a GENERALIZATION OF JARNIK'S THEOREM ON DIOPHANTINE APPROXIMATIONS TO RIDOUT TYPE NUMBERS

BY

I. BOROSH AND A. S. FRAENKEL

ABSTRACT. Let s be a positive integer, $c>1, \mu_{0}, \ldots, \mu_{s}$ reals in $[0,1], \sigma=\Sigma_{i=0}^{s} \mu_{i}$, and t the number of nonzero μ_{i}. Let $\Pi_{i}(i=0, \ldots, s)$ be $s+1$ disjoint sets of primes and S the set of all $(s+1)$-tuples of integers (p_{0}, \ldots, p_{s}) satisfying $p_{0}>0, p_{i}=p_{i}^{*} p_{i}^{\prime}$, where the p_{i}^{*} are integers satisfying $\left|p_{i}^{*}\right| \leq c\left|p_{i}\right|^{\mu_{i}}$, and all prime factors of p_{i}^{\prime} are in $\Pi_{i}, i=0$, \ldots, s. Let $\lambda>0$ if $t=0, \lambda>\sigma / \min (s, t)$ otherwise, E_{λ} the set of all real s-tuples (a_{1}, \ldots, a_{s}) satisfying $\left|a_{i}-p_{i} / p_{0}\right|<p_{0}^{-\lambda}(i=1, \ldots, s)$ for an infinite number of $\left(p_{0}, \ldots, p_{s}\right) \in S$. The main result is that the Hausdorff dimension of E_{λ} is σ / λ. Related results are obtained when also lower bounds are placed on the p_{i}^{*}. The case $s=1$ was settled previously (Proc. London Math. Soc. 15 (1965), 458-470). The case $\mu_{i}=1$ ($i=0$, \ldots, s) gives a well-known theorem of Jarnik (Math. Z. 33 (1931), 505-543).

1. Introduction. Jarník [3] proved that the Hausdorff dimension of the set E of all real s-tuples $\left(\alpha_{1}, \cdots, \alpha_{s}\right)$ satisfying $\left|\alpha_{i}-p_{i} q^{-1}\right|<q^{-\lambda}, i=1$, \ldots, s, for an infinite number of ($s+1$)-tuples (q, p_{1}, \ldots, p_{s}) of integers with $q>0$, is $(s+1) \lambda^{-1}$ provided that $\lambda>1+s^{-1}$.

In this paper we investigate the case where q, p_{1}, \ldots, p_{s} are restricted to certain sets of integers which were considered by Ridout in his extension of Roth's theorem [6]. In [1] it was proved that the set E in this case has Lebesgue measure 0. The Hausdorff dimension for the one-dimensional case of the problem was determined by the authors in [2].
2. Definitions and notation. Let s be a positive integer, $\mu_{0}, \mu_{1}, \ldots, \mu_{s}$ reals in $[0,1]$ and $\sigma=\sum_{i=0}^{\text {s }} \mu_{i^{*}}$ Let $\Pi_{i}=\left\{P_{i, 1}, \ldots, P_{i, n}\right\}(i=0, \ldots, s)$, be $s+1$ sets of distinct primes, C_{i} the set of integers all of whose prime factors belong to II_{i}.

We say that condition I is satisfied, if there exists $P_{i} \in \Pi_{i}$ for $i=0$, \ldots, s, such that

$$
\text { (Ia) } P_{i} \neq P_{0}(i=1, \ldots, s)
$$

Received by the editors March 12, 1973. AMS (MOS) subject classifications (1970). Primary 10K15; Secondary 28A10.
(Ib) Those among the numbers $\left(1-\mu_{0}\right) / \log P_{0}, \ldots,\left(1-\mu_{s}\right) / \log P_{s}$ which are not zero are linearly independent over the field of rational numbers.

In particular, condition (Ib) is satisfied if $\mu_{i}=1, i=0, \ldots, s$.
Let $c>1$. We define $S=S\left(c ; \mu_{0}, \ldots, \mu_{s} ; C_{0}, \ldots, C_{s}\right)$ to be the set of all $(s+1)$-tuples of integers $\left(p_{0}, \ldots, p_{s}\right), p_{0}>0$, satisfying
(i) $\left(p_{i}, p_{0}\right)=1, i=1, \ldots, s$.
(ii) $p_{i}=p_{i}^{*} p_{i}^{\prime}$ with $p_{i}^{\prime} \in C_{i}$ and p_{i}^{*} any integer satisfying $\left|p_{i}^{*}\right|<c\left|p_{i}\right|^{\mu_{i}}$, $i=0, \ldots$, s.

Similarly we definé $S^{T}=S^{T}\left(c ; \mu_{0}, \ldots, \mu_{s} ; C_{0}, \ldots, C_{s}\right)$ by replacing (ii) by the requirement
(ii) ${ }^{T} p_{i}=p_{i}^{*} p_{i}^{\prime}$ where $p_{i}^{\prime} \in C_{i}$ and p_{i}^{*} is any integer satisfying

$$
\left|p_{i}\right|^{\mu} \leq\left|p_{i}^{*}\right|<c\left|p_{i}\right|^{\mu_{i}}, \quad i=0, \ldots, s
$$

Let $\mu_{0}^{\prime}, \mu_{1}^{\prime}, \ldots, \mu_{s}^{\prime}$ be reals satisfying (a) $0 \leq \mu_{i}^{\prime} \leq \mu_{i}$; (b) if $\sigma>0$, then $0 \leq \mu_{j}^{\prime}<\mu_{j}$ for some j. We define a set S^{\prime} in a similar way to S and S^{T}, but replacing this time condition (ii) by the requirement
(ii) $p_{i}=p_{i}^{*} p_{i}^{\prime}$ where $p_{i}^{\prime} \in C_{i}$ and p_{i}^{*} is any integer satisfying

$$
\left|p_{i}\right|^{\mu_{i}^{\prime}} \leq\left|p_{i}^{*}\right|<c\left|p_{i}\right|^{\mu_{i}}, \quad i=0, \ldots, s
$$

Let λ, D be positive reals, W an s-dimensional interval with edges parallel to the axes. We define the set $E=E(\lambda, W, S, D)$ to be the set of all s-tuples $\left(\alpha_{1}, \ldots, \alpha_{s}\right) \in W$ satisfying $\left|\alpha_{i}-p_{i} p_{0}^{-1}\right|<D p_{0}^{-\lambda}, i=1, \ldots, s$, for an infinite number of $(s+1)$-tuples (p_{0}, \ldots, p_{s}) from S. Similarly we define $E^{T}=E^{T}\left(\lambda, W, S^{T}, D\right)$ and $E^{\prime}=E^{\prime}\left(\lambda, W, S^{\prime}, D\right)$.

By R^{s} we denote the Euclidean space of s dimensions, and by $d(x, y)$ the distance between two points x, y of R^{s}. By $\delta(E), \alpha-m^{*} E, \operatorname{dim} E$ we denote, respectively, the diameter, the Hausdorff measure with respect to the function t^{α} and the Hausdorff dimension of the set E. By a cube we mean an s-dimensional interval with edges parallel to the axes.
3. Main results. The main results of this paper are

Theorem I. $\operatorname{dim} E^{T} \leq \operatorname{dim} E^{\prime} \leq \operatorname{dim} E \leq \sigma / \lambda$.
Theorem II. Let t be the number of μ_{i} which are not zero $(i=0, \ldots, s)$. Let λ satisfy

$$
\begin{array}{ll}
\lambda>0 & \text { if } t=0, \\
\lambda>\sigma / \min (s, t) & \text { if } t>0 . \tag{1}
\end{array}
$$

If condition I holds, then

$$
\operatorname{dim} E \geq \operatorname{dim} E^{\prime} \geq \operatorname{dim} E^{T} \geq \sigma / \lambda
$$

Theorem III. If (1) and (Ia) hold then $\operatorname{dim} E \geq \operatorname{dim} E^{\prime} \geq \sigma / \lambda$.
These results imply $\operatorname{dim} E=\operatorname{dim} E^{\prime}=\sigma / \lambda$ if (1) and (Ia) hold and $\operatorname{dim} E$ $=\operatorname{dim} E^{\prime}=\operatorname{dim} E^{T}=\sigma / \lambda$ if (1) holds and condition I is satisfied. The case $\mu_{i}=1, i=0, \ldots, s$, gives Jarník's result.
4. Proof of Theorem I. Let $b_{i}>0, i=1, \ldots, s$. By symmetry, it is enough to prove the theorem when W is defined by

$$
W=\left\{\left(x_{1}, \ldots, x_{s}\right) \mid 0 \leq x_{i} \leq b_{i}, i=1, \ldots, s\right\}
$$

We shall prove that, for every $\sigma>0$, if $\rho=(\sigma+\delta) \lambda^{-1}$ then $\rho-m^{*} E=0$. We may also assume that $\delta<1-\mu_{0}$ if $\mu_{0}<1$.

