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DUALITY THEORY FOR LOCALLY COMPACT GROUPS
WITH PRECOMPACT CONJUGACY CLASSES. I:
THE CHARACTER SPACE(1)
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TERJE SUND

ABSTRACT. Let G be a locally compact group, and let X(G) con-
sist of the nonzero extreme points of the set of continuous, G-invariant,
positive definite functions fon G such that f(e) £ 1. X(G) is called the
character space, and is given the topology of uniform convergence on
compacta. The purpose of the present paper is to extend the main results
from the duality theory of abelian groups and [z] groups to the class of
[F cl” groups (i.e., groups with precompact conjugacy classes), letting
X(G) play the role of the character group in the abelian theory. Some of
our theorems are only proved for the class [FD]™ (C[FCI™). If G ¢ [FCl™
then X(G) = X(H) where H is a certain [FI4]™ quotient group. Hence there
is no loss of generality to study character spaces of [FI4]~ groups.

1. Introduction. The main purpose of this paper to is extend certain
results from the duality theory of locally compact abelian groups and [Z]
groups to [FC]™ groups (i.e., groups possessing precompact conjugacy
classes) [10], [24].

For [FCT™ groups there are at least two natural structure spaces; the
character space X(G) and the dual space G which may replace the dual
group in the abelian theory. In this paper we shall concentrate on the space
X(G), whereas a similar discussion of G will appear in the 2nd paper of
this series.

Our investigations will depend on earlier work of Grosser, Mosak, and
Moskowitz [10], Grosser and Moskowitz [11], Kaniuth [13], Kaniuth and
Schlichting [14], Liukkonen [18], and Mosak [23].
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For convenience we list some fundamental notation and properties of
the classes of groups which we are dealing with. Let G be a locally com-
pact topological group, not necessarily separable, and suppose B is a sub-
group of the topologized automorphism group @(G). We shall always assume
that B contains the group of inner automorphisms §(G). The following, by
now well-established, notation will be used to denote classes of locally
compact groups.

[IN]3g—G has a compact B invariant neighborhood of e.

[SIN]g—G has a fundamental system of B invariant neighborhoods of e.

[FIA]lg—The automorphism group B has compact closure in A(G). One
can prove that [FIA]§ = [SIN]$ N [FC]; 11l

[FC1g—G has precompact B conjugacy classes.

[FD]g—G has precompact B commutator group G'.

[Z]g—Locally compact groups G such that G/Z3(G) is compact, where
Z’(G) is the B center of G.

[MOORE]-G has only finite dimensional continuous unitary irreducible
representations.

Ve refer to Grosser and Moskowitz [11] and Robertson [25] for relation-
ship between the various classes of groups. One has [F IA]; clFc ]; c
[IN]a.(z) The first inclusion is clear from the above, and the last in-
clusion follows from Robertson’s structure theorem for [FClg groups
(Liukkonen [18]), which says that G is an [FC]; group if and only if G
satisfies an exact sequence of topological groups (¢) = K— G —R" ®
D — (e), where K is compact and B invariant and D is a discrete [FC ]g
group(3) and R"” @ D has precompact orbits under the group B' of induced
actions of B. For our purposes a structure theorem due to Grosser and
Moskowitz [11, Theorem (3.16)] will also be useful, namely G is an [FC]™
group implies G satisfies an exact sequence of topological groups (e) —
P— G —R" ® A — (e), where P is the closed periodic B invariant sub-
group of G (x € G is periodic iff x is contained in a compact subgroup of G.
The periodic subgroup P consists exactly of the periodic elements in G),
and A is discrete, abelian, and torsion free. We note that a locally compact
group which satisfies such a sequence need not be an [FC]; group; let
e.g. G be a semidirect product of Z;° (the weak direct product of countably

(2) One also has [Z]1C [FIA]™ (for 8 = 4(G)).
(3) We shall omit the bar ~ whenever the groups are discrete.
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many copies of Zz) with the integers Z, where Z acts on (@), € Z;” by
shifting of coordinates: 7(k) (a,), = (an*k)", for k € Z, If a,=1forn £0
and @, =~ 1 then wZ) (a,), equals {(an ), @, =1 except for exactly one

n € Z}. Hence 72(Z)(a,),

an [FC]; group (B = 4G)).
If P is a periodic [FC]; group, P has a compact B invariant open sub-

is not precompact in G and G = Z5 Xy Z is not

group K such that P is an extension (¢) = K —= P — H — (e) , where H is
a discrete torsion group in [FC]$ (18l

We turn now to the B characters. Suppose G is a unimodular locally
compact group, and let X®(G) denote the set of nonzero extreme points of
the convex set of continuous positive definite B invariant functions a on G,
such that a(e)< 1 (o is B invariant if a(B(g)) = a(g), all B € B, g € G).
There is a bijective correspondence between X(G) = GK’(G)(G) and the set
of all classes of quasi-equivalent factor representations of finite type of G;
see Dixmier [5, 17.3.4]. We give ‘X (G) the topology of uniform convergence
on compacta in G. For B = 4(G) and G € [FIA]™,. GK(G) is locally compact
in this topology [131.

