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ABSTRACT.  Let T(8) denote the principal congruence subgroup of

level 8 and let T(16, 32) denote the subgroup of T(16) satisfying cd m

ab = 0 (mod 32). We are dealing only with the elliptic modular case. Con-

sider the spaces of cusp forms of weight 2 (differentials of the first kind)

with respect to these groups.  It is proved that these spaces are generated

by certain monomials of theta constants of degree 4.

Introduction. Let iXl) denote the group SL(2, Z) and let IX«) denote

the principal congruence subgroup of T(l) of level re. If r is an even posi-

tive integer let IXr, 2r) denote the subgroup of T(r) defined in [3, p. 222].

If

AQV, 2r2)) = 0 £ A(r(r2, 2r2))k

denotes the graded ring of modular forms for the group T(r , 2r ), the  kú\

component being defined by f(M(z)) = (cz + d) f(z) and certain holomorphicity

conditions, and if 8.(r) =©2i>nClO0i denotes the graded ring whose &th

component is the vector space generated by monomials of theta constants

U2k, 6[m ] such that rm   m 0(mod 1), where theta constants are defined in
a=l        a a x "

§2, then by [3, p. 235] the integral closure of Q.(r) in its field of fractions

is AdV, 2r2)). When r = 2, 0(2) = 4(1X4, 8)) but it is known ([l] or [4,

p. 244]) that d(4)2 is properly contained in A(r(l6,32))2.  However the pos-

sibility exists that the cusp forms in   Q(r)2  generate the entire space

of cusp forms in   A(r(r ,  2r )) 2>   The purpose of this paper is to show

that the cusp forms in  0(4) 2  generate the entire space of cusp forms

in  A(r(l6,  32))2   and that a similar fact holds for the group  1X8).   We

shall also obtain explicit bases for these spaces in terms of theta constants.
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The groups T(2), T(4), 1X4, 8) were treated in [l], where similar results

were obtained.   The basic technique we will use is the characteristic

based direct sum decomposition of vector spaces of theta constants. The

cusp forms of weight 2 for any of the above groups induce the differentials

of the first kind on their associated Riemann surfaces, hence the title of this

paper.

1.   Determination of an orbit.   If x and y are in R2 define x ^ y to

mean x = y (mod l) or x = -y(mod l).  This is an equivalence relation. For

a given pair (M, m), Al an element of T(l) and m = {m , m ) an element of

R2, define Mm = {dm' - cm", -bm' + am") + Y2{cd, ab). Throughout it will be

understood that Al = (     ,).  Unless otherwise specified it is also understood

that Mm is not the matrix product of Al and m.

Clearly, x <\, y implies Mx ̂  My, and AL, AL in T(l) implies {MM Ax

^M^Mf). In fact, by [3, p. 222], (AljAl^x m M¿M2x) (mod 1).   Also If ~ x.

These facts mean that the group T(l) operates on the set of ~ classes in

R2. If r is an even positive integer let 0{r) denote the set of all {i/r, j/r),

i, j in Z. If Q{r) denotes the set of ^ classes in Q{r) then lXl) operates

on the set   Q{r)   by restriction.   A system of representatives for the   ~

classes in Q{r) is given by the set S   consisting of all {i/r, j/r) such that

0 < i/r <]/2, 0 < j/r < 1, or i/r = V2, 0 < j/r < Y2, or i/r = 0, 0 < j/r < V2.

Let e = (0 0), / = (O XÁ), g = (0 \ft be elements of R2. The subset of

TU) consisting of all Al such that Me ̂  e,  Mf ~ /,  Alg ~ g is clearly a sub-

group which will be denoted by G{e, f, g).

Lemma 1.   G{e, f, g)  is the subgroup of V{2) consisting of those   M

such that c = 0(mod 4).

Proof.   If Al satisfies the stated conditions then b m 0(mod 2) and

c s 0(mod 2), which implies that, for any m in R2, Mm = {dm' - cm",

-bm' + am"){mod l). Hence Me = e(mod 1) and Mf a (-c/2, a/2) (mod 1).

Since c s 0(mod 4), a = 1 (mod 2) we have Mf s /(mod 1). Also, Alg =

{-c/4, a/4) = (0, a/4) (mod 1)  and (0, a/4) ~ g the latter because a =

l(mod 2). Thus Al is in G(e, /, g). Conversely, if Al is in G{e, f, g) and

m is e, f, or g we have {dm' - cm" + V2cd, -bm' + am" + V2ab) s +nz(mod l).