Let $\epsilon>0$. The set of all cubes whose center is $\left(p_{1} / p_{0}, \ldots, p_{s} / p_{0}\right) \epsilon W$ with $\left(p_{0}, \ldots, p_{s}\right) \in S, p_{0}>q_{0}$, and length of edge $2 D p_{0}^{-\lambda}$, is obviously a covering for E. If q_{0} is large enough, the diameter of each cube is smaller than ϵ. It remains to prove that the series $M=\Sigma\left(p_{0}^{-\lambda}\right)^{\rho}=\Sigma p_{0}^{-\sigma_{-} \delta}$ converges, where the summation is over all sets $\left(p_{0}, \ldots, p_{s}\right) \in S$ such that $\left(p_{1} / p_{0}, \ldots, p_{s} / p_{0}\right) \in W$. Since $p_{i}=p_{i}^{*} p_{i}^{\prime}$ for $i=0, \ldots, s$, the summation can be broken up into a summation over $p_{1}^{*}, \ldots, p_{s}^{*}$, and over $p_{1}^{\prime}, \ldots, p_{s}^{\prime}$. Therefore,

$$
M=\sum_{p_{0}} M_{1}, \quad M_{1} \leq \sum^{\{2\}} p_{0}^{-\sigma_{-} \delta} \sum^{\{1\}} 1
$$

where $\{1\}$ and $\{2\}$ indicate summations over $p_{1}^{*}, \ldots, p_{s}^{*}$ and $p_{1}^{\prime}, \ldots, p_{s}^{\prime}$, respectively. Positive constants depending only on $c, \delta, \mu_{i}, b_{i}, \Pi_{i}(0 \leq i \leq s)$ are denoted by A below. Since $p_{i}^{*}<c p_{i}^{\mu_{i}} \leq c b^{\mu_{i}} p_{0}^{\mu_{i}} \quad(1 \leq i \leq s)$, we have $\Sigma^{\{1]} 1$ $<A p_{0}^{\sigma-\mu_{0}}$. Putting $\eta=\delta / 2$, we thus obtain

$$
M_{1} \leq A p_{0}^{-\mu_{0}-\eta} \sum^{\{2\}} p_{0}^{-\eta}=A p_{0}^{-\mu_{0}-\eta} \prod_{i=1}^{s} \sum^{\{3\}} p_{0}^{-\eta / s}
$$

where $\{3\}$ denotes summation over $p_{i}^{\prime} \in C_{i}$. Since $p_{i}^{\prime} \leq p_{i} \leq b_{i} p_{0}(1 \leq i \leq s)$, we obtain

$$
\sum^{\{3\}} p_{0}^{-\eta / s} \leq A \sum^{\{3\}} p_{i}^{\prime-\eta / s} \leq A \prod_{j=1}^{n_{i}}\left(1-P_{i, j}^{-\eta / s}\right)^{-1} \leq A
$$

Therefore

$$
M_{1} \leq A p_{0}^{-\mu_{0}-\eta} \text { and } M \leq A \sum^{\{s\}} p_{0}^{\prime-\mu_{0}-\eta} \sum^{\{4\}} p_{0}^{*-\mu_{0}-\eta}
$$

where $\{4\}$ and $\{5\}$ denote summations over all $p_{0}^{*} \leq R=C^{1 /\left(1-\mu_{0}\right)} p_{0}^{\prime} \mu_{0} /\left(1-\mu_{0}\right)$ ($\mu_{0}<1$) and $p_{0}^{\prime} \in C_{0}$, respectively. (If $\mu=1, M<A \Sigma_{1}^{\infty} p_{0}^{-1-\eta} \leq A$.)

$$
\sum^{\{4\}} p_{0}^{*-\mu_{0}-\eta}<1+\int_{1}^{R} x^{-\mu_{0}-\eta} d x \leq A p_{0}^{\prime \mu_{0}-\eta \mu_{0} /\left(1-\mu_{0}\right)}
$$

Therefore $M \leq A \Sigma^{\{s\}} p_{0}^{\prime}-\eta A<\infty$, completing the proof.
5. Proof that Theorem II implies Theorem III. We may assume that $\sigma>0$, because otherwise Theorem III is trivially true. Let $P_{i} \in \Pi_{i}, i=0, \ldots$, s and $P_{i} \neq P_{0}, i=1, \ldots, s$. If condition I is not satisfied, then

$$
\left(1-\mu_{0}\right) / \log P_{0}, \ldots,\left(1-\mu_{s}\right) / \log P_{s}
$$

are linearly dependent over the rationals.
Let $\epsilon>0$. There exists j such that $0 \leq \mu_{j}^{\prime}<\mu_{j}$. Choose $\mu_{j}^{\prime \prime}$ such that $\mu_{j}^{\prime}<\mu_{j}^{\prime \prime}<\mu_{j}, \mu_{j}-\mu_{j}^{\prime \prime}<\epsilon$, and such that the nonzero members among

$$
\left(1-\mu_{0}\right) / \log P_{0}, \ldots,\left(1-\mu_{j}^{\prime \prime}\right) / \log P_{j}, \ldots,\left(1-\mu_{s}\right) / \log P_{s}
$$

are linearly independent over the rationals. Let $\mu_{i}^{\prime \prime}=\mu_{i}$ for $i \neq j$, and let $S^{\prime \prime T}$ and $S^{\prime \prime \prime}$ be the same as S^{T} and S^{\prime} respectively, except that in (ii) ${ }^{T}$ and (ii) $)^{\prime}, \mu_{i}$ is replaced by $\mu_{i}^{\prime \prime}(0 \leq i \leq s)$. Then

$$
S^{\prime \prime T} \subset S^{\prime \prime \prime} \subset S^{\prime} \subset S, \quad E^{\prime \prime T} \subset E^{\prime \prime \prime} \subset E^{\prime} \subset E
$$

By Theorem II,

$$
\operatorname{dim} E \geq \operatorname{dim} E^{\prime} \geq \operatorname{dim} E^{\prime \prime} \geq \operatorname{dim} E^{\prime \prime T} \geq(\sigma-\epsilon) / \lambda
$$

Since this holds for every $\epsilon>0$, we have $\operatorname{dim} E \geq \operatorname{dim} E^{\prime} \geq \sigma / \lambda$, which is Theorem III.

