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0-WEAKLY COMPACT MAPPINGS OF RIESZ SPACES
BY

P. G. DODDS

ABSTRACT. A characterization is given of linear mappings from a Riesz
space to a Banach space which map order intervals to relatively weakly compact
sets. The characterization is based on recent results of Burkinshaw and Fremlin.
A number of applications are made to known results concerning weakly compact
mappings and to results in the theory of Banach space-valued measures.

1. Introduction. There are many results in the literature dealing with prop-
erties of continuous linear mappings of spaces of type C(K) to a Banach space
([31, [13], [22], [23]). These results are often proved via the theory of Banach
space-valued measures using theorems of Riesz representation type to relate the
mapping to the measure. Accordingly there is an extensive treatment of Banach
space-valued measures to which the C(K)-operator theory is closely linked [25].
It is our present purpose to show that the theory of Riesz spaces is a natural
domain for a unified approach to many of the basic results from C(K)-operator
theory and their parallel vector measure relatives without using the bridge of
representation theory and it is our intention to highlight the role played by the
natural lattice structure in the hope that some fresh insight will be provided.

Our approach finds its roots in the work of Kluvanek [17] who gives a
theory of a Banach space-valued Daniell integral defined on a Riesz space of
functions. Of importance in his work is the isolation of a property called satur-
ability which essentially guarantees that the dominated convergence theorem of
Lebesgue holds when the elementary Daniell integral is suitably extended. In the
case that the Riesz space of functions is the space of real-valued continuous func-
tions of compact support in a locally compact Hausdorff space, the notion of
saturability is equivalent to the requirement that the elementary Daniell integral
should map each order interval of the Riesz space to a relatively weakly compact
subset of the Banach space in which the integral takes its values. Our approach
then is to consider the general setting of a linear map 4: L — Y of an Archi-
medean-Riesz space L to a Banach space Y which maps order intervals of L to
bounded subsets of Y. Our basic result is Theorem 4.2 which gives a number of
necessary and sufficient conditions that 4 should map order intervals of L to
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relatively weakly compact sets in Y. In this connection, the reader is referred to
the theorem on extension given by Kluvanek in [18]. Our proof of Theorem 4.2
reflects very strongly the measure theoretic motivation and has as its essential in-
gredient the recent characterization of relatively weakly compact subsets of the
order dual of an Archimedean-Riesz space given by Burkinshaw [6] and Fremlin
[12] which extends the work of Kaplan [16] and which gives an exact extension
of the Dieudonné-Grothendieck theorem [13] characterizing weakly compact sets
of Radon measures. A second ingredient is quite naturally the Orlicz-Pettis lemma,
and in this regard it is appropriate to draw the reader’s attention to the author’s
paper [10] which gives an order-theoretic derivation of Phillips’ lemma of which
the Orlicz-Pettis lemma is a consequence [7]. The remaining results of the paper
are derived systematically from Theorem 4.2 in the manner of [25] using variants
of a lemma of Rosenthal [23]. The applications include an extension of the
Dieudonné convergence theorem (Theorem 5.4), Vitali-Hahn-Saks theorems of
Brooks, Jewett, Faires (Theorem 6.4), results of Bartle, Dunford, Schwartz, Groth-
endieck, Pelczynski on weakly compact mappings of C(K) spaces and of Diestel,
Faires on locally s-bounded measures (Theorem 7.1).

We do not discount the possibility that many of our results could in fact be
derived from the traditional ((K)-operator theory which motivates the work, by
the standard technique of equipping each principal order ideal of the Riesz space
with a suitable order unit norm, passing to the norm completion and applying the
representation theorem of Kakutani to the abstract M-space thereby obtained. In
view of the objectives stated earlier, we have deliberately chosen to avoid this
route as it would perhaps distort the perspective from which we wish to view the
very results which would of necessity become tools of proof.

The author would like to thank Igor Kluvanek for bringing to his attention
the paper of J. J. Uhl, Jr. [25]. The author is also grateful to Owen Burkinshaw
and David Fremlin for making available their results prior to publication and for
a number of helpful comments. Special thanks are also due to the referee for in-
teresting comments on an earlier version of this paper.

2. Preliminary information. Throughout the paper L will always denote an
Archimedean-Riesz space with separating order dual L™, and Y a real Banach
space. We shall use the terminology of Luxemburg and Zaanen [20], [21],

DEFINITION 2.1. A linear map A: L — Y will be called o-bounded iff
sup{llAfll: 0 <|f| < e} <o holds for every 0 < e € L.

