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ABSTRACT.  Let G be a locally compact group, and let X(G) con-

sist of the nonzero extreme points of the set of continuous, G-invariant,

positive definite functions /on G such that /(e) < 1.   3C(G) is called the

character space, and is given the topology of uniform convergence on

compacta.   The purpose of the present paper is to extend the main results

from the duality theory of abelian groups and LZ] groups to the class of

LFC]    groups (i.e., groups with precompact conjugacy classes), letting

3((G) play the role of the character group in the abelian theory.  Some of

our theorems are only proved for the class [FD]    (C [FC]   ).   If G e [FC]

then J((G) * ¡t(/Y) where H is a certain [FIA]    quotient group.   Hence there

is no loss of generality to study character spaces of Lf7/4]- groups.

1. Introduction. The main purpose of this paper to is extend certain

results from the duality theory of locally compact abelian groups and [Z]

groups to [EC]- groups (i.e., groups possessing precompact conjugacy

classes) tlO], [24].

For [FCj~ groups there are at least two natural structure spaces; the

character space %(G) and the dual space G which may replace the dual

group in the abelian theory.   In this paper we shall concentrate on the space

X(G), whereas a similar discussion of G will appear in the 2nd paper of

this series.

Our investigations will depend on earlier work of Grosser, Mosak, and

Moskowitz [lO], Grosser and Moskowitz [ll],Kaniuth [l3li Kaniuth and

Schlichting [l4l, Liukkonen [18], and Mosak [23l.
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For convenience we list some fundamental notation and properties of

the classes of groups which we are dealing with.   Let G be a locally com-

pact topological group, not necessarily separable, and suppose S is a sub-

group of the topologized automorphism group 0(G).   We shall always assume

that $ contains the group of inner automorphisms 3(G).   The following, by

now well-established, notation will be used to denote classes of locally

compact groups.

[//V]g-G has a compact 53 invariant neighborhood of e.

[SIN]%—G has a fundamental system of SB invariant neighborhoods of e.

[F/A]j—The automorphism group 53 has compact closure in u(G).   One

can prove that [FIA]% = [SIN]% n [FC]% [ll].

[FC]%—G has precompact 55 conjugacy classes.

[FD]j¡—G has precompact 58 commutator group G*.

[Z]$—Locally compact groups G such that G/Z*(G) is compact, where

Z\g) is the 55 center of G.

[M00RE]—G has only finite dimensional continuous unitary irreducible

representations.

We refer to Grosser and Moskowitz [ll] and Robertson [25] for relation-

ship between the various classes of groups.   One has [F/A]j C [FC]j C

[//VLi.(2) The first inclusion is clear from the above, and the last in-

clusion follows from Robertson's structure theorem for [FC]$ groups

(Liukkonen [18]), which says that G is an [FC]j group if and only if G

satisfies an exact sequence of topological groups (e) —♦ K —» G —» R" ©

D —* (e), where K is compact and 53 invariant and D is a discrete [FC]<g

groupO) and   R" © D has precompact orbits under the group 53' of induced

actions of 93.   For our purposes a structure theorem due to Grosser and

Moskowitz [ll, Theorem (3.16)1 will also be useful, namely G is an [FC]

group implies G satisfies an exact sequence of topological groups (e) —»

P —» G —» R" ©A —» (e), where P is the closed periodic 53 invariant sub-

group of G (x £ G is periodic iff x is contained in a compact subgroup of G.

The periodic subgroup P consists exactly of the periodic elements in G),

and A is discrete, abelian, and torsion free.   We note that a locally compact

group which satisfies such a sequence need not be an [FC]j group; let

e.g. G be a semidirect product of Z~ (the weak direct product of countably

(2) One also has [Z] C [FIAT (for S = Í(G)).

(3) We shall omit the bar ~ whenever the groups are discrete.
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many copies of ZA with the integers Z, where Z acts on {an)n £ Z™ by

shifting of coordinates:   /7(A) («„)„ = (a„ + fe)„» for A e Z.   If an = 1 for n 4 0

and an = - 1 then r¡(Z)(an)n equals \{an)„- an = 1 except for exactly one

b e Z!.   Hence   rjCZ)(a )    is not precompact in G and C = Z; x    Z is not

an [FC]% group (SB = á(G)).

If P is a periodic tFC]g group, P has a compact ÍB invariant open sub-

group K such that P is an extension (e) —» X —► P —♦ tí —» (e) , where // is

a discrete torsion group in iFC]¡g [l8l.

We turn now to the SB characters.   Suppose G is a unimodular locally

compact group, and let X  (G) denote the set of nonzero extreme points of

the convex set of continuous positive definite ÍB invariant functions a on G,

such that a(e)< 1 (a is ÍB invariant if a(ß(g)) - a(g), all ß £ %, g £ G).