Remark. Condition I is, however, essential in proving $\operatorname{dim} E^{T} \geq \sigma / \lambda$, as is shown by the following example. Let P_{0} and P_{1} be two distinct primes, $C_{0}=\left\{P_{0}^{m} 0\right\}, C_{1}=\left\{P_{1}^{m}{ }^{1}\right\}, m_{0}, m_{1}$ nonnegative integers. There exist μ_{0} and μ_{1} in $[0,1)$ such that $P_{1}^{1 /\left(1-\mu_{1}\right)}=P_{0}^{1 /\left(1-\mu_{0}\right)}=A>1$. Let $0<\epsilon<(A-1) /(A+1)$, and

$$
1<c<\min \left((1+\epsilon)^{1-\mu_{1}},(1-\epsilon)^{-\left(1-\mu_{0}\right)}\right)
$$

If $\left(p_{0}, p_{1}\right) \in S^{T}\left(c ; \mu_{0}, \mu_{1} ; C_{0}, C_{1}\right)$ and $p_{0}, p_{1}>0$, then

$$
p_{i}=p_{i}^{*} p_{i}^{\prime}, \quad p_{i}^{\mu_{i}} \leq p_{i}^{*}<c p_{i}^{\mu_{i}}, \quad p_{i}^{\prime}=P_{i}^{m}, \quad i=0,1 .
$$

This gives

$$
P_{i}^{m_{i} /\left(1-\mu_{i}\right)} \leq p_{i}<c^{1 /\left(1-\mu_{i}\right)} P_{i}^{m_{i} /\left(1-\mu_{i}\right)}, \quad i=0,1,
$$

and

$$
\begin{equation*}
(1-\epsilon) A^{k}<c^{-1 /\left(1-\mu_{0}\right)} A^{k}<p_{1} / p_{0}<c^{1 /\left(1-\mu_{1}\right)} A^{k}<(1+\epsilon) A^{k}, \tag{2}
\end{equation*}
$$

where $k=m_{1}-m_{0}$.
The requirement for ϵ implies that $A(1-\epsilon)>1+\epsilon$. By (2), the interval $(1+\epsilon, A(1-\epsilon))$ does not contain any p_{1} / p_{0} with $\left(p_{0}, p_{1}\right) \in S^{T}$ because, if $k \leq 0$, then $(1+\epsilon) A^{k} \leq 1+\epsilon$, and if $k>0$, then $A(1-\epsilon) \leq(1-\epsilon) A^{k}$.
6. Lemmas for Theorem II. It suffices to prove Theorem II for an interval W of the form

$$
W=\left\{\left(x_{1}, \ldots, x_{s}\right) \mid a_{i} \leq x_{i} \leq b_{i}, i=1, \ldots, s\right\}
$$

where the a_{i} are arbitrary positive reals, $b_{i}=a_{i}+L_{0}$, and L_{0} is any sufficiently small real number, to be chosen later in the proof (Lemma 4).

Lemma 1. It is enough to prove Theorem II for the case $\mu_{i} \geq \mu_{0}, i=1$, ..., s.

Proof. If $\mu_{i}<\mu_{0}$ for some $i>0$, we may assume that $\mu_{s}=\min \left(\mu_{0}, \ldots, \mu_{s}\right)$. Let $\nu_{i}=\mu_{i}$ if $i \neq 0, s, \nu_{0}=\mu_{s}$ and $\nu_{s}=\mu_{0}$. Let $\psi: W \rightarrow R^{s}$ be defined by

$$
\psi\left(x_{1}, \ldots, x_{s-1}, x_{s}\right)=\left(x_{1} / x_{s}, \ldots, x_{s-1} / x_{s}, 1 / x_{s}\right)
$$

and let $W_{1}=\left\{\left(x_{1}, \ldots, x_{s}\right) \mid a_{i}^{\prime} \leq x_{i} \leq b_{i}^{\prime}, 1 \leq i \leq s\right\}$ be chosen so that $\psi\left(W_{1}\right)$ CW. It is easily seen that ψ has Jacobian a_{s}^{-s-1}, which is bounded away from 0 and ∞ on W_{1}, and therefore preserves Hausdorff dimension. Let S^{T}, E^{T} be as defined in $\S 2$,
$S_{1}^{T}=s^{T}\left(c ; \nu_{0}, \ldots, \nu_{s} ; C_{s}, C_{1}, \ldots, C_{s-1}, C_{0}\right), \quad E_{1}^{T}=E^{T}\left(\lambda, W_{1}, s_{1}^{T}, D_{1}\right)$,
where $D_{1}>0$ is sufficiently small. The conditions of Theorem II hold for E_{1}^{T}, and we have, moreover, $\nu_{i} \geq \nu_{0}(1 \leq i \leq s)$. Therefore, assuming the validity of the theorem for this case, $\operatorname{dim} E_{1}^{T} \geq \sigma / \lambda$. We now prove that for a suitable choice of D_{1} we have $\psi\left(E_{1}^{T}\right) \subset E^{T}$. Let $\left(\beta_{1}, \ldots, \beta_{s}\right) \in \psi\left(E_{1}^{T}\right)$. There exists $\left(\alpha_{1}, \ldots, \alpha_{s}\right) \in E_{1}^{T}$ such that $\left(\alpha_{1} / \alpha_{s}, \ldots, \alpha_{s-1} / \alpha_{s}, 1 / \alpha_{s}\right)=$ $\left(\beta_{2}, \ldots, \beta_{s-1}, \beta_{s}\right)$, and an infinity of ($\left.p_{s}, p_{1}, \ldots, p_{s-1}, p_{0}\right) \epsilon$ $s_{1}^{T}\left(p_{i}^{\prime} \in C_{i}, i=0, \ldots, s\right)$, satisfying $\left|\alpha_{i}-p_{i} / p_{s}\right|<D_{1} p_{s}^{-\lambda}, 1 \leq i \leq s-1$, $\left|\alpha_{s}-p_{0} / p_{s}\right|<D_{1} p_{s}^{-\lambda}$. Let $\alpha_{i}=p_{i} / p_{s}+\eta_{i}, 1 \leq i \leq s-1, \alpha_{s}=p_{0} / p_{s}+\eta_{s}$, $\left|\eta_{i}\right|<D_{1} p_{s}^{-\lambda}(0 \leq i \leq s)$. For $1 \leq i \leq s-1$ we then have

$$
\frac{\alpha_{i}}{\alpha_{s}}=\frac{p_{i}}{p_{0}} \cdot \frac{1+\eta_{i} p_{s} / p_{i}}{1+\eta_{s} p_{s} / p_{0}}
$$

$$
\begin{aligned}
\left|\frac{a_{i}}{a_{s}}-\frac{p_{i}}{p_{0}}\right| & <\frac{p_{i}}{p_{0}}\left(1-D_{1} p_{s}^{1-\lambda} / p_{0}\right)^{-1}\left(\left|\eta_{1}\right| \frac{p_{s}}{p_{i}}+\left|\eta_{s}\right| \frac{p_{s}}{p_{0}}\right) \\
& \leq 2\left(\frac{b_{i}^{\prime}}{a_{i}^{\prime}}\right)\left(1-D_{1} p_{s}^{1-\lambda} / p_{0}\right)^{-1} D_{1} p_{s}^{-\lambda}<D p_{0}^{-\lambda}
\end{aligned}
$$

if D_{1} is sufficiently small. A similar computation shows that $\left|\alpha_{s}^{-1}-p_{s} p_{0}^{-1}\right|$ $<D p_{0}^{-\lambda}$ for \bar{D} small enough. Thus

$$
\left|\beta_{i}-p_{i} / p_{0}\right|<D p_{0}^{-\lambda}, \quad i=1, \ldots, s
$$

which shows that $\psi\left(E_{1}^{T}\right) \subset E^{T}$. Therefore,

$$
\operatorname{dim} E^{T} \geq \operatorname{dim} \psi\left(E_{1}^{T}\right)=\operatorname{dim} E_{1}^{T} \geq \sigma / \lambda
$$

From now on we shall assume $\mu_{i} \geq \mu_{0}(1 \leq i \leq s)$. We may also assume that every Π_{i}. contains only one prime P_{i} such that condition I is satisfied, that not all μ_{i} are 1 because this is Jarnik's theorem, and that not all μ_{i} are zero because then Theorem II is trivial. These assumptions are not essential but permit a simpler exposition.