A linear map A: L — Y will be called o-weakly compact iff {4f: 0 <
Ifl <e} C Yis a(Y, Y*) relatively compact for every 0 <e € L.

It is an immediate consequence of the definition that if y* € Y*, the linear
form, A~ y* defined by (A~ y*)(f) = y*(Af) for f € L, is order bounded and the
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map A~: Y*— L” is linear, where L™ denotes the order dual of the Riesz space L.
If YT denotes the unit ball of Y* and 4: L — Y is 0-bounded, for each 0 < e € L de-
fine p , (¢) =sup{l4~y*|(e): y*€ YT} = sup{ll4f|l: 0<|f|<e} and note that the map
f > p4(fl) is a Riesz seminorm on L. The set of natural numbers will be de-
noted by cw.

DEFINITION 2.2. The Riesz space L will be called principal component
o-complete if L has the principal projection property and, for every 0<e €L,
the Boolean algebra of principal components of e is o-complete.

Note that if L has the projection property or is Dedekind g-complete, then L
is principal component g-complete. A partially ordered set (P, <) is said to have
property [ iff for any sequences {x,},c.,» {V,}.e,, in P with x,, <y, for all
n and m, there exists v € P such that x, <v <y, holds for all n € w.

DEFINITION 2.3. The Riesz space L will be said to have property PI iff L
has the principal projection property and for every 0 < e € L, the Boolean alge-
bra of principal components of e has property I.

Denote by I; the order ideal generated by the Riesz space L in L™, ', the
band of normal integrals on the Riesz space L™~. The following result is due to
Burkinshaw [6] and Fremlin [12] and constitutes the foundation of the paper.

THEOREM A. For a subset B C L™, the following are equivalent.
@) sup{le(f,, —f,)|: ¢ € B} — 0as m, n — o for each monotone order

bounded sequence {f,} C L.

(i) sup{le(f, —f,,)l: ¢ € B} — 0as m, n — o for each monotone order
bounded sequence {f,} CI,.

(iii) The solid hull of B is relatively o(L™, I,) compact.

(iv) Bis o(L™, L) bounded and sup{|¢(f,)l: ¢ € B} — 0as n — = for
each disjoint order bounded sequence {f,} C L™.

(v) For every system {f,} C I, f, {,0 in I} implies inf,sup {|$|( f):
¢ €B} =0.

3. Some properties of I; . In this section, we wish to gather a number of
properties of I; . These are mostly known results, reformulated to suit our
present purposes. Some proofs are included for ease of reference. Denote by
lol(Zy,, L™) the locally solid topology on I; defined by the collection of semi-
norms f > [9l(f1), fEI,, ¢ EL™.

PROPOSITION 3.1. The (continuous) dual of I, equipped with the topology
lold,, L™) is L™.

PROOF. Let the linear functional ¢ on I; be |o|(I,, L™) continuous. It is
easily verified that there exists € L™ such that |¢(f)| < [¢I(If]) holds for
FEI,. It follows that ¢ € I7 and ™ () < WIS, I67(HI < WI(If]) hold
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for all fE€I,. By Theorem 19.2 of [20], there exist 0 < ¢,,¢, EL™,},”

'n?

such that ¢, = ¢+, ¢, = ¢ on I, and Ip, () < WI(LI), I6,(NI < WI(IST) for

FEL™, . It follows that ¢,, ¢, EL™, , . Since L™ is perfect by Corollary
28.5 of [20], it follows that ¢,, ¢, EL™ and so also ¢ EL™.

ProrosITION 3.2. If0 < e €L, then E= {fE€EL: 0< f<e}is
lold,, L™)densein F= {g€I,: 0<g<el}.

ProoF. If g € F and g does not belong to the |ol(I;, L™) closure of E,
then by the separation theorem and Proposition 3.1 above, there exists ¢ € L™
such that ¢(g) > sup{¢(f): 0 <f<e, fEL}. It follows that ¢*(g) > ¢(g) >
¢*(e) and this is clearly a contradiction.

NorATION. For a subset M C I, write

M = {f€l,: H{f},e, CMwithf, 1, finl;},
M™ = {f€I,: Hf}CMwithf,4 finI}.
M,, M, are defined similarly by replacing t by {.

LEMMA 3.3. Let0<e€L,g€I, with0<g<eand 0<$EL". Set-
ting E= {f€L: 0 <[f<el}, there exists g, € E° ; such that ¢(Ig — g,[) = 0.