Letting   m = e implies cd = 0(mod 2) and ab m 0(mod 2). Letting m = /

implies cd = c (mod 2) and a + ab = 1 (mod 2). Thus  c s 0(mod 2) and

a = 1 (mod 2). The latter along with ab a 0(mod 2) implies that b s 0(mod 2).

Since ad -be = 1, be even, we have d = l(mod 2). Letting m = g yields

-c/4 + cd/2 m 0(mod 1). Thus c{2d - l) = Olmod 4) which implies c a

0(mod 4).
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Lemma 2.   The group index of G(e, f, g) in IXl) is 12.

Proof.   By Lemma 1, G(e, f, g) is contained in 1X2) and the inclusion

is proper by observing the matrix Al = (2  3).  The group 1X2, 4) is contained

in G(e, f, g) because if M is in 1X2, 4) then M is in 1X2) and cd= 0(mod 4),

d = l(mod 2), implying that c = 0(mod 4). The inclusion is proper as can

be seen from the matrix M = (_4  _7). These facts imply that [IX2):

G(e, f, g)] is a proper divisor of [T(2): 1X2, 4)]. Since the latter is 4 by

[2, p. 222] we see that [1X2): G(e, f, g)] = 2. Thus the required index is

[TU): IX2)][r(2): G(e, f, g)] = 6 • 2 = 12.

Theorem 1.   Let e = (0 O), / = (O V2), g = (O 14), M. = (\  °),  AL =
—1—1 10

(3     2 )»  ^, = (2   i).  Then a system of representatives for the cosets

gG(e, f, g), g £ Hl), is given by 12> Mj, M2> Al2, AljAl^ A^Mj, A1y MjAIj,

A4 2M , A12M,, M MJA , A12M,M,.  The values taken by (Me, Mf, Mg) mod ~

as M runs through the above representatives in the order stated are

(0 0,0 x, 0 y), iX 0,0 y2, % y), (0 y2, y2 o, y %),

ilA 0,0 0, y lA (0 y2,0 0, ^ %), (o o, ^ o, y %),

(0 0,0 y2, y2 y), (y2 o, o y2, y y), (o y, y2 o, 14 $,

(y2 o, o o, Í4 0), (0 y2,0 0,0 '4), (0 0, y2 o, 14 o),

and these are all possible values of (Me, Mf, Mg) mod ~ as M runs through

all elements of V(l).

Proof.   Direct computation shows that as   M runs through the above

stated system, (Me, Mf, Mg) runs through the above stated values  mod ~.

Since there are  12 of them, the theorem now follows from Lemma 2.

2.   Monomial cusp forms.   In the following r denotes a point in the

upper half plane, e(z) = e2mz and m = (m1, m") is in R2. The holomorphic

function in r defined by the series

ÔWW=   X   e[(p + m')m" + }/2(p + m')2r]

pez

is called the theta constant of characteristic m.  Some elementary properties

of theta constants are 0[zn](r) = 6[-m](r), 6[m + n](r) = e(m n")0[m\(r) where

re is any element of Z .

If m is in Q , 6[m](r) vanishes identically in r if and only if   m =

(lA lA) (mod l). Hence if m ~ s then 6[m] is a scalar multiple of 6[s] and

every nonzero d[m] such that rm = 0(mod 1) is a scalar multiple of some

d[s], s e Sr.
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If f{f) is a holomorphic function defined in the upper half plane, Al is

in r(l), and A > 0 is an integer, define /|feAl = /(Al(r))(cr + d)~k, where

Al(r) is the linear fractional transformation induced by Al.  The monomials of

theta constants of degree  2A satisfy the following transformation law

[3, p. 228]:

(2k \    2k

Z ^LM-^JiAO) J] OÍM-^J
ami J a=l

where 0[«](A1) •» -y/2{m   bd + m"2ac - 2m'm"bc - ab{dm' - cm")) and y(Al)

denotes a certain scalar depending only on Al.  A lengthy computation using

ad — be = 1 yields

<f>[M~ m ] = -Y2{m   ba + m'   cd + 2m'm"be

+ m'{ab){-acd - bed - l) + m"{abcd){-c - d) + C{M))

where C(A1) is a scalar depending only on Al, not on ma. The transforma-

tion law is then

2k

n *M M
a = l L

J-HÍ6« Z <
2¿ 2*

= L(M)e|-H(¿fl   Z  m'a2+cd  £  m'a    + 2bc   £

a = l a = i

2fe 2/fe

+ ab{-acd - bed - 1)   £ w^ + (aiW)(-c - d)  £  TO^'

a = l a=i      ,

where L(Al) is a scalar depending only on Al.

