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EXTENSIONS OF MAPS AS FIBRATIONS

AND COFIBRATIONS

BY

FRANK QUINN(1)

ABSTRACT.  Suppose /: X —• Y is a map of 1-connected spaces. In

the "stable" range, roughly where the connectivity of Y exceeds the ho-

mology, or homotopy, dimension of X, it is well known that / can be ex-

tended as a cofibration C — X — Y, or respectively a fibration X — Y — B.

A criterion is given for the existence of such extensions in a less restric-

tive "metastable" range. A main result is that if / is at least 2-connec-

ted and 2 con Y > dim Y - 1, dim X, then / extends as a cofibration if

and only if the map (1 X /)A : X — (X x Y)/X factors through /.

We consider the question: Given a map /: X —• Y, when can it be ex-

tended up to homotopy to a fibration X —• Y —♦ B, or a cofibration C —• X

— Y? Generally no such extension is possible. In an appropriate "stable"

range of dimensions and connectivities the extension can be made. The ob-

ject of this paper is to give a necessary and sufficient condition for the ex-

tension in the "metastable" range.

Only the simply connected version is considered here, and spaces are

understood to have the homotopy type of a CW complex; basepoints are non-

degenerate. A cofibration lemma similar to 1.2 was announced in [3], and

the nonsimply connected version is given in [4]. It was developed for use as

a main step in constructing a surgery theory for Poincaré' spaces. Corollary

1.3 and some standard Spanier-Whitehead duality can be used to do surgery

on simply connected Poincaré' spaces.

T. Ganea [2] and R. Nowlan [6] have similar results, but their extension

criterion involves operation, or "cooperation" of an ¿-space, or co-A-space.

Our criterion is based, in the cofibration case, on a homotopy analog of the

vanishing of certain products in cohomology. See the comments after 1.3.

1. Statements of results. First some notations are established. For a

map /: X — y we denote by Y. the range of / converted functorially into
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a cofibration (mapping cylinder of /), and X' the domain of / made into a

fibration (path space construction). The fiber and cofiber of / are then given

respectively by X' |+ and Y,/X.

We wish to make perfectly clear what we mean by connectivity and di-

mension. Suppose /: X —► Y is a map of connected spaces. Define

con /= max{A|?7\ (Y,, X) = 0, / < A|,

àïmj = min !A|tt;. (Yf, X) = 0, / > A},

dimHf=min\k\tí.(Yf, X) = 0, / > Ai,

dim/=miníA|/7;.(y/, X) = 0, and Hj(Y¡, *î A) = 0, any A, j> Ai.

The main result is

1.1. Cofibration.  // /: X —» Y is at least 2-connected, X, Y 1-connected,

and dim / < 2 con Y + con /, then f extends up to homotopy to a cofibration

if and only if the map X —*X/[X^\^\ factors through f.

Fibration.  If f: X —» Y is a map with dim f < 2 con X + con /, then f

extends as a fibration if and only if the map Yq\if —* Y factors through f,

where q: Y —* Y./X is the quotient map.

This will be proved in §3. There is a uniqueness which asserts that with

the dimension restriction lowered by 1, the cofibration or fibration is uniquely

determined by the factoring.   In the "stable" range the factoring is automatic.

In the cofibration case the factoring hypothesis can be made more explicit.

1.2. Corollary.  If f: X —* Y is a map, at least 2-connected, of 1-connec-

ted spaces, and 2 con Y > dim Y - 1, dim X then f extends as a cofibration

if and only if the map (1 x /)A: X —* (X x Y)/X factors through f.

Proof. Since dim /< dim Y, dim X + 1, and con f> con Y, con X + 1, the

inequality of 1.1 is implied by dim  Y, dim X + 1 < 3 con Y, 2 con Y +

con X + 1. The inequality of 1.2 certainly implies this.

