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A GENERALIZATION OF JARNIK’S THEOREM
ON DIOPHANTINE APPROXIMATIONS
TO RIDOUT TYPE NUMBERS

BY
I. BOROSH AND A. S. FRAENKEL

ABSTRACT. Let s be a positive integer, ¢ >1, 4, ..., pg reals in

o, 1], o= 2;;0 Ky and ¢ the number of nonzero Py Let n; (i=0yc0.ys)
be s + 1 disjoint sets of primes and S the set of all (s + 1)-tuples of in-
tegers (pg, ..., p,) satisfying p;>0, p; = p’;.‘p:., where the p} are inte-
gers satisfying |p}| <clp ", and all prime factors of p] arein n, i =0,

.,Ss. Let A>0 if t=0, A >o/min(s, t) otherwise, E) the set of all
real s-tuples (0«1, ceey as) satisfying |°-i - pi/p0|< pa Gi=1,...,59)
for an infinite number of (py, ..., p.) €S. The main result is that the
Hausdorff dimension of E) is 0/A. Related results are obtained: when also
lower bounds are placed on the p:.‘. The case s = 1 was settled previously
(Proc. London Math. Soc. 15 (1965), 458—470). The case p = 1(i=0,
«e., 5) gives a well-known theorem of Jarnik (Math. Z. 33 (1931), 505-543).

1. Introduction. Jarnik [3] proved that the Hausdorff dimension of the set
E of all real s-tuples (a'l’ sv., 0) satisfying la’i - piq"ll <gqg~M i=1,
«++, S, for an infinite number of (s + 1)-tuples (g, py, oev , p ) of integers
with ¢> 0, is (s + DA~! provided that A> 1+ s~1,

In this paper we investigate the case where ¢, p,, ..., p are restricted
to certain sets of integers which were considered by Ridout in his extension
of Roth’s theorem [6]. In [1] it was proved that the set E in this case has
Lebesgue measure 0. The Hausdorff dimension for the one-dimensional case
of the problem was determined by the authors in [2].

2. Definitions and notation. Let s be a positive integer, fos s oo\l
reals in [0, 1) and 0=/ g Let =P, 1, oo, P J(i=0, ..., s),be
s + 1 sets of distinct primes, C; the set of integers all of whose prime fac-
tors belong to 1II,.

We say that condition I is satisfied, if there exists Pi € l'[i for i=0,
ees, S, such that

(Ta) P, # Py(i=1,...,9)
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24 I. BOROSH AND A. S. FRAENKEL

(Ib) Those among the numbers (1 —p()/log Py, ..., (1 =p )/log P
which are not zero are linearly independent over the field of rational numbers.

In particular, condition (Ib) is satisfied if p;=1,i=0, ..., s.

Let ¢ > 1. We define §=S(c; pg, vou, g3 Cpy oee, C) to be the set
of all (s + 1)-tuples of integers (p, ..., ps), P> 0, satisfying

@ (@, p)=1,i=1,...,s.

(ii) p; = p:fp:. with p, € C; and p’: any integer satisfying Ip’:|< clpilﬂi,
i=0,...,s.

Similarly we definé ST = ST(c;pg, oovy pg; Coy vvv, CJ) by replacing
(ii) by the requirement

(T p;= p’:.‘p:. where p;. €C, and p’: is any integer satisfying

K M. .
Ipil ISIPtl<CIPil 1’ l=0,ooo,$o

Let y:), ”'1’ ooy p.; be reals satisfying (a) 0 < "Ii <y b) if >0,
then 0 < y;. <p; for some j. We define a set S’ in a similar way to § and
ST, but replacing this time condition (ii) by the requirement

(i)’ b;= ptp:- Whero;e p:. €C; and p:.‘ is any integer satisfying
. . .
“’il IS“”:l <elpl H  i=0,...,s.

