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A DECOMPOSITION FOR CERTAIN

REAL SEMISIMPLE LIE GROUPS

BY

H. LEE MICHELSONi1)

ABSTRACT.   For a class of real semisimple Lie groups, including those for

which G and K have the same rank, Kostant introduced the decomposition G =

KNnK, where Nq is a certain abelian subgroup of N, and conjectured that the

Jacobian of the decomposition with respect to Haar measure, as well as the spher-

ical functions, would be polynomial in the canonical coordinates of Nq.  We com-

pute here the Jacobian, which turns out to be polynomial precisely when the equa-

lity of ranks is satisfied.  We also compute those spherical functions which restrict

to polynomials on Nq.

1. Some preliminaries concerning root systems. Let F be a Euclidean space

with inner product <, >. Let A be a root system in V. For a G A we indicate by

sa the Weyl reflection with respect to a

(s«(u) = v - 2<a, v)af{a, a)).

The group generated by {sa\a E A} is called the Weyl group and will be designated

by IV.

1.1. Proposition.   Let s be an involutive element of W with ±l-eigen-

spaces V±, respectively.   Then s can be written in the form s = sy   • * • syf¡, where

[yx > • ■ ■ . 7„} « an orthogonal basis of V_ and y¡ ± y¡ G A for i, j = 1,. . . , n.

Proof. Let v be a relatively regular element of V+; i.e., an element of V+

for which <a, v> = 0, a G A, implies (a, V+) = 0. Since s{v) = v, it follows from

[2, Chapter V, §3.3, Proposition 1], that s can be written in the form

0) SSSVS«„'

where {ax, . . . ,am} CAO K^=Afl V_. Now introduce any ordering in V,

and let 7, be the largest element of A n V_ with respect to that ordering.  Be-

cause of (1), yx exists. Now, having chosen 7j, . . . , yk, if s ¥= sy   • • • sy , let

7k+1 be tne largest element of A n V_ orthogonal to yx,. . ., yk. yk+ x exists
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by (1), applied to the involutive element ssy , . . . ,sy   EW.  Since F, hence

F_, is finite-dimensional, the process terminates, and we have s = sy   • • • sy .

7,.7„ is an orthogonal basis of F_. If y¡ + y¡ G A, í </, then 7,- + y^ >

y¡ and would have had to be chosen in preference to y¡. Thus y¡ + y¡ G A, and

for i *}, y¡ - y¡ = sy.{y( + yj) G A. 7,. - 7,. = 0 G A.

A subset of A having the property that no sum or difference of two of its

elements belongs to A and no sum of two of its elements is zero is called a set of

strongly orthogonal roots.  Two distinct strongly orthogonal roots are always

orthogonal.  For if a and ß are nonproportional elements of A, then if (a, ß) <0,

a + ß E A, and if (a, ß) > 0, a - ß E A; whereas if a and ß are proportional then

either a = ±ß, a case we have excluded, or a = ±2ß (or ß = ±2á), whence a + a

(resp., ß + ß) is an element of A. We have show that the -1-eigenspace of an

involutive element of W has a basis of strongly orthogonal roots.  (The most inter-

esting case is, of course, the case s— —I, V_ = V, in case -1 G IV.)

Now let a be a linear involution of F (not necessarily an element of IV) with

the property that o{a) - a G A for a E A. Let P = {]6.{a + o{a))\a E A}. Then

Pis a root system [1, Proposition 2.1] in the + 1-eigenspace of 0. The elements

of P will be called "restricted roots", while those of A will be called simply

"roots". For a E P the multiplicity of a (denoted ma) is defined as the number

of roots j3 satisfying lMß + o{ß)) — a. The following lemma is obvious, since o

acts as an involution on {ßVA{ß + o{ß)) = a} and fixes j3 iff j3 = a.

1.2. Lemma.  For ctEP.aE Aiffma is odd [1, Proposition 2.2].

We now relate sets of strongly orthogonal restricted roots to sets of strongly

orthogonal roots.