There is a bijective correspondence between X(G) = X       (G) and the set

of all classes of quasi-equivalent factor representations of finite type of G;

see Dixmier [5, 17.3.4].   We give X  (G) the topology of uniform convergence

on compacta in G.   For 55 = á(G) and G e [FIA]   , X(G) is locally compact

in this topology [13L

Before starting our investigations we give a summary of our results.

Note that most of our duality theory in §§2 and 3 was proved for [Z] groups

in [lO] (if G e [Z] then G and X(G) ate isomorphic).(4)  If nothing else is

said G will denote an [FC]¡g group.

TABLE OF CONTENTS.

1. Introduction,  (pp. 185-188)

2. The ÍB character space %*(G). (pp. 188-197)

2.3. The connected component of j8 e ÍX (G) is ll 0 p = la e X   (G):

ap = ßp\.

2.5. X(G) is discrete iff G is compact.

2.6. If G is compact then G is discrete (G e [FIA]   ).

2.7. G is discrete iff G is compact.

2.8. X(G) is c-compact if G is a first countable [FD]    group.   If

X(G) is CT-compact and G £ [FIA]    then G is 1st countable.

2.10. Let G e LF/A]   .   X(G) has finitely many connected components

iff the periodic subgroup P is finite.

2.12. Let G £ [FIA]   .   G is aperiodic iff X{G) is connected.

2.13. X(G) is totally disconnected iff G is periodic.

(4) Our proofs use the theory of [FC]    groups and they are different from the

ones given for [ZJ groups in [lOJ.
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3. Further results on X(G). (pp. 197-201)

3.1. If N is a compact normal subgroup of G such that G//V is abelian

and first countable then the map A —» fi • A; X(G/N) —» ß • X(G/N) is an

open and continuous group homomorphism.

3.2. Let G £ [FD]    and let G/G'be first countable.   Then G is a-

compact iff X(G) is first countable.

3.3. X(G) is locally Euclidean if G is compactly generated.   If

G £ [FD]    and X(G) is locally Euclidean then G is compactly generated.

3.4. X  (G) is locally connected if G possesses property (L)¿.

3.5. Let G £ [FD]    and suppose X(G) is locally connected.   Then

G is an (L) group.

I would like to thank my advisor Professor S. Grosser for his encour-

agement and our many stimulating discussions during the time in which

this work was done.   I am also indebted to Professor R. Mosak who read

through the manuscript and pointed out some gaps.

After this paper had been submitted to the Transactions of the American

Mathematical Society, we learned about results of D. Steiner that coincide,

essentially, with the present ones (D. Steiner, Zur harmonischen Analyse

klassenkompakter Gruppen, §6, Doctoral dissertation, Munich Technical

University, 1973, unpublished).   Moreover, E. Kaniuth recently obtained

stronger results for [SIN] groups (Topology in duals of SIN-groups, Math. Z.

134 (1973), 67-80).

2. The 53 character space X  (G). In this section we will study the

topological properties of the character space X   (G) fot [FC]<g groups, with

emphasis on connectivity properties.   As in the abelian case the periodic

subgroup plays a key role.   After characterizing the connected components

of X  (G), Proposition (2.3), we derive as a consequence several duality

results analogous to those for abelian groups and [Z] groups; see [24] and

[10].

The first lemma is useful when one wants to prove results concerning

the 53 characters of [FC]<g groups which already are known to hold for

[FIA]% groups [19].   Let G be an [FC]$ group (where 53 D á(G)) and let C

denote the intersection of all compact 93 invariant neighborhoods of e in G.

Then C is a compact 93 invariant subgroup of G and H = G/C is an [F/AIj'

group where x> is the automorphism group of H induced by 53.   Finally, let

6 denote the canonical map of G onto G/C.   (See [ll, Theorem (2.5)1, for a

proof of the fact that C is a group.)
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(2.1). Lemma. With the above notation, the map a —»a ° 6 is a horneo-

morphism of X   (H) onto X   (G).

Proof. This is part of Proposition 1.2 in [l9l.

If G is as above and a£X%(G) we let H® K = \ß £X\g): aK = ßK\,

for any subset K of G. Here, as always, ßk denotes the restriction of ß to K.

(2.2). Lemma.  Let G be an [FC]<g group, where S 2 ^(G), and let K be

any compact ÍB invariant subgroup of G containing C, where C denotes the

intersection of all ÍB invariant neighborhoods of e in G.   If a £ X*(G) then

the set ll* K is open and closed in X  (G).