Let A, D be positive reals, W an s-dimensional interval with edges
parallel to the axes. We define the set E = E(\, W, S, D) to be the set of all
s-tuples (o}, ..., a) €W satisfying |a,~ pipal| < pr"‘, i=1,...,s,
for an infinite number of (s + 1)-tuples (po, «ees pg) from S. Similarly we
define ET = ET(\, W, ST, D) and E' = E'\, W, S', D).

By R° we denote the Euclidean space of s dimensions, and by d(x, y)
the distance between two points x, y of R°. By &E), a- m*E, dim E we
denote, respectively, the diameter, the Hausdorff measure with respect to the
function t* and the Hausdorff dimension of the set E. By a cube we mean an

s-dimensional interval with edges parallel to the axes.
3. Main results. The main results of this paper are
Theorem I dim ET < dim E' < dim E < o/A.

Theorem II. Let t be the number of p; which are not zero (i=0,...,s)
Let A satisfy

A>0 if t=0,
1)
A>0o/min(s, t) if t>0.
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If condition 1 holds, then
dim E > dim E' > dim ET > o/A.
Theorem III. If (1) and (1a) hold then dim E > dim E' > o/A.

These results imply dim E = dim E' =0/ if (1) and (Ia) hold and dim E
=dim E' =dim ET = o/A if (1) holds and condition I is satisfied. The case
p;=1,i=0,...,s, gives Jarnik’s result.

4. Proof of Theorem I. Let b,>0,i=1,...,s. By symmetry, it is

enough to prove the theorem when W is defined by

W=ilx), oo, x)I0<x,<b;y i=1, ..., 5],
We shall prove that, for every 0> 0, if p = (0 +8A~! then p- m*E=0. We
may also assume that 8 <1=—p, if p,<1.

Let €> 0. The set of all cubes whose center is (p,/pgs.«,0/pg) €W
with (pg, «oe s p) €S, py> 44, and length of edge 2Dpg*, is obviously a
covering for E. If ¢, is large enough, the diameter of each cube is smaller
than €. It remains to prove that the series M=Z2(pg") =3 p5°- 8 conver-
ges, where the summation is over all sets (po, ooy ps) € S such that
(pl/po, ooy ps/po) € W. Since p;= p’:p:. for i=0,..., s, the summation
can be broken up into a summation over p’;, cees pz, and over p'l, ooy p's.
Therefore,

M= Z MI, M <Z{2¥ -o--Szh‘l
i

where {1} and {2} indicate summations over p’:, ceey p* and p'l, ey p'
respectively. Positive constants dependmg only on ¢, 8, p;, b;, I, (0<igs)
are denoted by A below. Since p < cp#‘ < cb'u"p“‘ (1<igs), we have 2‘ 1‘
< Ap ~Fo, Putting 1 = 8/2, we thus obtain

—-Hg=7 -Hy=n S
My < apg 07T S g5 2 apgto 11 = g5,

where {3} denotes summation over p:. €C;. Since p:. <p;<b,p,(1<i<5),
we obtain

Zm -’7/$<A2m /<A n(l P-"/‘)"<A
]—
Therefore

M, < Ap(:#o-77 and M<A Z{S} p:)—#o-n E“} p’;-#o—n

’
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where {4} and {5} denote summations over all py< R =C l/(l_”o)péﬂo/(l-“o)

(o <1) and py € C, respectively. (If p=1, M<AZ] p5!=7 < A)

{4} w=Fo- R =HMg=7 Ho=N o/ (1=p4)
3 p’; o~ <I+f1 «Ho dstp'oo 0 o,

Therefore M < A sish ps"’A < eo, completing the proof.