The dimension restriction implies that Y is a suspension. In this case

X/tX'IJ is homotopy equivalent to [X'|J+ A Y [5, p. 455], and the compo-

sition

X - X/[X'\ J ä [x'| J+ A Y — X+   A Y

is homotopic to (1 x /)A. Therefore to recover the hypotheses of 1.1 from

1.2,   we need the connectivity of the map [X' | ]+ AY —► X+AY to be greater

than or equal to dim Y and dim X + 1. This connectivity is 2 con Y + 1,

which gives the inequality of 1.2.   ü

The important special case  Y - Sm is covered in more detail.

1.3. Corollary.  Suppose f: X — Sm is at least 2-connected, and m>

2.  If m = 2 and dim X < 4, or dim X < 3bz - 4, 2m + con X - 2, and a null-
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homotopy of (f A 1)A:  X —* SmX is given, then there is a secondary ob-

struction map X —* S2m-1(X+) defined. If this map is nullhomotopic, f ex-

tends as a homotopy cofibration.

The conclusion of 1.3 should be interpreted as "removing a cell" from

X. Given a cofibration C —• X —• Sm, the Hurewicz theorem applied to

(X, C) using HJ_X, C) KH^S™) provides a map P: S"2"1 — C and a homo-

topy equivalence CUpDm =* X. On the other hand if a e Hm(X) is the co-

homology class / [Sm], a first obstruction to killing this cohomology class

by removing a cell is that all products  a n k should vanish for k e H .(X),

j > 0. This is the algebraic analog of (/ A 1)A, since this map induces the

homomorphism an on homology. Further, given that all products with  a

vanish, secondary cohomology operations can be defined. The essential one

is induced by the obstruction map X —• S m~ X in the statement of 1.3.

Naturally the geometric conditions are much stronger than the cohomology

analogs.

Proof of 1.3. The inequalities are those of 1.1. Y = Sm so X/fx'lJ =*

5m[X^|J VSm. The map of X into this space factors through / if and only

if the first factor is nullhomotopic, because [X' |+] is at least 1-connected.

As in 1.2, the composition X -'Sm[X/|J — SmX is (/A 1)A, and we have

assumed a nullhomotopy of this is given. The nullhomotopy defines a lift of

X to the fiber of Sm[X' \^] — SmX, which we can identify. There is a cofi-

bration

x'\ * - id - x'/lx'i J =* Sm A [X'| J +.

This, suspends to a cofibration

s2m~\[xf\ J+) - sm[x'\ J - smx.

According to 2.2, this sequence is also a fibration up to dimension 3zzz +

conX-1. Further the map S2m-l(X> \¿) — S2w~*<X+) is 3ztz - 2 connected.

Since both of these numbers exceed dim X, the lift defines a map X —•

S m~ (X+). This map is nullhomotopic if and only if there is a nullhomotopy

of X —• Sm[X' U covering the given homotopy of (/ A 1)A.  1.3 now follows

from 1.1. G

The fibration case lacks the corresponding calculation of Yq\ie. If the

extension as a fibration is possible, it can be calculated via [l, Theorem l.l],

but there does not seem to be an a priori understanding at present. Significant

applications are also lacking, in part because of the scarcity of finite Post-

nikov systems in nature.

2. The stable case. We first make more precise what is meant by a fi-

bration or cofibration "up to homotopy".



206 FRANK QUINN

/ e
2.1. Definition. Suppose there is a sequence-of maps X —* Y   — Z to-

gether with a nullhomotopy of the composition go/.

(i) They form a homotopy fibration if the induced map X —• Y8\^ is a

homotopy equivalence. They form an n-fibration if X —» Y8\^ is «-connected.

(ii) Similarly they form a homotopy cofibration (resp. n-cofibration) if

Y./X —• Z is a homotopy equivalence (resp. n-connected).

The first step is to specify to what extent these situations imply each

other.

2.2. Proposition. Consider a sequence of l-connected spaces X —>  Y
a

—> Z together with a nullhomotopy of g o /.

(i) // they form a homotopy fibration, then they are also a con / + con

co/z'i>rarz'oB.

(ii) // a homotopy cofibration, then also a con / + con X-fibration.

