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THE TRIGONOMETRIC HERMITE-BIRKHOFF

INTERPOLATION PROBLEM

BY

DARELL J. JOHNSON^)

ABSTRACT. The classical Hermite-Birkhoff interpolation problem, which

has recently been generalized to a special class of Haar subspaces, is here consid-

ered for trigonometric polynomials.   It is shown that a slight weakening of the re-

sult (conservativity and Pólya conditions) established for those special Haar sub-

spaces also holds for trigonometric polynomials after one rephrases the statement

of the problem, the underlying assumptions, and the result itself appropriately to

reflect the inherent differences between algebraic polynomials (which the special

class of Haar subspaces essentially are) and the periodic trigonometric polynomi-

als.   Furthermore, simple necessary and sufficient conditions for poisedness of one-

rowed incidence matrices analogous to the Pólya conditions for two-rowed inci-

dence matrices in the algebraic version are proved, and an elementary necessary

condition for the poisedness of an arbitrary (trigonometric) incidence matrix sta-

ted.

Recently there has been considerable interest in the classical Hermite-Birkhoff

interpolation problem; we cite [1], [2], [4], [5], [10], [11], [13]—[16], [19]-[26],

as examples. Variants of the Hermite-Birkhoff interpolation problem have also

been proposed and studied, both for algebraic polynomials (e.g., [3], [8], [9]) and

for more general subspaces of functions [6], [7], [17].  In particular, Dcebe [7]

shows that for the classical Hermite-Birkhoff interpolation problem with a Haar

subspace whose successive derivatives are Haar and decrease in magnitude with

each derivative (like algebraic polynomials) replacing the algebraic polynomials,

that an incidence matrix is necessarüy poised whenever it is conservative and sat-

isfies the Pólya conditions. In this paper we replace the algebraic polynomials in

the statement of the Hermite-Birkhoff interpolation problem by trigonometric poly-

nomials and obtain an analogous result. Certain differences are present, howev-

er, due to the inherent difference between trigonometric and algebraic polynomi-

als. One of these differences is that the degree of a trigonometric polynomial
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does not drop as it is differentiated (save the constant polynomial). The fact that

the derivative of an algebraic polynomial does drop is what leads to the Pólya

conditions in the usual algebraic polynomial Hermite-Birkhoff interpolation prob-

lem; its relevancy for trigonometric polynomials is therefore immediately in ques-

tion, and save for the requirement that an incidence matrix must have a one in its

first column in order to be poised, is in fact totally irrelevant (although no papers

have appeared treating the trigonometric version of the Hermite-Birkhoff interpo-

lation problem, save the special case of lacunary interpolation, examples showing

the Pólya conditions in the trigonometric version not to be a necessary condition

have been constructed by many people and are fairly widely known).  Further-

more, the restriction that an «-incidence matrix should have only n columns is

superfluous. Secondly, trigonometric polynomials are not invariant under scalar

expansion, although they are under translation. Consequently in the trigonomet-

ric version only one of the k points at which point and derivative point evalua-

tions are specified in a k x n matrix may be taken to be any given point (say 0),

whUe in the algebraic polynomial version two of those points may be arbitrarUy

specified (say to 0 and 1). This leads one to the realization that the simplest non-

trivial incidence matrix for the trigonometric case wiU have one row, whüe the

analogous case for algebraic polynomials has two rows (so-caUed Pólya systems,

after Pólya [19] who solved the algebraic version for two-rowed incidence matri-

ces).

Thirdly, for the real algebraic polynomial Hermite-Birkhoff interpolation

problem the points at which the point and derivative point evaluations are speci-

fied lie on the real line, which has a natural antisymmetric ordering, whUe for

the trigonometric version the points at which the evaluations are specified should

actuaUy be viewed as lying on the unit circle, which has a symmetric natural or-

dering. Consequently the notion of conservativity of incidence matrices when trig-

onometric polynomials are involved must be slightly changed from the definition

in the case of algebraic polynomials (or the almost algebraic polynomial subspaces

of Ucebe).