Let $\delta>0, \rho=(\sigma-\delta) / \lambda$. In order to prove that $\rho-m^{*}\left(E^{T}\right)>0$, we use the following special case of a theorem due to P. A. P. Moran [5].

Lemma 2. Let s be a positive integer, E a bounded set in R^{s} and $0 \leq$ $\rho \leq s$. A sufficient condition for $\rho-m^{*}(E)$ to be positive is the existence of a closed subset F of E and an additive function ϕ defined on the ring \Re generated by the semiopen cubes of R^{s}, satisfying the following properties:
(a) ϕ is nonnegative.
(b) For every $R \in \Re$ and $R \supset F$ we have $\phi(R)>b>0$ for some fixed b.
(c) There exists a positive constant k such that for every semiopen cube R we have $\phi(R)<k \delta(R)^{\rho}$.

Lemma 3. Let $\theta_{1}, \ldots, \theta_{s}$ be reals such that $1, \theta_{1}, \ldots, \theta_{s}$ are linear$l y$ independent over the rationals, $\delta, \eta, n_{0}>0$. There exist real numbers b, B such that for every set of real numbers $\alpha_{1}, \ldots, \alpha_{s}$ there is an $(s+1)$-tuple of integers $\left(m_{0}, \ldots, m_{s}\right)$ satisfying $\left|m_{0} \theta_{i}-m_{i}-a_{i}\right|<\delta, 1 \leq i \leq s, n_{0}<$ $b<m_{0}<B<(1+\eta) b$.

Except for the explicit bound on m_{0}, this is Kronecker's theorem. The bound can be obtained by introducing a slight change in one of the proofs of Kronecker's theorem, for example, Lettenmeyer's proof [4].

Let t^{\prime} be the number of nonzero $\mu_{i}(1 \leq i \leq s), 0<\mu<\min _{\mu_{i} \neq 0} \mu_{i}$. We shall now formulate the main lemma.

Lemma 4. Let $L<L_{0}, \theta, \eta$ be positive real, $q_{0}=q_{0}\left(a_{i}, b_{i}, \Pi_{i}, \mu_{i}, L, \eta\right)$ a sufficiently large real number. There exist reals a, A such that for every cube $I \subset W$ with edge L, there is a subset $S_{I} \subset S^{T}$ with the following properties:
(i) If $\left(p_{0}, \ldots, p_{s}\right) \in S_{I}$, then $\left(p_{1} / p_{0}, \ldots, p_{s} / p_{0}\right) \in I, q_{0}<a<p_{0}<A$ $<a^{1+\eta},\left(p_{i}, p_{0}\right)=1, a^{-\mu}<L$, and all the $\left(p_{0}, \ldots, p_{s}\right) \in S_{I}$ share the same fixed $(s+1)$-tuple $\left(p_{0}^{\prime}, \ldots, p_{s}^{\prime}\right)$.
(ii) If $p_{0}^{(1)} \leq p_{0}^{(2)}$ and $\left(p_{0}^{i}, \ldots, p_{s}^{i}\right) \in S_{I}(i=1,2)$, then there exists at least one j such that

$$
\begin{equation*}
\left|p_{j}^{(1)} / p_{0}^{(1)}-p_{j}^{(2)} / p_{0}^{(2)}\right| \geq\left(p_{0}^{(1)}\right)-(\sigma / s)-\theta \tag{3}
\end{equation*}
$$

(iii) Let $a^{-\mu}<l \leq L, I_{l}$ any cube with edge length l contained in I, V_{l} the number of elements $\left(p_{0}, \ldots, p_{s}\right)$ of S_{I} such that $\left(p_{1} / p_{0}, \ldots, p_{s} / p_{0}\right)$ ϵI_{l}. Then

$$
V_{l}<K l^{t^{\prime}} p_{0}^{\prime \sigma /\left(1-\mu_{0}\right)} / Y
$$

where

$$
Y= \begin{cases}\log p_{0}^{\prime} & \text { if } \mu_{0}>0 \\ 1 & \text { if } \mu_{0}=0\end{cases}
$$

K a suitable positive constant depending on $S^{T}, W, \lambda, D, \eta, \theta$.
(iv) The total number V_{L} of elements of S_{I} satisfies

$$
V_{L}>K L^{t^{\prime}} \frac{p_{0}^{, \sigma /\left(1-\mu_{0}\right)}}{Y} \geq K L^{t^{\prime}} \frac{a^{\sigma}}{X}
$$

where

$$
X= \begin{cases}\log a & \text { if } \mu_{0}>0 \\ 1 & \text { if } \mu_{0}=0\end{cases}
$$

Remark. The convention on K will be used for the rest of the paper, for the sake of simplicity of notation.

Proof. Let $\epsilon>0$ be sufficiently small,

$$
\begin{equation*}
I=\left\{\left(x_{1}, \ldots, x_{s}\right) \mid a_{i}+\epsilon<\gamma_{i} \leq x_{i} \leq \gamma_{i}+L<b_{i}, 1 \leq i \leq s\right\} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
1<c_{0}<c_{1}<c, \quad c_{1}<1+\min _{i}\left(\epsilon / a_{i}\right), \quad c_{1} / c_{0}<2, \quad c_{0}<2 \tag{5}
\end{equation*}
$$

Since $\mu_{i} \geq \mu_{0}$ and not all μ_{i} are 1 , we have $\mu_{0}<1$. Suppose that μ_{0}, \ldots, μ_{h} ($h \leq s$) are all the μ_{i} which are not 1 . We assume first $h>0$. Let

$$
\begin{gathered}
\delta=\min _{1 \leq i \leq h} \frac{1-\mu_{i}}{2 \log P_{i}} \log \left(1+\frac{L}{b_{i}}\right) \\
\theta_{i}=\frac{\left(1-\mu_{i}\right) \log P_{0}}{\left(1-\mu_{0}\right) \log P_{i}}, \quad \xi_{i}=-\frac{1-\mu_{i}}{2 \log P_{i}} \log \left(\frac{\gamma_{i}\left(\gamma_{i}+L\right)}{c_{1}^{2}}\right), \quad 1 \leq i \leq h .
\end{gathered}
$$

Condition I implies that $1, \theta_{1}, \ldots, \theta_{b}$ are linearly independent over the rationals. By Lemma 3, there exist numbers b, B and an $(h+1)$-tuple of integers (m_{0}, \ldots, m_{b}) satisfying

$$
\begin{equation*}
\left(1-\mu_{0}\right) \log _{P_{0}}\left(q_{0} / c_{0}\right)<b<m_{0}<B<(1+\eta) b \tag{6}
\end{equation*}
$$

$$
\left|m_{0} \theta_{i}-m_{i}-\xi_{i}\right|<\delta, \quad 1 \leq i \leq h .
$$

This with the definition of δ implies

$$
\begin{equation*}
\gamma_{i}<c_{1} P_{i}^{m_{i} /\left(1-\mu_{i}\right)} / P_{0}^{m_{0} /\left(1-\mu_{0}\right)}<\gamma_{i}+L, \quad 1 \leq i \leq h . \tag{7}
\end{equation*}
$$

Define a set T_{I} of $(s+1)$-tuples $\left(p_{0}, \ldots, p_{s}\right)$ of integers with $p_{i}=$ $p_{i}^{*} p_{i}^{\prime}(0 \leq i \leq s)$ satisfying:

1. $p_{i}^{\prime}=P_{i}^{m_{i}}(0 \leq i \leq h)$, where $\left(m_{0}, \ldots, m_{h}\right)$ is a fixed $(h+1)$-tuple of integers satisfying (7), and $p_{i}^{\prime}=1$ for $i>h$.
2. If $\mu_{0}>0, p_{0}^{*}$ ranges over all primes $>\max _{i} P_{i}$ satisfying

$$
\begin{equation*}
c_{0} p_{0}^{\prime \mu_{0} /\left(1-\mu_{0}\right)} \leq p_{0}^{*} \leq c_{1} p_{0}^{\prime \mu_{0} /\left(1-\mu_{0}\right)} \tag{8}
\end{equation*}
$$

