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ABSTRACT. It is shown that if G is a finite Chevalley group or twisted

type over a field of characteristic p and U is a maximal p-subgroup of G then

any nonlinear irreducible character of U vanishes on regular elements. For groups

of adjoint type the linear content of the restriction to U of a discrete series char-

acter J of G is calculated and it is deduced that / takes the value 0 or (-1) on

regular elements of U (s = rank G).

Introduction. This work is concerned primarily with the complex repre-

sentation theory of finite algebraic groups, although the methods of proof utilise

results from algebraic group theory over algebraically closed fields. Two main re-

sults are proved: the first is that under appropriate conditions, all nonlinear irre-

ducible characters of the finite unipotent group U vanish on regular unipotent ele-

ments (for the definition see next section). This generalizes the result proved in

[7] for the unitriangular group. The second result is that if G is one of the finite

groups under consideration (e.g. a finite adjoint Chevalley group or twisted type)

and / is an irreducible discrete series character of G, then the restriction of / to

U (a maximal unipotent subgroup) has linear content which is zero or consists pre-

cisely of the sum of all the regular linear characters of U, each occurring with mul-

tiplicity one. The notion of a regular linear character of U was first introduced

by Gel'fand and Graev [5] and was translated by the words "general aspect".

These two results hold in particular for the classical linear groups and twist-

ed types and enable one to deduce that the value of an irreducible discrete series

character / of such a group on a regular unipotent element is 0 or ±1. Also if G

is a linear group over GF(q) then the degree of / is 0 or ±1 mod p, where q = pfl.

The point of view adopted is to realise G as the group of fixed points of an

endomorphism a of the semisimple adjoint group G. The first result (concerning

the vanishing of nonlinear characters on regular unipotent elements) is idependent

of which group in the isogeny class of G is chosen, since the finite unipotent sub-

groups are the same in each case. However the second result (concerning the val-

ue of /) depends essentially on G being adjoint, as it is necessary to examine the
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action of a split torus T on the set of regular linear characters of U. Nevertheless

the corresponding value of / on regular unipotent elements for other groups in

the isogeny class of G can be calculated from those given here by the method of

[7]. They turn out to be generalized Gaussian sums.

The exposition will deal for the most part with the untwisted case, while

the twisted groups are discussed in §5.

1. Notation. Let A' be an algebraically closed field of characteristic p > 0

and let G be a connected semisimple linear algebraic group over K which is de-

fined over the prime field of K. Let a: G —* G be an algebraic endomorphism

with a finite group G — GCT of fixed points. For any subgroup H of G such that

tr(H) C H denote by Ha (or H) its group of fixed points under a.

G contains [9] a Borel subgroup B and a maximal torus T C B which are

both o-stable. Let U be the unipotent radical of B; then B is the semidirect prod-

uct B = TU. Denote by 2 the root system of G with respect to T (assumed ir-

reducible) and let <I> be the set of fundamental roots of 2 in the ordering defined

by B. Then for each positive root a G 2 let Xa be the corresponding root sub-

group of U. It is shown in [1, Theorem 9.8] that there is an isomorphism xa:

K+ —* Xa which is rational over the prime field of K. T normalizes Xa and for

t G T, f G K we have txa(£)t~l = xa(a(t)i). We suppose throughout that G is

an adjoint group i.e. that the roots a G 2 generate the whole group of rational

^-characters of T.

If k is the subfield GF(q) of q elements of K, then the group of fc-rational

points of G is realised as G0, where a is the Frobenius endomorphism, given by

taking matrix elements to their qth power. In §§1-4 we consider such o, while

in §5, a will be more general.

General references for the above material are [2], [4] and [9].

2. Nonlinear characters of unipotent groups. This section is de-

voted to a proof of the first result mentioned in the introduction, namely

Theorem A. Let G be a Chevalley group over a finite field k of q elements,

and suppose that the characteristic pofkis good for G. Then if U is a maximal

unipotent subgroup of G and p is an irreducible complex character of U of degree

greater than one, we have that p(x) = 0 for x any regular unipotent element.

