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EXTENSIONS AND LIFTINGS OF POSITIVE

LINEAR MAPPINGS ON BANACH LATTICES

BY

HEINRICH P. LOTZi1)

ABSTRACT.   Let F be a closed sublattice of a Banach lattice G.   We

show that any positive linear mapping from   F into L  (i¿) or C(X) for a

Stonian space X has a positive norm preserving extension to G.   A dual re-

sult for positive norm preserving liftings is also established.   These results

are applied to obtain extension and lifting theorems for order summable and

majorizing linear mappings.   We also obtain some partial results concerning

positive extensions and liftings of compact linear mappings.

The main purpose of this paper is to establish some conditions under

which positive linear mappings between Banach lattices have norm preserv-

ing positive linear extensions or liftings.   These results are then applied to

obtain extension and lifting theorems for order summable and majorizing linear

mappings and to establish the inductive and projective character of the |cr|-

tensor product topology introduced by Jacobs [6].   Finally, we obtain some

partial results concerning the problem of finding positive, compact linear

extensions and liftings of positive compact linear mappings between Banach

lattices.

We begin our discussion with a summary of known results concerning the

corresponding problems for continuous linear mappings between Banach spaces.

Suppose that E, F and G are Banach spaces, that cf> is an isometry of F

into G and that T is a continuous linear mapping of F into E.   When does

T have a norm preserving linear extension T:G —*E, that is, when does

there exist a continuous linear mapping T of G into E such that ||T|| = ||T||

and such that the following diagram commutes?

If E is the scalar field, the Hahn-Banach theorem asserts that such an exten-

sion T of T always exists.   Results of Nachbin [lO], Kelley [9] and Goodner
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Figure 1

[41 show that, for a fixed Banach space E,  such an extension T exists for

any choice of F, G, cp, T if and only if E = C(X) for some Stonian space X.

They also show that, for a fixed Banach space F, such an extension T

exists for any choice of E, G, <f>, T (that is, F is a J .-space) if and only if

F = C(X) for   some Stonian space X.   Furthermore, Kakutani [7] and Bohnen-

blust [l] prove that, for a fixed Banach space G, such an extension exists

for any choice of F, E, cf>, T if and only if G is isometric to a Hilbert space.

The corresponding problems for liftings can be formulated as follows:

Suppose that E, F, G ate Banach spaces, that <f> is a linear mapping of G

onto F that maps the closed unit ball in G onto the closed unit ball in F

(that is, 0 is a strict metric homomorphism) and that T: E —» F is a con-

tinuous linear mapping. When does T have a norm preserving linear lifting

T: E —» G, that is, when does there exist a continuous linear mapping T:

E —* G such that  ||T|| = ||T||  and such that the following diagram commutes?

G

4>

*F

T

Figure 2

Grothendieck [5], Pejfczynski [ll] and Kó'the [8] have established the follow-

ing results concerning this question.   For a fixed Banach space E, such a

lifting T exists for arbitrary F, G, cj>, T if and only if E = I (D for some

index set T.   Moreover, if we add the restrictions that G, F ate dual spaces

and that cS is an adjoint mapping, then / (D can be replaced by any AL-

space.   More generally, for a fixed Banach space E, a lifting T with range

in the bidual G   exists for arbitrary F, G, ci, T if and only if E is an AL-

space (see Figure 3).

In the corresponding extension and lifting problems for Banach lattices

E, F, G, we consider a positive linear mapping T and we are interested in

finding an extension or lifting T that is also a positive linear mapping.

Moreover, in the extension problem, we require that the isometry <f>: F —* G

is also a lattice homomorphism, while in the lifting problem, we restrict <ß:
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G"

St     *"'

E-► F-► F"

T

Figure 3

G —* F to be a metric homomorphism with property (AQ) (see (1.1)).   This

latter property is dual to the requirement that a mapping be a lattice homomor-

phism (see (1.2)).   We shall call a Banach lattice E injective if for any F, G,

cf>, T as restricted above,  T has a positive linear extension T: G —* E such

that ||T|| = ||T||.   Dually, we say that E is d-projective if for any F, G, <p, T

as restricted above, T has a positive linear lifting T: E —> G   such that

||f|| = ||T||, that is, there exists  f : E -* G" such that ||f|| = ||T|| and such

that the diagram in Figure 3 commutes.   (The notion of injective objects is

not only a categorical one but depends also on the class of embeddings used

(see [15]).   The injective objects in the category Banj [16] with the isometries

as embeddings are the S j-spaces.   The injective objects of Ban^, with the

topological isomorphisms as embeddings are usually called injective Banach

spaces.   The injective Banach lattices are the injective objects in the cate-

gory whose objects are the Banach lattices and whose morphisras are the

positive contractive linear mappings and where the embeddings are the lattice

isometries.)