Theorem 2.   Let Yl2k,9[mJ be in Q{r)..  Then II2*   0U 1 is not a
a — i        a. ft u. — i u.

cusp form of weight k for T{r2, 2r2)  if and only if there exist  M in TCl)

and s„ = {s', s") in R2, s' = 0(mod 1), a = 1, ..., 2A, such that Ms   = m ,
CL CX CC Cl w, w.

a = 1, ..., 2k.

Proof.   Let / = ÏL^ftmJ. / is a cusp form of weight A for T{r2, 2r2)

if and only if, for every Al in T(l), f\kM has  Oth Fourier coefficient with

respect to T{r2, 2r ) equal to 0.  By the transformation formula this is

equivalent to saying that IIa_,0[AI-  ma] has vanishing 0th Fourier coeffi-

cient for all Al in T(l). This means that, for some a, M~1ma = {s'a, s£),
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sa 4 0(mod 1), as can be seen from the Fourier expansion

2k / 2k

u  ÖUJ =  Z «x*(V2r2),       aA = 2>(   £ xam';/r),
a = l X>0 \a = l

the summation running through all (xj, ... , x    ) in Z2k satisfying

Sa = i xl " A' xa - rm'a ̂ mod '■).«.= 1, ... , 2¿.

Corollary.   Consider the collection of monomials of theta constants in

Ct(4),   of type n¿*. 6ima] where ma e S , a = 1, ... , 2k.  The monomials

in the above collection which are not cusp forms for IXl6, 32) are those of

the following type in which «,, «2, », > 0, re.+w2 + re,= 2k:

0Lo o]"'ö[o y2]"26ío y¿n\ e[y of Wo y]"2e[y y\n\

WA of Wo o]"20[!4 yf3, ö[o y]"le[o of2e[y2 y]n\

m o]"1^ yf2e[y yf\ e[y o]nieLo o]"2ö[!4 o]"3.

A monomial in Cl(4),   z's not a cusp form if and only if it is a scalar multiple

of one of these.

Proof.   The Corollary follows from Theorems 1 and 2, and the elemen-

tary facts about theta constants stated at the beginning of this section.

We shall count the total number T of monomials of degree  2k in the

above Corollary. There are 6 types. Let T.,  1 < i < 6, denote the number

of monomials in the  z'th type such that re, > 0 and let S denote the total

number of monomials of degree  2k involving at most 2 of (0 0), (0 lA),

(lA 0).  Then T = l,^^. + S. If N(d, n) denotes the total number of mono-

mials of degree d in n variables then T. = N(2k - 1, 3) and S = N(2k, 2) +

2N(2k - 1, 2) - 1. Thus  T = \2k(k + l). The total number of monomials

U2k, 6[m ], m    e S ., is N(2k, 9) because there are 9 elements in S.. If
cl = i        cx '     cx 4 4

AL = number of monomials íl^=1 B[ma\, ma e S4>  N2 = number of monomial

cusp forms of this type, and iV, = number of monomial noncusp forms of this

type then Nl = 495, N2 = 423, Ni = 72.

3.   Another type of cusp form.   In the preceding section we determined

all monomial cusp forms in 0.(4),. We shall now find some cusp forms not of

this form.

Lemma 3.   For each M in T(l) we have Al(0 XA) ~ (0 54) if and only if

c - 0 (mod 4).
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Proof.   If A1(0 ifl ~ (0 H) then {-c/4 + cd/2, a/4 + ab/2) = (0, ± !4)

(mod 1) and so c{2d- l) = 0(mod 4). Thus c = 0(mod 4). Conversely, if

c m 0(mod 4) then Al(0 ̂  = (-c/4 + cd/2, a/4 + ab/2) = (0, a/4 + ab/2) ~

(0 %) because ad - be = 1 implies a is odd.

Lemma 4.   // w z's in R2, m ~ (0 x) Men 0[m] = 0[O x].

Proof.   This follows immediately from the 2 identities stated at the

beginning of §2.

Theorem 3.   0[O Î4M0 0]3 - 0[O JMO ^]20[O 0] is a cusp form of

weight 2 for the group Hlö, 32).