Before starting our investigations we give a summary of our results.
Note that most of our duality theory in §§2 and 3 was proved for [(z] groups
in [10] (if G € [Z] then G and X(G) are isomorphic).(4) If nothing else is
said G will denote an [FC]; group.

TABLE OF CONTENTS.
1. Introduction. (pp. 185— 188)
2. The B character space QB (G). (pp. 188-197)
2.3. The connected component of 8 € GI‘B(G) is Uﬁ p=lae Q® (G):
a, = Bpl
2.5. f'I(G) is discrete iff G is compact.
2.6. IfG is compact then G is discrete (G € [F A7),
2.7. G is discrete iff G is compact.
2.8. X(G) is o-compact if G is a first countable [FD]™ group. If
X(G) is o-compact and G € [FIA]™ then G is 1st countable.
2.10. Let G € [FIA]”. X(G) has finitely many connected components
iff the periodic subgroup P is finite.
2.12. Let G € [FIA]". G is aperiodic iff X(G) is connected.
2.13. X(G) is totally disconnected iff G is periodic.

(4) Our proofs use the theory of [Fcl” groups and they are different from the
ones given for [Z] groups in [10].
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3. Further results on X(G). (pp. 197-201)

3.1. If N is a compact normal subgroup of G such that G/N is abelian
and first countable then the map A — 8+ A; XG/N) — B- X(G/N) is an
open and continuous group homomorphism.

3.2. Let G € [FD]™ and let G/G'be first countable. Then G is o-
compact iff fX(G) is first countable.

3.3. X(G) is locally Euclidean if G is compactly generated. If
G € [FD]™ and X(G) is locally Euclidean then G is compactly generated.

3.4. fX*(G) is locally connected if G possesses property (L)3.

3.5. Let G € [FD]™ and suppose XG) is locally connected. Then
G is an (L) group.

I would like to thank my advisor Professor S. Grosser for his encour-
agement and our many stimulating discussions during the time in which
this work was done. Iam also indebted to Professor R. Mosak who read
through the manuscript and pointed out some gaps.

After this paper had been submitted to the Transactions of the American
Mathematical Society, we learned about results of D. Steiner that coincide,
essentially, with the present ones (D. Steiner, Zur harmonischen Analyse
klassenkompakter Gruppen, $6, Doctoral dissertation, Munich Technical
University, 1973, unpublished). Moreover, E. Kaniuth recently obtained
stronger results for [SIN] groups (Topology in duals of SIN-groups, Math. Z.
134 (1973), 67-80).

2. The B character space f'KfB(G). In this section we will study the
topological properties of the character space %5(6) for [FClg groups, with
emphasis on connectivity properties. As in the abelian case the periodic
subgroup plays a key role. After characterizing the connected components
of %3(6), Proposition (2.3), we derive as a consequence several duality
results analogous to those for abelian groups and [Z] groups; see [24] and
[10].

The first lemma is useful when one wants to prove results concerning
the B characters of [FClg groups which already are known to hold for

[F IA]g groups [19]. Let G be an [FCIg group (where B D 4(G)) and let C
denote the intersection of all compact B invariant neighborhoods of € in G.
Then C is a compact B invariant subgroup of G and H = G/C is an [FIAlg'

group where B’ is the automorphism group of H induced by B. Finally, let
0 denote the canonical map of G onto G/C. (See [11, Theorem (2.5)], for a
proof of the fact that C is a group.)
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(2.1). Lemma. With the above notation, the map a —o. © @ is a homeo-
1]
morphism of is(H) onto ix(G).
Proof. This is part of Proposition 1.2 in [19].

If G is as above and a exg(G) we let 1]2.,1( ={B 63(3(6): Qg = BKL
for any subset K of G. Here, as always, 8, denotes the restriction of 8 to K.

(2.2). Lemma. Let G be an [FClg group, where B 2 4G), and let K be
any compact B invariant subgroup of G containing C, where C denotes the
intersection of all B invariant neighborhoods of e in G. If o € A3(G) then
the set 113. k 1S open and closed in XQ(G).