1.3. Proposition. Let yx, . . . ,yn be restricted roots.  Then {yx,. . . ,

yn} is a set of strongly orthogonal roots iff it is a set of strongly orthogonal re-

stricted roots of odd multiplicities.

Proof.  If the multiplicities of the y¡ are odd, then the 7,. are roots, and

7,- ± 7/ é A if #[(7,. ± yj) + o{y¡ ± yj)] = y¡ ± y¡ G P.  Conversely, if {7,, ... ,

7„} is a set of strongly orthogonal roots contained in P, then each a,- is a restricted

root of odd multiplicity, and if 7,. ± y¡ E P, then 7,- ± y¡ ¥= 0 and 7,- ± y- + u E A

for some v with o{v) = v. But then

2<TT,*T,+»)

<7,. ± y. + v, y¡ ± y¡ + v>

an impossibility because A is a root system.

Now assume that -1 belongs to the Weyl group of P, so that the + 1-eigen-

space of o has a basis (7p . . . , 7 } of strongly orthogonal restricted roots.
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1.4. Proposition.   Every aEPisof the form a = î4S?_ x n¡yit where

the ni are integers. If a is proportional to y¡, then a = ±y¡ or a = ±7Í7f.

Proof.

_ 1  ^, 2<0t' 7,->

and 2<a, 7/>/<7/, 7,) is an integer. If a is proportional to y¡, then a = ±y¡, a =

Í7Í7,-, or a = ±27f. But 27,- = y¡ + y¡ and -27,- = s7 (7,- + 7,) are not restricted

roots.

Let H be any linear functional on the + 1-eigenspace of 0. Let t¡ =

2 sinh W{y¡), and let

J] Isinh ZZ(a)|%m«

(2) J{tx,...,tq) = ^¡-•

Y[ cosh 7Í/Z(7f)
1=1

The following lemma will be useful in the study of the function /.

1.5. Lemma.   The function from Rr to R defined by

fihx,...,hr) = {- l)2r_1Ilsinh(±n1A1 ± • • • ± «A).

where nx,.... nr are fixed integers and the product is extended over all com-

binations of signs, is a polynomial in sinh hx.sinh hr It is the square of a

polynomial in all cases except the case r = 1, nx even.

Proof, f-g2, where

g{hx, . . . ,hr)= Y[sinh{nxhx ± • • • ± n,hr),

where the product is extended over all combinations of signs.  For r = 1, it is

well known that g2 is a polynomial in sinh h and g is a polynomial in sinh hx iff

«j is odd. For r > 2,

sinh(at + • • • + ar) = ¿Zfx{ax) • • • fr{ar),

f¡ E {sinh, cosh},    {i\f¡ = sinh} of odd cardinality.

Thus II sinh(aj ± • • • ± ar) is a sum of terms of the form

(3) fl (sinh a,.)fc'(cosh af)2" 1~ki.
<=i

Because of the evenness in each a¡, k¡ is even for each 1 in each term (3). But

then 2r_1 - k¡ is even, and fi sinnig ± • • ■ ± ar) is a polynomial in
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sinh2 ax, . . . , sinh2 ar. Thus g is a polynomial in sinh2 nxhx, . . . , sinh2 nlhr

and hence in sinh hx, . . . , sinh hr.

1.6. Proposition. J is the absolute value of a polynomial iff my. is odd

fori= 1, ... ,q.

Proof.  We may partition P into orbits of the subgroup of its Weyl group

generated by thes7.. The orbit of a EP, where, by Proposition lA,a = iA'Lq-xniyi

has the form {VtXf=x ±«,-7,} for all combinations of signs. By Lemma 1.5, if

{ij, . . . , /r} is the subset of {I, ... ,q} on which n¡ ± 0,

Illsinhii/.,.^ ± • • • + n,v7,r)l*

is the absolute value of a polynomial in the r,- except in the case r — 1, «,- even.