Proof.   Let / be the stated expression. It suffices to show that, for

every M in r(l), f\,M has vanishing 0th Fourier coefficient. We divide

the proof into two cases. In the first case suppose that Af-1(0 %) = (**' a")

where a 4 0(mod l). The transformation law gives f\.M = a linear combi-

nation of 9la   ^'MATHo o)]3 and día' û"]0[ATKo JÖPflTjtrKO 0)].

Since a'4 0(mod l) a look at the definition of 9im] shows that the 0th

Fourier coefficient of 9\fl   a"] is 0. Thus the same is true of /|, Al.  In the

second case suppose that AI- Ho %) = («' ß") where a' = 0(mod l). Then

Al- '(O \Q ~ (0 Î4) as can be seen from Theorem 1. Thus (o 54) ~ Al(0 54)

and Lemma 3 implies c = 0(mod 4).  The table in Theorem 1 actually shows

that the triple (AT HO 0), AT Ho Vi), A1-1(0 JÖ) is ~ to either ((0 0),

(0 l/Ç), (0 Vii) or to ((0 lA (0 0), (0 l/ft). Lemma 4 then implies that

0LA1-HO 0)] is either 0[O O] or 0[O lA, 0[AT Ho $] is either 0[O Jfl or

0[O 0] and 0[AT Ko Î4)] is 0[O Î4]. Hence they all have 0th Fourier coef-

ficient equal to 1. The transformation law yields

/|iM = C1(Al)0[M-1(O ^MAtKo 0)]3

-c2(ai)0[ai-1(o î4)]0Lm-1(o Jôl^rjM-Ho 0)]

where C,(A1) and CAM) are scalars depending only on Al.  The Oth Fourier

coefficient of f\JA is thus Cj(Al) - CJAl), and we have only to show it

vanishes. From the version of the transformation formula we found in §2,

we have, setting all the m'a = 0,

C¿M) = L{M)e{-y2({l/l6)cd + {lMabcd){-c - d))),

CAM) = L{M)e{-y2{{l/l6 +%+ Wed + {V4 + V2+ i/Q{abcd){-c - d))).
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So C2(M)/Cj(Af) = e(-l/2(y2cd + abcd(-c - d))) = 1, the last equality following

from c = 0(mod 4).  This proves case 2 and hence the entire theorem.

Corollary.   Let

CXA1) = e(cf,[M(0 y)](M~ l) + 3<#M(0 0)](AT l))

and

C2(M) = e(oS[Al(0 !4)](ATX) + 2cf>[M(0 A)](M~ l) + cp[M(0 0)](AT l)).

The following are cusp forms for lXl6, 32) where M.,  M2,  M, are defined

in Theorem 1:

0[o o]3ö[o !4]-ö[o oMo !4]2öLo y],

c^Mjdiy o]3ök y] - c^MjeVA o]ö[o y]2d[y y],

Cj(m2)ö[o yV>b\y y]-c2(M2)e[o y]e[y o]2öD4 y],

c^eiy o\3e[y lA-c2(M2A6[y oMo o\2e[y lA

C¿MjAl^O ^30[^ y]- C^AljAl^O ^]0[O O]20& &

CjCvijAijMo o]3ö[!4 ̂-c^Ai^pöto 0M0 jfl2erji XA\,

cx(mA6[o oVeiy y]- c2(m 3)ö[o 0M0 '^]2ö[^ ja,

CjiMjm3)öLH o]30L!4 y]-c¿M^ABVA o]0[o Ja2öD* *A

c^ai^lo ytfeiy yd - c2(ai2m3)0[o !4M?4 o]20ß4 3d,

c¿MlMjeiy o^eiy 0] - c2(ai22ai3)0[i4 oMo o]20[!4 0],

cxai^MjMo >4]39[o yA-c^M^^Adlo y\e\s> o]20Lo y],

c1(,m2ai1ai3)0Lo ö\30[y o]-c2(m2m1mJ6[o o]0L!4 o]20B4 0].

Proof. If / is any cusp form then so is f\, M tot any AI in IXl). Let-

ting Ai run through the inverses of the 12 matrices in Theorem 1 and using

the transformation formula proves the Corollary.

4.   The spaces C(IX8))2 and C(lXl6, 32))2> The spaces of cusp forms

of weight 2 for the groups 1X8) and IXl6, 32) are denoted by C(r(8))2 and
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C(r(l6, 32)), respectively. We shall determine bases for these spaces in

terms of theta constants. In order to accomplish this we shall develop some

direct sum decompositions of the space Ct(4) «.