5. Proof that Theorem II implies Theorem IIl. We may assume that o>0,
because otherwise Theorem Il is trivially true. Let P, €ll,, i=0,...,s
and P, # Py i=1,..., s. If condition I is not satisfied, then

(1-pg/log Py, vv, (1= p)/log P

are linearly dependent over the rationals,
Let € > 0. There exists j such that 0 <p. <pje Choose u such that
p < y y B y <'¢, and such that the nonzero members among

(1-pglog Py, ..., (1 —u'f)/log P., vee, (1=p)/log P

are lmeatly independent over the rationals. Let p. =p,; for i # j, and let
$"T and $" be the same as ST and §' tespecnvely, except that in (ii)T and
(i), I; is replaced by yi (0<i<s). Then

s'Tcs” cs'cs, E'TCE"CE'CE.
By Theorem II,
dim E > dim E' > dim E” >dim E"T > (¢ - &)/\.

Since this holds for every ¢ >0, we have dim E > dim E' > 0/A, which is
Theorem III.
Remark. Condition I is, however, essential in proving dim E T >0/A, as

is shown by the following example. Let P, and P, be two distinct primes,

Co= {P %, C, = {P Y, my, m, nonnegative mfegers. There exist p, and

V(o b Y (=kg)

i, in [o 1) such that Py =P, =A>1 Let 0<e<(A-D/AA+1),
and

l—p =(1=pp)
1<c<min((l+¢& "L (1= ),

If (pgs p) € ST(c; B #q; Cg, C)) and pg, £y >0, then

M. M. m. .
Pi‘_‘p’:!’;’ pilspt<cpil’ P;.=Pi!, i=0,1.

This gives
J(1=p, 1/(1=p) m./(1=p,)
1:1/( #z)spi<c ‘P:.n' i i=0,1,
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and

-1 1l
@ (1-gak<c VIR

1/(1-p,)
Ak<p /py<c VAR < (1 + €)AF,
where k=m, - m.
The requirement for € implies that A(1 —¢€) > 1 + e By (2), the interval
(1 + ¢ A(1 - ¢)) does not contain any p,/by with (po, pl) €ST because, if
k<0, then (1 + AR <1 +¢ andif k>0, then Al - ¢) <(1 - A%,

6. Lemmas for Theorem II. It suffices to prove Theorem II for an inter-
val W of the form

W'—’{(xl, coe y xs)|ai$xi$ bi’ i=1, see ,SL

where the a; are arbitrary positive reals, b;=a, + L, and L is any suffi-
ciently small real number, to be chosen later in the proof (Lemma 4).

Lemma 1. It is enough to prove Theorem Il for the case p > po, i =1,

ceey Se

Proof. If p1;<p, for some i> 0, we may assume that p_=min(pg ..o pt).
Let v,=p, if i#0, s, vy=pg and v =p, Let Y: W—R*® be defined by

¢(xl, cee s X _ps xs) =(x)/% gy eees 2 (/% l/xs),

and let W, ={(x, ..., xs)|a:. <x;< b:., 1< i< s} be chosen so that Y (W))

;5-1, which is bounded

away from 0 and  on W,, and therefore preserves Hausdorff dimension.
Let § T, ET be as defined in §2,

C W. It is easily seen that ¢ has Jacobian a

ST=8T(e;vg00ee s v 3 €,y Cppvan s €1, €y ET =ETOLW,,ST. D)),

where D, > 0 is sufficiently small. The conditions of Theorem II hold for

E {, and we have, moreover, Vv, >V (1 <i<s). Therefore, assuming the
validity of the theorem for this case, dim E { > o/A. We now prove that for

a suitable choice of D, we have x/r(E-{) CET, Let By eees By el/J(E;").
There exists (a;, ..., a) € Ef such that (a,/a, ..., a,_;/a,1/a) =
(6-2, s Bsfl’ B,), and an in.fini.ty of (py pyyeees bo_1s by €