Proor. By Proposition 3.2, there exists a sequence {g,} C E such that
#(lg —£,1) <27" for n € w. Asin [14], it is easily verified that g, =A\ ,V 5 &,
satisfies g, €E°, and ¢(Ig -g¢l) =0.

The next result is due to Kaplan [15] and we omit its proof.

PROPOSITION 34. Let0<e€L,E={fe€L:0<f<e}land F =
g€I,:0<g<e}. Then F=E°",.

A simple consequence of Proposition 3.4 is
CoRrOLLARY 35. (I), =L".

4. Characterization of o-weakly compact maps. In this section we give a
number of necessary and sufficient conditions for an o-bounded map 4: L — Y
to be o-weakly compact. The first result concerns the possiblity of extending 4
from L to I; and is familiar from standard integration theory. The proof of the
proposition is a direct consequence of Proposition 3.4 and accordingly will be
omitted.

ProrosITION 4.1. Let A: L — Y be o-bounded and p: I} — R a Riesz
seminorm such that {f,} C I, f,, o inI; implies p(f,) $,0. If IAfIl < p(f)
holds for each f € L, then A has an extension A': I ', — Y with the following
properties.
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() If0<e€lL,[0,e] = {fEL:0<f<e}l,andgE€I, with0<g<e,
then A'g belongs to the closure of A([0, e]).
(ii) For each y* € Y* and fE I, y*A'f) = (A~ y*) ).
@iii) 147N <p(f) forfEIL.

ReMARK. If the hypotheses of the above Proposition 3.7 are satisfied and
AT7: I, — Y** s the natural dual mapping to A, it is clear from (ii) that
A'=4"".

We come now to the main result of this section.

THEOREM 4.2. Let A: L — Y be o-bounded. The following statements
are equivalent.
(i) A is o-weakly compact.
@ A~"J)Ccr.
(iii) A7 CY.
@iv) p,(e,) — 0 as n — oo for every order-bounded disjoint sequence
fe,} CL*.
(v) Each monotone order bounded sequence in L is p ,-Cauchy.
(vi) For each system {f,} C I, f, . 0 implies p ,(f,) ¥ O.
(vi) A™Y7F is relatively o(L~, I}) compact.

Proor. (i) = (ii). Let 0 <e €L and write [0,¢e] = {fEL: 0<f<e}.
Suppose A([0, e]) is a(Y, Y*) compact and let i: Y — Y** be the canonical
injection. Suppose there exists g € I; such that 0 <g < e but that A" "g &
i(A([0, e])). By the separation theorem, there exists y* € Y* such that y*(4™"g)
> sup{y*(Af): 0 <f<e, fEL}. It follows that (A4~y*)*(g) > (A~y*)*(e)
which is a contradiction.

(i) = (i) is trivial.

(iii) = (iv). Note first that (iv) is equivalent to the (apparently) weaker
condition

(iv)': llde,ll — 0 as n —> o= for every disjoint order bounded sequence
{fe,} CL*.

Suppose (iii) is satisfied and let {e,}, ., be an order bounded disjoint
sequence in L*. For each y* € Y*, it follows immediately from the fact that
ATy* €(I,), that T, y*(de,) = y*(A~"(Z,e,)). Since A~~(Z,e,) EY by
assumption, it follows that the series Z,Ae,, is weakly subseries convergent and
therefore strongly subseries convergent by the Orlicz-Pettis lemma [7] and (iv)
follows from (iv)'.

The equivalences (iv) < (v) « (vi)  (vii) are contained in Theorem A.

(vi) = (ii). This implication follows from Proposition 4.1, noting that ||Af |
< p4(f) holds for f € L.
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(ii))=> (). LetO<e€Landset F= {f€I,: 0<|f|<e}. By aresult
of Amemiya [1] and Corollary 3.5, F is o(I;, L™) compact. Since A~~: [, =Y
is o(f;, L™) to (Y, Y*) continuous, A~ (F) C Y is o(Y, Y*) compact and the
result follows. By this the chain of implications is complete and the theorem is
proved.

Some of the above equivalent statements were proved independently by O.
Burkinshaw.

In order to make more transparent some applications, we recall some no-
tions from the theory of vector measures. R will denote a ring of subsets of a
point set X. A vector measure m: R — Y, where Y is a Banach space, is a
finitely additive Y-valued function on R. m is called locally bounded iff for
every EER

lml(E) = {supllm(F)ll: F CE, F C R} <ee.