Proof. We will first prove the result with B = Q(G). (In this case it will
be unnecessary to assume K D C.) If B € X(G) we have B = Jawo odp 4(0)
for a unique positive regular Borel measure Hgon X(K), since B is positive
definite and K invariant [13, Satz 2. Now X(K) is discrete so Bk =
2 m(0)o, where m(0) is some nonnegative real number and the sum is taken
over X(K). We claimthat A = Bk € AC(K) where € = Q(G)K.(S)

Let 7 be a G invariant positive definite continuous function on K with
7(e) < 1 and suppose 7 << A (i.e. A ~7 is positive definite). We shall prove
that 7 = kA for some nonnegative number k&, 0< k< 1. Let now m) and 7,
be nondegenerate cyclic unitary representations associated with A and 7
respectively, and let kerw, and kern, be their kernels when considered as
representations of the measure algebra M(K). Since 7 << A we shall see
that kerw) Ckerm . Let therefore v € kerm,. Since kerw, is an ideal in
M(K) we have v *f € kerm,, all { € C(K). Hence, by definition of m) and 7,
we have

0=M ) % ) >t s )* W) >0, all fe CK),

and this implies v € ker7,, so that kerw, C ker .

Recall now that B € X(G) and hence satisfies the character formula

S5 By~ duly) = B [ By~ duly)

for all x € G and every central measure p € M(G) (Leptin [17, Satz 2]).
In particular

(5) This assertion has been established elsewhere; see Kaniuth [13, proof of
Satz 4). We include a proof for completeness.
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1 S My t0 duty) = Nwy J My h ity an kek,

where p is a central measure in M(G) with support contained in K. Let
a,= Jk Ay~ 1)du(y) and let & . denote the point mass at e. Then(6)

Ji My Dl - 8 )X = [ Ny~ duy) - 2, M = 0,

Hence(7) p - aIuSe € kerm, C ker 7.

follows that, for all & € K, ak"l *(n~ a'u'8e) € kerm_, where &, *V(E) =
v(k~1E) for any Borel set E in G and v € M(G). Thus

Since kerw, is an ideal in M(K) it

a)  o- fK Py~ dlu = 2,8 )(ky) = fK ™ B duy) - a (R

If C,c = hx(k)z L, € 4G)} is the conjugacy-class of k € K there is an 4G)
invariant measure p, = p with support in Cg, see e.g. Leptin 17, ML
Since A and r are constant on C ) it follows from (1) that (we normalize the

measure)
a, = a,Me = fc; Ay~ dply) = &™),
and, analogously, (from (1'))
4,70 = foo ™ duy) = 1,

Hence 7(k) = A(k)r(e) for all k& € K, and A must be an extreme point [23, 4.1],
[5, 2.5}, i.e., A € X(K). Recall that A = By = Zm(0)o, and let o € A(K) be
such that m(0) £ 0. By [23, Theorem 5.8] A = o = f_o°ada, and since
X(K) is discrete this integral reduces to a sum over the -é orbit 6 of a:
Bk = 1/n3r, 7 € 0, where n = m(0)~! is the finite order of 6.

If now a € %(G) and oy £ B K» then ax must be concentrated on a dif-
ferent orbit 0, in X(K); that is, 6, N 0=g2. Hence it follows from the

orthogonality relations for characters that(8)

(6) The following argument is due to Leptin [17].

(7) The measure v=pu—a Se is central. Hence, for x € G, (m(V)m(x)u,
m(x)u) = (17(::)"'l m(x)m(V)u, u) = (#(V)u, u) =0, and since u is a cyclic vector
for 7 we have v e kerw (where w=1m,).

(8) The arguments used on the next page are certainly well known; see esge
[14, p. 340, the last paragraph].
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@ Jo BB~ ak - 0,

We next show that if a, 8 € X(G) and

%
3) 18K - a(B)] < [ fK la(le)lzdle] ., keKk,

then By = ag. From this it will follow that ‘Ua.,( is open in X(G). Since
Xc)= U a‘U a,K (disjoint union), each U oK Must also be closed. If (3)

holds we have

Je 18w - awizae< f ([ |oR1? dk) dk = f 1aBI? dk

(We use normalized Haar measure dk on K.) Now, if By # ags (2) gives

Je 180 - aear= [ 180N dk s [ 1atB]? dk> J retwr2an

Hence ay = By, and the proof is complete for the case B = §(G).

Suppose B D §(G). With the notation as in (2.1), we let H be the [F IAlg
quotient group of G. Theorem (5.8) of Mosak [23] yields an open and con-
tinuous surjection w: X(H) — %‘B'(H), ¢ -/ 3 &udi, wheredt is normalized
Haar measure on the compact automorphism group 3" Letting K'= K/C and
a € X(H) we see that {Be XH): Bk = aK'} = ‘Ua_ k¢ is open and closed by
the above. Moreover, it is easy to see that w maps U @K in 3((;1) onto
‘U%(a) Kt in QB (H), so that U8’ 3 (@K is open. Hence it follows from
Lemma (2.1) that (U ! K is open in fx (G), where o' denotes the i image of
w(a) under the canonical homeomorphism A 8 (H) — %3(6). Since 13(6) is
the disjoint union of the different 112’,1(’ it follows that each 113,, k is also

closed, and the proof is complete.

