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ABSTRACT.  In [2] the author proposed the entropy condition (E) and

solved the Riemann problem for general 2X2 conservation laws uf + f(u, v)x

= 0, uf + g(u, v)x = 0, under the assumptions that the system is hyperbolic,

and /   > 0 and gv < 0.  The purpose of this paper is to extend the above results

to a much wider class of 2 X 2 conservation laws.   Instead of assuming that f

> 0 and gu < 0, we assume that the characteristic speed is not equal to the

shock speed of different family.  This assumption is motivated by the works of

Lax [1] and Smoiler [4].

We consider the 2 x 2 conservation laws

ut + fiu, v)x = 0,

Vf + g(u, V)x = 0,     - »o < x < oo,     t > 0,

where (u, v) = (u, v)(x, t) and /, g G C2(U) for some open set U in R2. We

are interested in the Riemann problem for (1), that is, the Cauchy problem (1)

with initial data

i(u,, vf)   for   x < 0,

(ur, vf)   for   x > 0,

where («,, v¡) and (ur, vr) are arbitrary constants in U.

We assume that

(3) /„ < 0,      gu < 0

so that (1) is strictly hyperbolic, that is, d(f, g) has real and distinct eigenvalues

Xx <X2. Let r¡ be right eigenvectors corresponding to X, i = 1,2. These can

be taken of the form rx = (l,aff, r2 = (1, aff. It can be shown that (3)

implies

(4) a1<0<a1.

Since the solution to (1) is usually discontinuous, we seek the weak solu-

tions to (1) and (2).

Definition 1.   The bounded measurable function (u, v) is said to be a

weak solution to (1), (2) if
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(5)

if      ["0, + fin, v)<t>x] dxdt + f       u04>dx = 0,
•"f>0 f=0

if       Nf + g(u, v)<px] dxdt + f       v0<t>dx = 0.
JJ t>0 J t=Q

for all functions <¡> E C0°°(P x (0, <*>)).

From (5) it follows that if a weak solution (u, v) is discontinuous along

x = x(t), then the following Hugoniot condition is satisfied.

/("+> v+) - f(u_, v_)    g(u+,v,)- g(u_, v_)
(H)-= —i-I- = s

w+ -u_

where («+, u+) = (ix, v)(x + 0, r), (u_, v_) = (ix, dXx - 0, t) and s = x(r).

Through any point (tx0, v0) in U, we define the shock set to be the set

\fXu,v)-f(u0,v0)
S(u0,v0) = l(u,v)EU

u-un

u,v)-g(u0,v0) \

—-= o(u,v;u0,v0)^

where o(u, v; u0, v0) is the shock speed.  The Hugoniot condition (H) says that

(«+, v+)E S(u_, v_) and s = o(u+, v+; u_, v_). Condition (3) implies that if

« = M0 or v = v0, then (u, v) is not in S(u0, v0) - {(uQ, v0)}. Hereafter, wë

assume that for any («0, v0) in U,

the shock set S(u0, v0) consists of two

curves Sx(u0, v0) and 52(M0' uo) suc^

(6) that for any (u, v) on Sx(u0, vQ),

(ix, v;u0,v0)< X2(u, v) and for any

(u, v) on S2(u0, v0), a(u0, v0; u, v) > Xx(u, v).

In [1], Lax proved that S¡(u0, v0) is tangent to ri at (tx0, v0). Therefore

we can write S¡ = Sf U S¡~,i = 1,2, such that Sx(u0, v0) C l(uQ, vQ),

ST("o' "o) C nI("0' Vo)> 52(M0 ' üo) C IV("0' Vo) and S2"("0' "o) G  U(U0 > Vo) (cf-

Figure 1), where I(ix0, d0) = {(«, v) E U\u >u0,v> v0}, etc.

■S2""("o- uo)

st(u0, v0)

Si (u0, v0)

>   " = "o

S2+(«0. uo)

Figure 1
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Let h¡ = h¡(u0, v0; u, v) be a nonzero smooth tangent to S¡(uQ, v0) at

(u, v) such that h¡(u0, v0; u0, v0) = r¡(u0, v0), i= 1,2.  Let R¡(u0, vQ) be the

integral curve of r¡ through (u0, vQ), i = 1,2. Denote by d/dp¡ and d/dv¡ the

directional derivatives along S¡ and R¡, respectively, i.e.

d/dp¡ -h,'V    and   d/dv¡ = r¡ • V.

It is known that certain elementary weak solutions called /-rarefaction waves

and /-shock waves can be defined along R¡ and S¡ curves (see for example [1]).

Lemma 1. Assume that (3) and (6) hold. Set h¡(u0, v0;u,v) =

S?=1 a,ff)t, v). Then axx>0anda22> 0.