In that case n¡ = ±2, a = ±7,- , the orbit of a has the form {±7,}, and we con-

sider the factor of/:

Vimy %m_y_ my_

|sinh#(7f )|       fl|sinh#(-7,. )|        'i      |sinh//(-y,- )l     !

cosh %Hiy, ) cosh 1AH{yi )

my. Vi(my   -1)

= 1^1    '»[fc(f* +4)]        'i

which is the absolute value of a polynomial iff m      is odd.  Thus / is the absolute

value of a polynomial iff all the my. are odd.

1.7. Corollary. / is the absolute value of a polynomial iff the + l-eigen-

space of o has a basis of strongly orthogonal roots.

We give in the table below the explicit formula for /, for each restricted

root system with -1 in its Weyl group, in terms of the multiplicities. We shall

use for convenience the following abbreviated notations.

P{w, x, y, z) = (wV + 2w2 + 2x2 -y2z2 - 2y2 - 2z2)4

+ w4Jt4(w2 + 4)2(x2 + 4)2 + yV(v2 + 4)2(z2 + 4)2

- 2(w2jc2 + 2w2 + 2x2 - y2z2 - 2y2 - 2z2)2w2x2{w2 + 4)(x2 + 4)

- 2{w2x2 + 2w2 + 2x2 -y2z2 - 2y2 - 2z2)2y2z2(y2 + 4)(z2 + 4)

- 2w2x2y2z2{w2 + 4)(x2 + 4)(y2 + 4)(z2 + 4).

Q{t, u, v) = [2t2{t2 + 4) - u2v2 -2u2- 2v2]2 - u2u2{u2 + 4){v2 + 4).

We have listed in the table only irreducible types. Clearly, for a reducible

root system, / is the product over the irreducible direct factors.
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The degree d¡ in t¡ of the polynomial whose absolute value is / (or, more

generally, half the degree of/2) can be read off in each case from Table 1. We

prefer, however, to relate d¡ to the structures of the root systems P and A.

1.8.   Proposition.   J2 is a polynomial in tx.tq whose degree in t¡ is

2d¡ = -2 + 2 £     a = -2 + 2 Z -r—r- .

Proof.

u Isinh ZZ(cv)f <*

J2{tx,...,tq)
OtŒP

T\ cosh2 71/7(7,.)
í=i

where the numerator is a product of factors of the form

<7,- . <*>
±—r--

<7/ . 7/ >
n

<7j . où

— ZZ(7f ) ±fy'V
ZZ(7,- )

such a factor occurring for each orbit in P of the subgroup of the Weyl group of

P generated by the sy..  Such a factor is of degree 2r+1ma<7/, a>/<7/; 7,) in t¡ =

2 sinh lkyi and is counted 2r times in the product over all aEP.   The denomina-

tor is of degree 2 in t¡. The first equality of the proposition is now proven. To

prove the second equality we note that, for ß G A, (7,-, j3> = (7,-, Vi(ß + o{ß)y.

Note that the formula for d¡ depends only on A and y¡, not on o.

Now assume that the my. are odd, so that / is the absolute value of a poly-

nomial.  Its degree in t¡ is

06 A  '7/> 7/'

Assume further that A is irreducible and reduced.  We can then express di in

terms of the coefficients of the highest root of A in terms of a simple system

(with respect to some ordering).

1.9. Proposition, If the highest root of A is expressed in terms of the

simple system {ax, . . . ,an} as 2JLjÁvyccy, then

rf,=-i + 2 z h
<a¡, ct¡)

ff i '<7/»7f>

Proof.   [2, proof of Proposition 31, Chapter VI, §1, 1.11].
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1.10. Corollary. If h is the Coexeter number of A and y{ is a root of

minimal length, then d¡ = 2ft - 3.

Proof.   [2, loc. cit.].