Proof. We will first prove the result with S = 5(G).   (In this case it will

be unnecessary to assume K D C.)  If ß £ X(G) we have ßK = fv,¡(\ vdpß(o)

fot a unique positive regular Borel measure Ug on X(K), since ß is positive

definite and K invariant [l3, Satz 2].   Now X(K) is discrete so ßK =

^.m(a)a, where m(a) is some nonnegative real number and the sum is taken

over X(K).  We claim that A - ßK £ Xe(K) where 6. = á(G)K.(5)

Let T be a G invariant positive definite continuous function on K with

r(e) < 1 and suppose r « \ (i.e.   A - r is positive definite).   We shall prove

that t = AA for some nonnegative number A, 0 < A < 1.   Let now rr^ and Z7r

be nondegenerate cyclic unitary representations associated with À and r

respectively, and let kerzr^ and kerny be their kernels when considered as

representations of the measure algebra M(K).  Since r «\ we shall see

that ker77XC ker/r^.   Let therefore v £ kerTT^.   Since kerzr^ is an ideal in

M(K) we have v *f e ker7Tx, all / e C(K).   Hence, by definition of nx and trT,

we have

0-M(*'»/)**(v*/))>r((i/*/)**i»'*/W>O,    all f£C{K),

and this implies v £ kerny, so that ker?rA Ç kerrr .

Recall now that ß £ X(G) and hence satisfies the character formula

JG ß(y~ 'x) dp{y) = ß{x) jG ß{y~ l) dp{y)

fot all x e G and every central measure p £ M(G) (Leptin [l7, Satz 2]).

In particular

(5) This assertion has been established elsewhere; see Kaniuth Ll3, proof of

Satz 4l   We include a proof for completeness.
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(1) f   \(y-lk)dp(y) = h(k) j   Xiy-Adpiy)*    allkeK,

where p is a central measure in M(G) with support contained in K.   Let

a   = fK\(y~ )dp(y) and let 8e denote the point mass at e.  Then(6)

¡K A(y" ')d(p - aß8e)(y) = fK A(y" ») ̂ (y) - aß\(e) = 0.

Hence(7) fi - aß8g e kerzrx C kerzrr. Since ker?rr is an ideal in M(K) it

follows that, for all k e K, 8 *(p- a 8g) e ker;^, where 8k * v(E) =

v(k~xE) lot any Borel set E in G and v e M(G).   Thus

(1')        0=  fK r(y~Ad(p - aß8e)(ky) = J^ T(y~1k)dp(y) - fl//(*).

If Ck = \tx(k): tx e 9(G)! is the conjugacy-class of k e K there is an á(G)

invariant measure pk = p with support in C¿, see e.g. Leptin [l7, (7)1.

Since A and r are constant on C~, it follows from (1) that (we normalize the

measure)

aß = aß\(e) = / _ X(y~1) dp(y) = AU"1),
ck

and, analogously, (from (l'))

aßr(e) = fc_ r(y~ l) ̂ (y) = rU" L).

Hence r(k) = \(k)r(e) fot all k e K, and A must be an extreme point [23, 4.l],

[5, 2.5], i.e., A e X(K).   Recall that A = ßK = Sztz(ct)o-, and let a e X(K) be

such that m(a) 4 0.   By [23, Theorem 5.8] A = o* = (a ° ada, and since
(0 —

X(K) is discrete this integral reduces to a sum over the C. orbit Ö of o;

ßK = l/zzSr, reö, where n = r7z(a)-1 is the finite order of 6.

If now a e X(G) and aK 4 ßK, then aK must be concentrated on a dif-

ferent orbit 0j in X(K); that is, öj Pi 0 = 0.   Hence it follows from the

orthogonality relations for characters that(8)

(6) The following argument is due to Leptin [l7J,

(7) The measure  v= (i— a   S    is central.   Hence, for x e G, {ir(v)n(x)u,
1 ^ e

n(x)u) = {ir(x)~   tt(x)7t(v)u,  u) =  <7r(v)u,   u> = 0, and since u is a cyclic vector

for Tt we have v e kern (where 77 = ttA.

(8) The arguments used on the next page are certainly well known; see e.g.

[l4, p. 340, the last paragraph].
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(2) fKa{k)ß{k)~ </A=0.

We next show that if a, ß £ X(G) and

(3) \ß{k) - a{k)\ < ¡fK |a(A)|2 dkj ',      A e K,

then ßK = aK. From this it will follow that lla K is open in X(G). Since

X(G) = U^a K (disjoint union), each 1ia K must also be closed. If (3)

holds we have

fK \ß{k) - a{k)\2dk < ¡K (JK \a{k)\2dk\dk = fK \a{k)\2dk.

(We use normalized Haar measure dk on K.) Now, if ßK £ aK, (2) gives

f  \ß{k)-a{k)\2dk =   f  |/3U)|2</* +   f  |a(A)|2¿A>  f  |a(A)|2¿A.
•'K •'fC **K fC

Hence aK = ßK, and the proof is complete for the case S = á(G).

Suppose ÍB D á(G).   With the notation as in (2.1), we let tí be the [FIA] j'

quotient group of G.   Theorem (5.8) of Mosak [23] yields an open and con-

tinuous surjection w: X(H)—+ X    (H), <p —» J"5 » «¿Wt, whereat is normalized
SB

Haar measure on the compact automorphism group ='.   Letting K'= K/C and

a e ÍX(W) we see that \ß £ X(H): ßKi= aK,\ = ll   K, is open and closed by

the above.   Moreover, it is easy to see that w maps 1J   K# in X(H) onto

U®'. K, in !tS(/7), so that ^',aftKi is open.   Hence it follows   from

Lemma (2.1) that 11, K is open in X  (G), where a'denotes the image of

w(a) under the canonical homeomorphism Xa (H) —*X (G).  Since X (G) is

the disjoint union of the different   U^; k> it follows that each IP/ K is also

closed, and the proof is complete.