S5 (Pi €C,, i=0,...,s), satisfying |ai- pi/ps| < Dlp;", 1<i<s-~1,
lag = po/pgl <Dyp7* Let a;=p,/p +n 1Si<s=1,a,=pg/p + 0,
|17i| <D1p;" (0<i<s). For 1<i<s~-1 we then have

ai P,' 1 +77ips/pi
s Po l“lsps/l’o’
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% b b 4 P
— A<l ~-D.pl-A -1 i IS
as po PO( lps /po) (|77 1' pi + |7ls| Po)

b,
s 2(:5)“ =Dy} ¥pg'Dy 93 < D,

if Dl is suff_iciently small. A similar computation shows that |a;l- pspall
< Dp;A for D small enough. Thus

|ﬁi-pi/Pol<DP0-x’ i=1, ceey S,
which shows that $(ET) C ET. Therefore,
dim ET > dim ¢ (ET) = dim ET > o/

From now on we shall assume p; 2> p, (1 <i<s). We may also assume
that every II ; contains only one prime P, such that condition I is satisfied,
that not all p; are 1 because this is Jarnik’s theorem, and that not all B
are zero because then Theorem II is trivial. These assumptions are not es-
sential but permit a simpler exposition.

Let 8> 0, p = (o - 8)/A. In order to prove that p - m*(ET) > 0, we use
the following special case of a theorem due to P. A. P. Moran [5].

Lemma 2. Let s be a positive integer, E a bounded set in R® and 0 <
p <s. A sufficient condition for p - m*(E) to be positive is the existence
of a closed subset F of E and an additive function ¢ defined on the ring
R generated by the semiopen cubes of R®, satisfying the following proper-
ties:

(a) ¢ is nonnegative.

(b) For every R €R and RO F we have ¢(R) > b> 0 for some fixed b.

(c) There exists a positive constant k such that for every semiopen
cube R we have ¢(R) < k8(R)”.

Lemma 3. Let 0,, ..., 0 be reals such that 1, 05000, 0 are linear-
ly independent over the rationals, 0, n, ny > 0. There exist real numbers b,
B such that for every set of real numbers a,, ..., a_ there is an (s + 1)-tu-
ple of integers (my, «.. , m) satisfying \myf,-m;- a | <8 1<i<s, ny<
b<my<B<(l+7h

Except for the explicit bound on m, this is Kronecker’s theorem. The
bound can be obtained by introducing a slight change in one of the proofs of
Kronecker’s theorem, for example, Lettenmeyer’s proof [4].
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Let ¢’ be the number of nonzero B; (1<i<s),0<pu< min, (o ¢, Ve
shall now formulate the main lemma. :

Lemma 4. Let L <L, 0, n be positive real, q, = qola, b, L,p, L, 7)
a sufficiently large real number. There exist reals a, A such that for every
cube 1 CW with edge L, there is a subset S;C ST with the following prop-
erties:

Q) If (pgy eves b)) €Sy, then (py /b oo s 0 /bg) €1, gg<a<py<A
<altn, (p;5 ) =1, a~# <L, and all the (p,..., p.) €S, share the same
fixed (s + 1)-tuple (pg, «ov , po).

(i) If o5 < p82) and (pi, ..., p)) €5,(i=1,2), then there exists at
least one j such that

(3) IPj(l)/Pf)“ - p§2)/P§,2)| > (p{1)-(/)-8,

(iii) Let a™# <1< L, I, any cube with edge length 1 contained in 1, V
the number of elements (py, «oe s p) of Sy suchthat (py/pgs +ov s p./bg)
€1,. Then

1,0/ (1=p4)
V, <KI'py o7,
where

{log p:) l/ I"'o > 0:
Y=

1 i/[l0=0,

K a suitable positive constant depending on ST, W, A, D, 1, 6.
(iv) The total number V| of elements of S; satisfies

'o'/(l"'ﬂo)
L Po " a°
Vp>KL} ————— >KL! —,
Y X

where

loga if p,>0,
X =
1 if py=0.