A locally bounded vector measure m: R — Y is called locally s-bounded iff for
every F € R, lim,_, . lm(E,,)ll = 0 holds for every disjoint sequence {E,}C R
with E,, C F for every n € w. Notice that this latter condition is in fact equiv-
alent to the (apparently) stronger condition that lim,_, . limll(E,) — O for every
disjoint sequence {E,} C R with E, C Fforeveryn€w. If m: R—Yisa
vector measure, let L be the Riesz space of R-stép functions (standard representa-
tion) and define A: L — Y by setting

A ( é 5iXEi> = il 5:”1(5})

where {E;} C Rand E; NE; = Zif i #].

PrROPOSITION 4.3. Let m: R — Y be a vector measure, A: L — Y the
corresponding map from the Riesz space L of R-step functions.
(i) R has property I iff L has property PI.
(ii) R is a §-ring iff L is principal component o-complete.
(iii) m is locally bounded iff A is o-bounded.
(iv) m is locally s-bounded iff A is o-weakly compact.

ProOF. (i), (ii) are easily verified and the proofs will be omitted.

(i) Let 0<e €L be of the form e = xz, E € R. |Iml(E) < p, (Xg) =
sup{y*(Zl- ,om(E)): loyl < 1,y* € Y} and {E}} is an R-partition of £} <
2llmlI(E). Since any order interval in L is contained in an order interval of the
form [-xg, xg], (iii) is proved.

(@iv) It is clear from condition (iv) of Theorem 4.2 that m is locally s-
bounded if A is o-weakly compact. The converse follows from Proposition 3.2
of [10] and Theorem 4.2.
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5. On a theorem of Dieudonné. The principal result of this section is an
extension of a well-known theorem of Dieudonné [9] and supplements the work
of Kaplan [16]. If 0 <e €L, a principal component [ of e in I; will be called
olsc. iff I€EL°.

LEMMA 5.1. Let 0<e€ L, € >0and ¢ €EL" with ¢*(e) > 0. There
exists a o L.s.c. component 1 of e such that ¢* () > ¢+ (e) —eand ¢~ () <e.

PrROOF. Choose & such that 0 < § < €/2¢*(e) and 7 such that n < €b.
Since ¢ A ¢~ = 0, there exists f € L with 0 < f < e such that ¢*(f) > ¢*(e) -
€/2 and ¢~ (f) <n. Write e =1 + k where [ is the ¢ ls.c. component of e in the
band generated in I, by (f - 8e)*. Note that 8/ < fand f <1+ 8k. It follows
that 8¢~ (1) <¢(f) < € and that

¢t (D) +8¢*(e) > ¢t (1 + 8k) = 67 (f) > ¢+ (e) —¢/2.
Thus ¢*() > (1 - 8)¢*(e) — €/2 > ¢*(e) —e.

LEMMA 52. Let0<e €L, EL™ and let I' be a o Ls.c. component of
e such that 19l(I") > e, for some € > 0. There exists a o Ls.c. component I" of e
such that I" <I' and 19(I")| > €/4.

ProoF. For definiteness, assume that ¢*(I') > €/2. By Lemma 5.1 above,
there exists a ¢ Ls.c. component  of e such that ¢+ () > ¢*(e) — ¢/8, ¢~() <
€/8. Set!”" =1 ATI. Observe that ¢~(I A I') < ¢~(I) < ¢/8 and that p* (I A1) =
ot + 0T - AV ) > ¢t (e) — €/8 + /2 = ¢ (e) = 3¢/8. It follows that
(o) = ¢YA Al')Y= ¢ (I AT')> ¢/4 and the lemma follows.

ProrosITION 5.3. Let B C L™. The following statements are equivalent.

@) sup{igl(e,): ¢ € B} — 0 as n —> o= for every disjoint order-bounded
sequence {e,} C L*.

(ii) For each 0 <e €L, sup{l¢(e,)l: ¢ € B} — 0 as n —> < for every
disjoint sequence {e,} of o ls.c. components of e.

ProoF. (ii) = (i). Suppose (i) is not true. There exists e > 0,0<e €L,
a disjoint sequence {e,} C [0, e], and a sequence {¢,} C B such that |¢,(e,)l > e
For each n € w denote by e, the o 1s.c. component of e in the principal band
generated in I; by e,. Note that the sequence {e;,} is disjoint and, for each
n € w, I¢,l(e;,) > €. By Lemma 5.2, there exists a sequence {e,} of ¢ 1s.c. com-
ponents of e such that e, <e;, and |¢,(e;)| > €/4. Since the sequence {e, } is
clearly disjoint (ii) is not true and so (ii) = (i).