Fourthly, algebraic polynomials may be viewed as a graded algebra with each

direct summand having dimension one, whüe one views trigonometric polynomials

similarly with each direct summand after the first (which has dimension one) hav-

ing dimension two. Thus whUe it is natural to consider any positive integer in

the algebraic case, in the trigonometric case it is natural to consider n only to be

an odd positive integer.

1. Preliminaries. By the trigonometric Hermite-Birkhoff interpolation prob-

lem we mean the foUowing.
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Trigonometric Hermite-Birkhoff interpolation problem. Given

(i) positive integers k and n, with k <n and n odd,

(ii) a set Iofn ordered pairs (i, j) with 1 < i < k, 0 < / < °°,

(iii) k real points xx, x2, . . . , xk, 0 < x, < x2 < . . . < xk < 2tt, deter-

mine the (subspace of) real trigonometric polynomials p(x) of degree at most

(n - l)/2 wfticft satisfy the interpolation conditions

P0)(x,) = 0   for(i,j)El.

The interpolation conditions are usually posed via a semi-infinite (k x °°)

matrix

(1    if (/,/)£/,
£=K7llf=1;r=o>   where e,7 =

(0   otherwise,

which is caUed the n-incidence matrix [21] associated with the given Hermite-

Birkhoff interpolation problem.

By the essential columns of E we mean those columns, and the columns pre-

ceding those columns, which have a nonzero entry in them.  In other words, if

the 67th column of F is the last column of F having a one in it, then the essential

columns of E are just the first q + 1 columns of E. Since aU the information in

an incidence matrix is contained in its essential columns, it is conventional to dis-

play only the essential columns of an incidence matrix (simüarly it is convention-

al to assume without mention that none of the k rows of an incidence matrix is

identicaUy zero).

A (2m + l)-incidence matrix is said to be poised in case the dimension of

the subspace satisfying it is zero (i.e., the zero polynomial is the only trigonomet-

ric polynomial of degree at most m satisfying the associated interpolation condi-

tions).

Suppose that E = llef-II is a Ar-rowed «-incidence matrix having q essential

columns. We define the standard numbers

k v

mi> = Z euv>   Mv=Hmu      (v = 0,...,q)
M=i •" M=i

and say that E satisfies the weak Pólya condition in case mQ = M0> 0, that E

satisfies the Pólya conditions in case Mv>v + 1   (v = 0, . . . , q - 1), and that

F satisfies the strong Pólya conditions in case Mv > v + 2 (y = 0, . . . , q - 2).

By a sequence in an incidence matrix F = llef.|| we mean a maximal (with

respect to length) sequence of consecutive ones in a row of F. Equivalently, if

e¡j-X = 0 = e¡p + x whüe elv =1   (v =/,...,p), then F has a sequence of

length p -j + 1 in its ith row, namely the sequence e¡.-,..., e¡   . If p -j + 1
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is odd, we call this sequence an odd sequence; otherwise e¡ -, . . . , e¡ p is an even

sequence.   Furthermore we refer to the sequence ei;-, . . . , elp for short as the

(/, ;')-sequence of F. We say that an (i, /)-sequence is (trigonometrically) support-

ed in case there is an element eM„ of F which is one, where p ¥= i and v <j (to

say that the (i, /)-sequence is (algebraically) supported means that there must ex-

ist two elements eßV = epT = 1 where p<i <p and v, t </).

We say that the incidence matrix F is conservative in case F has no support-

ed odd sequences. We say that F is strongly conservative (or Ferguson) in case

any (i, /)-sequence of E is even whenever i > 1 (equivalently, F is strongly con-

servative if and only if E consists only of Hermite data (sequences beginning in

the zeroth column) and even sequences).

We use the notation \E\ to mean the number of ones in E; i.e., if F is an

«-incidence matrix, then \E\ = n.

If A and B are matrices, we shaU say that A is an extension matrix of B

whenever B is a submatrix of A.

Notice that incidence matrices have columns indexed from zero, whüe ordi-

nary matrices (including row vectors) have columns indexed from one. In the

proof of the theorem below, the FM and FM are viewed as incidence matrices; the

Gß are viewed as matrices.

FinaUy, an incidence matrix E is said to be Hermite (or have Hermite-type

data) whenever aU nonzero entries of E occur in sequences originating in the ze-

roth column of E.