The existence of such p_{0}^{*} is guaranteed if q_{0} is sufficiently large. If $\mu_{0}=0$, put $p_{0}^{*}=1$.
3. If $\mu_{i}>0, p_{i}^{*}$ ranges over all integers satisfying

$$
\begin{equation*}
\gamma_{i} \frac{p_{0}}{p^{\prime}}<p_{i}^{*}<\left(\gamma_{i}+L\right) \frac{p_{0}}{p^{\prime}}, \quad\left(p_{i}^{*}, p_{0} p_{i}^{\prime}\right)=1, \quad 1 \leq i \leq s \tag{9}
\end{equation*}
$$

Since every interval of length ≥ 5 contains an integer relatively prime to the product of three given primes, integers p_{i}^{*} satisfying (9) will exist if $L p_{0} / p_{i}^{\prime}$ >6. By (7) this condition is easily seen to hold if q_{0} is sufficiently large. If $\mu_{i}=0$, put $p_{i}^{*}=1$.

Now assume $h=0$. Choose $b=m_{0}-1>\left(1-\mu_{0}\right) \log _{P_{0}}\left(q_{0} / c_{0}\right), \quad B=$ $m_{0}+1, \quad p_{0}^{\prime}=P_{0}^{m 0}, \quad p_{i}^{\prime}=1 \quad(1 \leq i \leq s)$, and p_{0}^{*}, p_{i}^{*} as above. It is clear
that such $p_{i}^{*}=p_{i}$ satisfying (9) do in fact exist. Moreover, for q_{0} sufficiently large, (6) holds.

The definition of T_{I} implies that if $\left(p_{0}, \ldots, p_{s}\right) \in T_{I}$, then $a_{i}<p_{i} / p_{0}$ $<b_{i}$, and $\left(p_{i}, p_{0}\right)=1(1 \leq i \leq s)$. This follows from (9) if $h \mu_{i}>0$ or $h=0$. If $h>0, \mu_{i}=\mu_{0}=0$, it follows from (7) and (5). For $h>0, \mu_{i}=0, \mu_{0}>0$, we have by (4), (5), (7) and (8),

$$
a_{i}<\frac{a_{i}+\epsilon}{c_{1}}<\frac{\gamma_{i}}{c_{1}}<\frac{p_{i}}{p_{0}}<\frac{\gamma_{i}+L}{c_{0}}<\gamma_{i}+L .
$$

Let $a=c_{0} P_{0}^{b /\left(1-\mu_{0}\right)}, A=c_{0} P_{0}^{B /\left(1-\mu_{0}\right)}$. If q_{0} is sufficiently large, we obtain, by (6), (8) and (5) ($\mu_{0} \geq 0, h \geq 0$),

$$
q_{0}<a<p_{0}<A<a^{1+\eta}, \quad a^{-\mu}<L .
$$

For $\mu_{0}>0$, (8) implies $p_{0}^{\mu_{0}}<c_{0}^{1-\mu_{0}} p_{0}^{\mu_{0}} \leq p_{0}^{*}<c p_{1}^{\mu_{0}}<c p_{0}^{\mu_{0}}$, and for $\mu_{0}=0$, $p_{0}^{*}=p_{0}^{\mu_{0}}$. To prove that $T_{1} \subset S^{T}$ it remains to show that

$$
\begin{equation*}
p_{i}^{\mu_{i}} \leq p_{i}^{*}<c p_{i}^{\mu_{i}}, \quad 1 \leq i \leq s . \tag{10}
\end{equation*}
$$

We may assume $0<\mu_{i}<1(1 \leq i \leq s)$, because otherwise (10) is trivial. If $\mu_{0}>0$, we obtain, from (7), (8), (9),

$$
\left(c_{0} c_{1}\right)^{1-\mu_{i}} \frac{\gamma_{i}}{\gamma_{i}+L} p_{i}^{\mu_{i}}<p_{i}^{*}<c_{1}^{\left(1-\mu_{i}\right)^{2}} \frac{\gamma_{i}+L}{\gamma_{i}} p_{i}^{\mu_{i}}
$$

and for $\mu_{0}=0$, we obtain, from (7) and (9),

$$
\frac{\gamma_{i}}{\gamma_{i}+L} c^{1-\mu_{i} p_{i} \mu_{i}}<p_{i}^{*}<\frac{\gamma_{i}+L}{\gamma_{i}} c_{1}^{1-\mu_{i} p_{i} \mu_{i} .}
$$

Therefore (10) will hold by choosing L to satisfy

$$
0<L<L_{0}<\min _{1 \leq i \leq s}\left(a_{i}\left(c / c_{1}-1\right), a_{i}\left(c_{1}^{1-\mu_{i}}-1\right)\right)
$$

We thus proved that $T_{I} \subset S^{T}$. Let

$$
I_{l}=\left\{\left(x_{1}, \ldots, x_{s}\right) \mid \gamma_{i}<\beta_{i} \leq x_{i} \leq \beta_{i}+l \leq \gamma_{i}+L, 1 \leq i \leq s\right\}, \quad a^{-\mu}<l \leq L
$$

Let p_{0} be fixed. For $\mu_{i}>0(i>0)$, denote by $W_{l}^{i}\left(p_{0}\right)$ the number of integers p_{i}^{*} relatively prime to $p_{0}^{*} P_{0} P_{i}$, which satisfy $\beta_{i} p_{0} / p_{i}^{\prime}<p_{i}^{*}<\left(\beta_{i}+l\right) p_{0} / p_{i}^{\prime}$. Lemma 4 of [2] implies

$$
\begin{aligned}
\left(\frac{l p_{0}}{p_{i}^{\prime}}-1\right)\left(1-\frac{1}{P_{i}}\right)\left(1-\frac{1}{P_{0}}\right) & \left(1-\frac{1}{p_{0}^{*}}\right)-2^{3}<W_{l}^{i}\left(p_{0}\right) \\
& <\left(\frac{l p_{0}}{p_{i}^{\prime}}+1\right)\left(1-\frac{1}{P_{i}}\right)\left(1-\frac{1}{P_{0}}\right)\left(1-\frac{1}{p_{0}^{*}}\right)+2^{3}
\end{aligned}
$$

except that the factor $1-1 / p_{0}^{*}$ is dropped if $\mu_{0}=0$. Since $l>a^{-\mu}>p_{0}^{-\mu}$, (9) and (10) imply $l p_{0} / p_{i}^{\prime}>K p_{0}^{\mu_{i}-\mu}$. Since $\mu_{i}-\mu>0,1$ is absorbed by $l p_{0} / p_{i}^{\prime}$. Thus

$$
\begin{equation*}
K l p_{0}^{\mu}<W_{l}^{i}\left(p_{0}\right)<K l p_{0}^{\dot{\mu}_{i}} . \tag{11}
\end{equation*}
$$

For fixed p_{0}, denote by $W_{l}\left(p_{0}\right)$ the number of elements $\left(p_{0}, \ldots, p_{s}\right) \in T_{I}$ such that $\left(p_{1} / p_{0}, \ldots, p_{s} / p_{0}\right) \in I_{l}$. Multiplying together the t^{\prime} inequalities (11) and defining $W_{l}^{i}\left(p_{0}\right)=1$ for $\mu_{i}=0$, we obtain

$$
\begin{equation*}
K l^{t^{\prime}} p_{0}^{\sigma_{-} \mu_{0}}<W_{l}\left(p_{0}\right)<K l^{t^{\prime}} p_{0}^{\sigma_{-} \mu_{0}} \tag{12}
\end{equation*}
$$