Theorem 1. Assume that (3) and (6) hold.  Then for (u, v) G Sf(u0, v0),

we have

(i) do/dpj > 0 if and only if o < X¡ at (u, v),

(ü) do/dp¡ < 0 if and only if o> X¡ at (u, v);

and for (u, v) G S¡~(u0, v0), we have

(iii) do/dp¡ > 0 if and only if o> X¡ at (u, v),

(iv) do/dp¡ < 0 if and only if o < X¡ at (u, v).

Lemma 2.   Assume that (3) and (6) hold.  Let (ux,vx) and (u2,vf) be

points on S¡(u0, v0), i = 1 or 2, such that o(ux, vx, u0,v0) = o(u2. v2> "o> uo)-

Then (ux,vx)GS¡(u2, v2) and o(ux,vx;u2,v2) = o(ux,vx;u0, v0).

Theorem 1 and Lemmas 1 and 2 were proved in [3]. Our next theorem

is important in solving the Riemann problem.

Theorem 2. Suppose that (3) and (6) hold. Assume that (ux,vx)G

■^("O' Vo) md ("2 ' V2) G ^("O' °o)-    Then ff("l ' Vl > U0' Vo) < °(U2 ' V2 > "o> Vo)-

Proof.   We only prove the theorem when u1> u0 and u2 > u0. The

other cases are proved similarly.

Suppose, on the contrary, o(ux, vx;uQ, v0) > o(u2, v2; u0, v0). Since,

by (7), o(u2, v2;u0, v0) > Xx(u0, v0), there exists (u3, v3) on S+(u0, v0) be-

tween (u0, v0) and (ux,vx) such that o(uQ, v0; u2,v2) = o(u0, v0;u3, v3).  It

follows that («j, vf) GS(u3, v3), (u3, v3) GS(u2, v2) and o(u3,v3;u2,v2) =

o(u0, v0; u2, v2) = o(u0, v0; u3, v3).

If «0 < u3 <u2, then (u3, v3) GSf(u3, v3). Therefore by Lemma 2,

(ti3, u3) G S2(u0, v0) which is a contradiction.

If u0 <u2 <u3, then (w0, v0) G Sx(u3, vf) and (u2, v2 ) GS2(u2,vf).

Again by Lemma 2, (u2; v2) GSx(u0, v0) which is a contradiction.

This completes the proof of the theorem.    Q.ED.

For simplicity, we make the following assumption:
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The intersection of any R¡ curve

(?) with the set V¡ = {(«, v) \d\fat) = 0}
does not have any accumulation point.

As was shown in [2], the crucial step in proving the existence and unique-

ness theorems for the Riemann problem is to first establish the analogous theo-

rems for i-waves, i" = 1,2. For this, we construct a curve a¡(u0, u0) such that

(«0, v0) is connected to any (u, v) on cv/iXq, v0) on the right by i-waves. We

now describe briefly the construction of the curves a¡(uQ, v0).

Suppose dX¡(r¡) < 0 at (ix0, v0), then the first segment of ü^Uq, vq) is

Sf(uQ, v0) and the solution of the Riemann problem {(«0, v0); (u, v)}, (u, v) E

St(«0, v0) and \u-u0\ small, is an i-shock.  As (ix, v) moves further away from

(«0, v0) along Sf(u0, vQ), we may have a(ux,vx;u0, v0) = X¡(ux, vx) at some

(iXj, vx) E Sf(u0, vQ). The curve a(-(u0, v0) is then continued from («j, vx) by

the rarefaction curve R¡(ux, vx), so that the solution is a shock wave connecting

(ix0, vQ) to («j, vx) foUowed by a rarefaction wave connecting(ux, vx) to (ix, v)

on R¡(ux, vx). When R¡(ux, vx) first leaves the region {(ix, v^dX^r^) > 0 at

(u, v)} at (u2, v2), we continue a¡(u0, v0) from (u2, v2) with a mixed curve 7*

corresponding to y. Here y is the R¡ curve between (ux, vx) and (u2, v2), and

7* is defined as follows:

(ix, v) E 7* if and only if there is (ix*, u*) G 7 such that (ix, v) is the first

point on Sf(u*, v*) with a(u, v; u*, v*) = X¡(u*, v*).

For (ix, v) E 7* with corresponding (ix*, v*) G 7, we solve the Riemann

problem {(ix0, vQ); (u, v)} by connecting (ix0, v0) to (ux, vx) by an i-shock,

(lip vx) to (ix*, v*) by an i-rarefaction wave and (»*, v*) to (u, v) by an /-shock.