2. A sufficient condition for poisedness. In the proof of our theorem we

wül require the following weU-known periodic version of RoUe's theorem.

Lemma 1. If /G CX(R) is 2ir periodic, and has p distinct real zeroes x¡,

with 0 < x, < x2 < . . . < xp, then f'(x) has (at least) p distinct real zeroes y¡

such that Xj < yx < x2 < y2 < . .. < xp < y0 < xx + 2n. In particular, f'(x)

also has at least p distinct real zeroes in the half-open interval [0, 27i).

We also wUl require the result that the trigonometric polynomials of degree

at most n form a Haar subspace of dimension 2w + 1. Said otherwise, a trigono-

metric polymonial of degree at most n which vanishes 2« + 1 times (counting

multiple zeroes) on [0, 2tt) is in fact the zero polynomial; equivalently, Hermite

incidence matrices are poised.

Theorem 1. Any (2m + l)-incidence matrix E which is strongly conserva-

tive and satisfies the weak Pólya condition is poised with respect to trigonometric

polynomials of degree at most n.
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Proof. If not, let p(x) be a nonzero trigonometric polynomial of degree at

most n which satisfies the interpolation conditions specified by F with respect to

the points 0 < xx < . . . < xk < 2tt. Suppose next that E has q essential col-

umns. We construct a sequence of incidence matrices E0, . . . ,Eq such that, for

each v = 0, . . . ,q,

(i) Ev has 2q -v columns,

(ii) \EV\ > \E\,

(iii) F„ is strongly conservative,

(iv) Ev satisfies the weak Pólya condition, and

(v) ft/y) satisfies the interpolation conditions specified by Ev at the points

Xj, . .. ,Xk{ßy

We begin by letting F0 be the first 2q columns of F. Suppose now that

F0,... , FM have been specified (¡i = 0,. . . , q - 1).

Let zx,. . ., zp be the points of Eß at which zeroes of p^(x) are speci-

fied. By Lemma l,p^+1^(x) wül have p zeroesyx,.. . ,yp such that zx <

yx <...<zp<yp<zx+2iT. Let {yx, . . . ,yp} = S UN, where S C

[xx, . . . , xfc(M)} +ttZ,NC[zx, . . . ,zx + 2tt)\S. Suppose y¡ E S, y¡ = x/(/).

Since y¡É [zx, . . . , zp}, if ey, = 1, then the strong conservativity of Eß re-

quires that the (j, l)-sequence of Eß be even. But y¡ is a RoUe zero of p^+x\x)

such that zt < y¡ < z{+ x (identifying zp + x with z¡ + 2tt), whence there is a

point % between z¡ and zi+x at which p^\x) takes on a relative extrema, whence

at which p^M+1;(x) has an odd-order zero. If | = y¡ = x¡, then p'(x) actuaUy

satisfies an additional zero than specified by the (j, l)-sequence of Eß. If % ̂y(,

replace y¡ by %, whence again either y¡ £ S,y¡ G S and ejX = 0, or y¡ G S, e¡x =

1, and the (j, l)-sequence of F   is even but p^M+1^(x) actuaUy satisfies an addi-

tional zero at y¡ than specified in the (j, l)-sequence.

Define a new incidence matrix Fß from FM as foUows:

(i)if ea= l,then/;7= 1,

(ii) if ym G S and ejlfn)x = 1, set /}(m)>1 = 1  (m = 1, . . . , p),

(iii) ifym G 5 and e/(m)>1 = 1, set/;.(m)>T+1 = 1,

where r is the length of the (j(m), l)-sequence of Eß (m = 1, ... , p).

Define an extension matrix GM of Fß as follows:

lfym GxV and xt,m^ <yk < x¡,m^+,, insert an extra row (0 1 0 0 ... 0)

into FM between the i(m)th and (i(m) + l)st rows of FM (m = 1,. .. , p).