Ve are now in a position to characterize the connected components of
%3(6) when G is an [FC]S group. Our result is analogous to the one for
[Z] groups (see [10, 2.2]).

Let P be the periodic subgroup of G. Since the intersection C of all B
invariant neighborhoods of e in G is compact, one has C C P and G/P is an
[FIAlg' group. Hence the canonical map X(G/P)— %3,(6/ P) is open and
continuous (Mosak [23, Theorem 5.8]). Now %(G/P) = (G/ P)A is connected
by abelian duality theory, since G/P =R” @ A is an abelian torsion free
group. Thus a - X(G/P) is connected, for each a € 1(6),~being the continuous
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image of X(G/P) under the map A — a.- A. Now ‘U p equals a - XG/pP)
by a result of Kaniuth and Schlichting [14, Lemma 4], and U3 B,P is the con-
tinuous image of U o,P under the canonical surjection %(G/C )— %“B(G/C),
a—=B={ _atdi. Hence each ‘Uﬁ p is connected. Let G denote the
connected component of 3 in ‘tﬁ(c;/c )= Tm(G) Then we have from the
above that C 8> Ul B,P*

If K is any compact B invariant subgroup of G containing C, then KC P
and ‘Ug’K =ly e X3G): Bk = Yk} is an open and closed subspace of
X%(G) by Lemma (2.2), and clearly U3  DUB . Let H=G/C. The

periodic subgroup P(H) of H equals P/C and by [11, Theorem 3.16(2)}, P(H)
is the union of all compact B’ invariant subgroups of H. Taking pre-images
under the canonical map G — G/C, we see that P is the union of all compact

B invariant subgroups K of G containing C. Hence we have ﬂK sC ‘U,B,
‘U% p- Also the connected component @ C (U B,K since ‘U B,K is open and
closed and has the character 8 in common with C B Thus C 8 C
nK DCU K= (U,B py and as ‘Uﬁ p is connected, it follows that G'B =
‘Ulg. p- We have therefore proved

(2.3). Proposition. Suppose G is an [F‘C]i group, where B O G). Then

the connected component of B € %3(6) is UB B,P? where P denotes the
periodic subgroup of G.

(2.4). Corollary. Let G be an [FC]™ group. Then the connected com-
ponent of a € X(G) is a.+ X(G/P).

Proof. By [14, Lemma 4] U a,P equals a - (G/ P)" = a+ X(G/P). Hence
the result follows from Proposition (2.3).

As an application of (2.4) we prove the following result which is a
slight generalization of part of Satz 3 in [13]. v

(2.5). Corollary. If G is an [FC1™ group then X(G) is discrete if and
only if G is compact.

Proof. If X(G) is discrete it follows from (2.4) that the connected
component (G/P)" is trivial, so G = P is periodic. By the structure theo-
rem we have an exact sequence of topological groups (¢) 2 K— G — D—
(e) where D is a discrete periodic [FC] group, and K is compact [18]. Since
Aw) is naturally embedded in f’X(G), X) is discrete. Moreover,
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D € [FC] N [SIN], so that Satz 3 in [13] yields that D is compact. Hence G
is compact. Conversely, if G is compact it is well known that G = X(G)
is discrete [5]. )

Noting that, for G € [FC1™ n [SIN], X(G) is compact iff G is discrete
[13, Satz 3], we derive as a consequence the following result, which is not
true in general for locally compact groups, not even for second countable
groups, as is shown in [3, Theorem (4.7)]. We have not succeeded in proving
the result for [FC]™ groups. For [FIA]™ groups it follows immediately from

the work of Mosak [23].

(2.6). Proposition. Let G be an [FIA]™ group. If G is compact then G

is discrete.

Proof. The map ¢ — ¢#, G— X(G), is a continuous surjection (Mosak
[23]). Thus X(G) is compact. Hence G is discrete by [13, Satz 3].

The next result was conjectured to hold for arbitrary locally compact
groups. Then L. Baggett proved its validity for second countable groups
[3], and recently A. L Stern announced the result in complete generality
[27

We present a proof for [FC]™ groups because it is closely related to the
material above.

(2.7). Proposition. Let G be an [FC]™ group (not necessarily separable).
Then G is discrete if and only if G is compact.

Proof. If G is discrete, let, as before, C be the intersection of all in-
variant neighborhoods of e in G. Then H= (G/C )“ is discrete. Since H =
G/C is an [FIA]™ group the map ¢: i — A(H) given by ¢ — qS#, where
qS#(b)I = ‘- ¢e(h)de is open and continuous onto X(H). Hence X(H) is

discrete, so that H is compact. Since C is compact it follows that G is
compact.