Proof. Part (i) results from applying the corollary of the homotopy exci-

sion theorem [5, p. 487] to Y,, X —• Y./X, *, and using the isomorhpism

nJ.Y, X) =* n*{Z, *) of a homotopy fibration. Similarly for (ii), to find the

connectivity of X — Y8\^, go to (Y., X) —• (YB, Y8\!A and use the isomor-

phism  nJ.Y8, Y8\¡¥) =* tt^(Z, *) =* jt^Y./X). Again the excision theorem ap-

plies to (Yf, X) — (Yf/X, *). D

Next is the stable version of 1.1.

2.3. Lemma. Let f: X —» Y be a map of l-connected spaces. If con /

> 2 and dimH/< con /+ con Y, or dim / < con /+ con X, then f can be ex-

tended as a homotopy cofibration or fibration respectively. If the inequality

is strict, then this extension is unique up to homotopy.

Proof. Consider the homotopy fibration X'l^ —♦ X —* Y. X'|# is 1-

connected since / is 2-connected. By 2.2, this is a con i + con X' 1^ + 1 =

con Y + con /-cofibration. Truncation of the Moore tower of X' \^ at this

level gives a map C —• X' |+ which is an isomorphism on tí., j < con Y +

con /, and with //.(G) = 0 for ; > con Y + con /. Now if dimH/< con Y +

con /, then X/C —• Y induces an isomorphism on homology. Thus C —» X—•

Y, with the nullhomotopy from the composition C —• X' 1^ —• X —> Y, is a

homotopy cofibration.

For the uniqueness statement, consider another extension D —> X —»Y.

The nullhomotopy defines a lift D —-*X' 1^, and provides a homology con Y

+ con /-truncation of X'l^. If dimH/+ 1 < con Y + con / = /, then //.(D) =

H.(C) = 0, and the truncation is unique. Thus C & D.

The proof of the fibration statement is similar, truncating the Postnikov

tower of Y./X   at dimension con / + con X. D
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3. Proof of the main result 1.1. The cofibration theorem is proved in de-

tail. It involves an induction: the problem for /: X —» Y is reduced to the

problem for k: F —> Z where dim / = dim k, con / = con k, but con Z > con Y.

By repeating this construction the inequality dim^fe < con Z +■ con / is even-

tually achieved, and 2.3 applies to give a solution.

Let F denote the truncation of the Moore tower of X' 1^ in dimension

dim /- 1. The hypothesized factoring of X —* X/[X  |+] gives a commutative

diagram:

/ ■+Y

X/F

x/[x/|J

Obstructions to constructing the dotted lift lie in

//''(Y^^TT.iX/tx/g, X/F)).

The coefficient group is   0   for   i < dim /   by definition of F, and the

cohomology group vanishes above dim / by definition of dim /. Thus the

lift g exists making the diagram commute.

Now g:  Y —' X/F has dim^g = dim^f, con g = con Y + con /, by 2.2,

and con X/F = con Y. We have assumed

dim„g = dimH/ < con / + 2 con Y - con g + con (X/F),

so Lemma 2.3 extends g backwards as a cofibration.

X/F

(/, g) is a homotopy dimH/-fibration, so the lift h oí f exists making the

diagram homotopy commute.

Now consider h. By extending the rows to the right as cofibrations we

see that Z^/F « Y./X. Thus con /= con h, dim /= dim h since these are
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invariants of the cofiber. If h can be extended as a cofibration, this exten-

sion gives an extension for / also. Finally

con Z = con h - 1 = con / + con Y - I.

Since con /> 2, this will complete the induction step.

The factoring hypothesis must be verified for  h. Form the diagram

/
/

b   -*

-»Z

F/[F\]

x—l-L

j ^x/tt'ur j

X/F= Y/Z

where the front column is a cofibration.

The front column is a con F/[F*|J + con(F/[Fh\J — X/[Xf \J) =

2 con Y + con /-fibration, again by 2.2. Since dim h < 2 con Y + con /, the

indicated dotted lift exists.

The proof of the fibration statement is essentially dual to the above. D
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