FinaUy, let Ell+X be Gß less its first column. Since the net result of the

change from Eß to Efl+X is to add as many ones to the later columns of Eß as

are in the zeroth column of Eß, lFM+1! = IF I. Since the added ones always

form part of Hermite-type data in the new incidence matrix Efl+x, Ep+ x still is

strongly conservative. Since we have deleted one column from F , the number
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of columns of Eß+X is (2q - p) - 1. Since we always add at least one to the

first column of FM whenever the first column of Eß has no ones, the zeroth col-

umn of F +1 has a nonzero entry, and thusFM+1 satisfies the weak Pólya con-

dition. Finally p(-ß + x\x) satisfies (by construction) the interpolation conditions

specified by Eß + l at the points {x,.(ju + l)}fi?+1), where {x¡(p + l)}fi^ + 1) =

{■X/Oijlfiï* U TV, ordered such that

xx(p + l) = xx(p)<x2(p+ 1)

<---<xk(ll+1)(p+l)<xx0Ji+ l) + 2tr.

To conclude the proof, notice that Eq has Hermite-type data only, and as

such is poised with respect to trigonometric polynomials of degree at most

(IF I - l)/2 = n. But p(q\x) is a trigonometric polynomial of degree at most n

which satisfies E , whence p^q\x) = 0; i.e., p(x) must be a constant polynomial.

By the weak Pólya condition, p(x) must be the constant zero polynomial, a con-

tradiction.   D

3. Some examples. At the beginning of this paper we altered substantially

the usual statement and assumptions present in the Hermite-Birkhoff interpolation

problem when algebraic polynomials are being dealt with. We justified these

changes on an a priori theoretical analysis of the difference between algebraic and

trigonometric polynomials. Whether it is valid to make these changes can only be

justified on their usefulness in developing the solution of the Hermite-Birkhoff in-

terpolation problem in the trigonometric case. We feel the theorem in §2 sup-

ports this view.  In any case, the inappropriateness of the usual (algebraic) state-

ment and assumptions may be easily illustrated by some examples.

Example 1. E = ll¿ } II is poised with respect to algebraic polynomials of

degree two, but not with respect to trigonometric polynomials of degree one (e.g.,

Xj = 0, x2 = tt, p(x) = 1 - cos x).

Example 2. F = 111 0 0 1 1 0 0 0 1 111 is not poised with respect to» the

algebraic polynomials of degree four (the Pólya conditions are not satisfied) but

is with respect to trigonometric polynomials of degree two.

Example 3. The 2-incidence matrix F = 111 111 is poised with respect to al-

gebraic polynomials of degree one (since E is Hermite) but not with respect to ei-

ther of the subspaces (1, sinx), (1, cosx).

Example 4. The 5-incidence matrix

F =
10    11

0    0    11

has four essential columns, does not satisfy the Pólya conditions, but is poised
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with respect to trigonometric polynomials of degree two.

Notice the fact that the incidence matrices in Examples 2 and 4 are poised

with respect to trigonometric polynomials of degree two follows from Theorem 1.

We should inquire as to the sharpness of Theorem 1. For instance, may the

hypothesis of strong conservativity be weakened to mere conservativity?  Exam-

ples 5 and 6 provide a negative answer:

Example 5.

Il    0    1 0

010   0   0

is trigonometrically conservative, not strongly conservative, and is not poised (e.g.,

Xj = 0, x2 = 7T, p(x) = 32 sinx + sin 2x).

Example 6.

II    0    1    0 1

010   0    0    0

is not poised (e.g., Xj = 0, x2 = it, p(x) = 243 sin x - sin 3x).

It is clear many examples behaving like Examples 5 and 6 above may be

generated. These examples show strongly that the idea of conservativity alone for

trigonometric incidence matrices does not play the same role as conservativity of

the analogous algebraic version of the problem-notice that the p(x) specified in

the two examples have a zero at n which actually supports the odd sequences in

the first row of the two incidence matrices, and in a sense one might as weU be

viewing the incidence matrices

0   0    10    1

10   0   0    1

0   0    10    111

10   0   0   0    1    1

respectively, in place of those specified in the examples.  In other words, the role

of conservativity in the trigonometric version of the Hermite-Birkhoff interpola-

tion problem is completely analogous to the role played by the Pólya and strong

Pólya conditions in the trigonometric version of the problem.