2. Application to Lie algebras. Let g be a noncompact real semisimple Lie

algebra with Cartan decomposition g = f+p.  Let a be a maximal commutative

subspace of p.   a can be extended to a maximal commutative subalgebra b of g,

and such an b has the form f) =  \)+ + a, where h+ C f   [4, p. 221]. The non-

zero eigenvalues of the adjoint representation of b on the complexification gC

of g form a reduced root system A in if)*. + a*, with inner product <, > dual to

the killing form B of g. (The stars denote real dual vector spaces, and Cb* +

Ca* is naturally identified with Cb*.) We let o be the linear involution of ib*. +

a* which is -1 on / h* and +1 on a*. Then the restricted root system P defined

by o is the set of nonzero eigenvalues of the adjoint representation of a on g,

and the multiplicity ma of a E P is equal to the dimension of its eigenspace in g.

(For details of the above, see e.g. [1].)

P| f x. is negative definite, while B\fX9 is positive definite. Let 6 be the

symmetry; i.e., the linear involution of g equal to +1 on f, to -1 on p. 0 is an

algebra automorphism of g. For a E P let Ha E a be the unique element such

that a{H) = B{H, Ha) for all # G a.

Now let {yx, . . . , yr} be a set of strongly orthogonal restricted roots. Let

X¡ be an element of the eigenspace of y¡ in g such that ~B{X¡, 6X¡) = 2ly¡{Hy.).

Let r,. = -6Xt, Z, = 2tf7./7.(V-

2.1. Proposition.  For the X¡, Y¡, Z¡, we have the following multiplica-

tion table:

[X,-, X¡\ = [K,., Yj\ = [Z,-, Zj] = 0,        [Z,-, Xj] = V>tlX,,

[Xi,Yj] = bijZj, [ZpYj] =-&„¥,.

Furthermore, X¡ - Yt Et,X¡+ Y¡ G p, Z,- G p.

Proof (as in [4, Chapter VI, Lemma 3.1]). Z¡ G o, which is commutative;

for i #/, [X¡, Yj], [X¡, Xj], and [Y¡, Yj] belong to (±7/ ±7/>eigenspaces of

ad,(a), which are all {0}, and [Z„ X¡] - yj{Zi)Xj = 0 = -y,{Z¿Yj = [Z,., Yj}.

For i = /,

[Z„ X¡] = y&fà = 2X„      [Zt, Yt] = -y&t)Yt = -2Yt,
and [X¡, Y¡] belongs to the 0-eigenspace of adj(o).  Also

eux, yíX) = [ex0 oY,] = [-r,-,-x,] = [Y„ x,] = ~[XP Yt].

Therefore [X¡, Y¡] G p, and so [X¡, Y¡] G a, by maximality of o in p. Now,

for HE 0,

B{H, [X;, y,-]) = B{[H, X¡], Y¡) = yi{H)B{Xi, Y¡) = 2yi{H)/yi{Hi).
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Therefore [X¡, Y¡] = Z¡. 8{X¡ - Y¡) = - Y¡ + X¡ = X¡ - Y¡. Therefore X, -

Y¡Et. 8{X¡ + Y¡) = -Y¡-X¡ = -{X¡ + Y¡). Therefore X¡ + Y¡ E p. Finally,

Zi E o C p .

2.2. Corollary.   Xx.X^ Yx.Yr, and Zx.Zr generate

{as a vector space) a subalgebra of g isomorphic to the Lie algebra direct sum of

r copies of 81(2, R) and having a Carton decomposition compatible with that of

g.  Specifically, the Lie algebra generated by X¡, Y¡, and Z¡ is mapped isomorphi-

cally onto ÔI(2, R) by the linear mapping defined on the given basis by

Ai      \0   0/'   r¿      \1   0)'   z'      \0   -l)'

and the Carton decomposition

«l(2,Z?)=«o(2)+ {^   _j)J

is compatible with the Cortan decomposition of g.

Proof.  Direct computation.

We now determine a necessary and sufficient condition on g for o* to have

a basis of strongly orthogonal roots. (If we require only a basis of strongly ortho-

gonal restricted roots, a necessary and sufficient condition is simply that -1 be-

long to the Weyl group of P.)