(i) = (ii). Note that if / is a g 1.s.c. component of 0 < e € L, there exists
by definition a sequence {I,} C L* such that I, %, lin I;. The implication
(i) = (ii) is now a simple consequence of the fact that B C (1), .



396 P. G. DODDS

NotATION. If A: L — Y is o-weakly compact, by virtue of Proposition
4.1 and Theorem 4.2, we will abuse notation and denote by A rather than 4™~
the extension of 4 to I;.

We now come to the Dieudonné theorem (see also Thomas [24]).

THEOREM 5.4. Let 0 < e € L be a strong order unit for the Riesz space L.
Let A,: L — Y be a sequence of o-weakly compact mappings and suppose that
lim,_, A, f exists for each o ls.c. component f of e. Then

(a) sup,p An (e e;) — 0 as j — < for each disjoint order bounded sequence
{eycL*t.

(b) There exists an o-weakly compact mapping A: L — Y such that
lim,_, A, f=Af holds forall fE I} .

ProoF. (a) By Proposition 5.3 above, if (a) is not true, we may assume
that there exists € > 0, a sequence {y3%} C Y}, a disjoint sequence {e, },c,, of
o Ls.c. components of e such that |(4,/ vy Xe,)| > € for each n € w. Setn, =1
and find inductively a subsequence n; 1 such that |4, (e,, . )l <e/2. Thisis
possible since [l4,,(e;)ll — 0 as j —> o for each n € w. Now observe that
I(Ank-n ”k)y”k+1( eyl = €~ 14y, (6, I > €/2 for all k € w. Pass-
ing to a subsequence then and suitably changing notation, we may assume in addi-
tion that the original sequence {A,} satisfies 4, f —> 0 as n —> o for each ¢
Ls.c. component f of e. Observe now that for any infinite subset N C w,n >0
and 0 < ¢ € L™, there exists an infinite subset N; C N such that ¢(Z,cye) < 0.
In fact, if {V;};c, is a partition of NV into an infinite number of infinite disjoint
subsets and setting, for each k € w, f; = Z‘,eNke,, the assertion follows from the
fact that Z."_, &(f;) < ¢(e). Using the above remarks, it follows by an inductive
argument that there exists a subsequence {n;} C w such that

> Uy, e I<el3, Uy, 3, (c) > e and m;ky,,k(;‘ enl)<6/3

1</<k

hold for each k € w. It follows that

(Ze)

A K;quA e, |l

nk ni

- M:ky”k'(';‘ e"i) > 6/3.

Since Z;e,, is a o 1.s.c. component of e, this is a contradiction and (a) is proved.

(b) It now follows from (a) and Theorem 12.4 of Kaplan [16] that
SUp,04 ”(e) <o, For fE I ,set p(f) = sup,p A,,(f ). Note that p is a Riesz semi-
norm on I, and that from (a) and Theorem A, it follows that f; |, 0in I implies
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p(f;) 4, 0. Let now f€ L*. By the Freudenthal spectral theorem [21], there
exists a sequence s,, 1, of linear combinations of o 1.s.c. components of e and a
sequence of positive numbers €,,, ¥, 0 for which |f - s,,| < €,,e for each m € w.
Forp=>gandeachm € w

I, — A1 <2001 ~ Sy} + 1A, — A6 I<20(E)e, + A, — A6l

It follows that lim, ., A, f exists for each fE L. Set Af = lim,_,, A,f Itis
clear that [lAf1l < p(f) holds for f € I, and from (a) it is immediate that

A: L =Y is o-weakly compact and that p,(f) < p(f) holds for fEI;. Sup-
pose that f 1, fholds in I; and that lim,_, . 4,f, = Af, holds for each 7.
From [|4,f - AflI <A, f, — Af || + 2p(f, - f) for each n € w and each 7, it
follows that lim, , , A, f= Af holds for each f € I; and the proof of the theorem
is complete.

6. Vitali-Hahn-Saks theorems. In order to smoothen the presentation of the
results of the remaining sections we give first some lemmas, which are essentially
variants of a lemma due to Rosenthal [23].

LeEmMMA 6.1. Suppose B C L™ is |ol(L™, L)-bounded but not relatively
o(L™, I,) compact. There exists € > 0,0 < e € L, a disjoint sequence {eg} C
[0, €] and a sequence {¢,} C B such that, for each k € c, I¢kl(e,-) <ef2! for
1<j <K |$(e)l > e and Z; 416, 1(e;) < €/2%.