Remark. The convention on K will be used for the rest of the paper, for
the sake of simplicity of notation.
Proof. Let €> 0 be sufficiently small,

(4) I={(xp,een,x)| a;+€<y,<x,;<y;+L<b,1<i<s}

) 1<c,<e¢;<¢ c1<1+m1§n(e/ai), cl/co<2, €y <2.
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Since p; > py and not all p; are 1, we have pg < 1. Suppose that fg, <.« 5ty
(h < s) are all the #; which are not 1. We assume first 5> 0. Let

(1-p)log P, l-p, y.y.+ L)
i ii
\ D eme———— L= - 1 , 1< '<b'
tQ -,40) log Pi’ ‘f‘ 2 log P, og( 2 ) ==

c
1

Condition I implies that 1, 6, ..., 0, are linearly independent over the ra-

tionals. By Lemma 3, there exist numbers b, B and an (b + 1)-tuple of inte-

gers (mg, ooty ”’b) satisfying

(1=-py logpo(qo/co) <b<my<B<(l+nh,

©)
|mg0, =m, - &) <8, 1<i<h

This with the definition of & implies

)] yi<clP;ni/(l-#i)/P;no/(l-#o)<yi+ L, 1<i<h

Define a set T of (s + 1)-tuples (po, ceos ps) of integers with p, =
p?p:. (0 < i< s) satisfying:

1. p; = P7(0< i< ), where (mp, «.., m,) is a fixed (b + 1)-tuple of
integers satisfying (7), and p:. =1 for i>h.

2, If py>0, p; ranges over all primes > max; P; satisfying

® ) St 2c1by :

The existence of such p’; is guaranteed if g, is sufficiently large. If py =0,
put p’; =1,
3. If p;>0, p’; ranges over all integers satisfying

14 p
©) y,._;? <p’;<(y,.+u;°,-, (5 pop) =1, 1<igs.

Since every interval of length > 5 contains an integer relatively prime to the
product of three given primes, integers p’: satisfying (9) will exist if Lpy/ p'i
> 6. By (7) this condition is easily seen to hold if g, is sufficiently large.
If p,= 0, put p; =1.

Now assume b =0, Choose b=my~1> (1-py logpo(qo/co), B =
my+ 1, p;, = PL"O, p'i =1 (1<i<s), and p’;, p’: as above. It is clear
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that such p’: = p, satisfying (9) do in fact exist. Moreover, for g, sufficient-
ly large, (6) holds.

The definition of T implies that if (py, .o. , p) € T}, then a,<p./p,
<b;, and (p;, po) = 1(1 < i< s). This follows from (9) if hp, >0 or h=0.
If h>0,p, =p,=0, it follows from (7) and (5). For >0, p. =0, py >0,
we have by (4), (5), (7) and (8),

a;+e y; p; vy;+L

a,< <—=< =X <y;+L.
€1 €1 b0 o
Let a=c, Pb/(l 'uo) A= coPg/(l-#o). If 9, is sufficiently large, we

obtain, by (6), (3) and (5) (£, >0, h> 0),
go<a<p,<A<a'*l, aF<L

l-p,
For I,to>0 (8) implies p <c p <p0 <c1po <cp0 , and for py=0,
oy = 0. To prove that T CST it remains to show that

B o B, )
(10) pilsp,’<cp,'x» 1<igs,

We may assume 0 <y, <1(1<i<s), because otherwise (10) is trivial. If
[ty > 0, we obtain, from (7), (8), (9),

1-p, Y (1 2yi+L p
(COC) ‘_"'—P1<P <c ~H P,-1
y;+L Vi

and for py =0, we obtain, from (7) and (9),

Yi  lem o m Yi+L 1-p. p
1 c 11 <p < 1 1 1 #l
v;+L ¥y,

Therefore (10) will hold by choosing L to satisfy

0<L<Ly< min (a (c/c -1),a(c1 -1))-

1<igs
We thus proved that T,C ST, Let
={lxpy 000, 2 )y, <B;<x,<B;+1<y;+ L, 1<i<sh, a~H<I< L,
Let p, be fixed. For u > 0(i > 0), denote by Wi(py) the number of integers

p relatively prime to pg P oP;» which satisfy B,p,/p; < p’:< (B;+Dpy /b
Lemma 4 of [2] implies
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()0 o
<(’%£’+1)(1-%)( ~2)(-3)

except that the factor 1 — l/[zo is dropped if py=0. Since /> a~k> p
(9) and (10) imply lpo/pl > 1(1,0 —k, Since B =p> 0, 1 is absorbed by
Ip, /p Thus

an Kiphi < Wilpg) < Kipy'.