The notation will be as in the section above, and we shall think of G as the

set of fc-rational points of G. The conclusion of Theorem A stands when we re-

place G by a twisted type (e.g. a finite unitary group U(n, q2)) but then for the

given proof to apply, it is expedient to assume that G is simple, i.e. that the root

system 2 is irreducible. For simplicity, the argument is given here for the un-

twisted case and in the last section we indicate how to modify the proof for the
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twisted groups. We shall moreover assume that 2 is irreducible without loss of

generality.

Bad primes are discussed in [9, p. 178]. The result is false for these, but

this is not a great restriction. The bad primes are those which divide the coeffi-

cients of the fundamental roots in the expression of the highest root as a linear

combination of fundamental roots. For the various irreducible root systems they

are as follows:

(i) Type Ar: none;

(ii) Types Br, Cr, Dr: 2;

(iii) Types E6, E7,F4,G2:2 and 3;

(iv) Type£"8: 2, 3 and 5.

The prototype of a regular unipotent element is a unitriangular matrix whose

Jordan form consists of a single block. In general an element x of G is regular if

its centraliser in G has dimension r equal to the rank of G. Such elements were

studied comprehensively by Steinberg in [11] where he proved the existence of

(among other things) regular unipotent elements in the subgroup G of G. For con-

venience we collect together results necessary for the proof of Theorem A as a se-

quence of lemmas. Recall that 2 is the irreducible root system of G with respect

to T and $ = {at,..., ar} is the set of fundamental roots corresponding to the

ordering mentioned in the previous section. We denote by 2+ the set of positive

roots with respect to this ordering.

Lemma 2.1. (i) With notation as in the previous section, let x =

IIae £+ xa(l-a) be an element of U. Then x is regular if and only if%a^Q for

a E * (i.e. for fundamental roots a).

(ii) //■ the x of (i) is regular, it is contained in a unique Borel subgroup (con-

jugate of* = TU).

(iii) If the element x in (I) is regular, then the centraliser Gx of x in G is

Vx (i.e. is contained in U), provided that G is adjoint.

Proof. These results are essentially due to Steinberg [11, 3.1, 32 and 33]

although (iii) is explicitly proved by Springer in [8,43]. For the reader's conve-

nience (and future reference) we sketch a proof of (ii) and (iii), assuming (i). The

proof depends on the Bruhat decomposition G = ljB«wB [4, Expose" 13] of

G as a disjoint union of (B, B) double cosets, where the nw are representatives of

W in the normalizer of T (see §1), and on the Chevalley commutator formula.

If for some gEG,xEg_iBg then g = bnwb' (b, b' G B, w E W) and we

may take g = nwb' since ZT'Bö = B. But then gxg~l G B and since b'xb'~l

is a regular element of type (i) (by the commutator formula) we may take g = nw.

Now gxg-* = Ua(=z+xw(a)(Q since «„X^n"1 =        and %'a * 0 if %a ± 0.
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Hence for each fundamental a, %a 0 implies that w(a) is a positive root (here

one uses the fact that U = U~U*, a consequence of the commutator formula).

Thus g G B and (ii) is proved.

The above argument also shows that the centraliser     of x in G is con-

tained in B. Further if g G B n Gx and g = ut (u 6 U, r G T) then gxg'1 =

Raxa(ga) and for a fundamental, %'a = a.(i)%a. This follows from the commuta-

tor formula, which shows that u does not change %a for a fundamental, and from

the formula txa(£)t~x = xa(a(t) • |) (see §1). Thus we have a(t) = 1 for a G

But in an adjoint group the fundamental roots form a Z-linear basis of the

character group ATT). Hence t = 1 andg = uE\Jx.

Lemma 2.2. Let G be the set of k-rational points ofG. Then G contains a

regular unipotent element x of G and x lies in a unique (G-) conjugate of B (the

group of rational points of B).