Let r be an even positive integer. Contrary to previous usage we shall

throughout this section agree to view elements of S   as 2-component col-

umns (rather than rows). Let S2k be the 2A-fold Cartesian product of 5 .

Thus a typical element of S      has the form

Construct an undirected graph, denoted by Graph {S    ), whose points are the

elements of S      and such that two points x and y are joined by an arc if

and only if there exist a and b in Z      such that aa a rx^(mod r), b    m

ry'a (mod r),  a = 1, ... , 2A, 2¿* j a2 = 22k=l b2. If x . {xy ..., Xy.) is in

S2k, define Alx = {Mxv ..., Mx2¡).

Lemma 5.   If the points x and y of Graph {S k) are connected by an

arc then

2k 2k

Z K)2 s   Z bya)2 mod(r gcd(r, 2d, 2e))
a = l a = l

where d = gcd(rx^),  e = gcd(ry^).

Proof.   Since aa = rx'a (mod r),

Z «i - Z(<)2 « IX - rx'a){aa - rx'a + 2rx'a) , 0 mod(r gcd {r, 2d)).

Combining this with a similar congruence involving ry'a yields the lemma.

If T is a subset of S2k let &{T)k be the subspace of ö(r)fc generated

by all IL2^ 9[ma] such that {mv ..., m2k) £ T.  U x = {ml> ..., m^ we

use the notation

2k

0[x]=   J] B[ma] = 6iml'-- m2k\.
a = l

Lemma 6.   Let C.,..., C    be the connected components of Graph (S2*).

Then S(r\ = 0:£*=1CÎ(C.)fe.  //*, y £ S2k,

2k 2k

Z K>2 ¿   Z by'«)2 mod(r gcd(r, 2«\ 2e)),
<x = l o = l

if = gcd(rx^),  e = gcd(ry^) /Aezz 0[x] and 0[y] are linearly independent.
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Proof.   Dy looking at the coefficients of the Fourier expansion of

II^j 6[ma] in the proof of Theorem 2 we see that if i 4 j, f £ o(C¿)fe, g e

Û(C).  then the nonvanishing of the Ath Fourier coefficient of / implies the
i ^

vanishing of the Ath Fourier coefficient of g.  This proves the first part of

the lemma.  As for the second part, if the stated condition holds then

Lemma 5 implies that x and y are not connected by an arc in Graph (5    ).

Hence, by looking at Fourier coefficients, 0[x] and 0[y] are linearly inde-

pendent. This concludes the proof.

Lemma 5 can be used to help determine the  10 connected components

of Graph (S*):

c,-(°r).(™)
_ IA o o o\ (y y y y\ (y y y o\

_ /M o o o\ /y y y o\ A4Va 0 <A (y y y y\

fi")   Vf «.**)    e,.f «.")
c.-f "." °)  Vf ".*•)   '-f™)
Here  * refers to all 4-tuples such that (*) £ Si

We now derive a finer decomposition than that given in Lemma 6. If   L

is a subset of IXl) define an equivalence relation  *(L) on 5 * as follows:

If x and y are in S    , x*(L)y means that, for all M in L,  Mx and Aly are

~ to elements in the same connected component of Graph (S2*). (This com-

ponent may change with AI.)

Lemma 7.   // L is a subset of IXl), let E , ..., E   be the *(L)-

equivalence classes in S2 .   Then

c% = e¿<?(F¿v
?'=!

Proof. Suppose fx + •• • + /( - 0, /. in S(E.)fe, i = 1, ..., t. The def-

inition of *(L) and the transformation law imply there exists Al in L such

that /JfcM""1 is in 3(5)fe and /J^Al-1. is in CÎ(T)fc where S and T are

C2

C3

C5 =
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distinct components of Graph (S *).  After possible rearrangement we have

/ii.*"1* -+/.I AM"1+^+ii**,"1+--+/iUA,;1-°

where the first q summands are in Ct(5), and the last t — q summands are

in various Cl(5'.),,the S. being connected components distinct from S. By

Lemma 6,

Thus /,+•••'+/= 0, / j + •••+/, = 0. Repeating the same process to

each of these equations eventually gives /j ■•••■/■ 0, thereby proving

the lemma.