It is easily seen that if $s=1$, the set T_{l} satisfies all the conditions of the lemma for S_{I}. For $s>1$, however, condition (ii) is not necessarily satisfied. Let $\left(p_{0}, p_{1}^{(1)}, \ldots, p_{s}^{(1)}\right)$ and ($p_{0}, p_{1}^{(2)}, \ldots, p_{s}^{(2)}$) be two distinct elements of T_{I} with the same $p_{0} . B y(9)$ and (10),

$$
\left|\frac{p_{i}^{(1)}}{p_{0}}-\frac{p_{i}^{(2)}}{p_{0}}\right|=\frac{p_{i}^{\prime}}{p_{0}}\left|p_{i}^{*(1)}-p_{i}^{*(2)}\right| \geq \frac{p_{i}^{\prime}}{p_{0}}>K p_{0}^{-\mu_{i}}
$$

There exists j such that

$$
\mu_{j} \leq \frac{1}{s} \sum_{i=1}^{s} \mu_{i} \leq \frac{\sigma}{s}<\frac{\sigma}{s}+\theta ;
$$

hence

$$
\left|\frac{p_{j}^{(1)}}{p_{0}}-\frac{p_{j}^{(2)}}{p_{0}}\right| \geq K p_{0}^{-\mu_{j}}>K p_{0}^{-(\sigma / s)-\theta}
$$

Condition (ii) of the lemma is therefore satisfied for two elements of T_{l} with the same p_{0}. If $\mu_{0}=0$, then all the elements of T_{I} have the same p_{0} and we define $S_{I}=T_{I}$ in this case. If $\mu_{0}>0$, we define $S_{I} \subset T_{I}$ by excluding all those elements $\left(p_{0}, \ldots, p_{s}\right)$ of T_{1} for which there exists $p_{0}^{(1)}<p_{0}$ and $\left(p_{0}^{(1)}, \ldots, p_{s}^{(1)}\right) \in T_{I}$ such that for $i=1, \ldots, s$ we have

$$
\begin{equation*}
\left|\frac{p_{i}^{(1)}}{p_{0}^{(1)}}-\frac{p_{i}}{p_{0}}\right|<\left(p_{0}^{(1)}\right)^{-(\sigma / s)-\theta} \tag{13}
\end{equation*}
$$

Clearly, S_{I} satisfies condition (ii) of the lemma. We shall now count the number of elements of T_{I} which are not in S_{I}. Let $N\left(p_{0}, p_{0}^{(1)}\right)$ be the number of elements of T_{I} for a fixed p_{0} and fixed $p_{0}^{(1)}<p_{0}$, for which (13) holds for some i. For fixed p_{0}, let $N\left(p_{0}\right)$ denote the number of those elements (p_{0}, \ldots, p_{s}) of T_{I} for which there exists an element $\left(p_{0}^{(1)}, \ldots, p_{s}^{(1)}\right.$) of T_{I} such that (13) holds for every i. Clearly,

$$
M\left(p_{0}\right) \leq \sum_{p_{0}^{(1)} \leq p_{0}} \prod_{i=1}^{s} N_{i}\left(p_{0}, p_{0}^{(1)}\right)
$$

From (13),

$$
\left|p_{i}^{*} p_{0}^{*(1)}-p_{i}^{*(1)} p_{0}^{*}\right|<p_{0}^{*} p_{0}^{(1)} / p_{i}^{\prime} p_{0}^{(1)(\sigma / s)+\theta}
$$

The expression $p_{i}^{*(1)} p_{0}^{*}-p_{0}^{*(1)} p_{i}^{*}$ can therefore assume at most

$$
2 p_{0} p_{0}^{(1)} / p_{i}^{\prime} p_{0}^{(1)(\sigma / s)+\theta}
$$

different values. Let u be a fixed integer. The equation $p_{i}^{*} p_{0}^{*(1)}-p_{i}^{*(1)} p_{0}^{*}=u$ implies

$$
\begin{equation*}
p_{i}^{*} p_{0}^{*(1)} \equiv u\left(\bmod p_{0}^{*}\right) \tag{14}
\end{equation*}
$$

Since p_{0}^{*} is a prime, this congruence has exactly one solution p_{i}^{*} in each interval of length p_{0}^{*}. The integer p_{i}^{*} is to be chosen in the interval $\left[\gamma_{i} p_{0} / p_{i}^{\prime}\right.$, $\left.\left(\gamma_{i}+L\right) p_{0} / p_{i}^{\prime}\right]$ of length $L p_{0} / p_{i}^{\prime}=K L p_{0}^{\mu_{i}}$. Since $p_{0}^{*}>c_{0}^{1-\mu_{0}} p_{0}^{\mu_{0}}$ and $\mu_{i} \geq \mu_{0}$, the number of solutions of (14) is $L p_{0} / p_{0}^{*} p_{i}^{\prime}<K L p_{0}^{\mu_{i}-\mu_{0}}$. Therefore

$$
N_{i}\left(p_{0}, p_{0}^{(1)}\right) \leq K L \frac{p_{0}^{*} p_{0}^{(1)} p_{0}^{\mu_{i}-\mu_{0}}}{p_{i}^{\prime} p_{0}^{(1)(\sigma / s)+\theta}} \leq K L \frac{p_{0}^{\mu_{i}\left(1 p_{0}^{\mu}\right.}{ }_{i}}{\left(p_{0}^{(1)}\right)^{(\sigma / s)+\theta}}
$$

and hence

$$
\begin{aligned}
N\left(p_{0}\right) & \leq K L^{s} p_{0}^{\mu_{1}+\cdots+\mu_{s}} \sum_{p_{0}^{(1)}<p_{0}} p_{0}^{(1)^{\mu_{1}+\cdots+\mu_{s}} / p_{0}^{(1)}}{ }^{\sigma+\theta_{s}} \\
& =K L^{s} p_{0}^{\mu_{1}+\cdots+\mu_{s}} \sum_{p_{0}^{(1)}<p_{0}} p_{0}^{(1)^{-\mu_{0}-\theta_{s}}} \\
& \leq K L^{s} p_{0}^{\sigma-\mu_{0}-\theta s / 2} \sum_{p_{0}^{(1)}<p_{0}} p_{0}^{(1)^{-\mu_{0}-\theta_{s} / 2}}
\end{aligned}
$$

The last sum converges as was shown in the proof of Theorem I. Therefore,

$$
N\left(p_{0}\right) \leq K L^{s} p_{0}^{\sigma-\mu_{0}-\theta_{s} / 2} .
$$

Let $V_{l}\left(p_{0}\right)$ denote the numbcr of elements $\left(p_{0}, \ldots, p_{s}\right)$ of S_{I} such that ($\left.p_{1} / p_{0}, \ldots, p_{s} / p_{0}\right) \in I_{l}$ for fixed p_{0}, and let V_{l} be the total number of those elements in S_{I}. By (12),

$$
\begin{aligned}
& V_{l}\left(p_{0}\right) \leq W_{l}\left(p_{0}\right) \leq K l^{t^{\prime}} p_{0}^{\sigma-\mu_{0}}, \\
& V_{L}\left(p_{0}\right)=W_{L}\left(p_{0}\right)-N\left(p_{0}\right) \geq K L^{t^{\prime}} p_{0}^{\sigma-\mu_{0}}
\end{aligned}
$$