Proof. By Lemma 2.1(i) the element x = xai(l)xa2(l) . . . Jtar(l) is regu-

lar unipotent ($ = {a,,. .. , ar}) and since the xa are assumed to be fc-rational

morphisms [1, Theorem 9.8], xEG. Now x lies in a unique conjugate of B, so

that it remains to show that if x G gBg-1 then gEB. But x G gBg~* implies

that g G B by the argument in the proof of Lemma 2.1. Hence g G B n G = B.

Lemma 2.3. The number of regular unipotent elements in G is \G\lqr where

q = \k\ and r = rank(G).

Proof. This result appears (more generally) in [9, p. 222]. Since each regu-

lar unipotent element is in a unique conjugate of B, the total number of them is

nxn2 where «t = the number of conjugates of B in G and n2 = the number of

regular unipotent elements in B. Now B is self-normalizing by the proof of Lem-

ma 2.2 (since g normalizes B implies that gxg'1 EB) and so Mj = IGI/ I5I. To

find n2, we use Lemma 2.1(f) and the fact that xa are ^-rational. The latter im-

plies that the unipotent elements of B are precisely the elements x = naG£+jca(|a)

with £a G k, and the former says that x is regular if and only if £a    0 for a G

<I>. Hence

«2 = \U\(q - l)r/qr = \U\\T\lqr

since Irl = (q - \ J (T is Jt-split). The result follows.

Lemma 2.4. All the regular unipotent elements of G are conjugate in G.

This result is due to Springer [8, Theorem 4.14]. It depends essentially on

the facts that G is adjoint and that the characteristic p of k is good. These imply

that Gx is connected which gives the result by a general argument. If G were not

adjoint G^ would have a finite direct factor equal to the centre of G, while if p

were bad,     may be disconnected.
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Proposition 2.5. Let G be the group ofk-rational points of the connected

semisimple adjoint group G and suppose that the characteristic of k is good for G.

Then if x is a regular unipotent element of G contained in U, we have \UX\ = qr.

Proof. By Lemma 2.4 all the regular unipotent elements of G are conjugate

in G, and hence their number is \G\/\GX\, where Gx is the centraliser in G of the

fixed regular unipotent element x. But Lemma 2.1(iii) shows that Gx = G n

= G n     = Ux. Hence by Lemma 2.3 we have \G\/\UX\ = \G\/qr, from

which we see \UX\ = q''.

We now turn to the linear characters of U. The number of distinct linear

(i.e. one-dimensional) complex characters of U is \U\I\U'\ where U' is the commu-

tator subgroup of U. To determine this number we have

Lemma 2.6. Suppose that the characteristic of k is good for G. Then

(i) U' is the product of the groups Xa of rational points of the root sub-

groups Xa with a positive and not fundamental.

(ii) The number of distinct linear complex characters of U is qr.

Proof, (i) This is part of the content of [6, Lemma 7]. Note that 2 is a

bad prime for types Br, Cr, F4 and G2, and 3 is bad for G2.

(ii) From (i), U/U' is generated by the Xa with «£$, and they commute

modulo U'. Hence

\UIU'\ = IT \Xa\ = qr.
as*

Proof of Theorem A. The statement of the theorem depends only on U,

and so is not affected if we replace G by a group "isogenous" to it. Hence we

may take G as in the statement of Proposition 25. Now for any finite group G

and x g G we have

ZlxOOl2 = \GX\
x

where the sum is over the irreducible complex characters x of G and Gx is the

centraliser of x in G. This is from the dual Schur orthogonality relations for com-

plex characters. Applying this formula to the regular unipotent element x of the

group U, we see that since for each linear character x of U we have lx(*)l = 1

(x(x) is a root of unity), the contribution of the linear characters to the left-hand

side above is qr by Lemma 2.6. But \UX\ = qr by Proposition 2.5 and so we have

2degp>1 lp(jc)l2 = 0 where the sum is over the irreducible nonlinear complex char-

acters of U. Thus p(x) = 0 for each such character. Q.E.D.

3. Regular linear characters. It is apparent from Lemma 2.6 that the

group U/U' (where U is a maximal p-subgroup of the Chevalley group G) is iso-

morphic to a direct product of r copies of k+. A linear complex character of U

is therefore given by a sequence (x,, x2> • • • . Xr) of characters of k+, where
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(3.i)      (xi, x2.x,) (n xaaj\ = n x,(u,

so that X/ "acts on" the fundamental root subgroup Xa .