The converse assertion (G compact implies G discrete) is well known
[51.

It was proved in [10] that [Z] groups are first countable if and only if
their character spaces X(G) are o-compact. We will now prove the “‘only
if part”’ of this result for [FD]™ groups, whereas the *'if part’’ only can
hold for [FIAT™ groups in view of (2.1).

(2.8). Proposition. Suppose G is an [FD]™ group. If the character
space X(G) is o-compact then the [FIA1™ quotient group G/C is first count-
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able (where C denotes the intersection of all closed invariant neighborhoods
of ). Conversely, if G € [FD)™ and X(G) is o-compact then the group G is.
first countable.

Proof. Suppose H € [FIA]™ and let X(H) be o-compact. By the Robert-
son structure theorem H satisfies an exact sequence of topological groups
()= K— H— R” ® D — (e) where D is a discrete [FC] group and K is
compact and normal in H.

Now the continuous restriction map a — ag, fX(H) - ?K"(K) is surjec-
tive (Kaniuth [13, Satz 4]) so thar XH(K) is o-compact.(9) Also, XH(K)
is discrete since K is compact, hence KH(K) is countable. Moreover, each
Be XH(K) is of the form B=1/n 2759’ where 0 is some H-orbit in X(K)
and 7 denotes its finite order (see e.g. the proof of Lemma (2.2)). Thus
A(K) = K is countable and hence K is first countable. Therefore K and
H/K=R" ® D are first countable and this implies that H itself is first
countable (see e.g. [10, Lemma (2.1)]). Now the first part of the proposition
follows by letting H = G/C.

Conversely, if G € [FD]™ is first countable and G’ denotes its commu-
tator subgroup, let K be any compact open subgroup of the periodic subgroup
P of G and assume that K is G-invariant [18]. Since P D G'and G'is com-
pact we may also assume that K D G'. By hypothesis K is first countable,
hence fX(K) = K is countable. If a € %(G), we have ay = 1/m 297 where 0
is some G-orbit in f'r(K) and m is the finite order of 0 (see the proof of
Lemma (2.2)). Since there are only countably many orbits, there are only
countably many restrictions ag. Thus fX(G) is the disjoint union of count-
ably many ’ua.,(, and each ‘Ua,K is of the form a - (G/K) since G/K is
abelian [14, Lemma 4]. By abelian duality theory (G/K) is o-compact
(G/K is first countable by the hypothesis). Hence it is clear that each
a- (G/ K)‘ is o-compact, being the continuous image of G/ K)A under the
map A — a - A, thus X(G) is the countable union of o-compact spaces
a- (G/K)", and it follows that X(G) is itself o-compact.

In order to establish our next result we shall need

2.9). Lemma [14, Lemma 6). Let G be an [FC1™ group, and suppose
the periodic subgroup P is open in G. Then the compact-open subsets A of

X(G) are exactly the sets of the form A = U:.=ltua. N2 where N is some
1’

§(H)
) welee X)=2 Kk
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compact, open, and normal subgroup of G.

(2.10). Proposition. Let G be an [FIAT” group. Then the character
space X(G) has [initely many connected components if and only if the
periodic subgroup P of G is finite.

Proof. Clearly, if P is finite there are only a finite number of G-orbits
in X(P) = P. Hence there are finitely many C_= o+ (G/P)” since different
connected components C’.a correspond to different orbits.

Conversely, suppose X(G) has finitely many connected components,
and let K be any compact open subgroup of P and characteristic in G [18].
There are only a finite number of different sets U aK= B € X(G): ag = By
since each Ua,K p) Ga, and since we have €a= @Bor Ga N C‘_’ﬁ =g, for
a,fBe X(G). We shall see that to each G-orbit in X(K) there corresponds a
U o,k That is, given a G-orbit 0 in fX(K) there exists a U K C X(G) such
that each character in U o K Testricts to K as a sum 1/n 2B taken over .
As soon as this is proved, it follows that X(K) has finitely many orbits.
Moreover, for fixed y € 5((1(), the map y6)- — X(K); t — yt is continuous
[23, 5.6], and since %G)~ is compact and X(K) discrete, it follows that the
G-orbits in fX(K) are finite. Thus it follows that fX(K) = K is finite. By a
resule of L. Baggett [2] we conclude that K is finite.