For fixed pg, denote by W,(p,) the number of elements (pg, ««v, p) €T,
such that (p,/pgs <o+ » p./by) €1,. Multiplying together the t' inequalities
(11) and defining Wj(py) =1 for p; = 0, we obtain

1 O=pt ¢t O=H
12) Kitp, ° <W/((pg) <KI'py °.

It is easily seen that if s =1, the set T, satisfies all the conditions of
the lemma for §;. For s> 1, however, condition (ii) is not necessarily satis-
fied., Let (po, pl L, p(l)) and (po, L., (32)) be two distinct ele-
ments of T; with the same p,. By (9) and (10),

(1) (2) 4 '
b; b; b; b; -L,
LI DU Y I S BN PN I e}
bo bo by 0
There exists j such that
1 & o _o
< = <=<—=+0;
ks 3 i=1#'-s 5
hence
(n (2)
bi " b B = (=0
— - > KPO Kpo .
bo b

Condition (ii) of the lemma is therefore satisfied for two elements of T, with
the same p,. If p, =0, then all the elements of T, have the same p,and we
define ;= T in this case. If py> 0, we define S C T, by excluding all
those elements (po, cees By ) of T, for which there exists p(l) <p, and
(p“), cess pil)) €T, such thatfor i=1,...,s we have
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(13) <(p (l)) -(0/s)-6,

Clearly, S, satisfies condition (ii) of the lemma. We shall now count the
number of elements of T, which are not in S|, Let N(po, pg”) be the num-
ber of elements of T, for a fixed p, and fixed pgl) <y, for which (13) holds
for some i. For fixed p,, let N(po) denote the number of those elements
(pgs ««+ s bg) of T, for which there exists an element (p{!, ..., pi”) of T,
such that (13) holds for every i. Clearly,

S a
Meg< 3 H N {pg 05
HD =1
po <bg
From (13),
|t,’:1,’;(1) - p’:j(l)p’gl < P:pgl)/ﬁpgl)(o/s)w.

The expression p’:(l)p’; - p’;“)p’: can therefore assume at most

1

different values. Let u be a fixed integer. The equation p’:p’;(l) - p’:(“pz=u
implies
(14) 05051 = u (mod py).

Since Po is a pnme this congruence has exactly one solution p in each in-
terval of length p The integer p is to be chosen in the interval [y po/ b

(y; + L)py/p;) of length Lpy/p; = KLpol Since Po > co “"po and £ > po,
the number of solutions of (14) is Lpo/ o p < KLp i=H0, Therefore

* (1), Hi~Fo By (1)t
N (50 85 < KL Bo26 2o’ < bo'%o
by b P'-Pgl)(c/3)+e - (pgl))(Cf/s)iﬂ’
14
and hence
Kptees4n [T XXTR 773 o+0s
<p°
-l =Os
Kyteeetp 1y 0
= KLSPO s Z Po
iV <p,
6e/ (,)"“0'9-’/2
<KL%p, ML > by .

p6"< 2
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The last sum converges as was shown in the proof of Theorem I. Therefore,

Owp ~6s/2
‘V(po) S KLSPO 0 * .

