frac{p_0^{\mu_i}p_0^{(1)^{\mu_i}}}{(p_0^{(1)})^{(\sigma/s)+\theta}},$$ and hence $$\begin{split} N(p_0) &\leq KL^s p_0^{\mu_1 + \dots + \mu_s} \sum_{\substack{p_0^{(1)} < p_0}} p_0^{(1)^{\mu_1 + \dots + \mu_s} / p_0^{(1)^{\sigma + \theta_s}} \\ &= KL^s p_0^{\mu_1 + \dots + \mu_s} \sum_{\substack{p_0^{(1)} < p_0}} p_0^{(1)^{-\mu_0 - \theta_s}} \\ &\leq KL^s p_0^{\sigma - \mu_0 - \theta_s/2} \sum_{\substack{p_0^{(1)} < p_0}} p_0^{(1)^{-\mu_0 - \theta_s/2}} \\ &\leq KL^s p_0^{\sigma - \mu_0 - \theta_s/2} \sum_{\substack{p_0^{(1)} < p_0}} p_0^{(1)^{-\mu_0 - \theta_s/2}} \\ \end{split}$$ The last sum converges as was shown in the proof of Theorem I. Therefore, $$N(p_0) \leq KL^s p_0^{\sigma - \mu_0 - \theta_s/2}.$$ Let $V_l(p_0)$ denote the number of elements (p_0, \ldots, p_s) of S_l such that $(p_1/p_0, \ldots, p_s/p_0) \in I_l$ for fixed p_0 , and let V_l be the total number of those elements in S_l . By (12), $$\begin{split} &V_{l}(p_{0}) \leq W_{l}(p_{0}) \leq K l^{t'} p_{0}^{\sigma-\mu_{0}}, \\ &V_{L}(p_{0}) = W_{L}(p_{0}) - N(p_{0}) \geq K L^{t'} p_{0}^{\sigma-\mu_{0}}. \end{split}$$ Therefore, $$V_{l} < K l^{t'} \sum_{0}^{*} p_{0}^{\sigma - \mu_{0}}, \quad V_{L} > K L^{t'} \sum_{0}^{*} p_{0}^{\sigma - \mu_{0}},$$ where Σ^* denotes summation over all p_0 so that $(p_0, \ldots, p_s) \in S_{I^*}$ By (8), $$K{p_0'}^{(\sigma-\mu_0)/(1-\mu_0)}\sum_{p_0^*}^* \ 1<\sum^*{p_0^{\sigma-\mu_0}}< K{p_0'}^{(\sigma-\mu_0)/(1-\mu_0)}\sum_{p_0^*}^* \ 1,$$ where $\sum_{p_0^*}^* 1 = 1$ if $\mu_0 = 0$. If $\mu_0 > 0$, we obtain from (8) and the Prime Number Theorem, $$Kp'_0^{(\sigma-\mu_0)/(1-\mu_0)}/\log p'_0 < \sum_{p_0^*}^* 1 < Kp'_0^{(\sigma-\mu_0)/(1-\mu_0)}/\log p'_0.$$ Therefore we obtain $(\mu_0 \ge 0)$ $$V_{l} < K l^{t'} p_{0}^{r'\sigma/(1-\mu_{0})} / Y,$$ $$V_{L} > KL^{t'}p_{0}^{'\sigma/(1-\mu_{0})}/Y > KL^{t'}a^{\sigma}/X,$$ completing the proof of Lemma 4. 7. Proof of Theorem II. By (1), $\lambda = \sigma/\min(s, t) + \tau$, for some $\tau > 0$. We shall construct by induction a sequence of closed sets $F_0 \supset F_1 \supset \cdots$ and a sequence of additive functions ϕ_n on \Re such that the set $F = \bigcap_{n=1}^{\infty} F_n \subset E$, and the function $\phi = \lim_{n \to \infty} \phi_n$ satisfy the hypothesis of Lemma 2 with $\rho = (\sigma - \delta)/\lambda$. Let $F_0 = W$, G_0 the set whose unique element is F_0 . Let $A_0 > (L_0/D)^{-1/\lambda}$ be sufficiently large. For every $I \in \Re$ and $I \subset W$ we define $\phi_0(I) = V(I)/L_0^s$, where V(I) denotes the s-dimensional volume of I. Suppose that for $k=0,\ldots,n-1$, a suitable increasing sequence of positive numbers A_k and sets G_k of disjoint closed cubes all with edge $L_k=2D(2A_k)^{-\lambda}$ have already been defined such that every element of G_k is contained in