In §1, we establish the duality between lattice homomorphisms and posi-

tive linear mappings that preserve order intervals and we also prove an ana-

logue to the Hahn-Banach theorem for positive linear functionals.   In §2, we

show that for a Stonian space X, C(X) is an injective Banach lattice and

that an AL-space is a ¿/-projective Banach lattice.   In contrast to the situa-

tion in the category of Banach spaces, we prove in §3 that any AM-space is

a ¿-projective Banach lattice and that any AL-space is an injective Banach

lattice.   Then we apply these results in §4 to the study of order summable

and majorizing linear mappings and the tensor product   E ®|_.| F where E

is a Banach lattice and F is a Banach space.   We show that E ®i   1 F is

injective (that is, cp ® if) is an isometry whenever cp, *fj ate isometries and

<p is a lattice homomorphism) and projective (that is, cf> ® xjj is a metric

homomorphism whenever ci, ip ate metric homomorphisms and cp has property

(Aq)).   Finally, in §5, we discuss some results concerning extensions and

liftings of positive compact linear mappings.

We conclude this introduction with a summary of the special terminology
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and results concerning Banach lattices and tensor products that will be used

throughout this paper.   We refer the reader to [12] or [13] for background

material on Banach lattices.

Suppose that £ is a Banach lattice.   Then E is an AAl-space if ||x V y| =

sup[||xfl, ||yfl | for all * > 0, y > 0 in £.   An element e of an AAl-space is a

unit if ||e|| = 1 and x < e for all x £ E such that ||x|| < 1.   E is an AL-

space if ||x + y\\ = ||x|| + ||y||  for all x > 0, y > 0 in E.   Kakutani has proved

that: (a) The norm dual of an AM-space is an AL-space and that the norm

dual of an AL-space is an AM-space with a unit,  (b) If £ is an AAl-space

with unit, then E is lattice isometric to the Banach lattice C(X) of contin-

uous real-valued functions on a compact Hausdorff space X.   (c) If £ is an

AL-space, then £ is lattice isometric to the Banach lattice L    of equiva-

lence classes of integrable functions on a suitable measure space.  The vec-

tor lattice C(X) is order complete if and only if X is Stonian, that is, the

closure of every open set in X is open.   X is totally disconnected if the

topology of X has a base consisting of clopen sets, that is, sets that are

both open and closed.

If £ is a Banach lattice and x > 0 in E, then Ex is the linear hull of

the order interval [-x, x] in E equipped with the norm given by the Minkow-

ski functional of [—x, xj.   £    is a lattice ideal in £ and £    is an AM-space

with unit x.

If £ is a Banach lattice, then a sequence [x^j C £ is summable if the

net {2  ,„ x  j directed by the finite subsets of H of the set N of natural

numbers converges in E.   We write   2~=1 xn for the limit of this net.   The

space /He] of all summable sequences in E equipped with the norm

is a Banach space; moreover if xn > 0 for all n then ||{*„i||£= ll^jlj xn\\-

Suppose that E is a Banach lattice and that F is a Banach space.  A

continuous linear mapping T: E —* F is order summable if there exist an AL-

space L, a positive linear mapping T.: E —» L and a continuous linear

mapping T2: L —* F such that T - T2 °TJ.   The infimum of ||T]J| ||T2||

taken over all those factorizations of T through AL-spaces defines a norm

Tt-> ||T||L on the vector space S+(E, F) of all order summable linear map-

pings of E into F.   If 5: F —» £ is a continuous linear mapping, then 5 is

majorizing if there exist an AM-space C, a positive linear mapping S'. C—»

E and a continuous linear mapping S.i F —* C such that S = S2 °S..   The

infimum of ||S,J| ||52|| taken over all factorizations of S through AM-spaces
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defines a norm S H» \\S\\M on the vector space M+{F, E) of all majorizing

linear mappings of F into E.   T: E —► F is order summable if and only if its

adjoint T : F —» E   is majorizing; moreover, ||T||L = ||T ||M in this case.

Similarly S: F —» E is majorizing if and only if S : E —» F   is order sum-

mable; in this case we have  \\S\\M = \\S ||L. We refer the reader to [6] and [14]

for background material on order summable and majorizing linear mappings.