2.3. Proposition,   a* has a basis of strongly orthogonal roots if and only

if Î contains a maximal commutative subalgebra of g.

Proof.  Let {7,-, . . . , 7a} be a basis of strongly orthogonal roots for a*,

and let X¡, Y¡, h, and h+ be as above.

Claim.  A maximal commutative subalgebra of g contained in f is given by

expfd»c(f t&i + y»))W + *»•

Proof of claim. X¡ and Y¡ commute with f)+ because the y¡ vanish on

\)+. For H = 2ff_ xhfZi, a typical element of 0,
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The commutativity and maximality follow from the same properties for h.

To prove the converse (along the lines of [4, Chapter VIII, Proposition 7.4] ),

we assume that h C f is a maximal commutative subalgebra of g. We let A be
■"W "W iSJ ^v

the root system of nonzero eigenvalues of ad „{C h). A = Ac U An, where the

eigenspaces of Ac are contained in C t, while those of An are contained in C p.

Introduce an ordering in the span of A„, and choose X« in the j3-eigenspace for

each 0 < ß E An. Let Y g = oXß, where o is the linear involution of gc which is

+1 on g and -1 on ig. Since A C ih*, Yß belongs to the -/3-eigenspace. Clearly

Xß + YßE g. Since 0 # [Xß, Yß] G C| C Ct,   Yß$ Ct. Therefore Yß E

Cp;Xß + YßECpn«,= p. In fact J) = S^Äf^, + Yß).

Now let yx be the highest root in A„, and, given yx, . . ■ ,yk, let yk+x be

the highest root in A„ such that {7P . . . , yk+x} is a strongly orthogonal set

(if such a root exists; if not, the process terminates). Let [yx,. . . ,yq}be the

full sequence of strongly orthogonal roots obtained in this manner.  Let a =

2,f=xR{Xy + Yy). Clearly a is commutative. To show that a is maximal

commutative in p, consider any element X of p.

X=   Z tß{Xß + Yß),

and assume that X commutes with a but X^Tl. Let r be the smallest index such

that tß =£ 0 for some ß with [yx, . . . , yr, ß} not strongly orthogonal.  Then in

[X, Xyr + Yy] = 0 we must have

tß[Xß, XyJ = t2y^_ß[X2yr_ß, YyJ ¥= 0.

But then either yr < ß E A„ oiyr<2yr~ßE A„. Thus either {yx,. . . , yr_x,

ß} or {7j, . . . , 7r_1, 27r - ß} is a set of roots which is not strongly orthogonal.

But we assumed that r was the minimal index for which such a set could be con-

structed.

Now we can show by a computation similar to (4) that

We can therefore view the y¡ as roots of the conjugate of ib,

exp(ad«c i" f ¿ 5(*v rif*&t, - *rp))<&

which is of the form a + /'&+, h+ G f. The 7f vanish on r)+ and can therefore

be regarded as forming a basis of o*. Any given maximal commutative subspace

a of p is Int(f )-conjugate to 0.
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3. The Horn-Thompson-Kostant decomposition.  Let g, f, p, 0, and 0*

be as in §2, and assume that a* has a basis of strongly orthogonal restricted roots

(not necessarily roots). Let X¡ and Z¿ be as in Proposition 2.1, and let n0 =

2?=rRX,.. Then n0 is a commutative subalgebra of g.

Now let G be any analytic group having Lie algebra g. Let K, A, and NQ

be the analytic subgroups of G corresponding to f, o, and n0, respectively.

3.1. Proposition.  The element exp 2q=xhiZi of A belongs to the same

coset in K\G/K as the element exp 2 2?=1 sinh h¡X¡ ofNQ.

Proof.   Because of Corollary 2.2, it is enough to prove the proposition for

g = 8 1(2, R). Because the center of G is contained in K, it is enough to prove

the proposition for one analytic group having Lie algebra  ¿1(2, R); say, for G =

SL{2,R).