Theorem 4.   TAe space of cusp forms of weight 2 (differentials of the

first kind) for the principal congruence subgroup T(8) has as a basis the

following monomials of theta constants:

\~Yi Vi o o"|     pi % % Vl\    JlA o o o "I

\Va Va Va Va]'      [ V2 Vz 0 0 j      [# ^ ^ KJ

[o o V2 oj'     lj4 « Ï4 V¿'

Proof.   These monomials are elements of A(r(8))2 by [3, p. 235].

They are cusp forms for r(l6, 32) by the Corollary of Theorem 2. Since

r(l6, 32) is a normal subgroup of T(8) we have C(r(8))2 = C(r(l6, 32)) 2 n

A(r(8))2, implying the above monomials are in C(r(8))2. Dim C(r(8))2 =

genus (r(8)) = 5. There remains to show that the monomials are linearly in-

dependent.  We shall show that these monomials are in different direct sum-

mands of Lemma 7. In that lemma take L = (0  i), (_ i n)> (-1 -l)> ar»d

denote these matrices by A, B,  C respectively. Then

Applying LA"    to the above monomials implies the first monomial is inde-

pendent of the space generated by the last four. Applying Lß       implies

the second monomial is independent of the space generated by the last three.

Applying \A--~    implies the fourth is independent of the space generated by

the third and fifth. Finally the third and fifth are independent by the second

part of Lemma 6, thereby concluding the proof.
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In order to derive an analogous theorem for IX16, 32), we will need

Riemann's theta formula. Let m., m2, wz , m . be real 2-component columns

r.,, ,,.. Define the matrix T byand let S be the set of columns t

T = y

and write (w^re^) = (m^m^^T. Reimann's theta formula is

0[zzz1]0[rzz2]0[zzz3]0[OT4]

= A Z e(-2m"1a")9[n1 + a\6[n2 + a]0[«3 + a]0[«4 + a].
aeS

The following  18 relations are all the nonredundant relations implied

by the above formula which involve only monomial cusp forms in Cf(4)2. The

notation x = LC y, z, w means x is a linear combination of y, z, w.  We

have also used the begining of §2 to simplify the expressions.

1111

tO 00

1111
ÏTTT
ill,IIIo

lili
4"7? 4"

1 1
4"* 0 0

1 I I I
4 4 4 4

1111
.4 ? 2 2

1111

LC e

- Le e

LC e

f 0 0 0
1111
TTTT

f 0 0 0
1111
TT?T

0 0 0

LC e

1 1

'1

0 0

000

0 0

LC e

ii?

70 0 0

1 1
U 7 0 0

„ill0 III

lili
TTTT

„1110 III
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There are many other relations implied by Riemann's formula but they

fail to satisfy the conditions we imposed. For example,

e\'A'Ay'%i.cI0000\e\0000l
Va y 0 oj        \y yAoo\'  \y y y yj

involves noncusp form monomials on the right side and

4OOO4

-2 0 0 0
4

llll

8 8 8 8

llll

8 8 8 8

involves characteristics with denominator 8.

Theorem 5.   The space of cusp forms of weight 2 (differentials of the

first kind) for the congruence group IXl6, 32) is contained in the space

generated by monomials of theta constants 6[m Ad[m 2]d[m Ad[m J,,  16m. m

0(mod l),  i = 1, ..., 4. A basis for this space of cusp forms is given by

the 12 expressions in the Corollary of Theorem 3 and the set of all mono-

mial cusp forms (determined in the Corollary of Theorem 2) not including

the 18 monomials on the left side of the above Riemann theta relations.

Proof.   First note that the number of elements in the proposed basis
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is  12 + (423 -  18) = 417   as was shown at the end of §2.   Moreover

Dim G(r(l6, 32))2 = 417 by [l].  There remains to show that the proposed

basis elements are linearly independent. We can accomplish this with the

help of the direct sum decomposition of Lemma 7, using the same L as was

used in the proof of Theorem 4. Since the complete listing of the   *(L)

equivalence classes would be too lengthy to include here, we shall give an

example of one such class and the analysis of it:

(VaVaVaVa\     (VaVaVaVa\    /lÁH%o\     (lA0Q0\

VaVaViO/'    \X3iJioj'    {VaVaOyJ'    \0V2VaVa}'

Looking at the Riemann theta formula, monomials associated with the first

two are in the space generated by the monomials associated with the last

two. The monomials associated with the last two are linearly independent

by the second part of Lemma 6 and they are cusp forms by the Corollary of

Theorem 2.
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