If £ is a Banach lattice and if F is a Banach space, we define |oj-norm

IHI^I on E ® F by

I "Il H
n

= inf * ' Z *ibi\
1=1

*i > o, « = Z *< ® y«[
¿=i

£ ® E equipped with the |a|-norm will be denoted by E ®iai F and its

completion by   E    ®\a\ E.    The dual of E   ®ii  E is isometric to S+(E, F)

equipped with the norm ||*||L and also isometric to M+{F, E ) equipped with

the norm ||-||M.

If E and E are Banach spaces, then a continuous linear mapping T:

E —» F is a metric homomorphism if it maps the open unit ball in E onto the

open unit ball in E.

If E and F are Banach lattices and if T: E —» F is a positive linear

mapping then T is strictly positive if Tx = 0 for x > 0 implies x = 0.

The author wishes to thank Professor Anthony L. Peressini for all his

assistance during the preparation of this paper.

1.   In this section, we shall establish two preliminary results that will

be needed in our discussion of extensions and liftings of positive linear

mappings.

(1.1).   Definitions.   Suppose that E, F are Banach lattices and that T:

E —* F is a positive linear mapping.   Then T has property:

(A0)   if r[0, x] is dense in [O, Tx] fot each x > 0 in E;

(Aj)   if T is a lattice homomorphism;

(A2)  if T[0, x] = [0, Tx] toi each x > 0 in E.

The basic relationships between these properties are described in the

following result which is essentially due to T. Ando.

(1.2).  Proposition.   Suppose that E and F are Banach lattices and that

T: E —» F is a positive linear mapping.   Then

(a) T has property (AQ)  if and only if T   has property (A,);

(b) T has property (Aj)  if and only if T'  has property   (A2)  {or (AQ)).

Proof.   To prove (a), assume that T has property (AQ), that y   £ F'

and that x > 0 in E.   Then
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(T'y'f(x) =   sup   (z, T'y1) =   sup   (Tz, y')

ze[0,x] ze[0,x]

=     sup    (y, y')   (by (A0))

ye[o,Tx]

= <Tx,(y')+) = <x, T'y'+).

Consequently, (T y)   = T (y   ) for ail y £ F , that is, T   has property (A,).

Conversely, suppose that T   has property (Aj), that x> 0 in E and

that 0 < z 4 T[0, x].   Then z and T[0, x] can be strictly separated by a

closed hyperplane, that is, there exist y   e F   and a £ R such that (w, T'y)

= (Tw, y')<a< (z, y') for all w £ [0, x].   But then <Tx, y'+) = (x, T'(y'*)) =

(x, (Ty')  )<a <(z, y   ) since T' has property (Aj) and since z > 0.   Since

Tx > 0 it follows that z 4 [0, Tx].   Consequently,  T[0, x] is dense in [0, Tx],

that is, T has property (AQ).

If T has property (A j), and if y  > 0 in F, then we shall show that

T [0, y ] = [O, T y ].   Now  T [0, y ] and [O, T y'] ate weak*-compact and by

an argument similar to that used in the preceding step we can see that

T'[0, y] is o(E', E)-dense in [0, T'y ].   Therefore,  T* has property  (A2).

If T   has property (AQ), then T   has property (A j) by (a) and so T has

property (Aj).   This completes the proof.

The following extension theorem follows from (1.1).

(1.3). Corollary.   Suppose that F is a closed sublattice of a Banach

lattice E and that y   is a positive linear functional on F.   Then y   has a

positive linear extension x   to E such that ||x || = ||y ||.

Proof.   By the Hahn-Banach theorem, y   has a continuous linear exten-

sion z   to E such that \z || = \\y \\.   Since the canonical injection of F into

E is a lattice homomorphism, its adjoint, which maps each w £ E   onto its

restriction   w'F  to F, has property (A2).   Hence, since |z|F>y  > 0, it

follows that there is an x   £ [0, |z'|] such that x'F = y .   Since ||y'|| < ||x'|| <

|||z'||| = ||z'|| = lly'll the proof is complete.

2.   In this section, we shall show that C(X), where X is a Stonian

space, is an injective Banach lattice and that any AL-space is a a'-projec-

tive Banach lattice.

(2.1).  Proposition.   Suppose that X is a Stonian space, that G is a

Banach lattice, that F is a closed sublattice of G, and that T is a posi-

tive linear mapping of F into C(X),   Then T has a positive linear extension

f: G -> CXX) such that \\f\\ = ||T||.
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Proof.   If /^ denotes the vector lattice of all bounded families {z-, t £ X\

of real numbers indexed by X, then the linear mapping S: C{X) —» f^ defined

by S(/) = {/(/): t£ X\ is a (lattice) isometry.   Since C{X) is a iPj-space

there exists a P: f^ —» C{X) with |P|| = 1 such that P °S is the identity

on C(X).   P maps the element [zj with z( = 1 for all t £ X onto the identi-

cally one function ex of G(X).   Consequently, P is positive.   (In fact, by

[3, Theorem 2.5] P can be chosen to be a lattice homomorphism.)