In 51(2,9Î), since

(«,**«,*>-(^   '.)(+ ,!.)-(•? ,?„)

is similar to

<e*p2*nh*y<exp2S¡„hH) = (¿   'TXa   J, „    ,)

= (I + 2 sinh2A    2 sinh ft\

V    2 sinh ft I    )'

exp AZ and exp f sinh X belong to the same double coset of K = 50(2).

3.2. Corollary.  We have the decomposition {announced in [8] )

(5) G = KNQK.

Proof.  The corollary follows from Proposition 3.1 and the well-known

decomposition of Cartan G = KAK [8, (4.2.8)].

The decomposition (5) was called by Barker the Thompson-Kostant decom-

position. Kostant later added the name Horn upon discovering that Thompson's

result for 5£(2, R), later generalized by Kostant, had previously been discovered

by Horn.

3.3. Corollary.   The Haar integral on G is given {up to normalization

by a constant factor) by the formula

J>)* - /Jl • • • S~ JKf(*i -p ¿ 'ä
(6)

•Jitx.tq)dkxdtx ■■■dtqdk2,
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where dkx = dk2 is the Haar measure on K and J is defined by (2) {and given,

for G simple, by Table 1).

Proof.  The corollary follows from Proposition 3.1 and the well-known

formula [4, Chapter X, Proposition 1.17]

Lfig)dg= ¡J \f{kxexVHk2) IT \sinh aiH)?im°ldkxdHdk2,
G K   a   K a(Ep

where dH is Lebesgue measure on the Euclidean space a.

Kostant conjectured that the Jacobian appearing in (6) would be a poly-

nomial. We see from Corollary 1.7 and Proposition 2.3 that Kostant's conjecture

is true precisely when f contains a maximal commutative subalgebra of g, the

case for which Kostant stated in [8,(5.1.1)] the decomposition (5).

We conclude this section by computing the radial part on A^0 of the Casimir

operator J2 of G, which will be useful in the next section.

3.4. Corollary. If fis any smooth K-bi-invariant function on G, then

JfLptt^

wherever J{tx,. . . , t„) =5= 0.

Proof.  The corollary follows from Proposition 3.1 and Helgason's formula

for the radial part of £2 on A (as in [5, Theorem 3.3]); namely, for H E a,

i2/(exp H) = £>(exp H)~VlAa [£>(exp H)Vlf]{exp H)

(7)
- £>(exp H)- *Att [D(exp H)Vl]f{exp H),

where fl(exp H) = IIaei>|sinh a(//)|     a and Aa is the Laplacian of the Euclidean

space a. Formula (7) is valid wherever D(exp H)±0.

4. Spherical polynomials. Assume that G has finite center, so that K is

compact.

Kostant conjectured in [8, Remark 5.1.1], that the {G, A^-spherical func-

tions, which, due to Corollary 3.2, are determined by their values on N0, might

have a polynomial nature there.  In case P is of type C  or BC , we do indeed

find a sequence of spherical functions whose restrictions to N0 are polynomials in

the canonical coordinates tx,. . . , tq. These polynomials can all be expressed in
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terms of the hypergeometric function F.  For other simple types we find that the

only spherical polynomial is the constant 1.

4.1. Lemma. Z//i's a K-bi-invariant eigenfunction of£l whose restriction

to Nq is a polynomial in the canonical coordinates tx,. . . , tq, and iff\N   has

an extremal term of the form atx  l • ■ ■ tq q, then

nf=Z[n2 + Wi + i>ii]Wi,yl¥,
1=1

where d¡ is as in Proposition 1.8.

Proof.  Apply Corollary 3.4 and equate coefficients of t   1 • ■ • t   q.

We now introduce in a* the lexicographic ordering with respect to the

ordered basis (7j, . . . , y ). With respect to that ordering we let G = KAN be

the Iwasawa decomposition; 0+ and o* be the positive Weyl chambers in a and

0*, respectively; and p be the half-sum of the positive restricted roots with multi-

plicities.

4.2. Lemma.

dt + I > <4p, 7í>/<7í, 7i>-

Equality holds for i = 1. If G is simple, equality holds only for i = 1.