We will now prove the statement above. Let 6 be a G-orbit in %(K), and
put y = 1/n 2 457, where n is the order of 6. We claim thaty € AS(K). To
see this, suppose A >> 0 and G-invariant on K, and that A << y. We have
A= zaex“{)m(o)a, and we shall write A = A g + )\'é‘, where Ay is the part
of A concentrated on the orbit 6. Suppose ad absurdum that )tJé # 0. Since
?\é is positive definite and square-integrable, we have AJé = [** {, for some
continuous (positive definite) function f on K, [5, 13.8.6). Hence, by the
orthogonality relations,

0< fK (/5 NOG = V(B dk

= J XBOAB - NB Y dk = [ - INgRI2ak <0,

Hence A=Ay = Zym(0)o. Now x + A(k)=A(k), x € G, k € K, so that

m(x + 0) = m(0) by uniqueness of the basis expansion. Thus A =
Ae)(1/n 2 40) = A(e)ys and we have proved that y is an extreme point, i.e.
y € X6(K). By Kaniuth [13, Satz 4], there exists an a € X(G) such that the
restriction ag equals y. Hence the orbit 0 corresponds to U a,K? and we
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have seen that this implies that K is finite. By assumption, K was open in
P, so P is discrete. By Liukkonen [18, Proposition 2.4] G = R" @ H, where
H is a discrete [FC] group. Also, X(H) has finitely many connected com-
ponents, and therefore each of them is open. In particular (H/P)“ is open
and compact, and Lemma (2.9) yields that (H/P)" = U'l‘uai, N Where N is

compact and normal in H. Since (H/P)A is connected r = 1 and (H/P)‘ =
X(H/N), which implies H/N is aperiodic (2.12). Hence P = N and we have
that P is finite.

(2.11). Corollary. Let G be an [FCI™ group with periodic subgroup P.
Let C denote the intersection of all invariant neighborhoods of e in G. Then
X(G) has finitely many connected components if and only if C has finite
index in P,

Proof. This follows immediately from (2.1) and (2.10).

(2.12). Proposition. Let G be an [FC]™ group, and let C be the inter-
section of all invariant neighborboods of e. Then G/C is aperiodic if and
only if X(G) is connected.

Proof. Since aperiodic [FC]™ groups are of the form R” ® A where A
is discrete, abelian and torsion free, the only if part follows from the abelian
theory and the fact that X(G) = X(G/C).

Conversely, suppose X(G) is connected. By (2.4) we then have X©G)=
X(G/c)= (G/ P)A, and since G/C is a [SIN] group the characters in X/c)y
separate the points of G/C (Dixmier [S, 17.3.6]). Thus P/C is trivial, and
G/C = G/P is aperiodic.

Connectedness being the farthest, topologically speaking, from totally
disconnectedness, one can ask whether periodic groups are the ones pos-
sessing totally disconnected character space.

(2.13). Proposition. Let G be an [FC1™ group. Then X(G) is totally
disconnected if and only if G is periodic.

Proof. If G = P then clearly the character space X(@G) is totally dis-
connected (2.4).

Conversely, if X(G) is totally disconnected, (G/P)‘~ is trivial, so G/P =
(e) by the Gel'fand-Raikov theorem. We close this section with an example.

(2.14). Example. Let G be the semidirect product of the integers Z and
the compact group T* = II*%T, where T, =R/Z for each k € Z, and where

Z acts on T* by shifting the coordinates: a: Z — Aut(T™), a()(z,), =
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(t4 4 p)p- Then G can be computed by Mackey’s theory. If w € (T is
nontrivial, the stability group K, under the action of G on (T °°)Aby inner
automorphisms, equals T®. Hence G consists of the induced infinite di-
mensional representations ©® and G o=lme G: T oo IS trivial} = Z",
Therefore the space of finite dimensional irreducible representations, G 0
forms a connected subspace of G. We note that G is an [FC]~ group by the
structure theorem of Robertson. Also, G is type I. This follows from the
Mackey theory since the stability groups equal T* (except for w = 1) and
since Z and T* both are type I, being abelian [21, Theorem 8.4].

Since separable [FIA]™ groups of type I have only finite dimensional
irreducible representations, G is not a [SIN] group [23]. Actually, as is
easily seen, the intersection of all invariant neighborhoods of e in G equals
T*, Hence we have X(G)=G o SO that G is an [FCI™ group where the
periodic subgroup is infinite (P = T*) but where fX(G) is connected; com-
pare with Proposition (2.10).

Observe also that ‘I(G) is compact without G being discrete; see
Proposition (2.6).

3. Further results on X3 (G). We continue our extension of results
from the duality theory of abelian groups and [Z] groups. Before we turn
to characterizations of g-compact and compactly generated [FC1™ groups,
we shall need the following useful lemma.

(3.1). Lemma. Let G be an [FC]™ group, and let N be a compact nor-
mal subgroup of G such that the quotient G/N is abelian and first countable.
Let B € X(G). Then the map

¢: X(G/N) = B-X(G/N), A —=B-),
is an open and continuous surjection.

Proof. The map ¢ is clearly continuous (in the topology of uniform
convergence on compacta in G/N) and surjective.