For each t £ X, define x\  £ F' by x[ {x) = {Tx){t) {x £ F).    Then x\ > 0

and I!*,'|| < l|T||  for each t £ X.   By (1.3), each x't {t £ X) has a positive

linear extension z    to G such that  ||z || = ||x, ||. Define a positive linear

mapping 7^: G — £ = G()8X¿) by T¿z) = l^'U): r £ X\.   Clearly, ||Tj|| <

||T|| and T. is an extension of S ° T.   Hence, the positive linear mapping

/: G —» C(X) defined by r=P°T. provides the required extension of T.

It should be remarked that if X is a compact Hausdorff space (or if E

is an AM-space), then (2.1) implies that each positive linear mapping T of a

closed sublattice F of a Banach lattice G into C(X) has a positive linear

extension f : G •— C(X)" (or T: G — E") such that ||f || = ||T||.

The following result is dual to (2.1).

(2.2).   Proposition.   Suppose that L is an AL-space, that G, F are

Banach lattices, that <f>: G —» E is a metric homomorphism with property (AQ)

and that T: L —* F is a positive linear mapping.   Then there exists a posi-

tive linear mapping T: L —> G" such that  \\T\\ = ||T||  and such that cp" ° T =

T ° Q where Q is the canonical mapping of F into F .

Proof.   Since L  is an AL-space, it follows that L    is an order complete

AM-space and so L   is lattice isometric to C(X) for some Stonian space X.

The adjoint T   is a positive linear mapping of F   into L .   Also, since cf> is

a metric homomorphism with property (AQ), it follows from (1.2) that E   can

be identified with a closed sublattice of G .   By (2.1),  T   can be extended

to a positive linear mapping S: G —* L   such that ||S|| = ||T||.   The restric-

tion of—5 : L —► o   to L then provides a positive linear extension T: L —*

G" of T such that ||f|| = ||T|| and <p" ° f = T o Q.

We remark that if we assume, in addition to the hypotheses of (2.2), that

G, F ate dual Banach lattices and that cp is an adjoint mapping, then there

is a positive linear lifting f : L -» G of T such that ||f || = ||T||.

3.   The main objective of this section is to show that any AM-space is

a ¿-projective Banach lattice and that any AL-space is an injective Banach lattice.

The following preliminary result is a special type of lifting theorem for the

identity mapping on C{Y) for a totally disconnected compact Hausdorff space
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y.  In its proof we shall make use of the fact that if x is a positive element

of a Banach lattice E, then y is an extreme point of [0, x] if and only if

y A (* - y) = 0.   The set of extreme points of a set A will be denoted by

Ext A.

(3.1).   Proposition.   Suppose that X, Y are compact Hausdorff spaces

and that Y is totally disconnected.   If T: C(X) —» C(Y) is a strictly positive

linear mapping with property (A2) and if Te„ = ey where e„, ey are the

identically one functions on X, Y, then there is a lattice isometry S: C(Y)

—► C(X) such that Sey = ex and T °S = idC(y..

Proof.   We begin by showing that each extreme point of the order interval

[0, ey] is the image of a unique extreme point of [0, e^].   Suppose / e"

Ext[0, ey\.   Since T has property (A2) and since Tex = ey, it follows that

there is a g e [0, ex] such that Tg = f.   If 0 < h < g A (ex - g), then 0 <

Th < f A (ey - /) = 0; consequently, g A (ex - g) = 0 since g is strictly

positive.   Therefore, g £Ext[0, ex].   If gj is another element of Ext[0, c^]

such that Tgj = /, then since J Vgi+gAgpi + it, it follows that / =

'AMg VgJ + rtgA 8l)\.   But / £ Ext[0, eY] and T(g V g,), T(g A gt)

belong to l0, ey] so / = T(g V gj) = T(g A gj). that is, T(g \/ g1-g A gj) =

0.   Since T is strictly positive, it follows that gVgj=gAg1 so g = g,.

Since / £ ExttO, ey] if and only if / A (ey - /) = 0, it follows that

Ext[0, ex] coincides with the set of characteristic functions of all clopen

sets in Y.   Hence, Ext[0, ey] is a Boolean algebra with respect to the lat-

tice operations of C(Y),   T is a one-to-one mapping of B = \g £ Ext[0, ej:

Tg e Ext[0, ey]} onto A = Ext[0, ey].  Let SQ: A —> B be the inverse of T.