Definition. We say the linear character (xt, . . ., x,) of U is regular if

none of the x,- is the identity (trivial) character of k+.

Gel'fand and Graev were the first to notice the importance of these in the

study of discrete series characters of G [5]. They called such characters "general

aspect" (in translation) but it seems more appropriate to refer to them as regular,

in analogy with the term for unipotent elements.

Given a nontrivial linear character X of k+, we define the translation of X

by a E k as X" where Xa(ft) = X(ab). It is clear that all \k\ = q characters of k+

are of the form Xfl as a ranges over the q elements of k ("k is self-dual"). Thus

with reference to the fixed nontrivial element X of the character group of k+, the

hnear characters of U can be identified as sequences (a,, a2, . . . , ar) of elements

of k, where x,- = Xa', and translation by a E k corresponds to multiplication by a.

The condition that (at,. .., ar) represent a regular character is then that at 0

for i— 1,2.r.

The torus T normalizes U and acts according to

(3-2) t ITxX3(U/-1=  II  Xc(a(f) -U (teT).

Further T acts on the set of linear characters of U according to

(3.3) (Xi, • • • , XrY(u) = (X,, • • • , Xr)(M-1)

where uei/,tET.

Lemma 3.4. With the notation introduced above, we have

(a,,a2, ...,ary= (ax (t)av a2(t)a2,,. .,ar(t)ar)

where at E k and tET.

(ii) T sends regular characters to regular characters.

Proof, (i) is a restatement of (3.2) and (3.3) in the notation above, (ii)

follows because a( (r) # 0 for / = 1,2,..., r.

Theorem B. Suppose G is as in §1 (i.e. adjoint). Then T permutes the reg-

ular linear characters of U transitively.

Proof. We show that every character is a T-transform of (1, 1.1)

(which corresponds to (X, X, ... , X)). From Lemma 3.4 we see that if t E T

then (1, 1, . . . , 1) is mapped by t to the character (a^t), a2(t), . . . , ßj(r)).

Consider the action of T on the orbit of (1, 1.1). U tET fixes (1,1.

1) then we have a,(f) = t (i = 1, 2, . . . , r). Hence t E ker a{ (i = 1, 2, . . ., r),

where a{ is regarded as a character: T —► K. But since G is adjoint, the at gener-
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ate the character group X(T) and hence t is annihilated by each character of T.

Thus t = 1.

The number of regular characters in the orbit of (1, 1,. . . , 1) is therefore

Irl = (g - l)r. But this is the total number of distinct regular characters, whence

it follows that each one is in the T-orbit of (1, 1, . . . , 1). Q.EJ3.

4. Discrete series characters. Among the irreducible complex charac-

ters of G is a family of distinguished characters, called discrete series, from which

in principle it is possible to find all characters by solving ramification problems,

i.e. decomposing induced characters. In this section we show that on the regular

unipotent element x, these take the value 0 or ±1 and that their degree modulo

q is also 0 or ±1. In order to define irreducible discrete series characters we re-

call some facts about parabolic subgroups of G. For details the reader is referred

to [2] and [4].

A standard parabolic subgroup of G corresponds to a subset S of the funda-

mental roots. If Ws is the subgroup of the Weyl group W generated by reflections

corresponding to S, the corresponding parabolic subgroup is Gs = BWSB. Now

Gs has a maximal normal unipotent subgroup Us, called the unipotent radical of

Gs, and is a semidirect product Gs = MsUy, where Ms is called a Levi radical of

Gs and the product is called the Levi decomposition. One can make similar state-

ments when the groups are replaced by their groups of ^-rational points.

Definition. The irreducible complex character / of G is discrete series if /

is not a component of the induced character 1 G}s for any proper subset S of

where Us is the group of rational points of Uy. (We refer to Us also as the uni-

potent radical of Gs.)