The /-shock {(«*, v*); (u, v)} has the property that the shock speed a coincides

with X on either side of the shock, we caU such continuity a contact discontinu-

ity.  Suppose there is a point (u2, v2) on 7* such that o(u2, v2;u*, vf) =

X^ix*, vf) = X¡(u2, v2). We then continue ol¡(u0, vq) from (u2, v2) by

R¡(u2, v2). Continue these processes so that cv,(ii0, u0) is composed of shock,

rarefaction and mixed curves.  It is shown that the mixed curve 7* is tangent

to S%(u*, v*) at (ix, v).

The solution of the Riemann problem {(ix0, v0), (u, v)}, (u, v) E a¡(u0,v0),

satisfies the following extended entropy condition (E) across any discontinuity

(u_, v_) and (u+,v+):

a(u, v; u_, v_) > a(u+, v+ ; u_, v_) for every

(E) (u, v) E S¡(u_, v_) between (ix_, u_) and

(u+,v+).

It can be shown that condition (E) is equivalent to Lax's shock inequali-

ties [2] when (1) is genuinely nonlinear.
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Theorem 3. Suppose that (3), (6) and (7) hold.  Then through each point

(u0, v0) in U, there exist smooth curves a¡(u0, v0) and ßfiu^, v0), i = 1,2, such

that for any (u, v) on ct¡(u0, v0) (fi¡(u0, v0)), (u0, v0) can be connected to (u, v)

on the right (left) by i-shocks, i-rarefaction waves and i-contact discontinuities

such that condition (E) is satisfied across any discontinuity.  Conversely, if (u, v)

is any point in U which can be connected to (u0, v0) on the left (right) by i-

waves satisfying condition (E), then (u, v) G a¡(u0, v0) (G ßt(u0, vQ)), i = 1,2,

and the solution has a unique form.

The proof of Theorem 3 is rather complicated. However, using Theorem 1,

we can prove Theorem 3 by essentially the same techniques used in the proof of

Theorems 2.1 and 3.1 in [2]. We omit the proof.

Theorem 4. Suppose that there exists (um, vm) such that (um,vm)G

ax(u¡, v¡) n ß2(ur, vf).  Then the Riemann problem {(u¡, v¡); (ur, vr)) can be

solved by connecting (u¡, v¡) to (um, vm) by 1-waves and (um, vm) to («,, vf)

by 2-waves such that condition (E) is satisfied across any discontinuity.

Proof.  The theorem is an immediate consequence of Theorem 3. We

have only to show that the 1-waves connecting (u¡, v¡) and (um, vm), and the

2-waves connecting (um, vm) and (ur, vf) do not overlap and are separated by

the constant (um, vm). Indeed by (6) and Theorem 2 we know that the 1-waves

and 2-waves do not overlap in the x - t plane.     Q.E.D.

When condition (6) faUs, and so does Theorem 2, then 1-waves may over-

lap 2-waves and the Riemann problem cannot be solved by our techniques.

Given arbitrary points (u¡, v¡) and (ur, vf), a counterexample was given in

[4] to show that the point (um, vm) in Theorem 4 may not exist even if (1)

takes rather simple form.  In [2] certain conditions on (1) were given to guar-

antee the existence of (um, vm). In the next theorem we prove that the solu-

tion to the Riemann problem is always unique.

Theorem 5. Suppose that (3), (6) and il) hold.  Then there exists at

most one solution to the Riemann problem {(ut, v¡), (ur, vf)) in the class of

shocks, rarefaction waves and contact discontinuities which satisfies the entropy

condition (E) across any discontinuity.

Proof.  Suppose the Riemann problem {(u¡, vf), (ur, vf))can be solved

by connecting (u¡, v¡) to (um, vm) by 1-waves and (um, vm) to (ur, vf) by 2-

waves, and can also be solved by connecting (u¡, v¿) to (um, vm) by 1-waves

and (wm, vm) to (ur, vf) by 2-waves (cf. Figure 2). By Theorem 3, (um, vm)

and (üm,vm) both belong to ax(u¡, v,)r\ ß2(ur, vf) and the proof of Theorem 5

wiU be complete if we can show that (um, vm) = (wm, um).



380 T.-P. LIU

Figure 2

Suppose, (um, vm) ± (um, vm). By Theorem 4, we know (ur, vr) E

^("m- vm) n a2("m' •>„)• Choose (u1, vx) on ax(u,, v¡) between (um, vm)

and (ixm, vm). Then by Lemma 1, a2(ux, u1) must intercept either Q^Oi^,, um)

or a2(¿"m, vm) (cf. Figure 3), say at (ux, vx).

(u\v')

a¡ ("(.",)

K..»»,)
"2("  ."')

(«I- «;)

Figure 3
(«„ yP)

Without loss of generality, assume («,, t>j) G o^í«1, v1) n a2(wm, vm). It

follows that both («m, vm) and (u1, vx) belong to ß2(ux, vx) by Theorem 3.