some element of G_{k-1} . Let F_k be the union of all elements of G_k . Suppose also that a sequence ϕ_k of additive functions on \Re has already been defined for all $k \le n$. Let $l \in G_{n-1}$, l' the cube concentric with l with edge $L_{n-1}/2$. We apply Lemma 4 with θ , η satisfying $0 < \theta < \min(\delta, \tau)$, $0 < \eta < \delta/(\sigma - \delta)$, where $0 < \delta < \sigma$; $L = L_{n-1}/2$, A_{n-1} as q_0 and l' as l. There exist reals a_n , A_n and a subset $S_{l'} \subset S^T$ of (s+1)-tuples of integers (p_0, \ldots, p_s) satisfying $$(p_1/p_0, \ldots, p_s/p_0) \in I', \quad A_{n-1} < a_n < p_0 < A_n < a_n^{1+\eta},$$ and (3). Let G_n be the set of all closed cubes with centers $(p_1/p_0, \ldots, p_s/p_0) \in I'$ and length of edge $2D(2A_n)^{-\lambda}$ where I ranges over all cubes of G_{n-1} . Note that each I' has its own unique p'_0 , which induces a number of p_0 as specified by (8) (if $\mu_0 > 0$), but by Lemma 3 all of these p_0 satisfy the inequalities of (i) of Lemma 4 for the same $a_n = a$, $A_n = A$. By (3), all cubes in G_n are disjoint if A_n is sufficiently large, as we shall assume. Let F_n be the union of all cubes in G_n . Then F_n is closed and $F_n \subset F_{n-1}$. If $I \in G_n$, then $I \subseteq J \in G_{n-1}$. Letting N_J be the number of elements of G_n contained in J, we define $\phi_n(I) = \phi_{n-1}(J)/N_J$. If $I \in \mathbb{R}$ and $I \subseteq J \in G_n$, let $\phi_n(I) = \phi_n(J) \cdot V(I)/V(J)$. If $I \subseteq W$ is an arbitrary element of \Re , then $I = \bigcup_h I_h \cup Q$, where $I_h = I \cap J_h$, $J_h \in G_n$, $Q \cap F_n = \emptyset$. In this case we define $\phi_n(I) = \sum_h \phi_n(I_h)$. The following properties of the functions ϕ_n are obvious: They are nonnegative finite additive functions on \Re , and for $I \in G_{n-1}$, $\phi_n(I) = \phi_{n-1}(I)$. If $I \in \Re$, $I \supset F_n$, then $\phi_n(I) = 1$. Let δ_i , $i = 0, 1, 2, \ldots$, be positive reals such that the product $\prod_{i=0}^{\infty} (1 + \delta_i)$ converges and δ_0 , δ_1 sufficiently large. Let $k_n = \prod_{i=0}^n (1 + \delta_i)$. We shall prove by induction on n that the sequence A_i can be chosen such that for every cube $I \subseteq W$, $$\phi_{n}(I)/\delta(I)^{\rho} < k_{n}.$$ For n=0, $$\frac{\phi_0(I)}{\delta(I)^{\rho}} = \frac{V(I)}{L_0^s \delta(I)^{\rho}} = S^{-s/2} L_0^{-s} \delta(I)^{s-\rho} \le K L_0^{-\rho} < 1 + \delta_0.$$ Let $\Delta_n = \max_{l \in G_n} \phi_n(l)$. By (iv) of Lemma 4, $$\Delta_n < K L_{n-1}^{-t'} \Delta_{n-1} X_n a_n^{-\sigma}, \qquad X_n = \begin{cases} \log a_n & \text{if } \mu_0 > 0, \\ 1 & \text{if } \mu_0 = 0. \end{cases}$$ For proving (15) we distinguish several cases. (a) $$I \in G_n$$. Then $$\frac{\phi_{n}(I)}{\delta(I)^{\rho}} < \frac{\Delta_{n}}{L_{n}^{\rho}} < KL_{n-1}^{-t'} \Delta_{n-1} X_{n} a_{n}^{-\sigma} A_{n}^{\lambda \rho} < KL_{n-1}^{-t'} \Delta_{n-1} X_{n} a_{n}^{-\sigma + (1+\eta)(\sigma - \delta)}.