We are now in a position to characterize the connected components of

X (G) when G is an [FC]g group.   Our result is analogous to the one for

[Z] groups (see [lO, 2.2]).

Let P be the periodic subgroup of G.   Since the intersection C of all ÍB

invariant neighborhoods of e in G is compact, one has C C P and G/P is an

[F/A]ig' group.   Hence the canonical map X(G/P) ~* X   {G/P) is open and

continuous (Mosak [23, Theorem 5.8]).   Now X(G/P) = (G/P)    is connected

by abelian duality theory, since G/P = R" © A is an abelian torsion free

group.   Thus a • X(G/P) is connected, for each a e X(G), being the continuous
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image of X(G/P) under the map A —» a • A.   Now   ll    p equals a • X(G/P)
a a

by a result of Kaniuth and Schlichting [l4, Lemma 4l, and ll o p is the con-

tinuous image of   ll    p  under the canonical surjection X(G/C) —* X  (G/C);

a—*ß = f _ at rit.   Hence each lio p is connected.   Let Co denote the

îcted component of ß in X   (G/C) « X  (G).   Then we have from theconnec

above that Co 3 U o p.

If K is any compact 93 invariant subgroup of G containing C, then KC P

and   üß K = {y eX  (G): ßK = yK\ is an open and closed subspace of

X'A(G) by Lemma (2.2), and clearly lljK D U* p.   Let H = G/C.   The

periodic subgroup P(H) of // equals P/C and by [ll, Theorem 3.16(2)], P(H)

is the union of all compact 93' invariant subgroups of H.   Taking pre-images

under the canonical map G —► G/C, we see that P is the union of all compact

53 invariant subgroups K of G containing C.   Hence we have I IK D(-. ll"5 „ -

Uo p.   Also the connected component (.-jC llo K since ll o K is open and

closed   and   has   the   character   ß   in   common  with   Co.    Thus   Co C

K DC ^/3 K = U/j P» anc^ as ^/3 P *s connected, it follows that Co =

II o p.   We have therefore proved

(2.3). Proposition. Suppose G is an [FC]% group, where 53 D á(G).   Then

the connected component of ß eX   (G) is ll o p, where P denotes the

periodic subgroup of G.

(2.4). Corollary.  Let G be an [FC]    group.   Then the connected com-

ponent of a e 1(G) is a • 1(G/P).

Proof.  By [l4, Lemma 4] Up equals a- (G/Pf = a-1(G/P).  Hence

the result follows from Proposition (2.3).

As an application of (2.4) we prove the following result which is a

slight generalization of part of Satz 3 in [13L

(2.5). Corollary.  // G is an [FC]~ group then 1(G) is discrete if and

only if G is compact.

Proof.  If 1(G) is discrete it follows from (2.4) that the connected

component (G/P)    is trivial, so G = P is periodic.   By the structure theo-

rem we have an exact sequence of topological groups (e) —» K —► G —* D —*

(e) where D is a discrete periodic [FC] group, and K is compact [l8].   Since

X(D) is naturally embedded in 1(G), 1(D) is discrete.   Moreover,
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D £ [FC] n [SIN], so that Satz 3 in [l3l yields that D is compact.   Hence G

is compact.   Conversely, if G is compact it is well known that G * X(G)

is discrete [5].

Noting that, for G £ [FC]    O [SIN], X(G) is compact iff G is discrete

[13, Satz 3], we derive as a consequence the following result, which is not

true in general for locally compact groups, not even for second countable

groups, as is shown in [3, Theorem (4.7)].   We have not succeeded in proving

the result for [FC]    groups.   For [FIA]    groups it follows immediately from

the work of Mosak [23].

(2.6). Proposition. Let G be an [FIA] group. If G is compact then G

is discrete.

Proof.  The map cf> —* cf>", G ~~» X(G), is a continuous surjection (Mosak

[23]).   Thus X(G) is compact.   Hence G is discrete by [l3, Satz 3].

The next result was conjectured to hold for arbitrary locally compact

groups.   Then L. Baggett proved its validity for second countable groups

[3]» and recently A. I. Stern announced the result in complete generality

[27].

We present a proof for [FC]   groups because it is closely related to the

material above.

(2.7). Proposition.  Let G be an [FC]    group (not necessarily separable).

Then G is discrete if and only if G is compact.

Proof. If G is discrete, let, as before, C be the intersection of all in-

variant neighborhoods of e in G. Then H = (G/C) is discrete. Since tí =

G/G is an [E/A]    group the map t: tí —► X(tí) given by cf> —» cf>  , where

cfr(h)I= f cpt(h)di is open and continuous onto X(H).   Hence X(tí) is
1(H)"

discrete, so that tí is compact.   Since C is compact it follows that G is

compact.