We shall now show that B is a Boolean algebra for the lattice operations

induced by C(X) and that SQ is a Boolean isomorphism.   Clearly, SAO) = ^

and SQey = €%'   ^ fv I~2 are disjoint elements of A, then SJ. A SQf2 = 0

since T is strictly positive.   But then

flVi V V2> = T(Vi + V2> = /I + /2 = /iV/2

so that Sn(/j V ^ = ^r/l V ^0^2 ^or a^ /i» ^2 *n ^*   Consequently, SQ is a

Boolean isomorphism of the Boolean algebra A onto B.

The linear hull M of A is a sublattice of C(y) and 5. extends to a

linear lattice isometry S of M into C(X).   Moreover, since  Y is totally dis-

connected, M is dense in C(Y),   Consequently, S extends to a lattice iso-

metry of C(Y) into C(X) and, since (T ° S)(f) = / for each / £ Ext[0, ey],

it follows that T ° S = idc,yj.
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Corollary.   Suppose that X is a Stonian space, that Y is a compact

Hausdorff totally disconnected space and that T: C(X) —» C{Y)  is a positive

order continuous linear mapping with property (A2) such that Tex = ey. Then

there exists a lattice isometry S: C{Y) —> C{X) such that T ° S = idC(Yy

Proof.   If /= {/ e C(X): T\f\ = 0!, then / is a band in C(X) since T is

positive and order continuous.   Therefore, there is a clopen subset XQ of X

such that / £ I if and only if / vanishes off XQ.   If Xj is the complement of

XQ in X and if T,  is the mapping induced on C(Xj) by T, then Tj satis-

fies the hypotheses of (3.1), so there is a lattice isometry S.  of C{Y) into

C(Xj) such that S.ey = e„    and Tj °5j = idc,y>.   But then if Sj is com-

posed with the canonical mapping of C(Xj) into C(X), we obtain a lattice

isometry S: C{Y) —► C(X) of the required sort.

We can now show that AL-spaces are injective Banach lattices.

(3.2).   Proposition.   Suppose that L is an AL-space, that F is a closed

sublattice of a Banach lattice G and that T: F —» L is a positive linear map-

ping.   Then T has a positive linear extension T: G —» L such that \\T\\ =

imi.
Proof.   If cf>: F —»G is the canonical injection, then <f>    and T   ate

positive linear mappings and cf>   is order continuous.   Since L is an AL-

space, there is a Stonian space X such that L   is lattice isometric to C(X).

If T ex = x , then x  > 0 and x   has a positive linear extension y   to G

such that ||y || = ||x ||  by (1.3).   Then Ex# and G , ate order complete AM-

spaces, so there exist Stonian spaces Y and Z such that E / is lattice iso-

metric to C{Y) and G /   is lattice isometric to C{Z).   The restriction  R of

<p   to C{Z) is an order continuous, positive linear mapping of C{Z) onto

C{Y) such that Rez = e„.   Moreover, since <f> is a lattice homomorphism and

since Fx i, G , ate lattice ideals in F , G , respectively, then R has property

(A2) by (1.3).   Therefore, by (3.1) Corollary, there exists a lattice isometry

S: C{Y) —* C{Z) such that R ° S = idç.yy   The mapping S ° T' is a positive

linear mapping of C(X) = L' into G' such that ¡S °T'\\ = ||y'| = ||T||.   Since

it is well known that there is a positive projection P of norm 1 from L" onto

L, we can take T to be P °[{S °T) \„] to obtain the desired extension.

The preceding construction of T is illustrated by the following commu-

tative diagram.

Corollary 1.   // E is a closed sublattice of a Banach lattice G and if

F is an AL-space, then F is the range of a positive projection on E of

norm 1.
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G"

/|\(SoD'

F"-^L"

/       T  /p'-*L     ?

Figure 4

Proof.   The identity mapping idp on F is positive and has norm 1 so

(3.2) implies that idp extends to a positive linear mapping P: G —» F of

norm 1.   Clearly, P is a projection with range F.

Corollary 2 (Dean [2]).   Any closed sublattice of an AL-space is the

range of a positive projection of norm 1.

Proof.   Corollary 2 is a special case of Corollary  1.

Corollary 3.   // E and G are Banach lattices, if F is a closed sublat-

tice of G that is an AL-space, and if T: F —» E is a positive linear mapping,

then T has a positive linear extension T: G —» E such that \\T\\ = ||T||.