LEMMA 6.2. Let the Riesz space L be principal component o-complete, and
B C L™ be |0l(L™, L) bounded but not relatively o(L™ , I, ) compact. There exist
€> 0,0 <e€ L, adisoint sequence {e,} of principal components of e and a
sequence {¢,} C B such that for each k € w, 16,(¢;) < /27 for 1 <j <k,
|6k(ex)l > € and 19, (Z; . €;) < €/2% where Z> i € is taken in the Boolean alge-
bra of principal components of e.

LEMMA 6.3. (a) Let the Riesz space L have property I and let B C L™ be
l6I(L™, L) bounded but not relatively o(L™, I,) compact. There exists € > 0,

0 <e €L, a disjoint sequence {e;} C [0, e], a sequence {f,} C [0, e] with f 4,
and a sequence {¢;} C B such that, for each k € w,

@ f A e =0for1<j<k,and {e:i>k1C[0,f,].

() 191(e)) <ef27 for 1 <j <k, |p,(e) > €, and 16, |(f;) < e[2%.

() Let the Riesz space L have property PI and let B C L™ be |ol(L~, L)
bounded but not o(L”™, I,) compact. The same conclusion as in (a) above holds,
provided the sequences {e;}, {f,} are replaced by sequences of principal compo-
nents of e.

We will give only the proof of Lemma 6.3 (a). The details of the other
cases are essentially similar and perhaps slightly more straightforward.
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PROOF OF LEMMA 6.3 (a). Assume that L has property I and that BC L™
is [ol(L™, L) bounded but not relatively o(L™, I;) compact. By Theorem A,
there exists € > 0,0 < e € L, a disjoint sequence {e,} C [0, e] and a sequence
{#,} C B with |¢,(e,,)] > € for each n € w. Suppose for 1 < j <k there have
been defined integers n; Tj, infinite subsets N; C w with N; {; and elements LEL
w1thf & such that n, €N, _,, fi N e, n = 0 for1 <j<k, {ej JEN}C
[0, fk] '¢"k|(e )<ef2i for1 <j<kand 19, I(fk) <el2k. Let N, =
Ny UN{ bea partltlon of N, into disjoint mﬁmte subsets Ny, N;. There exists
Ny 4 € Ny, such that 191(n, ) < €/2¥ for infinitely many j € N;. In fact, if
this is not true, the |g|(L™, L) boundedness of B is easily contradicted. By a
change of notation then, we may assume that there exists n, , , € N,'c such that
I¢,-I(e,,k+l) < ¢/2¥ for all j € N}. By Lemmas 4.3 and 4.4 of [10], there exists
an infinite subset N, ; C Ny, fi,1q €LY with fi | < fiy frgr N Crpyy =0
{e JEN 1} C IO, fipq] and 18, 1(fey ) < €/2¥*1. This completes the
induction step and the lemma follows by an obvious change of notation.

We now state the main result of this section. It extends the classical Hahn-
Vitali-Saks theorem, and results of [2], [5], [10]. A similar result for vector

measures has been announced by Faires [11].

THEOREM 6.4. Let the Riesz space L have property I or property PI. Let
A,: L — Y be a sequence of o-weakly compact maps and suppose Af =
lim,_, . A, f exists for each f € L. Then

(@) sup, p, (e,) —> 0 as j — oo for every order bounded disjoint sequence
e} c Lt.

(b) A: L = Y is o-weakly compact.

© A,f—>Afforeach fET,;.

PROOF. Let L have property I and note first that B = {4, y*: n € w,
Y*€Y}iso(L™, L) bounded and hence |o|(L™, L) bounded by Theorem 4.6 of
[10]. It follows immediately that A: L — Y is o-bounded. Suppose that (a) is
not true. As in the proof of Theorem 5.4 above, we may assume in addition that
A, f— 0asn —> oo for each f€ L but that (a) is still not satisfied. By Lemma
6.3 (a) and again passing to a subsequence if necessary we may assume that there
exists € > 0, 0 < e € L, a disjoint sequence {e;} C [0, €], a sequence {f;} C
[0, e] with f; ; and a sequence {y}} C Y} such that (i) f; A g=0forl<
j<k, {g:j>k}C|o, fi] for each k € w and (ii) lAky;:I(e ) < €2 for 1 <
J<k, I(Ak yi)e ) >2e and AL YEI(f,) < €/2¥ for each k € w. Note that e > e,
VeeeVe, V[, >e V- Ve, holds for every m, n and so, by property J,
there exists f€ [0, e] withe, Ve« Ve, V[ =¢, +cc-+e, +f,=>>
e, ++ ¢+ +e, for every n € w. Note that, for each k, |[f - e, V++ +V gl
< f; and so
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14,1l = 1AE YN

> ryD) (e - 145 vk l(fk)- Z IAky I(e) > e.