Therefore,

$$
V_{l}<K l^{t^{\prime}} \sum^{*} p_{0}^{\sigma-\mu_{0}}, \quad V_{L}>K L^{t^{\prime}} \sum^{*} p_{0}^{\sigma-\mu_{0}}
$$

where Σ^{*} denotes summation over all p_{0} so that $\left(p_{0}, \ldots, p_{s}\right) \in S_{I}$. By (8),

$$
K p_{0}^{\prime}\left(\sigma-\mu_{0}\right) /\left(1-\mu_{0}\right) \sum_{p_{0}^{*}}^{*} 1<\sum^{*} p_{0}^{\sigma-\mu_{0}}<K{p_{0}^{\prime}}^{\left(\sigma-\mu_{0}\right) /\left(1-\mu_{0}\right)} \sum_{p_{0}^{*}}^{*} 1,
$$

where $\Sigma_{p_{0}^{*}}^{*} 1=1$ if $\mu_{0}=0$. If $\mu_{0}>0$, we obtain from (8) and the Prime Number Theorem,

$$
K p_{0}^{\prime}\left(\sigma-\mu_{0}\right) /\left(1-\mu_{0}\right) / \log p_{0}^{\prime}<\sum_{p_{0}^{*}}^{*} 1<K p_{0}^{\prime}\left(\sigma-\mu_{0}\right) /\left(1-\mu_{0}\right) / \log \dot{p}_{0}^{\prime}
$$

Therefore we obtain ($\mu_{0} \geq 0$)

$$
\begin{aligned}
& V_{l}<K l^{t^{\prime}} p_{0}^{\prime} \sigma /\left(1-\mu_{0}\right) / Y, \\
& V_{L}>K L^{t^{\prime}} p_{0}^{\prime \sigma /\left(1-\mu_{0}\right)} / Y>K L^{t^{\prime}} a^{\sigma} / X
\end{aligned}
$$

completing the proof of Lemma 4.
7. Proof of Theorem II. By (1), $\lambda=\sigma / \mathrm{min}(s, t)+\tau$, for some $r>0$. We shall construct by induction a sequence of closed sets $F_{0} \supset F_{1} \supset \ldots$ and a sequence of additive functions ϕ_{n} on \Re such that the set $F=\bigcap_{n=1}^{\infty} F_{n} \subset E$, and the function $\phi=\lim _{n \rightarrow \infty} \phi_{n}$ satisfy the hypothesis of Lemma 2 with $\rho=$ $(\sigma-\delta) / \lambda$. Let $F_{0}=W, G_{0}$ the set whose unique element is F_{0}. Let $A_{0}>$ $\left(L_{0} / D\right)^{-1 / \lambda}$ be sufficiently large. For every $I \in \Re$ and $I \subset W$ we define $\phi_{0}(I)$ $=V(I) / L_{0}^{s}$, where $V(I)$ denotes the s-dimensional volume of I.

Suppose that for $k=0, \ldots, n-1$, a suitable increasing sequence of positive numbers A_{k} and sets G_{k} of disjoint closed cubes all with edge $L_{k}=$ $2 D\left(2 A_{k}\right)^{-\lambda}$ have already been defined such that every element of G_{k} is contained in some element of G_{k-1}. Let F_{k} be the union of all elements of G_{k}.

Suppose also that a sequence ϕ_{k} of additive functions on \Re has already been defined for all $k<n$.

Let $I \in G_{n-1}, I^{\prime}$ the cube concentric with I with edge $L_{n-1} / 2$. We apply Lemma 4 with θ, η satisfying $0<\theta<\min (\delta, \tau), 0<\eta<\delta /(\sigma-\delta)$, where $0<$ $\delta<\sigma ; L=L_{n-1} / 2, A_{n-1}$ as q_{0} and I^{\prime} as I. There exist reals a_{n}, A_{n} and a subset $S_{I^{\prime}} \subset S^{T}$ of ($s+1$)-tuples of integers $\left(p_{0}, \ldots, p_{s}\right.$) satisfying

$$
\left(p_{1} / p_{0}, \ldots, p_{s} / p_{0}\right) \in I^{\prime}, \quad A_{n-1}<a_{n}<p_{0}<A_{n}<a_{n}^{1+\eta}
$$

and (3). Let G_{n} be the set of all closed cubes with centers ($p_{1} / p_{0}, \ldots, p_{s} / p_{0}$) ϵI^{\prime} and length of edge $2 D\left(2 A_{n}\right)^{-\lambda}$ where I ranges over all cubes of G_{n-1}. Note that each I^{\prime} has its own unique p_{0}^{\prime}, which induces a number of p_{0} as specified by (8) (if $\mu_{0}>0$), but by Lemma 3 all of these p_{0} satisfy the inequalities of (i) of Lemma 4 for the same $a_{n}=a, A_{n}=A$.

By (3), all cubes in G_{n} are disjoint if A_{n} is sufficiently large, as we shall assume. Let F_{n} be the union of all cubes in G_{n}. Then F_{n} is closed and $F_{n} \subset F_{n-1}$. If $I \in G_{n}$, then $I \subset J \in G_{n-1}$. Letting N_{J} be the number of elements of G_{n} contained in J, we define $\phi_{n}(I)=\phi_{n-1}(J) / N_{J}$. If $I \in \Re$ and $I \subset J \in G_{n}$, let $\phi_{n}(I)=\phi_{n}(J) \cdot V(I) / V(J)$. If $I \subset W$ is an arbitrary element of \Re, then $I=\bigcup_{h} I_{h} \cup Q$, where $I_{h}=I \cap J_{h}, J_{h} \in G_{n}, Q \cap F_{n}=\varnothing$. In this case we define $\phi_{n}(I)=\Sigma_{h} \phi_{n}\left(I_{h}\right)$. The following properties of the functions ϕ_{n} are obvious: They are nonnegative finite additive functions on \Re, and for $I \hat{\epsilon}$ $G_{n-1}, \phi_{n}(I)=\phi_{n-1}(I)$. If $I \in \Re, I \supset F_{n}$, then $\phi_{n}(I)=1$. Let $\delta_{i}, i=0,1,2, \ldots$, be positive reals such that the product $\prod_{i=0}^{\infty}\left(1+\delta_{i}\right)$ converges and δ_{0}, δ_{1} sufficiently large. Let $k_{n}=\prod_{i=0}^{n}\left(1+\delta_{i}\right)$. We shall prove by induction on n that the sequence A_{i} can be chosen such that for every cube $I \subset W$,

$$
\begin{equation*}
\phi_{n}(I) / \delta(I)^{\rho}<k_{n} \tag{15}
\end{equation*}
$$

For $n=0$,

$$
\frac{\phi_{0}(I)}{\delta(I)^{\rho}}=\frac{V(I)}{L_{0}^{s} \delta(I)^{\rho}}=s^{-s / 2} L_{0}^{-s} \delta(I)^{s-\rho} \leq K L_{0}^{-\rho}<1+\delta_{0} .
$$

Let $\Delta_{n}=\max _{i \in G_{n}} \phi_{n}(I)$. By (iv) of Lemma 4,

$$
\Delta_{n}<K L_{n-1}^{-t^{\prime}} \Delta_{n-1} X_{n} a_{n}^{-\sigma}, \quad X_{n}= \begin{cases}\log a_{n} & \text { if } \mu_{0}>0 \\ 1 & \text { if } \mu_{0}=0\end{cases}
$$

For proving (15) we distinguish several cases.
(a) $I \in G_{n}$. Then

$$
\frac{\phi_{n}^{(I)}}{\delta(I)^{\rho}}<\frac{\Delta_{n}}{L_{n}^{\rho}}<K L_{n-1}^{-t^{\prime}} \Delta_{n-1} X_{n} a_{n}^{-\sigma} A_{n}^{\lambda \rho}<K L_{n-1}^{-t^{\prime}} \Delta_{n-1} X_{n} a_{n}^{-\sigma+(1+\eta)(\sigma-\delta)}
$$

The exponent of a_{n} is negative. For a_{n} large enough, $\phi_{n}(I) / \delta(I)^{\rho}$ can thus be made as small as desired.
(b) $I \subset J \in G_{n}$. Then

$$
\frac{\phi_{n}(I)}{\delta(I)^{\rho}}=\phi_{n}(J) \frac{V(I)}{V(J) \delta(I)^{\rho}}=\frac{\phi_{n}(J)}{\delta(J)^{\rho}}\left(\frac{\delta(I)}{\delta(J)}\right)^{s-\rho} \leq \frac{\phi_{n}(J)}{\delta(J)^{\rho}},
$$

which is reduced to the previous case.
(c) $I \subset J \in G_{n-1}$ and the length l of the edge of I is greater than $a_{n}^{-\mu}$.