Let Vl(po) denote the numbcr of elements (po, N s) of §; such that

(pl/po, ceey ps/po) € II for fixed p,, and let Vl be the total number of
those elements in S,. By (12),

Vl(?o) < WI(PO) < Kl‘ll’z-#ov

' O=p
Vi (p)) =W, (py) = N(p) > KL py  °.
Therefore,
’ ¥ O-p ' ¥ Owpl
V,<KIP Y py % VOSKLE X py 0,

where 3* denotes summation over all b, so that (po, ooy ps) € S,. By (8),

, (O=p0)/ (1=p5) (cr -t/ (1=1y)
KPo (1} 0 Z z Po 0 0 Z‘: 1,
25 by

where 2:6. 1=1 if o =0. If py> 0, we obtain from (8) and the Prime Num-
ber Theorem,

(Tmpn )/ (1=p ) , (O=pg)/ (1=p4)
Kpy  ° 0/ <Z 1<Kpy ° 9 /1og

Therefore we obtain (1 > 0)
' o/ (1=py)
v <Kty R0y,

o/(1=

’ M ) '
V, > KL pg 077y > KL® a°/X,

completing the proof of Lemma 4.

7. Proof of Theorem II. By (1), A =0/min(s, #) + 7, for some 7> 0. We
shall construct by induction a sequence of closed sets FyD F; D ++« and a
sequence of additive functions an on R such that the set F = n:=1 FnC E,
and the function ¢ =lim,_, ¢  satisfy the hypothesis of Lemma 2 with p=
(0 - 8)/A. Let Fy=W, G, the set whose unique element is F,. Let A;>
(LO/D)"”" be sufficiently large. For every I € ® and IC W we define $,(])
= V(/LS, where V(I) denotes the s-dimensional volume of I

Suppose that for k=0, ..., n~1, a suitable increasing sequence of
positive numbers A, and sets G, of disjoint closed cubes all with edge L, =
2D(24,)~* have already been defined such that every element of G, is con-
tained in some element of G, ;. Let F be the union of all elements of G,
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Suppose also that a sequence ¢, of additive functions on R has already
been defined for all k< n.

Let 1 €G _), I' the cube concentric with I with edge Ln-1/2° We apply
Lemma 4 with 6,  satisfying 0< 60 <min (5, 7), 0<n <8/(oc ~ ), where 0<
d<o;L=L,_,/2,A _, as q, and I' as I There exist reals a_, A, and a
subset S,/ C ST of (s + 1)-tuples of integers (Pgs +ev s ps) satisfying

(0)/bgr+eer b /by €'y A _<a <py<A <al*

and (3). Let G, be the set of all closed cubes with centers (p,/pg, - b/ )
€1' and length of edge 2D(2An)“" where | ranges over all cubes of G _,.
Note that each I' has its own unique P:)» which induces a number of p as
specified by (8) (if iy > 0), but by Lemma 3 all of these p, satisfy the in-
equalities of (i) of Lemma 4 for the same a,=a A, = A,

By (3), all cubes in G are disjoint if A, is sufficiently large, as we
shall assume. Let F, be the union of all cubes in G,. Then F_ is closed
and F C Fn-l‘ If 1€G,, then IC] €G, _,. Letting N] be the number of
elements of G contained in ], we define ¢ (I) = ¢n_1(])/N]. If I €R and
IC]€eG,, let an(l) = c/>n(]) - V(D/V(]). 1f ICW is an arbitrary element of
R, then I=UJ,1, U Q, where I,=In],, ], €G,,Q NF_=g. Inthis case
we define ¢ (1) =2, ¢ (I,). The following properties of the functions ¢ are
obvious: They are nonnegative finite additive functions on ®, and for I €
G,p® D=0 _ (. 1R, IDF , then ¢ () =1. Let §,,i=0,1,2,..,
be positive reals such that the product l'l‘;o:o(l +8) converges and &, 3,
sufficiently large. Let &k = ﬂ:;o(l + 3:')' We shall prove by induction on »
that the sequence A; canbe chosen such that for every cube ICW,

(15) ¢ (D/8N° <k,

For n=0,
$D ()
anef  Lzan”
Let An = max,eG” ¢”(l). By (iv) of Lemma 4,

= §=S/2L558(1)S =P < KLGP< 1+ 8,

!
-t - _
A <KLTYA _X.a X =

n-1"nn? n

loga" if [l0>0;

For proving (15) we distinguish several cases.
(@) 1 €G,. Then
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n

¢, X a4 CKLZEA X amoHIrmE=D),
T Lp n“n n=1"n"n

The exponent of @, is negative. For a _ large enough, ¢n(l)/3(1)p can thus
be made as small as desired.
() IC] €G,. Then

¢”(l) o V(D) ¢(])(3(,))s-p ¢(])
snP mvpsnr  s(P\a) e

which is reduced to the previous case.