To prove that i is open, we first observe that X(G/N) = (G/N)" is the
character group of the abelian and first countable group G/N; hence (G/N)
is o~compact. Next, we give B + X(G/N) the structure of a group by let-
ting

B-A)+(B-A)=B-(A), and (B-A)"1=B.ATH
Apsd, € X(G/N). 1t is easy to verify that the map

(B-ApB-2)—=B-AAY; B-A(G/N) x B+ X(G/N) — B+ XAG/N)
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is continuous in the topology of uniform convergence on compacta. Hence
B - X(G/N) becomes a topological group with the above multiplication.
Moreover,

YA = B+ (A A) = (B A) +(B+ A,) = ¥A) +y(h),

and
YA)T = (B AT =gAT; A, A, €X(G/N),

so that ¢ is a continuous homomorphism of the g-compact locally compact
group X(G/N) onto the topological group 8 +X(G/N). By Kaniuth [13, Satz
11, X(G) is a locally compact Hausdorff space, and by Lemma (2.2)

B- %(G/N) is an open and closed subspace of X(G). Hence B- %(G/N) is
itself a locally compact Hausdorff space. We may now apply Theorem 5.29
of Hewitt and Ross [12] to conclude that ¢ is an open map.

(3.2). Proposition. Let G be an [FD]™ group such that G/G' is first
countable (where G' denotes the commutator subgroup of G). Then G is o-
compact if and only if X(G) is first countable.

Proof. If X(G) is first countable, so is (G/ —G")A since it is a subspace
of X(G). Hence G/G' is o-compact by the abelian theory. Since by hypothe-
sis G'is compact, G is o-compact.

Conversely, suppose G is o-compact. Then clearly G/G G is o-compact,
-and hence its character group (G/G' ) = X(G/G') is first countable. By
Lemma (3.1) a - x(G/ G') is first countable for every a € X(G). Since each
a - X(G/G') is open in X(G), it follows that A(G) is first countable.

A topological space is said to be locally Euclidean if each of its points
is contained in a neighborhood which is homeomorphic with R” for some 7.

(3.3). Proposition. Let G be an [FC]™ group. Then the character space
X(G) is locally Euclidean if G is compactly generated. If G is an [FD]™
group and the character space X(G) is locally Euclidean then G is compactly

generated.

Proof. Suppose G is compactly generated. Then G satisfies an exact
sequence of topological groups (¢) = K — G — R” ® A — (e) where K is
the periodic subgroup which contains the closed commutator G', is compact,
and 4 is discrete, abelian, finitely generated, and torsion free [11, Theorem
(3.20)]. By abelian duality theory (G/K)" = X(G/K) is locally Euclidean,
and the proof of (3.1) shows that the connected components a * %(G/K) are
locally compact groups. By (3.1) the map ¥: A — a+ X is an open and
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continuous group homomorphism of fX(G/K) onto Q. * X(G/ K). Hence the
topological groups X(G/K)/ker ¢ and a + X(G/K) are isomorphic. Since the
first is a Lie group, so is a + X(G/K). Now each connected component is
open in f’X(G) since K is compact (2.2) and it follows that %(G) is locally
Euclidean.

Conversely, suppose X(G) is locally Euclidean and G € [FD]™. Then
G/ 6')A is open in %(G) and hence it is locally Euclidean. Thus G/G' is
compactly generated by the abelian theory. Since G' is compact, G must be
compactly generated.

Local connectedness and property (L). Let G be a locally compact
group and let B be a subgroup of ((G) containing the group ¥G) of inner
automorphisms. G is said to have property (L)g, or to be an (L)g group, if
each compact subset M of G is contained in an open, compactly generated,
B-invariant subgroup H of G such that the quotient G/H is torsion free. If
B = 4G) and G is abelian this definition reduces to the usual one (Pontrja-
gin [24]). In that case we shall use the notation (L) group.

Our first task is to prove that for [FClg groups G possessing property
(L)$ the B character space b (G) is locally connected. In the abelian case
this result (and its converse) was proved by K. Fan [6]. Although his proof
can be generalized to [FClg groups, we will use a different approach (giv-
ing a shorter proof), which utilizes our results from §§2 and 3 concerning
the structure of %3(6), and Fan’s result. Before going on, we note that the
following result was proved for [Z] groups in [10].

(3.4). Proposition. Let G be an [FClg group (such that the quotient
group G/P is first countable, where P denotes the periodic subgroup of
G).(10) Then .‘X"’(G) is locally connected if G possesses property (L)g.

Proof. Let U be any compact subset of the periodic subgroup P of G.
Since G is an (L)g group, U is contained in a compactly generated, open,
B-invariant subgroup H of G with torsion free quotient G/H. Clearly, P C H;

in fact, any x € P\ H would generate a compact subgroup of P with non-
trivial compact image in G/H under the canonical map G — G/H, contra-

dicting the fact that G/H is torsion free (aperiodic). It is also clear that
P is the periodic subgroup of the [FC]™ group H, and since H is compactly
generated P must be compact [11, Theorem 3.20].