We then take (ix2, v2) on o^Uj, uz) between («m, vm) and (i**1, u1). Again by

Lemma 1, c^Ox2, v2) must intercept either a2(ii1, vx) or ot2(um, vm), say at

(tx2> y2)- Continuing the process, we get sequences {(«', u')} andíí«,-, u,)}, ' =

1, 2,... , such that o^i«', 1/) intercept either û^(«'-1, i/-1) or a2(um, vm) at

(«f, u,). By our constructions, both sequences are contained in a bounded set

and {(«', v')} converges to a point, say (u°, v°). Let («0, u0) be a limiting point

of {(u¡, V;)}. Since (ix', vl) is in ß2(ut, v¡), we know that ß2(u0, vQ) is tangent

to otx(u¡, v¡) at («°, v°).

Suppose ax (u,, v¡) is composed of a shock or a mixed curve at (ix°, i>°).

Then there exists (u*, v*) on 0,(11,, v¡) such that (ix°, u°) G •S'1(ix*, u*) and

ftj(u0, v°; ix*, y*) is a tangent to ax(u¡, v¡) at (zx°, v°). Simüarly, if ß2(u0, vQ)

is composed of a shock or mixed curves at («°, u°), then there exists (ti#, u*)

on ß2(u0, v0) such that («°, v°) E S2(u+, v*) and ft2(ix*, t>*; ix°, v°) is a tangent
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to ß2(u0, v0) at (u°, v°). Since j32(ii0, u0) is tangent to ux(u,, v¡) at (u°, v°),

it foUows that (cf. [2]).

™ Su(»* - u°) + («i - /,>• - ü°)    gjM* -u°) + (o2- /„Xu* - u°)

fv(v* -v°) + (ox- gv)(u* - u°)     />«, - v°) + (o2 - gvXu* -11°)

where ox ■ a(«*, i>*; «°, u°), o2 = o(Ml(c, u*; «°, v°), and fu,fv,gu,gv are

evaluated at (u°, u°).

From (8), we have

(v* -v°)(u*-u0)[fvgu ~(ox -fu)(o2 -gv)]

(9) + (u* - u°Xu* - u°)gu(ox -o2) + (v*- v°)(v* - v°)fv(o2 - ox)

+ (a* - u°)(v* - v°)[(ox -gv\o2 -fu) -fvgu) = 0.

By Theorem 2, o2 > ox and so

(10) ¿r>, - o2) > 0   and   /„(o2 - o,) < 0.

Since {(«*, v*); (u°, v0)) and {(«°, v°); («*, u*)} both satisfy condition

(E), we have, by Theorem 1,

(lO Xx(u°, v°) <ox<o2< X2(u°, v°).

If ox -gv>0 and o2 - fu < 0, then

(12> (o1-gvXo2-fu)-fvgu<0.

If o, -*„ < 0, then (ox -gvXo2 ~0 < (°i ~Sv\ox ~fu) +

(o2 - oxXox -gf) < (ox -gf%px ~fu)- On the other hand, since Xj and X2

are the two solutions of (X ~fu)(X -gf) -fvgu = 0, and Xx < ox < X2, by

(11), it foUows that (ox -gv)(ox -/„) -fvgu < 0. Therefore (a, -gvXo2 -fu)

-fvgu < 0 which is (12).

ff °2 -fu > °. **» (°i ~sf)(o2 ~fu) ~fvgu < (a2 -gvXo2 -/„) -

f0gu which is nonpositive, since X! < a2 < X2.

We have proved that (12) holds in aU cases. Simüarly, using (11), we can

prove that

(13) /ü^-(a1-/tt)(o2-^)>0.

Suppose that (v* - u°X"* - u°) > 0. Then (u* - m°)(m* - u°) > 0,

(u* - u°Xu* - v°) < 0 and («* - u°Xv* ~v°)<0 because (u°, v°) G Sx(u*, v*)

and (u°, v°)GS2(u*, u#). Therefore by (10), (12) and (13), the left-hand side
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of (9) is positive. This is a contradiction.  Simüarly, when (v* - u°)("* - u°) <

0, then the left-hand side of (9) is negative which is again a contradiction.

This completes the proof of the theorem when both ax(u¡, v¡) and

j32(tx0, u0) are composed of shock or mixed curves at (u°, v°). Analogously, the

theorem is proved when either ax(u¡, v¡) ox ß2(u0, vQ) is composed of rarefac-

tion curves at (u°, v°).      Q.E.D.

FinaUy, we remark that in [2] it was proved that (1) satisfies assumption

(6) if

(14) /„<0,   ¿f„<0,   fu>0    and   gv<0

(cf. [2, Lemma 1.2]). Therefore this paper extends the results of [2].  It can

easÜy be proved that (1) also satisfies (6) if we take

(15) /„<0    and   g(u, v) = -ix.

This is an extention of the gas dynamics equations.
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