The converse assertion (G compact implies G discrete) is well known

[5l.
It was proved in [lO] that [Z] groups are first countable if and only if

their character spaces X(G) ate er-compact.   We will now prove the "only

if part" of this result for [FD]    groups, whereas the "if part" only can

hold for [FIA]    groups in view of (2.1).

(2.8). Proposition. Suppose G is an [FD]   group.   If the character

space X(G) is a-compact then the [E/A]- quotient group G/C is first count-
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able (where C denotes the intersection of all closed invariant neighborhoods

of e).   Conversely, if G e [FD]    and 1(G) is a-compact then the group G is

first countable.

Proof. Suppose H e [FIA]    and let 1(H) be a-compact.   By the Robert-

son structure theorem H satisfies an exact sequence of topological groups

(e) -» K -» H —» R" © D —» (e) where D is a discrete [FC] group and K is

compact and normal in H.

Now the continuous restriction map a —> aK, 1(H) —» 1  (K) is surjec-

tive (Kaniuth [l3, Satz 4]) so that 1H(K) is a-compact.(9)     Also, 1H(K)

is discrete since K is compact, hence 1  (K) is countable.   Moreover, each

ß el  (K) is of the form ß = \/n 2of   where 6 is some W-orbit in 1(K)

and « denotes its finite order (see e.g. the proof of Lemma (2.2)).   Thus

X(K) « K is countable and hence K is first countable.   Therefore K and

H/K = R" © D ate first countable and this implies that H itself is first

countable (see e.g. [lO, Lemma (2.1)]).   Now the first part of the proposition

follows by letting H = G/C.

Conversely, if G e [FD]    is first countable and G' denotes its commu-

tator subgroup, let K be any compact open subgroup of the periodic subgroup

P of G and assume that K is G-invariant [l8].   Since  P 3 G' and G' is com-

pact we may also assume that K 3 G .   By hypothesis K is first countable,

hence 1(K) * K is countable.   If a e 1(G), we have aK - l/m S^r where 6

is some G-orbit in 1(K) and m is the finite order of 6 (see the proof of

Lemma (2.2)).   Since there are only countably many orbits, there are only

countably many restrictions aK.   Thus 1(G) is the disjoint union of count-

ably many Ua K, and each Ua K is of the form a • (G/K)   since G/K is

abelian [14, Lemma 4].   By abelian duality theory (G/K)   is a-compact

(G/K is first countable by the hypothesis).   Hence it is clear that each

a • (G/K)   is a-compact, being the continuous image of (G/K)   under the

map A —» a • A, thus 1(G) is the countable union of a-compact spaces

a • (G/K) , and it follows that 1(G) is itself a-compact.

In order to establish our next result we shall need

(2.9). Lemma   [14, Lemma 6].  Let G be an [FC]    group, and suppose

the periodic subgroup P is open in G.   Then the compact-open subsets A of

1(G) are exactly the sets of the form A = U¿_,U     N, where N is some

(9) WeletïH(X)=^ (X).
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compact, open, and normal subgroup of G.

(2.10). Proposition.  Let G be an [E/A]   group.   Then the character

space X(G) has finitely many connected components if and only if the

periodic subgroup P of G is finite.

Proof. Clearly, if P is finite there are only a finite number of G-orbits

in X(P) * P.   Hence there are finitely many Ca= a- (G/P)   since different

connected components &a correspond to different orbits.

Conversely, suppose X(G) has finitely many connected components,

and let K be any compact open subgroup of P and characteristic in G [l8].

There are only a finite number of different sets  lla K = \ß £ X{G): aK = ß^\,

since each tla K D (?a, and since we have Ca = £ß or £a O Cß = 0, for

a, ß £ X(G).  We shall see that to each G-orbit in X(K) there corresponds a

tla K.   That is, given a G-orbit 6 in X(K) there exists a   ua K C X(G) such

that each character in   Ua K restricts to K as a sum 1/b 2/3 taken over 6.

As soon as this is proved, it follows that X(K) has finitely many orbits.

Moreover, for fixed y e X(K), the map á(G)~ —• X(K); i —» yi is continuous

[23, 5.6], and since i(G)~ is compact and X(K) discrete, it follows that the

G-orbits in X(K) ate finite.   Thus it follows that X(K) * K is finite.   By a

result of L. Baggett [2] we conclude that K is finite.

We will now prove the statement above.   Let 9 be a G-orbit in X(K), and

put y = 1/b S^r, where n is the order of 9,  We claim that y £ X  (K).   To

see this, suppose A » 0 and G-invariant on K, and that A « y.  We have

A = 2cre^.K.m(o)o, and we shall write A = kg + \s, where kg is the part

of A concentrated on the orbit 9.   Suppose ad absurdum that Xq /= 0.   Since

Ag is positive definite and square-integrable, we have \g = /   * /, for some

continuous (positive definite) function / on K, [5, 13.8.6].   Hence, by the

orthogonality relations,

Of  f (/**/)U)(y-A)-(A)¿A

=   f  A^AXyU)- - AU)-) dk =  f  - I)àk)\2 dk < 0.