(c) IC] €G,__, and the length [ of the edge of I is greater than a_ ¥,
Let Ny and N j denote the number of elements of G, with nonempty intersec-
tion with I and ] respectively. By (iii) and (iv) of Lemma 4,

¢, (D ¢ (D N b pal)) l"
< . <K
&ne - Ny snP~  ane Lt

n-1
g o (i('_)) Cop  Buld
P\, ()P

since inequality (1) on A implies t'=p>0. For n> 1, the last expression
can be made as small as desired if @, _, is large enough, as was shown in
case (a). For n=1,

I
¢() ¢(])<—K-<1+8

= 1?
8(1)” &pP Lp

if 8, is sufficiently large.

(d) ICJ €G,_; but the edge I of I is not greater than a,,". The cubes
concentric to the cubes of G and with edge of length A‘(a/ $)=0 are dis-
joint by (3), so the number N of cubes of G, with nonempty intersection
with [ is at most N; < Ka(l)’Aa*es ThetefOte,

¢n(l) < N’An KA . -M(S-P)+(1WI)(0+GS)¢-0 X,
&')p - &DP - n-1 n—l n

For 0, n small enough and a, large enough, this can be made as small as
desired.
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(e) I is an arbitrary cube of edge length /. We may assume n> 1, as
the case n =1 is settled by the previous cases. We may also assume [>
.’/zA;_(f/‘)"e, since otherwise, for A__, large enough, I intersects at most
one element of G _,, which is also subsumed by the previous cases. Let ]
be a cube with the same center as I and edge length I+ 4A;"L1. For A _,
large enough we have

(B)/8NP <148,

¢n(,) < ¢n-l(]) _ ¢"-1(])(8_(]_))p
8(’)p = a(l)p - 8(])'0 &(1)
which proves (1s).

<(L+8))k,_ =k,

. L . 00
Now let €, i 2 2, be any sequence of positive integers such that Ei=2 €
converges. For every cube I € R, we have

¢ (N =¢D +(d (1) b1 ++2e +(@ (D)= _ (D).

The difference ¢, (D - ¢, _,(]) is contributed by those elements of G, _,
which intersect the boundary of I. Let N, be the number of those elements
of G,_,. The cubes concentric to the elements of G,_; and whose length of
edge is %A;_(_'l’/ $)=0 are disjoint. Therefore,

(16) N, < K max{8(1)S=-14((e7/)40s-1) 1

and
'¢k(l) - ¢,°_1(l)| < NkAk_l.

If the max in (16) is 1, then for @, _, large enough |¢,(D) -, (D) <e,.
Otherwise,

!
- s=1y -t ((0/s)+6)(s=1)~0(1 4
16D =@, (D <KEWDTIL7E A, X, ALY/ SIONs=D=ctiem),

For 0 small and A x—1 large enough, this is smaller than €,. This proves
that the functions an converge on each cube I € R, Since the functions ¢n
are additive, they converge also for every I € . The limit function ¢ is non-
negative, finite and additive. If I € R, ID F, there exists » such that 1D F,
and so @tl) =¢ (I) =1, For every cube IC W there exists 7 such that

() P ¢ (D) + 8NP

(D - (D] < 8D~
18,0 = #(0) ane ane

<kn+l<k.

So @, F, p satisfy the conditions of Lemma 2, and we have p - m*ET >0,
Acknowledgement. The authors wish to thank the referee for his useful
comments.
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