Let N_{I} and N_{J} denote the number of elements of G_{n} with nonempty intersection with I and J respectively. By (iii) and (iv) of Lemma 4,

$$
\begin{aligned}
\frac{\phi_{n}(I)}{\delta(I)^{\rho}} & \leq \frac{\phi_{n-1}(J)}{N_{J}} \cdot \frac{N_{I}}{\delta(I)^{\rho}} \leq K \frac{\phi_{n-1}(J)}{\delta(I)^{\rho}} \frac{l^{t^{\prime}}}{L_{n-1}^{t^{\prime}}} \\
& \leq K \frac{\phi_{n-1}(J)}{\delta(J)^{\rho}}\left(\frac{\delta(I)}{\delta(J)}\right)^{t^{\prime}-\rho}<K \frac{\phi_{n-1}(J)}{\delta(J)^{\rho}}
\end{aligned}
$$

since inequality (1) on λ implies $t^{\prime}-\rho>0$. For $n>1$, the last expression can be made as small as desired if a_{n-1} is large enough, as was shown in case (a). For $n=1$,

$$
\frac{\phi_{1}(I)}{\delta(I)^{\rho}}<K \frac{\phi_{0}(J)}{\delta(J)^{\rho}}<\frac{K}{L_{0}^{\rho}} \leq 1+\delta_{1}
$$

if δ_{1} is sufficiently large.
(d) $I \subset J \in G_{n-1}$ but the edge l of I is not greater than ${a_{n}}^{-\mu}$. The cubes concentric to the cubes of G_{n} and with edge of length $A_{n}^{-(\sigma / s)-\theta}$ are disjoint by (3), so the number N_{I} of cubes of G_{n} with nonempty intersection with I is at most $N_{I} \leq K \delta(I)^{s} A_{n}^{\sigma+\theta s}$. Therefore,

$$
\frac{\phi_{n}(I)}{\delta(I)^{\rho}} \leq \frac{N_{1} \Delta_{n}}{\delta(I)^{\rho}} \leq K \Delta_{n-1} L_{n-1}^{-t_{n}^{\prime}} a_{n}^{-\mu(s-\rho)+(1+\eta)(\sigma+\theta s)} a_{n}^{-\sigma} X_{n}
$$

For θ, η small enough and a_{n} large enough, this can be made as small as desired.
(e) I is an arbitrary cube of edge length l. We may assume $n>1$, as the case $n=1$ is settled by the previous cases. We may also assume $l>$ $1 / 2 A_{n-1}^{-(\sigma / s)}-\theta$, since otherwise, for A_{n-1} large enough, I intersects at most one element of G_{n-1}, which is also subsumed by the previous cases. Let J be a cube with the same center as I and edge length $l+4 A_{n-1}^{-\lambda}$. For A_{n-1} large enough we have

$$
\begin{gathered}
(\delta(J) / \delta(I))^{\rho}<1+\delta_{n} \\
\frac{\phi_{n}(I)}{\delta(I)^{\rho}} \leq \frac{\phi_{n-1}(J)}{\delta(I)^{\rho}}=\frac{\phi_{n-1}(J)}{\delta(J)^{\rho}}\left(\frac{\delta(J)}{\delta(I)}\right)^{\rho}<\left(1+\delta_{n}\right) k_{n-1}=k_{n}
\end{gathered}
$$

which proves (15).
Now let $\epsilon_{i}, i \geq 2$, be any sequence of positive integers such that $\Sigma_{i=2}^{\infty} \epsilon_{i}$ converges. For every cube $I \in \Re$, we have

$$
\phi_{n}(I)=\phi_{0}(I)+\left(\phi_{1}(I)-\phi_{0}(I)\right)+\cdots+\left(\phi_{n}(I)-\phi_{n-1}(I)\right) .
$$

The difference $\phi_{k}(I)-\phi_{k-1}(I)$ is contributed by those elements of G_{k-1} which intersect the boundary of I. Let \bar{N}_{k} be the number of those elements of G_{k-1}. The cubes concentric to the elements of G_{k-1} and whose length of edge is $1 / 2 A_{k-1}^{-}(\sigma / s)-\theta$ are disjoint. Therefore,

$$
\begin{equation*}
\bar{N}_{k} \leq K \max \left\{\delta(I)^{s-1} A_{k-1}^{((\sigma / s)+\theta)(s-1)}, 1\right\} \tag{16}
\end{equation*}
$$

and

$$
\left|\phi_{k}(I)-\phi_{k-1}(I)\right| \leq \bar{N}_{k} \Delta_{k-1} .
$$

If the max in (16) is 1 , then for a_{k-1} large enough $\left|\phi_{k}(I)-\phi_{k-1}(I)\right|<\epsilon_{k}$. Otherwise,

$$
\left|\phi_{k}(I)-\phi_{k-1}(I)\right| \leq K \delta(I)^{s-1} L_{k-2}^{-t^{\prime}} \Delta_{k-2} X_{k-1} A_{k-1}^{((\sigma / s)+\theta)(s-1)-\sigma(1+\eta)}
$$

For θ small and A_{k-1} large enough, this is smaller than ϵ_{k}. This proves that the functions ϕ_{n} converge on each cube $I \in \Re$. Since the functions ϕ_{n} are additive, they converge also for every $I \in \Re$. The limit function ϕ is nonnegative, finite and additive. If $I \in \Re, I \supset F$, there exists n such that $I \supset F_{n}$ and so $\phi(I)=\phi_{n}(I)=1$. For every cube $I \subset W$ there exists n such that

$$
\left|\phi_{n}(I)-\phi(I)\right|<\delta(I)^{\rho}, \quad \frac{\phi(I)}{\delta(I)^{\rho}}<\frac{\phi_{n}(I)+\delta(I)^{\rho}}{\delta(I)^{\rho}}<k_{n}+1<k .
$$

So ϕ, F, ρ satisfy the conditions of Lemma 2, and we have $\rho-m^{*} E^{T}>0$.
Acknowledgement. The authors wish to thank the referee for his useful comments.

REFERENCES

1. A. S. Fraenkel, On a theorem of D. Ridout in the theory of diophantine approximations, Trans. Amer. Math. Soc. 105 (1962), 84-101. MR 26 \# 2393.
2. A. S. Fraenkel and I. Borosh, Fractional dimension of a set of transcendental numbers, Proc. London Math. Soc. (3) 15 (1965), 458-470. MR 31 \#2207.
3. V. Jarník, Über die simultanen diophantischen Approximationen, Math. Z. 33 (1931), 505-543.
4. F. Lettenmeyer, Neuer Beweis des allgemeinen Kroneckerschen Approximationssatzes, Proc. London Math. Soc. (2) 21 (1923), 306-314.
5. P. A. P. Moran, Additive functions of intervals and Hausdorff measure, Proc. Cambridge Philos. Soc. 42 (1946), 15-23. MR 7, 278.
6. D. Ridout, Rational approximations to algebraic numbers, Mathematika 4 (1957), 125-131. MR 20 \#32.

DEPARTMENT OF MATHEMATICS, TEXAS A \& M UNIVERSITY, COLLEGE STATION, TEXAS 77843 (Current address of I. Borosh)

DEPARTMENT OF APPLIED MATHEMATICS, THE WEIZMANN INSTITUTE OF SCIENCE, REHOVOT, ISRAEL (Current address of A. S. Fraenkel)