Hence A = A^ = 2.gm(o)o.   Now x • A(A) = A(A), x £ G, k £ K, so   that

m(x • ct) = m(o")  by  uniqueness   of  the   basis   expansion.    Thus   A =

A(í?)(1/b 2öct) - A(e)y, and we have proved that y is an extreme point, i.e.

y e XC(K\   By Kaniuth [l3, Satz 4], there exists an a € X(G) such that the

restriction aK equals y.   Hence the orbit 9 corresponds to lla K, and we
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have seen that this implies that K is finite.   By assumption, K was open in

P, so P is discrete.   By Liukkonen [18, Proposition 2.4] G = R" © H, where

H is a discrete [FC] group.   Also, 1(H) has finitely many connected com-

ponents, and therefore each of them is open.   In particular (H/P)   is open

and compact, and Lemma (2.9) yields that (H/P)   = (JT.1ia  N where N is

compact and normal in H.  Since (H/P)   is connected r = 1 and (H/P)   =

1(H/N), which implies H/N is aperiodic (2.12).   Hence P = N and we have

that P is finite.

(2.11). Corollary.  Let G be an [FC]    group with periodic subgroup P.

Let C denote the intersection of all invariant neighborhoods of e in G.   Then

1(G) has finitely many connected components if and only if C has finite

index in P.

Proof.   This follows immediately from (2.1) and (2.10).

(2.12). Proposition. Let G be an [FC] group, and let C be the inter-

section of all invariant neighborhoods of e. Then G/C is aperiodic if and

only if 1(G) is connected.

Proof. Since aperiodic [PC]    groups are of the form R" © A where A

is discrete, abelian and torsion free, the only if part follows from the abelian

theory and the fact that 1(G) « 1(G/C).

Conversely, suppose 1(G) is connected.   By (2.4) we then have 1(G) *

1(G/C) = (G/Pf, and since G/C is a [SIN] group the characters in 1(G/C)

separate the points of G/C  (Dixmier [5, 17.3-6]).   Thus  P/C is trivial, and

G/C = G/P is aperiodic.

Connectedness being the farthest, topologically speaking, from totally

disconnectedness, one can ask whether periodic groups are the ones pos-

sessing totally disconnected character space.

(2.13). Proposition. Let G be an [FC]" group.   Then 1(G) is totally

disconnected if and only if G is periodic.

Proof. If G = P then clearly the character space 1(G) is totally dis-

connected (2.4).

Conversely, if 1(G) is totally disconnected, (G/P)   is trivial, so G/P =

(e) by the Gel fand-Raikov theorem.   We close this section with an example.

(2.14). Example. Let G be the semidirect product of the integers Z and

the compact group T°° = Ü^^T^ where Tfe = R /Z for each k e Z, and where

Z acts on T°°by shifting the coordinates: a: Z —* AutfT00), a(n)(tk)k =
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0¿ .   )¿.   Then G can be computed by Mackey's theory.   If co £ (T   )   is

nontrivial, the stability group Ka, under the action of G on (T   )  by inner

automorphisms, equals T   .   Hence G consists of the induced infinite di-

mensional representations co    and GQ = \n e G: 77      is trivial! * Z .

Therefore the space of finite dimensional irreducible representations, GQ,

forms a connected subspace of G.   We note that G is an [FC]    group by the

structure theorem of Robertson.   Also, G is type I.   This follows from the

Mackey theory since the stability groups equal T    (except for co = 1) and

since Z and T°° both are type I, being abelian [21, Theorem 8.4].

Since separable [FIA]    groups of type I have only finite dimensional

irreducible representations, G is not a [SIN] group [23l.   Actually, as is

easily seen, the intersection of all invariant neighborhoods of e in G equals

T°°.   Hence we have X(G) = GQ so that G is an [FC]    group where the

periodic subgroup is infinite (P = T   ) but where X(G) is connected; com-

pare with Proposition (2.10).

Observe also that X(G) is compact without G being discrete; see

Proposition (2.6).

3. Further results on X  (G).   We continue our extension of results

from the duality theory of abelian groups and [Z] groups.   Before we turn

to characterizations of a-compact and compactly generated [FC]    groups,

we shall need the following useful lemma.

(3.1). Lemma.  Let G be an [FC]    group, and let N be a compact nor-

mal subgroup of G such that the quotient G/N is abelian and first countable.

Let ß £ X(G).   Then the map

(£: X{G/N) - ß . X{G/N),      A _ ß . A,

is an open and continuous surjection.

Proof.  The map if/ is clearly continuous (in the topology of uniform

convergence on compacta in G//V) and surjective.