The groups t/y are products of root subgroups Xa. To describe which roots

a occur we introduce the torus Ts = C\aSS ker a for any subset S of $ (the set

of fundamental roots). Then we have

Lemma 4.1. Us is the product of the root subgroups Xß where ß is positive

and the restriction ß\Ts is nontrivial.

Proof. For a complete proof the reader is referred to [2]. The reason why

one should expect this result is that My contains that part of U which is generated

by the Xß with ß trivial on Ts and Us is its complement in U.

Corollary 4.1'. Us is the product of the root subgroups Xß where ß is

positive and contains fundamental roots in 3» - S in its expression as a linear com-

bination of fundamental roots (see [3, p. 118]).

Proposition 4.2. Let J be an irreducible discrete series character of G. If

the linear character xof U is a component of the restriction J\Ut then x is a regu-

lar linear character of U.
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Proof. Suppse J\u contains the linear character x = (Xi> x2.Xr) (in

the notation of §3) and that x is not regular, so that for some i, X/ is trivial.

Then x'^a. is the identity character of Xa , where ctt is the fundamental root cor-

responding to the /-component of x- Let Iff be the subgroup of U generated by

the root subgroups Xß where the expression for ß as a linear combination of the

fundamental roots contains a. with nonzero coefficient. By the commutator for-

mula Ut is a normal subgroup of U and Xai is the unique fundamental root sub-

group in Ut. Thus x'crf *s tne identity character of t7f since x acts as identity on

root subgroups Xß with height ß > 1. But, by Corollary 4.1', Ut is precisely the

unipotent radical Us where S = <I> - {<*,-} and so the restriction J\u contains

x!j/s which is the identity character. By Frobenius reciprocity, we see that / is a

component of the induced character 1°^, which contradicts the discrete series na-

ture of /. Hence if x is a linear component of J\v then x is regular. Q.E.D.

Lemma 4.3. Let xbea regular linear character of U. Then the induced

character xG is multiplicity free (i.e. all the irreducible components occur with

multiplicity 1),

This is a theorem due to Gel'fand and Graev who stated it and proved it

for G = SL(n, q) in [5]. A general proof which includes the twisted groups is giv-

en by Steinberg in [12, Theorem 49].

Theorem C. Let J be an irreducible discrete series character of G, where G

is adjoint. Then we have a dichotomy: either

(a) the restriction of J to U contains no linear character of U, or

(b) the restriction of J to U contains each regular linear character of U with

multiplicity one, and contains no other linear characters of U.

Proof. Suppose /l^ contains a linear character x of U. Then by Proposi-

tion 4.2, x is regular. By Frobenius reciprocity, / is a component of xG and Lem-

ma 4.3 shows that / occurs with multiplicity one in xG» from which it follows

that x has multiplicity one in J\u.

Now / is a class function on G and so in particular / is invariant under con-

jugation by T. Thus J\v is invariant under conjugation by T (recall that T norma-

lizes If) and hence the irreducible constituents oiJ\u are permuted by T. But

from Theorem B, each regular linear character of U is conjugate to x under T

whence /l^ contains each regular character of U. Moreover the argument given

for x shows that the multiplicity of a regular character is one, and no other linear

characters of U occur. Thus situation (b) pertains. Q.ED.

From Theorem C we deduce easily the value of / on a regular unipotent

element:
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Theorem D. Suppose that J is an irreducible discrete series character ofG

and that x is a regular unipotent element ofG. Tfien in case (a) above, J(x) = 0

while in case (b), J(x) = (- l)r, where r = rank(G). Here we assume that the

characteristic of k is good for G.

Proof. Since all regular unipotent elements of G are conjugate in G (Lem-

ma 2.4) we may take x in U, and calculate J(x) by observing that J(x) = J\0(x).