$$ The exponent of a_n is negative. For a_n large enough, $\phi_n(I)/\delta(I)^{\rho}$ can thus be made as small as desired. (b) $I \subseteq J \in G_n$. Then $$\frac{\phi_n(I)}{\delta(I)^{\rho}} = \phi_n(J) \frac{V(I)}{V(J)\delta(I)^{\rho}} = \frac{\phi_n(J)}{\delta(J)^{\rho}} \left(\frac{\delta(I)}{\delta(J)} \right)^{s-\rho} \le \frac{\phi_n(J)}{\delta(J)^{\rho}},$$ which is reduced to the previous case. (c) $I \subseteq J \in G_{n-1}$ and the length l of the edge of l is greater than $a_n^{-\mu}$. Let N_I and N_J denote the number of elements of G_n with nonempty intersection with l and J respectively. By (iii) and (iv) of Lemma 4, $$\frac{\phi_{n}(I)}{\delta(I)^{\rho}} \leq \frac{\phi_{n-1}(J)}{N_{J}} \cdot \frac{N_{I}}{\delta(I)^{\rho}} \leq K \frac{\phi_{n-1}(J)}{\delta(I)^{\rho}} \frac{l^{t'}}{L_{n-1}^{t'}}$$ $$\leq K \frac{\phi_{n-1}(J)}{\delta(J)^{'\rho}} \left(\frac{\delta(I)}{\delta(J)}\right)^{t'-\rho} \leq K \frac{\phi_{n-1}(J)}{\delta(J)^{\rho}},$$ since inequality (1) on λ implies $t'-\rho>0$. For n>1, the last expression can be made as small as desired if a_{n-1} is large enough, as was shown in case (a). For n=1, $$\frac{\phi_1(I)}{\delta(I)^{\rho}} < K \frac{\phi_0(I)}{\delta(I)^{\rho}} < \frac{K}{L_0^{\rho}} \le 1 + \delta_1,$$ if δ_1 is sufficiently large. (d) $I \subseteq J \in G_{n-1}$ but the edge l of l is not greater than $a_n^{-\mu}$. The cubes concentric to the cubes of G_n and with edge of length $A_n^{-(\sigma/s)-\theta}$ are disjoint by (3), so the number N_l of cubes of G_n with nonempty intersection with l is at most $N_l \le K\delta(l)^s A_n^{\sigma+\theta s}$. Therefore, $$\frac{\phi_n(l)}{\aleph l \rho^{\rho}} \leq \frac{N_l \Delta_n}{\aleph l \rho^{\rho}} \leq K \Delta_{n-1} L_{n-1}^{-t'} a_n^{-\mu(s-\rho)+(1+\eta)(\sigma+\theta s)} a_n^{-\sigma} X_n.$$ For θ , η small enough and a_n large enough, this can be made as small as desired. (e) l is an arbitrary cube of edge length l. We may assume n > 1, as the case n = 1 is settled by the previous cases. We may also assume $l > \frac{1}{2}A_{n-1}^{-(\sigma/s)-\theta}$, since otherwise, for A_{n-1} large enough, l intersects at most one element of G_{n-1} , which is also subsumed by the previous cases. Let l be a cube with the same center as l and edge length $l + 4A_{n-1}^{-\lambda}$. For A_{n-1} large enough we have $$(\delta(J)/\delta(I))^{\rho} < 1 + \delta_{n},$$ $$\frac{\phi_n(I)}{\delta(I)^{\rho}} \leq \frac{\phi_{n-1}(J)}{\delta(I)^{\rho}} = \frac{\phi_{n-1}(J)}{\delta(J)^{\rho}} \left(\frac{\delta(J)}{\delta(I)}\right)^{\rho} < (1+\delta_n)k_{n-1} = k_n,$$ which proves (15). Now let ϵ_i , $i \geq 2$, be any sequence of positive integers such that $\sum_{i=2}^{\infty} \epsilon_i$ converges. For every cube $I \in \mathbb{R}$, we have $$\phi_n(I) = \phi_0(I) + (\phi_1(I) - \phi_0(I)) + \cdots + (\phi_n(I) - \phi_{n-1}(I)).