Proof.  The inequality, as well as the equality for i = 1, follows from

Proposition 1.8.  If G is simple, then for / G {1, . . . , 4} there exists a finite

sequence (5 x, . . . , Sr) from A such that 5 x = yx, 5r = y¡, and (5;-, dJ+ x) ¥= 0.

Now let (Sj, . . . , Sr) be such a sequence of minimal length. <S;-, 8/+2> = 0;

otherwise we could obtain a shorter sequence by omitting 6;-+ x.  But now there

exists a root of the form 5/+1 ± 5/+2, and <5y, 5/+1 ± 5/+2> = (8j, 5/+1> ¥= 0,

<S-+1 ± S+2, 6+3> = ±<5+2, 5+3> ¥= 0; so we may obtain a shorter sequence

by substituting 5/+1 ± S/+2 for ô/+1 and 5/+2 whenever 2</+ 1 </ + 2<

r- 1.  Therefore r = 3, and 62 is not orthogonal to either yx or y¡. By applying

Weyl reflections with respect to yx and y¡, we may assume that <7j, 52> > 0 >

(7;, S2>.  Then S2 > 0, and

<7„ P> = \ Z % ß><2 flÇnK7,, ß>\ = \{di + 1X7,-, 7¿>.
* ß>o ß<0 "+

4.3. Corollary.   If fis a K-bi-invariant function whose restriction to

Nq is a polynomial in tx,. . . , tq, and if Slf - cf, then

c - Z \Ri + W-d, + iytij<yt, yp

> (p + Z nfo p + Z "Vu - (p> p><*    i=i i=i    '
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where f\N   has an extremal term of the form at"1 ••• tq q as in Lemma 4.1.

Equality holds ifn¡ = 0fori>2, and for G simple only in that case.

Proof.  The corollary follows from Lemmas 4.1 and 4.2.

4.4. Lemma. If fis a K-bi-invariant function on G such that f\N(j is a

polynomial in tx,. . . , tq and e_íl(H)/(exp H) is bounded away from 0 and °°

for H in the closure of o+, where ¡i is some element in the closure of a*; then

p = 2'Lq-xniyifor some nonnegative integers nx,. . . ,nq, and

2n„   . v"1 2m, 2mV 2m 1 2m(7

+ £*m.,mah    '---tq    "

imx,.. .,mq ^¿(»/-'"/ty.a+^O,

{mx>... ,mq)^{nx.nq)\

for some coefficients am .m .

Proof.  Since / is invariant under the Weyl reflection with respect to each

7,.,/(exp 2q=xt¡X¡) is even in each t¡. The degree follows from Proposition 3.1.

We now apply Corollary 4.3 and Lemma 4.4 to the problem of determining

which spherical functions have polynomial restrictions to NQ. The spherical func-

tions on G are indexed by a *, (modulo the Weyl group of P) and given by the

formula

for X G a¿, where H(¿) is the element of c. such that g E K exj>{H(g))N.  If

A. G a*_ + ia* we can transform the integral formula for <¡>x{a) (for a G exp a+)

to an integral over A^, the analytic subgroup of G corresponding to the sum of the

negative restricted root spaces. We have, as in [6, Lemma 2.3],

<t>K{a) = exp[(iX - p)(log a)] J_ exp[(/X - p){H{aña~'))] exp[(-zA-p){H{ñ))] dñ,

where dn is the Haar measure on W such that f^ exp[- 2p{H{n))]dn = 1.  We see

that for e~^losa^(¡)x{a) to be bounded away from 0 and °° on the closure of a+,

we must have p G i\ - p + / a*.  In case i~k - p is in the closure of a * , we have

indeed

0 < c(X) = J_exp[(- iX - p){H{ñ))] dñ<exp[{- zX + p)(log a)]<px{a)

<f_exp[-2p{H{ñ))]dñ=l.
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Furthermore, £20x = (-<X, A> - <p, P>)0^.