By Theorem A, if p is a nonlinear irreducible character of U, p(x) = 0; hence to

calculate J(x) we require only the linear content of J\u which is furnished by

Theorem C. If J\v contains no linear characters (case (a)) then J(x) = 0. UJ\V

contains each of the (q - l)' regular linear characters of U (case (b)) then (taking

x = Wi=lxa.(l) without loss since all regular unipotent x are conjugate) we have

J(x) =     Z    ^ • • •        =     Z    KaO ■ ■ • Kar)
(ai,. . .,ar) (m.ar)

where X is the fixed nontrivial character of k+ referred to in §3 and the sum is

over sequences (a,,.. ., ar) with a,. G k*. But 2a;)t0X(a) = -1, whence it fol-

lows that J(x) = (-l)r as required.

It is noteworthy that both cases (a) and (b) do occur, the case (b) being ap-

parently more common. All discrete series characters of PGL(n, q), for example,

are type (b), while Sp(4, q) has a discrete series character of type (a). The latter

is a counterexample (of which Kneser's original is a special case) to Gel'fand and

Graev's now famous erroneous statement that each irreducible character of G con-

tains a linear character of U.

Corollary. Let G and J be as in Theorem D. Then the degree of J = 0

or (-l)r modulo p.

Proof. This follows because the degree of any nonlinear irreducible charac-

ter of U is divisible by p. Hence in case (a) /(l) = 0 mod p and in case (b)

7(1) = (q-iy = (-1/ mod p.

5. The twisted case. In this section we show how the arguments presented

earlier are modified to give results for the twisted Chevalley groups (or "Steinberg

variations"), e.g. PGU(n, q2). To realise these groups, we take the same G as in

§1 (i.e. G is a connected, simple adjoint group over K) but instead of the Frobe-

nius endomorphism, we take a to be any endomorphism of G such that a fixes T

and U and the group G = G0 of points fixed by o is finite (e.g. to obtain the uni-

tary groups, compose the Frobenius map by taking the inverse transpose of matri-

ces and conjugation by an appropriate matrix).

Then a certain power q of the characteristic p of K arises naturally as fol-

lows:

Lemma 5.1. Suppose G is simple and o is as above. Then there is a power
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q of p and permutation 8o/I+ such that oixjk)) = xa(cakq) for all k E K

where ca = ±1 and ca = +1 for a fundamental.

Proof. This follows from [10, §§ 11.2 and 11.14] and [12, Theorem 29].

One can then show (see [9, p. 222]) that the number of regular unipotent

elements of G (= Ga) is \G\lqr. Moreover if the characteristic p is good for G,

there is a single conjugacy class of regular unipotent elements in G [9, p. 221].

These facts furnish a proof of Proposition 25 for the twisted case, namely that

here also if jc (E U) is a regular unipotent element of G and Ux is its centriliser

in U, then \UX\ = \G\/qr.

In the twisted case, the relationship between the root structures of G and

G is not quite so straightforward, but we do have \U/U'\ = qr\ this will transpire

from the following discussion of the structure of U/U', which is also necessary be-

fore making the modifications in the definitions of regular linear characters of U

and discrete series characters of G which are appropriate to the twisted case. For

the following facts regarding the structure of the twisted groups, see Steinberg

[12, §11] and [10, §11].

The permutation 8 of Lemma 5.1 permutes the fundamental roots, and if

0j, 82,.. •, 8S are the orbits of fundamental roots, we denote by X,- (z = 1,

2.s) the product in U/U' of the fundamental root subgroups Xa with a E

8t. We then have:

Lemma 5.2. Suppose that p is good for G. Then

(i) Xf is fixed by a and if X{ = Xj0 then \Xt I = q"1, where nt is the num-

ber of fundamental roots in the orbit 8t.

(ii) The group U/U' is the direct product of the Xt (i = 1, 2,. . ., s), and

is elementary abelian.

Proof, (i) The argument of [6, Lemma 7] shows that in good characteristic,

U' is the product of the root subgroups Xa for a nonfundamental. Moreover

o(U') C U'. The statement (i) now follows from [10, §11.8].

(ii) By [10, §10.11] the natura1 map: <7-> (U/U^ s nj=1X,.ff is surjec-

tive. Hence we have an epimorphism tj: U/U' —*■ n*_jA*f. Now by [10, §11.8]

we have

\u/U'\ = qr = q»i+'>2+--+"s= r\\Xi\.
i=i

Hence tj is an isomorphism as required.