This is clearly a contradiction and (a) is proved. (b) follows immediately from (a)
and (c) follows exactly as in part (b) of Theorem 5 4.

If L has property PI rather than property I, the proof remains essentially
identical upon appeal to Lemma 6.3 (b) in place of Lemma 6.3 (a).

It should be noted that (b) of the above theorem is not true if L is merely
assumed to have the principal projection property. In fact, let L be the Riesz
space of sequences which are eventually constant and let = a,, be a conditionally
convergent but not absolutely convergent series of real numbers. For n € w, f=
(fy) €L, define ¢,(f) = Z3= afy» Hf) = Z5=, arfy,. Observe that ¢,(f)
= ¢(f) for every fE L, that ¢, € L™ but that 9 ¢ L™

7. Sufficient conditions for o-weak compactness.

THEOREM 7.1. Let A: L — Y be o-bounded. Each of the following state-
ments is sufficient for A to be o-weakly compact.

() No subspace of Y is isomorphic to c,.

(i) L is principal component g-complete and no subspace of Y is isomor-
phic to 1.

Proor. We will prove only (ii) as the proof of (i) is similar. Suppose then
that L is principal component o-complete and that A: L — Y is o-bounded but
not o-weakly compact. By Lemma 6.2 and Theorem 4.2, there exists § > 0,0 <
e € L, a disjoint sequence {e,,} of principal components of e and a sequence {y*}
C Y} such that, for each n € w, [(A"y}¥)(e,)| > & and |(4A"y?* i ) <82,
where the sum is taken in the Boolean algebra of prmcxpal components of e rather
than in /;. If @ = (o) €I is finitely valued write a = ,_1 5iXs where
S; €2% satisfy §; N S; = for i #j, and set T(@) = ZE | BA jes; ¢)- For
yrEYH

Y@ < }k:w,-ll(A”y*) > e,-) < llall14™*1(e) < lell. o4 (e).
i=1 JES;

Moreover, if n € w, writing a,, = §; for some 1 </ <k,

IT@)ll > |y3TE)| > 1BIEA Y (e, ~ llall 14”7y 1(2 )

j#n
= (8,16 = llall.8/2.
It follows that (§/2)llall.. < IT(@)ll < p4(e)llall,, so that T extends to a topolog-
ical isomorphism of I into Y and the proof is complete.
Part (a) of the above theorem contains results of Grothendieck [13], Bartle,
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Dunford and Schwartz [3], and Pelczyriski [22]. Part (b) contains a result of
Diestel and Faires [8]. Our method of proof follows Uhl [25].
The next result is related to certain results of Grothendieck [13].

THEOREM 7.2.(i) IfA: L = Y is o-weakly compact whenever A is o-bounded
and Y is a separable Banach space, then every sequence in L™ which is |o|(L~, L)
bounded and o(L™, L) convergent is also o(L™, I,) convergent.

(i) If every o(L™, L) convergent sequence is also o(L~, I, ) convergent,
then every o-bounded linear map A: L — Y is o-weakly compact if Y is a separable
Banach space.

Proor. (i) Let {¢,} C L™ satisfy ¢, — 0, o(L™, L) and suppose that {¢,}
is |olbounded. Define 4: L — ¢, via Ax = {¢,(x)}. That 4 is o-bounded fol-
lows from the |o]-boundedness of the {¢,}. Note that 4~y* = ¢, where y, € n
is the sequence (y,), = {1 if k = n; 0 if k # n}. Since c,, is separable, 4 is o-
weakly compact and consequently B = {4~ y*: y* €1, |y*| <1} is o(L~, I})
relatively compact. Thus {9,} is o(L™, I,) relatively compact and so ¢,, = 0,
olL™,I,).

(i) Let Y be separable and A: L — Y o-bounded but not o-weakly com-
pact. By Theorem A and Theorem 4.2 it follows that there exists a sequence {y*
C Y} such that no subsequence of {4~ y: n € w} is relatively o(L™,1;) compact.
However since Y is separable, the unit ball of Y* is a compact metric space in the
o(Y*, Y) topology. It follows that {4~y*: n € w} contains a subsequence con-
verging pointwise on L and hence by assumption on I; and this is a contradiction.