Now assume that 0jJjvo is a polynomial in tx, . . . ,tq. By Lemma 4.4,

0xiexP Z fiXi ) = anx...nqh   1 • • • tq  " + "lower 0rder" termS'

where iX - p = 2°_ ̂ ,7,. is in the closure of a^. (We may have iX - p = 0,

0\ = 0_/p —1.) Furthermore,

- <X, \> - (p, P> = (p+Z nfli> P+Z nM) ~{p' P)
*      1=1 i=i      /

= ¿[«2+^ti/+l>zJ.]<7I,7,>.

By Corollary 4.3 we must have, for G simple, n¡ = 0 for 1 > 2.

Now by considering the asymptotic behavior at °° of <px in all Weyl chambers,

we conclude that 0Jjy-   must have an extremal term of the form aYlq=xt¡ ' '

whenever ß — x/iLq= x k¡y¡ belongs to the Weyl group orbit of yx. But if P is of a

simple type other than C  or BC , then we may set ß = V¿yi + My, + Viyk + 1A.yl

for some choice of i, /, k, I.   (We have assumed for convenience that yx is of

maximal length.) The number of the indices i, j, k, I equal to r E {1, . . . , q} is

either 0 or <7t, yx)l{yr, y). Then we must have, by comparison of eigenvalues

of S2, that

[n2 + Wx +l>»,K7i,7i>

= n\ + V*nx{4 + dfr,, 7,) + rf/ty 7y> + dkiyk, yk) + dfy, yt))

>[n\ +{MX + l)«!]<7i,7i>>

whence nx = 0.  (We have used that dx < min^, d¡, dk, d¡] and that i, j, k, I

are not all equal.) We have proven the following

4.5.   Theorem.  If P is of a simple type other than Cq or BCq, then the

only spherical function on G restricting on N0 to a polynomial in tx.tq is

In case P is of type Cq or BCq, we find the polynomial solution

n I «P L *i

-q - "~q

pjexp Y t.X,•|"i,

-2m{q- l)z ^+±±2{q - l)m + 1

q{s + I + 1) + 2{q - 1)772      q{s + I + 1) + 2(a - 1 )m

. Z K- "'H* + I + iq - l)m + n;Us + W + iq - \)m + K\- %tf)
1=1
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to the differential equation on A^ for a A-bi-in variant eigenfunction of £2 with

eigenvalue [n2 + lA{dx + l)n]<7j, yx). (Here s, m, and / are as in Table 1.)

Since pn is even in each t¡ and symmetric in the t¡, it extends to a A-bi-invariant

function on G.  Now I claim that pn(n0) = 0_,(„7+p)(«o) for n0 G #<,. For

p„ is a A'-bi-invariant function satisfying

S2p„     ^-f(n7l+p)

~n~ = ~é-    and    0<Pr,<<l>-i(nyx+py
Pn <P-n„yl+p) 'l

Since 4>-i(ny +p) is a minimal Af-bi-invariant eigenfunction of Í2 (see [7] ), pn =

k<p_i(nyi+p) for some kE [0, 1]. But p„(e) = </>_,(„ri+p)(e) = 1. Therefore

k = I. We have proven the following theorem.

4.6.   Theorem. If Pis of type Cq or BCq, then the spherical functions on

G restricting on N0 to polynomials in tx,. . . , tq are precisely

I q >
^-i(«7,+P) [ eXP Z'.*.

1 \ 1=1 I

-2m{q-l)2 |   s + / + 2(c7-l)m + l

q{s + I + 1) + 2{q - l)m     q{s + 1 + I) + 2{q - l)m

«7

. £ P{-n, lte+l+{q-iyn+n; fo + W + {q - l)m + %;- %tf).
i=i

The formula of the theorem is valid (by the same proof) for all « > 0 and

by analytic continuation for all n E C, although 0_f(n7l+p) is polynomial in

tx, . . . , tq only for «a nonnegative integer.  Our result includes in particular

Harish-Chandra's formula for all spherical functions on a rank-one symmetric

space [3].
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