Putting this together with the twisted version of Proposition 2.5 we have:

Theorem A'. Let G be a finite Chevalley group or Steinberg group twisted

from a group G over K with irreducible root system 2. Let U be a maximal p-

subgroup of G (where p = characteristic ofK). Then if p is good for G and p is
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a nonlinear irreducible complex character U, p(x) = 0 for all regular unipotent

elements x of U.

One can be more explicit about the groups Xt, using Lemma 5.1. Let

{j3j, . . . , ßt} form the 0-orbit 0f of fundamental roots where 0 permutes the 0f

cyclically. Then by Lemma 5.1, Xßi(kl)Xß2Qc2) . . . Xß{(kt) E Xt if and only if

k2 = kl, k3 = k%, . . ., kt = kqt_1,k1 =kqt = kf. Hence ki G GFtf) and k2,

k3,. .. , kt are determined by fc,.

This shows that an element of U is regular (see Lemma 2.1) if it has a non-

trivial projection onto Xt for i = 1, 2,. .. , s. Regular characters are defined sim-

ilarly.

Definition. The linear character x of U is regular if it has nontrivial restric-

tion to each Xt (i = 1,2,. . . , s).

The torus T acts on UlU' and hence on the set of linear characters of U, as

in §3, and we see as in the proof of Theorem B that t ET stabilizes a regular lin-

ear character if and only if t G flanker a. Hence if G is adjoint t = 1. More-

over by [8, §11.10] we have Irl = n^fa"' - 1).

Since the number of regular characters is clearly equal to this, we have

shown:

Theorem B'. Let G be a finite Chevalley group or twisted type as in Theo-

rem A'. Then T permutes the regular linear characters of U transitively.

The next result, concerning discrete series characters, also remains valid.

Here we simply replace the groups Gs, Ms and Us of rational points by corre-

sponding groups of points fixed by a. The proof of Proposition 4.2 must be mod-

ified so that instead of root subgroups we have subgroups corresponding to 0-or-

bits of roots, but the conclusion remains valid. The theorem that if x is a regular

linear character of U then the induced character is multiplicity free (corresponding

to Lemma 4.3) is proved by Steinberg in [12, p. 258 et seq.]. Thus we have

Theorem C'. Let J be an irreducible discrete series character of G, where

G is as in Theorem A'- Then the conclusion of Theorem C holds.

The proof of Theorem D remains unchanged, as we have noted that Xt =
GF(qni)+.

Theorem D\ With G and J as above and x a regular unipotent element of

U we have either J(x) = 0 or J(x) = (-1)*.

Corollary (i) remains unchanged but in Corollary (ii) it is necessary to re-

mark that the root system of G may be distinct from that of G. It is defined in

terms of the orbits 6{ of fundamental roots (see [10, §1]), and it is for this root

system that the condition in Corollary (ii) must be stated.
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6. Concluding remarks. If p is a bad prime for G and x a regular uni-

potent element of G, then the centraliser     is not connected; in fact x is not in

the identity component of \JX ([8, Theorem 4.12]). Hence there is more than

one class of regular unipotent elements, and the author knows of no results here.

Moreover there may be pathology in the structure of U/U' in bad characteristic

for the twisted cases and Theorem A fails here. Thus for bad characteristic the

results presented here have little to offer.

However for nonadjoint groups, although Theorems B', C' and D' do not ap-

ply directly, they may provide useful information; e.g. in [7] the author has calcu-

lated J(x) for SL(n, q) as a generalized Gaussian sum, using the analogue of Theo-

rem C for GL(n, q). The calculation is possible because in the above case one can

prove:

*The restriction ofJto U contains precisely one T-orbit of regular linear

characters of U, and no other linear characters.

It is an open question whether * holds in general, i.e. for all (possibly non-

adjoint) groups G.

Added in proof. Some of the results have been independently obtained

by N. Kawanaka in Unipotent elements and characters of finite Chevalley groups,

Osaka J. Math, (to appear).
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