To prove that if/ is open, we first observe that X(G/N) = (G/N)   is the

character group of the abelian and first countable group G/N; hence (G/N)

is Ocompact.  Next, we give ß • X(G/N) the structure of a group by let-

ting

iß. Xx)*iß- A2) = /3.(A1A2),    and   iß . XJ'1 » ß . A"1;

A,, A2 e X(G/N).   It is easy to verify that the map

iß . Ax, j8 • A2) - j8 . (AjAJ l).    ß . X{G/N) x ß . X{G/N) - ß • X<G/AI)
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is continuous in the topology of uniform convergence on compacta.   Hence

ß • 1(G/N) becomes a topological group with the above multiplication.

Moreover,

xp(X1\2) = ß ■ (AjA2) = (ß . Aj) *(ß - A2) = xP(\A *tA(A2),

and

ipikj-1 = (ß . Aj)-1 = xpiXl1);      Aj, A2 el(G/N),

so that ip is a continuous homomorphism of the a-compact locally compact

group 1(G/N) onto the topological group ß 'MG/N).   By Kaniuth [l3, Satz

l], 1(G) is a locally compact Hausdorff space,   and  by   Lemma   (2.2)

fi • 1(G/N) is an open and closed subspace of 1(G).   Hence ß • 1(G/N) is

itself a locally compact Hausdorff space.   We may now apply Theorem 5.29

of Hewitt and Ross [12] to conclude that xp is an open map.

(3.2). Proposition.  Let G be an [FD]~ group such that G/G1 is first

countable (where G' denotes the commutator subgroup of G).   Then G is o-

compact if and only if 1(G) is first countable.

Proof. If 1(G) is first countable, so is (G/G1)   since it is a subspace

of 1(G).   Hence G/G' is a-compact by the abelian theory.   Since by hypothe-

sis G is compact, G is a-compact.

Conversely, suppose G is a-compact.   Then clearly G/G1 is a-compact,

and hence its character group (G/G1)   = 1(G/G') is first countable.   By

Lemma (3.1) a • 1(G/G') is first countable for every a £ 1(G).  Since each

a • 1(G/G') is open in 1(G), it follows that 1(G) is first countable.

A topological space is said to be locally Euclidean if each of its points

is contained in a neighborhood which is homeomorphic with R    for some n.

(3-3). Proposition.  Let G be an [FC]~ group.   Then the character space

1(G) is locally Euclidean if G is compactly generated.   If G is an [FD]

group and the character space 1(G) is locally Euclidean then G is compactly

generated.

Proof. Suppose G is compactly generated.   Then G satisfies an exact

sequence of topological groups (e) —» K — G —• R" © A —» (e) where K is

the periodic subgroup which contains the closed commutator G , is compact,

and A is discrete, abelian, finitely generated, and torsion free [ll, Theorem

(3.20)].   By abelian duality theory (G/K)   = 1(G/K) is locally Euclidean,

and the proof of (3.1) shows that the connected components a • 1(G/K) ate

locally compact groups,,   By (3.1) the map xp: A —> a • A is an open and
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continuous group homomorphism of X(G/K) onto a • X(G/K).   Hence the

topological groups !X(G/r\)/ker if/ and a • X(G/K) ate isomorphic.   Since the

first is a Lie group, so is a • X(G/K).  Now each connected component is

open in X(G) since K  is compact (2.2) and it follows that X(G) is locally

Euclidean.

Conversely, suppose X(G) is locally Euclidean and G e [FD]   .   Then

{G/G1)    is open in X(G) and hence it is locally Euclidean.   Thus G/G' is

compactly generated by the abelian theory.   Since G   is compact, G must be

compactly generated.

Local connectedness and property (L). Let G be a locally compact

group and let ÍB be a subgroup of u(G) containing the group 9(G) of inner

automorphisms.   G is said to have property (E)g, or to be an (E)¡g group, if

each compact subset M of G is contained in an open, compactly generated,

iB-invariant subgroup tí oí G such that the quotient G/H is torsion free.   If

ÍB = 4(G) and G is abelian this definition reduces to the usual one (Pontrja-

gin [24]).   In that case we shall use the notation (L) group.

Our first task is to prove that for [FC],^ groups G possessing property

(EL. the ÍB character space X (G) is locally connected. In the abelian case

this result (and its converse) was proved by K. Fan [6]. Although his proof

can be generalized to [FC]¡¡j groups, we will use a different approach (giv-

ing a shorter proof), which utilizes our results from §§2 and 3 concerning

the structure of X^(G), and Fan's result. Before going on, we note that the

following result was proved for [Z] groups in [lOJ.

(3.4). Proposition. Let G be an [FC]<g group (such that the quotient

group G/P is first countable, where P denotes the periodic subgroup of

G).(10)  Then X  (G) is locally connected if G possesses property (L)%.

Proof.  Let U be any compact subset of the periodic subgroup P of G.