COROLLARY 7.3. Let the Riesz space L have property I or property PI. If
Y is separable, then every o-bounded mapping A: L — Y is o-weakly compact.

ProoF. The corollary follows immediately from Theorem 6.4.

It should perhaps be noted that the conclusion of the above corollary is not
valid if L has merely the principal projection property. In fact, let L be the Riesz
space of all sequences f = {f;} which are eventually constant, ¥ the Banach space
of all convergent sequences and let 4: L — Y be the natural inclusion. Note that
in this example, the Boolean algebra of principal components of the sequence
e={l1,1, ...} does not have property PI. Moreover the sequence {¢,} C L~
defined by ¢,(f) = n(f, — f4y) forn=1,2,...and f= {f;} € L satisfies
¢, = 0, o(L™, L) but if it were true that ¢, — 0, o(L™, I}), it would follow that
{#,} is lolbounded and this is clearly not the case.

The next result is an improvement of Corollary 7.3 for the case that L has
property I and extends a result of Rosenthal [23] to the setting of Riesz spaces.

THEOREM 7.4. Let L have property I. If A: L — Y is o-bounded that not
o-weakly compact, thenl®™ is a continuous linear image of a subspace of Y.
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PrOOF. Suppose 4: L — Y is o-bounded but not o-weakly compact. By
Lemma 6.3 (a), there exist € > 0, 0 <e € L, a disjoint sequence {¢,} C [0, ¢],a
decreasing sequence {f,} C [0, e] and a sequence {y§} C Y ¥ such that, for every
k€w, i A =0 for1 <j<k, {ei: i>krCo, fi1, IA"y,"c‘I(ei) < ¢f2/ for
1 <j<k,|ATy¥(e,) > 2e and [A™y2I(f,) < €/2¥. Without loss of generality,
assume that e is a strong order unit for L and set ¢ = Zp_, |4~y ¥|/2¥|4y¥|(e).
Note that ¢ € L™ and denote by P, the projection onto the carrier band of ¢ in J; .
By Proposition 2.1 of [10], observe that P,L C I; is Dedekind g-complete. If a =
(% )neq, €17, define T: I — 17 via (T,,),, = A"y X(Z ,P,€) where the sum is taken
in the Dedekind o-complete Riesz space PyL. Now observe that for each n € w

n—1
(Tal < 2 11147y EI(e) + oy, [IA™yE(e )l + lledl 1A~y *I(f,)
i=1

< (e + Py(e)llall.

Further [[Tall, > I(A"yR)(ZZ, o;Pye)l = 2la,le — ellall,,. It follows that
ellell, <lITall,, < (e +P4(e)llall,, and so T is 1-1 with closed range. Now
denote by M the linear subspace of those f € L for which there exists (@)el”
such that P, f = Z;2, o;Pye;. Define now S: A(M) — T(I™) via (S(4/)), =
YX(AS). The proof is complete by noting that

YN =A@y =A@ f)
for each n € w.

8. A Dunford Pettis property.

THEOREM 8.1. Let L be an Archimedean-Riesz space and A: L — Y an
o-weakly compact mapping. If the sequence {f,} C L* is order bounded and
fo =0 oL, LT), then || Af, Il = 0.

Proor. Let A: L — Y be o-weakly compact. It follows from Theorem 42
(v) that the Riesz seminorm p, has property A (iii) of [20]. f0<e €L, it
follows from Theorem 3.2 of [6] and Theorem 4.2 (vi) that there exists 0 <
$EL™ suchthat 0 <z I <e, ¢(z,) 4 0imply p,(z,) 4 0. Let0< f, <e
and suppose that f, — 0 o(L, L™). To show that ||4f, |l = 0 it is sufficient to
show that p,(f,) = 0. Let € > 0 be given. Without loss of generality we may
assume that Z, ¢(f,) <e°. By Lemma 43.2 of [19], there exist sequences {u,},
{w,}, {z,,} of positive elements of L such that f, = u, +w,,0<u, <z,,#z,)
Y 0and p,y(w,) <e. Since p,(z,) ¥ 0, it follows that im,,_,., p,(f,) < € and
the theorem follows.

It is easily seen that Theorem 8.1 above implies the well-known fact [13]
that every weakly compact mapping of ((K), K compact Hausdorff, to a Banach
space Y maps weakly convergent sequences to norm convergent sequences in Y.

The above Theorem 8.1 was also observed independently by Owen Burkinshaw.
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