$$ The difference $\phi_k(l) - \phi_{k-1}(l)$ is contributed by those elements of G_{k-1} which intersect the boundary of l. Let \overline{N}_k be the number of those elements of G_{k-1} . The cubes concentric to the elements of G_{k-1} and whose length of edge is $\frac{1}{2}A_{k-1}^{-(\sigma/s)-\theta}$ are disjoint. Therefore, (16) $$\overline{N}_{k} \leq K \max \{ \delta(I)^{s-1} A_{k-1}^{((\sigma/s)+\theta)(s-1)}, 1 \},$$ and $$|\phi_{k}(I) - \phi_{k-1}(I)| \leq \overline{N}_{k} \Delta_{k-1}.$$ If the max in (16) is 1, then for a_{k-1} large enough $|\phi_k(I) - \phi_{k-1}(I)| < \epsilon_k$. Otherwise, $$|\phi_{k}(I) - \phi_{k-1}(I)| \leq K\delta(I)^{s-1} L_{k-2}^{-t'} \Delta_{k-2} X_{k-1} A_{k-1}^{((\sigma/s)+\theta)(s-1)-\sigma(1+\eta)}.$$ For θ small and A_{k-1} large enough, this is smaller than ϵ_k . This proves that the functions ϕ_n converge on each cube $I \in \mathbb{R}$. Since the functions ϕ_n are additive, they converge also for every $I \in \mathbb{R}$. The limit function ϕ is nonnegative, finite and additive. If $I \in \mathbb{R}$, $I \supset F$, there exists n such that $I \supset F_n$ and so $\phi(I) = \phi_n(I) = 1$. For every cube $I \subset W$ there exists n such that $$|\phi_n(l) - \phi(l)| < \delta(l)^{\rho}, \qquad \frac{\phi(l)}{\delta(l)^{\rho}} < \frac{\phi_n(l) + \delta(l)^{\rho}}{\delta(l)^{\rho}} < k_n + 1 < k.$$ So ϕ , F, ρ satisfy the conditions of Lemma 2, and we have $\rho - m^*E^T > 0$. Acknowledgement. The authors wish to thank the referee for his useful comments. ## REFERENCES - 1. A. S. Fraenkel, On a theorem of D. Ridout in the theory of diophantine approximations, Trans. Amer. Math. Soc. 105 (1962), 84-101. MR 26 #2393. - 2. A. S. Fraenkel and I. Borosh, Fractional dimension of a set of transcendental numbers, Proc. London Math. Soc. (3) 15 (1965), 458-470. MR 31 #2207. - 3. V. Jamík, Über die simultanen diophantischen Approximationen, Math. Z. 33 (1931), 505-543. - 4. F. Lettenmeyer, Neuer Beweis des allgemeinen Kroneckerschen Approximationssatzes, Proc. London Math. Soc. (2) 21 (1923), 306-314. - 5. P. A. P. Moran, Additive functions of intervals and Hausdorff measure, Proc. Cambridge Philos. Soc. 42 (1946), 15-23. MR 7, 278. - 6. D. Ridout, Rational approximations to algebraic numbers, Mathematika 4 (1957), 125-131. MR 20 #32. DEPARTMENT OF MATHEMATICS, TEXAS A & M UNIVERSITY, COLLEGE STATION, TEXAS 77843 (Current address of I. Borosh) DEPARTMENT OF APPLIED MATHEMATICS, THE WEIZMANN INSTITUTE OF SCIENCE, REHOVOT, ISRAEL (Current address of A. S. Fraenkel)