Lest one feel that the nonpoisedness in Examples 5 and 6 may be due to

the nonspecification of an even number of zeroes of any trigonometric polynomi-

al which would satisfy the given incidence matrices (remember that continuous

periodic functions necessarily have an even number of zeroes), notice that the in-

cidence matrix

E =
110   0    10    10    1

0   0   0   0    1    10   0   0

is not poised either.
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Rather than provide a polynomial satisfying F, we note

Theorem 2. A necessary condition for a two-rowed (2n + T)-incidence

matrix E to be poised is that

(i) F satisfy the weak Pólya condition,

(ii) the number of e¡j = 1 where j is odd is at most n,

(in) the number of ei} = 1 where j > 0 is even is at most n.

FinaUy, to show that strong conservativity is not necessary for poisedness,

consider

Example 7. The one-rowed incidence matrix F = 111 0 1 0 0 111 is trigono-

metrically poised.

Example 7 foUows from Theorem 3 of the next section.

4. One-rowed incidence matrices. We say that a (2« + l)-incidence matrix

F preserves parity whenever F has precisely n - (m0 - l)/2 nonzero entries speci-

fied in its odd columns.

Theorem 3. If E is a one-rowed (2n + l)-incidence matrix, a necessary and

sufficient condition for E to be trigonometrically poised is that E satisfy the weak

Pólya condition and preserve parity.

Proof of necessity. If F does not satisfy the weak Pólya condition, then

any nonzero constant polynomial triviaUy satisfies F. Thus we may assume that

m0 = 1.

Suppose F = (e¡j), with ef/- = 1 if and only if; EJ0UJe,J0 having only

odd integers, Je having only even integers.  If

m

t(x) = a0 + 21 (ak cos kx + bk sin kx),
k=\

then t(x) satisfies F if and only if i0)(0) = 0 (/ G J0 U Je), if and only if

0) 0 = 50..a0+ ¿ (-1)'72*^      (jeje),
k=l

(2) 0=t(-Dü+lV2k>bk (JEJ0),
k=\

where 50- is the Kronecker delta.

But both (1) and (2) are a system of linear homogeneous equations, (1)

having n + 1 unknowns ak and (2) having n unknowns bk. In particular, there-

fore, the ak and bk are necessarily all zero only if (1) consists of n + 1 equations

and (2) consists of n equations; i.e., that J0 have precisely « entries, which is

equivalent to F preserving parity.
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Proof of sufficiency. It suffices to show that the matrices of coeffi-

cients in both (1) and (2) are nonsingular. In actuality, it suffices to show that

the matrices (n > 1)

(3) Jn " 0'/fc)„xn.   where jik = k2"'

are nonsingular whenever the v¡ are any nonnegative integers, 0 < v0 < vx <

. . .<vn. But the matrices (3) are special cases of the matrices (e ' ;) which are

known [12] to be nonsingular, since the exponential functions e ' ,. . . , e " ,

. . . form a Markov system on any interval.   D

The statement that E preserves parity may be rephrased as requiring that

some rearrangement of the indices of the columns which have the nonzero entries

in the one-rowed incidence matrix F have the alternating parity property (APP)

as defined by E. Passow [18].

The proof of Theorem 2 is now obvious; in fact,

Theorem 4. In order that a (2n + l\incidence matrix E be poised it is

necessary that

(i) E satisfies the weak Pólya condition,

(ii) no two rows of E have between them more than n evaluations specified

in (positive) even columns,

(iii) no two rows of E have between them more than n evaluations specified

in odd columns,

(iv) no two rows of E have between them more than n + 1 evaluations

specified in even columns.

5. A closing comment. Several alternative computational proofs to the slick

sufficiency proof of Theorem 3 can be produced with a little patience.

Examples 5 and 6 are not due to the author.

references

1. K. Atkinson and A. Sharma, A partial characterization of poised Hermite-Birkhoff

interpolation problems, SIAM J. Numer. Anal. 6 (1969), 230-235. MR 41 #9419.

2. G. D. Birkhoff, General mean value and remainder theorems with applications to

mechanical differentiation and quadrature. Trans. Amer. Math. Soc. 7 (1906), 107-136.

3. B. L. Chalmers, D. J. Johnson, F. T. Metcalf and G. D. Taylor, Remarks on the

rank of Hermite-Birkhoff interpolation, SIAM J. Numer. Anal. 11 (1974), 254-259.