Let now Cg be the intersection of all B-invariant neighborhoods of e.
Recall that the canonical map ¢ of X(G/Cg) onto A% G/c @) is open and

(10) G/P = R" x D where D is discrete, is always first countable.
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continuous (Mosak [23, 5.8]). Put M = G/Cg and let P(M) be the periodic
subgroup of M. If a+A € a- (M/P(M))", & € \(M) and A € (M/P(M))", then

[Wa NP = [, docp)rodp) di = fi, a oup) d = (Wap),

all p € P(M), since «(p) € P(M) whenever ¢ € %', and since the restriction
'\'P(M) = 1. This implies that ¢ maps a - (M/P(M))" = ‘ua,P(M) onto Uf;.P(M)
in X3'(M). Since P(M) is compact, each a - (M/P(M))", a € (M), is open
in X(M) (Lemma (2.2)) and it suffices to prove that all the connected com-
ponents a * (M/P(M))A of x(M) are locally connected in order to show that
A%’ (M) = A3(G) is locally connected.(11)

The facts that M/P(M) is abelian, P(M) is compact (P(M) = P/Cg and P
is compact as shown above), and M/P(M) is first countable make Lemma
(3.1) available. Hence the map A = a+ A of (M/P(M))” onto a.+ (M/P(M))”
is open, and it is sufficient to prove that (M/ P(M))” is locally connected.
Noting that M/P(M) is of the form RIe ® A where A is discrete, abelian,
and aperiodic, the problem is reduced to showing that R*® 4 is an (L)
group by the result of K. Fan for abelian groups.

Let therefore F be a compact subset of R* @ A, and let 7: M —
M/P(M) = R* @ A be the canonical map. Then 7~ 1(F) is compact and hence
is by hypothesis contained in a compactly generated open normal subgroup
K of M such that the quotient M/K is torsion free. Hence 7n(K) is a com-
pactly generated subgroup of R* ® A and, moreover, K contains P(M). Thus

(RE @ A)/n(K) = (M/P(M))/(K/P(M)) = M/K,

and it follows that (R'c ® A)/n(K) is torsion free. Since w(K) clearly con-
tains F, we have seen that R*® A possesses property (L), and it follows
that (R* @ A)" = (M/P(M))" is locally connected.

We turn now to the converse of Proposition (3.4), assuming B= g(G)
and G € [FD]™. 1f X(G) is locally connected, Gl = (G/P)” contains an
(open) connected neighborhood of the identity character ¢, so G/P) is
open in X(G). As P contains the commutator G', G/P)" is open in (G/ G,
Also (G/P)” = (G/G'/P/ E')A, so P/G' is compact by abelian theory, and
it follows that P is compact.

Suppose in addition G is an [SIN] group. Then G satisfies an extension
of topological groups (¢) = R” @ P — G I A — (e) where A is discrete

(11) The author is indebted to R. Mosak for pointing out a gap in an earlier
version of the above argument.
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abelian and torsion free [18, Theorem 2.13]. Let M be a compact subset of
G. Since A is discrete, 7(M) must be finite. Let now F be the set of those
elements @ in A for which there is a positive integer 7 such that @” is in the
subgroup generated by m(M). Hence F is a discrete torsion free group of
finite rank. Now F can be identified with the quotient group A/(A/F)” and A
is locally connected, hence Fis locally connected. By a lemma of Pontrja-
gin [24, $38], F must be finitely generated.

Let H=n"1(F). Clearly H is open in G, since A is discrete. As F is
finitely generated and R” © P = ker 7 is compactly generated, H is com-
pactly generated. Moreover, A/F is torsion free from the definition of F.
Hence G/H is torsion free, being isomorphic with A/F. Therefore the com-
pact set M is contained in the compactly generated open subgroup H of G
with torsion free quotient G/H. Finally we note that H is invariant in G.

Let G be an arbitrary [FD]™ group and put C = the intersection of all
invariant neighborhoods of the identity e. Then D = G/C is an [SIN] group
and f’X(G) is homeomorphic to S((D). Suppose D is an (L) group and let
MC G be compact. If w: G — G/C is the canonical epimorphism, w(M) is
compact in G/C and hence contained in an open, compactly generated,
invariant subgroup H* of D with torsion free quotient D/H*. Then o~ H*) =
H is an invariant subgroup of G containing M, and possesses the other
crucial properties: it is compactly generated, open in G and the quotient
G/H is torsion free. We have proved

(3.5). Proposition. Let G be an [FD1™ group and suppose X(G) is
locally connected. Then G is an (L) group.
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