Proof.   This follows immediately from the fact that F is the range of a

positive projection on G   of norm 1.

The following result, which is dual to (3.2), shows that any AM-space

is a a'-projective Banach lattice.

(3.3).   Proposition.   Suppose that M is an AM-space, that cf> is a metric

homomorphism with property (An) from a Banach lattice G onto a Banach

lattice F and that T: M —* F is a positive linear mapping.   Then there

exists a positive linear mapping T: M —» G* such that cf>' °T = Q °T and

||T|| = ||T||, where Q is the canonical mapping of F into F1.

Corollary 1.   // X z's a compact Hausdorff space and if cf> is a metric

homomorphism with property (AQ) from a Banach lattice G onto C(X), then

C(X)   is lattice isometric to an order complete sublattice of G" which is the

range of a positive projection of norm 1.

Corollary 2.   // X is a compact Hausdorff space and if <f> ** a metric

homomorphism with property (AQ) from C(X) onto a Banach lattice E, then

E'   is lattice isometric to an order complete sublattice of C(X)   which is the

range of a positive projection of norm 1.

Note that under the conditions of Corollary 2, E is lattice isometric to

C(Y) for some compact Hausdorff space  V.
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Corollary 3.   // E and G are Banach lattices, if X is a compact tíaus'

dorff space and if cp is a metric homomorphism with property (AQ) from G

onto C{X), then every positive linear mapping T: E —» C(X) has a positive

linear lifting f : E -» G" such that ||f || = ||T||.

If we strengthen the hypotheses of (3.2) and Corollary 3 by requiring the

domain and range of cf> to be dual Banach lattices and cf> to be an adjoint

mapping, then we can conclude that the lifting T of T has its range in G

rather than G .

It is easy to see that if E is a closed sublattice of an injective Banach

lattice E that is the range of a positive contractive projection then E is

injective.   Also, if ÍEa! is a family of injective Banach lattices then their

/""-product K*a): *a e Ea, sup||xa|| <°oj equipped with the product order and

the norm ||(*a)|| = supi||xa||i is an injective Banach lattice.

(3.4). Lemma. Any Banach lattice E is lattice isometric to a closed

sublattice of an f-product of AL-spaces (and hence of an injective Banach

lattice).

Proof.   If 0 < x   £ £', then / = [x: (\x\, x) - 0¡ is an ideal in E.   The

functional {x + ¡) h+ (|*|, x )  defines a lattice norm on E/I that is additive

on the positive cone, so its completion is an AL-space which we denote by

(E, x ).   The canonical lattice homomorphism cf>x>  from E into (E, x ) has

norm ||x ||.   Obviously, the map x —» {cf>x<{x)) defines a lattice isometry fromt

E into the /""-product of the family i(E, x'): 0 < x' £ E, ||x'|| = 1 j.

(3.5).   Proposition.   Let E be a Banach lattice.   Then the following

assertions are equivalent:

(a) E is an injective Banach lattice.

(b) // E is lattice isometrically embedded in a Banach lattice F then

there exists a positive contractive projection from  F onto E.

(c) E is lattice isometric to a closed sublattice of an f-product of

AL-spaces that is the range of a positive contractive projection.

Proof.   The implication (a) =» (b) is trivial.   The implication (b) =» (c)

follows from (3.4) and the implication (b) =» (a) follows from (3.2) and the

remarks above.

4.  As applications of the preceding results, we shall now establish an

extension theorem for order summable linear mappings, a dual lifting theorem

for majorizing linear mappings, and the injectivity and projectivity of the  |ff|-

norm on the tensor product of a Banach lattice with a Banach space.
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(4.1).   Proposition.   Suppose that G is a Banach lattice, that E is a

closed sublattice of G, and that F is a Banach space.   If T: E —> F is an

order summable linear mapping, then T can be extended to an order summable

linear mapping T: G —» F such that ||T||,  = ||T||, •

Proof.   If T is order summable then there exist an AL-space L, a posi-

tive linear mapping T¡i E —» L with  \\Tx\\ = \\T\\L and a linear mapping  T2:

L —» G with ||r2|| < 1 (see [14, 1.6]).   By (3.2), Tj has a positive linear

extension t^ G —> L such that ||f J = HTj.   But then f = T2 °f j is a

positive linear extension of T which is order summable and ||T|,  < ||T.|| =

||T||L.   Since T is an extension of T we have  |T||L > ||T||L which completes

the proof.

The following lifting theorem for majorizing mappings is dual to (4.1).