4. Gh. Cimoca, Über ein Interpolationsschema, Mathematica (Cluj) 11 (34) (1969),

61-67. MR 43 #7818.

5. D. Ferguson, The question of uniqueness for G. D. Birkhoff interpolation problems,

J. Approximation Theory 2 (1969), 1-28. MR 40 #599.

6. W. Haussmann, On interpolation with derivatives, SIAM J. Numer. Anal. 8 (1971),

483-485. MR 47 #2229.

7. Y. Ikebe, Hermite-Birkhoff interpolation problems in Haar subspaces, J. Approxima-

tion Theory 8 (1973), 142-149.



374 D. J. JOHNSON

8. D. J. Johnson, Jackson-type theorems for SAIN approximation and the rank of Her-

mite-Birkhoff interpolation, Ph. D. Dissertation, University of California, Riverside, June,

1973.

9.-, The corank of first-order incidence matrices (to be submitted).

10. S. Karlin and J. M. Karon, On Hermite-Birkhoff interpolation, J. Approximation

Theory 6 (1972), 90-115.

11.-; Poised and non-poised Hermite-Birkhoff interpolation problems, Indiana

Univ. Math. J. 21 (1971/72), 1131-1170. MR 47 #3877.

12. S. Karlin and W. J. Studden, Tchebycheff systems: With applications in analysis

and statistics, Pure and Appl. Math., vol. 15, Interscience, New York, 1966. MR 34 #4757.

13. G. G. Lorentz, Birkhoff interpolation and the problem of free matrices, }'. Ap-

proximation Theory 6 (1972), 283-290.

14.-, The Birkhoff interpolation problem, Lecture given at the NSF Regional

Conference on Approximation Theory, June, 1972, University of California, Riverside.

15.-, Remarks on the Birkhoff interpolation problem, Lecture given at the NSF

Regional Conference on the Theory of Best Approximation and Functional Analysis, June,

1973, Kent State University.

16. G. G. Lorentz and K. L. Zeller, Birkhoff interpolation, SIAM J. Numer. Anal. 8

(1971), 43-48. MR 45 #4595.

17. J. W. Matthews, Interpolation with derivatives, SIAM Rev. 12 (1970), 127-128.

MR 41 #4064.

18. E. Passow, Alternating parity of Tchebycheff systems, J. Approximation Theory

9 (1973), 295-298.

19. G. Pólya, Bemerkung zur Interpolation und zur Naherungstheorie der Balkenbie-

gung,   Z. Angew. Math. Mech. 11 (1931), 445-449.

20. M. Schecter, Hermite-Birkhoff interpolation problems with complex nodes, Amer.

Math. Monthly 76 (1969), 1119-1122.   MR 41 #690.

21. I. J. Schoenberg, On Hermite-Birkhoff interpolation, J. Math. Anal. Appl. 16

(1966), 538-543. MR 34 #3160.

22. A. Sharrr.a, Some poised and non-poised problems of interpolation, SIAM Rev. 14

(1972), 129-151.

23.-, Some poised problems of interpolation, Proc. Conf. on Constructive Theo-

ry of Functions, August 24-Sept. 3 (Budapest, 1969), Akad. Kiadó, Budapest, 1972, pp.

435-441.

24. A. Sharma and J. Prasad, On Abel-Hermite-Birkhoff interpolation, SIAM J. Numer.

Anal. 5 (1968), 864-881. MR 39 #6487.

25. M. Makelá, O. Nevanlinna and A. H. Sipilá, On some generalized Hermite-Birkhoff

interpolation problems, Ann. Acad. Sei. Fenn. Ser. A. I. No. 563 (1974).

26.-, Hermite interpolation by generalized rational functions, Ann. Acad. Sei.

Fenn. Ser. A. I. No. 564 (1974).

DEPARTMENT OF MATHEMATICS, MASSACHUSETTS INSTITUTE OF TECHNO-

LOGY, CAMBRIDGE, MASSACHUSETTS 02139

Current address: Department of Mathematical Sciences, New Mexico State University,

Las Cruces, New Mexico 88003