Since G is an (L)% group, U is contained in a compactly generated, open,

iB-invariant subgroup tí of G with torsion free quotient G/H.  Clearly, PC//;

in fact, any x e P \ tí would generate a compact subgroup of P with non-

trivial compact image in G/H under the canonical map G —♦ G/tí, contra-

dicting the fact that G/tí is torsion free (aperiodic).   It is also clear that

P is the periodic subgroup of the [FC]    group H, and since tí is compactly

generated P must be compact [ll, Theorem 3.20].

Let now C% be the intersection of all S-invariant neighborhoods of e.

Recall that the canonical map if/ oí X(G/C%) onto X* (G/Cq) is open and

(10) G/P = R   XÖ where D is discrete, is always first countable.
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continuous (Mosak [23, 5.8]).   Put M - G/C$ and let P(M) be the periodic

subgroup of M.   If a • A e a • (M/P(M)f, a e 1(M) and A e (M/P(M)f, then

[xp(a. k)](p) = J_, a o i(p) A o t(p) A = J_( a o tip) ¿fc = (xpa)(p),

all p e P(M), since t(p) e P(M) whenever t e 93', and since the restriction

Ap(M) = 1.   This implies that xp maps a • (M/P(M)f = Ua>P(A1) onto U*aP(A|)

in 1* (M). Since P(/M) is compact, each a • (M/P(M)) , a e 1(M), is open

in 1(M) (Lemma (2.2)) and it suffices to prove that all the connected com-

ponents a • (M/P(M)) of 1(M) ate locally connected in order to show that

1%'(M) * 1*(G) is locally connected.(H)

The facts that M/P(M) is abelian, P(M) is compact (P(M) = P/C% and P

is compact as shown above), and M/P(M) is first countable make Lemma

(3.1) available.   Hence the map A H> a • A of (M/P(M))" onto a • (M/P(M)f

is open, and it is sufficient to prove that (M/P(M))    is locally connected.

Noting that M/P(M) is of the form R   © A where A is discrete, abelian,

and aperiodic, the problem is reduced to showing that R   © A is an (L)

group by the result of K. Fan for abelian groups.

Let therefore F be a compact subset of R   © A, and   let    n: M —'

M/P(M) = Rfe © A be the canonical map.   Then n~l(F) is compact and hence

is by hypothesis contained in a compactly generated open normal subgroup

K of M such that the quotient M/K is torsion free.   Hence  n(K) is a com-

pactly generated subgroup of R   © A  and, moreover, K contains P(M).   Thus

(Rfe© A)Mtí * (M/P(M))/(K/P(M)) * M/K,

and it follows that (R © A)/7z(r<) is torsion free. Since n(K) clearly con-

tains F, we have seen that R © A possesses property (L), and it follows

that (Rk © A)*= (M/P(M)f is locally connected.

We turn now to the converse of Proposition (3>4), assuming 93 = 9(G)

and G e [FD]~.   If 1(G) is locally connected, Ct = (G/P)   contains an

(open) connected neighborhood of the identity character t, so (G/P)    is

open in 1(G).   As P contains the commutator G , (G/P)    is open in (G/G ) .

Also (G/P)" * (G/G'/P/G'f, so P/G' is compact by abelian theory, and

it follows that P is compact.

Suppose in addition G is an [SIN] group.   Then G satisfies an extension

of topological groups (e) —• R" © P —» G -^ A —» (e) where A is discrete

(11) The author is indebted to R. Mosak for pointing out a gap in an earlier

version of the above argument.
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abelian and torsion free [18, Theorem 2.13]-   Let M be a compact subset of

G.   Since A is discrete, n(M) must be finite.   Let now F be the set of those

elements a in A for which there is a positive integer n such that a   is in the

subgroup generated by n(M).   Hence F is a discrete torsion free group of

finite rank.   Now F can be identified with the quotient group A/(A/E)   and A

is locally connected, hence F is locally connected.   By a lemma of Pontrja-

gin [24, §38], F must be finitely generated.

Let H-n~ (F).   Clearly H is open in G, since A is discrete.   As F is

finitely generated and R   © P = ker n is compactly generated, tí is com-

pactly generated.   Moreover, A/F is torsion free from the definition of F.

Hence G/tí is torsion free, being isomorphic with A/F.   Therefore the com-

pact set M is contained in the compactly generated open subgroup tí oí G

with torsion free quotient G/tí.   Finally we note that tí is invariant in G.

Let G be an arbitrary [FD]    group and put C - the intersection of all

invariant neighborhoods of the identity e.   Then D - G/C is an [SIN] group

and X(G) is homeomorphic to X(D).  Suppose D is an (L) group and let

MC G be compact.   If co: G —» G/C is the canonical epimorphism, co(M) is

compact in G/C and hence contained in an open, compactly generated,

invariant subgroup tí  oí D with torsion free quotient D/tí .   Then co~ {FT) =

H is an invariant subgroup of G containing M, and possesses the other

crucial properties: it is compactly generated, open in G and the quotient

G/H is torsion free.   We have proved

(3.5). Proposition.  Let G be an [FD]    group and suppose X(G) is

locally connected.   Then G is an (L) group.
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