(4.2).   Proposition.   Suppose that F and G are Banach lattices, that

cß is a metric homomorphism of G onto F with property (AQ).   // T: E —> F

z's a majorizing linear mapping, then there exists a majorizing linear mapping

f : E -» G" with ||f ||M = ¡T||M and such that cf," o f = Q ° T where Q is the

canonical mapping of F into r.

Proof.   T : F —> £   is an order summable linear mapping since T is

majorizing.   Also, since <p is a positive metric homomorphism of G onto F,

cf>   is a lattice isometry of F    into G   by (1.2).   Hence, by (4.1), there exists

an order summable linear mapping S: G —► E   such that S °cf>  = T   and such

that ||f||L = ||r'||L = ||T||M.   But then the restriction f of S' to E is a

majorizing linear mapping of E into G" such that ||T||,, = ||T||.. and Q °T =

0   °T where Q is the canonical mapping of F into F .

As with (2.2) and Corollary 3 of (3.2), we can conclude that the lifting T

of T described in (4.2) is a majorizing linear mapping of E into G provided

that we assume, in addition to the hypotheses of (4.2), that G, F ate dual

Banach lattices and cf> is an adjoint mapping.

We now establish the injectivity and projectivity of the |ff|-norm on the

tensor product of a Banach lattice with a Banach   space.

(4.3).   Proposition.   Suppose that E, G are Banach lattices, that F, H

are Banach spaces, that <f>: E —* G is a lattice isometry and that xfi: F —» H

z's are isometry.   Then cf> <g) xp: E ®iai F —» G ®\a\ H ts an isometry.

Proof.   It suffices to prove that the adjoint mapping (<f> ® xp)   is a metric

homomorphism of (G «^ //)' = (5+(G, H'), || • ||L) onto (E 0^ F)' =

(S+(E. F'), I • ||L).   Hence, suppose that U £ S+(E, F') and that \\U\\L < 1.
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Then U = U2° U, where U.  is a positive linear mapping of E into an AL-

space L and U2 is a continuous linear mapping of L into E   such that

\\U A \\UA\ < 1.   Since <p is a lattice isometry, <p(E) is a closed sublattice

of G.   Hence, by (3.2) there exists a positive linear mapping V,: G—> L

suchthat ||Vj|| = ||í/j||  and Vl°cp=U1.   Also, ^   is a metric homomorphism

of tí   onto E   so there is a continuous linear mapping V2: L —♦ H   such

that ^' ° V2 = U2 and \\V2\\ = ||l/2||  (see Grothendieck [5]).   But then V =

V2°Vj€S+(G. tí'), {cp ® $V-l/ and ||V||L < |V2|| ||V,|| < 1, so (<p ® ̂ )'

is a metric homomorphism.   This completes the proof.

(4.4).  Proposition.   Suppose that EQ is a closed subspace of a Banach

lattice E for which G = E/EQ is a Banach lattice for the canonical quotient

ordering and that the quotient mapping cp: E —» G has property (A0), that

FQ is a closed subspace of a Banach space F and that ifj: F —* H = F/FQ

is the canonical quotient mapping.   Then cf> ® ifi is a metric homomorphism

of E ®| o-l E onto G ®i j tí.

Proof.   It suffices to show that {<f> ® iff)   is an isometry of (M+(//, G ),

|| • ||M) into {M+{F, E'), II - ||M).  Hence, suppose that Te M+(E, G'), ||T||M -

1.   Then cf> : G —► £   is an order continuous lattice isomorphism and

{cp ® xfi)'{T) = cp  °r°^ isa majorizing mapping of F into E'  by Corollary

5 of (1.7) in [l4].   Now   iff maps the open unit ball U in E onto the open

unit ball V in H, so the supremum of the set T{V) in G   coincides with the

supremum of the set (çS Tip){U) in E  since <f>   is an order continuous lattice

isomorphism.   Therefore

||(«p®^'(t)||m = «suP(<p'r.¿)(fJ)!|H< = || sup r(v)||G, = ||r||AI

since 0   is an isometry.

5.   In this section, we consider the problem of obtaining positive com-

pact linear extensions and liftings of positive compact linear mappings.   The

following result is basic to these considerations.

(5.1).   Proposition.   Suppose that E and F are Banach lattices and

that <f> is a metric homomorphism from E onto F with property (A2).   // {y }

is a positive summable sequence in F such that |||y  !||   < 1, then there

exists a positive summable sequence \x \ in E such that \\\x \\\   < 1 and

cb{x ) = y    for all n.

Proof.   The proof relies on the following lemma.

Lemma.   // E,  F and cp are restricted as in (5.1) and ifO<y.£Ffori= 1,
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2,..., re with ||2". y II < 1, then there exist 0 < xi e E for i = 1,2,..., n

such that  ||2"=1 x¿ || < 1 and <£(x¿) = y. for i =' 1, 2,..., re.

To verify the lemma, we first note that if y = 2"=1 y¿, then there is an

xQ £ E such that ||x || < 1 and <f>{xQ) = y since <f> is a metric homomorphism.

But then <£(|*0|) > y > 0 so there is an x £ [0, |*0|] such that <f>{x) = y since

0 has property (A2); clearly,' ||*|| < I«   Now suppose that 1 < m < n and that

there exist 0 < x. £ E for j < m such that 2<m *y <* and çS(x.) = y. for

/' < m.   Then <£ maps [0, x - 2.      x ] onto [O, y - 2.      yj  since <£ has

property (A2).   Thus, since ym<y - 2,<m y-, there is an xm in [0, x -

2.      x.] suchthat <¿(x  ) = y   .   Clearly 2.      x.<x so that ||2.     x.||<l.
1<m    ]J r    m        Jm '       i<m    j- »   y<m   j"

Hence, by induction the lemma follows.

To complete the proof of the proposition, choose 5 > 0 so that ||{yn!|lf <

1—8.   Choose an increasing sequence |x, | of positive integers such that

«1

i'=l

< 1-5,

»k<'Z"k+i

for k = 1, 2,... .   By the above lemma, there exists a positive sequence {x  }

in E such that d>(x ) = y    for all re and such that

i=l nk<isnk+i

for k = 1, 2,... .   Since the norm of E is monotone on the positive cone,  ix  1

is a summable sequence in E with  ||lx^i||f < 1.   This completes the proof of

the proposition.

(5.2).   Proposition.   Suppose that E and F are Banach lattices and that

cf> is a metric homomorphism of F onto E with property (A A.   If T: c. —> E

is a positive compact linear mapping such that \\T\\ < 1, then there is a posi-

tive compact linear mapping T: cQ —» F sz.cZ> that- \\T\\ < 1 and T = <f> °T.

Proof.   Let e    denote the wth unit vector in cn and let x   = Te    fot each
n u n n

positive integer re.   Then x   > 0 for all re since T is positive.   Moreover,

\xn\ is summable in E since T is compact and ||ix  j||   < 1 since ||T|| < 1.

By (5.1), there exists a positive summable sequence iy  ! in F such that

||iy   i|L < 1 and such that r/>(y ) = x    for all re.   Define T: cQ —» F by

n=l

Then it is easy to verify that T is a positive compact linear mapping with

|| Til < 1 and that 4> ° f = T.
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By duality, we obtain the following extension theorem from (5.2).

(5.3).   Proposition.   Suppose that E, F are Banach lattices and that

<f>: E —* F is a lattice isometry.   If T: E —» /    is a positive compact linear

mapping such that ||T|| < 1, then T has a positive compact linear extension

f: F -» I1 such that \\f\\ < 1.

(5.4).   Proposition.   Suppose that E is a Banach lattice and that F is

a closed sublattice of E.   If T is a positive compact linear mapping from E

into cQ then T has a positive compact linear extension T with ||T"|| = ||T||.

Proof.   Let y   = T e    where e    denotes the wth unit vector in / .

Since T is compact lim \\y || = 0 and since T is positive y   > 0.   By (1.2)

there exists a sequence \x \ C E    of positive elements such that x   is an

extension of y    with ||x || = ||y ||.   Since lim||x || = 0 the linear mapping

T: x—> {{x, x )) is a positive compact extension of T.   Moreover,  ||T|| =

suplan = sup b;u = imi.
We conclude this section with some open questions concerning positive

compact mappings:

(1) In (5.2) and (5.3), can cQ be replaced by an arbitrary AM-space and

/    by an arbitrary  AL-space?

An affirmative answer to (1) would be implied by an affirmative answer

to the following question:

(2) If T is a positive compact linear mapping of a Banach lattice E

into an AL-space L then does  T have a representation Tx = 2   _, {x, x )y ,

x £ E, where ||yj| = 1 for all n, yn > 0, and jx^} is a positive summable

sequence in E ?   (An affirmative answer to this question would imply that

every positive compact operator T: C{X) —» L is nuclear.)

(3) If E is a closed sublattice of a Banach lattice F, if X is a com-

pact Hausdorff space and if T: E —» G(X) is a positive compact linear map-

ping, then can T be extended to a positive compact linear mapping    T:

F -# C(X)?
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