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DIFFEOMORPHISMS OBTAINED FROM ENDOMORPHISMS

BY

LOUIS BLOCKC1)

ABSTRACT. It is shown that if / is a differentiable map of a compact

manifold, and the singularities of /satisfy a certain condition, then there is a

diffeomorphism (of a different manifold) whose orbit structure is closely rela-

ted to that of /. This theorem is then used to extend several results on the

orbit structure of diffeomorphisms to the noninvertible case.

1. Statement of results. Let M denote a compact manifold without bound-

ary, and End(A/) denote the space of C1 maps of M into itself, with the C1

topology. For/G End (A/) let fi(/) denote the non wandering set of/, which we

define in §2. f»2(/) is a closed set and/(f2(/)) C S2(/). We use the notation

lim(/, fi(/)) to denote the inverse limit of the map /: fi(/) —► £2(/), as de-

fined in §2.

Our main results are the following (see §2 for definitions):

Let f e End(M) with all singularities of f in the stable manifolds of orbits

of sinks.

Theorem A. There is a diffeomorphism f of a tubular neighborhood of M

into itself such that f\ S2(/) is topologically conjugate to lim(/, S2(/)). Further-

more f satisfies Axiom A if and only iff does.

Theorem B. /(J2(/)) = S2(/).

Theorem C. // f satisfies Axiom A, then fhas a spectral decomposition.

Theorem D. Suppose f satisfies Axiom A, and £2(/) consists of expanding

basic sets together with finitely many sinks. Then f is Sl-stable.

Theorem A generalizes a theorem and construction of Wilhams [11]. Also

if/is an expanding map, the diffeomorphism / is just the DE map of Smale [9].

Using Theorem A and its proof, we can prove certain properties of endomorphisms

(satisfying the hypothesis of Theorem A) from the corresponding properties of
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diffeomorphisms. Theorems B, C and D are examples of this. These give partial

answers to questions raised by Shub in [8], concerning generalizations of theorems

on the orbit structure of diffeomorphisms to the endomorphism case (i.e. the non-

invertible case). See [9] for an introduction to the theory for diffeomorphsims,

and [1], [2], [3], [4], [6] and [8] for some examples of results in the theory

for endomorphisms.

In connection with Theorem B, we give an example in §4 of an endomor-

phism of the circle such that f(Sl(/)) £l(f). Of course, /(^(/)) = ft(/) for

any diffeomorphism.

The proof of Theorem C uses Smale's spectral decomposition theorem for

Axiom A diffeomorphisms [9], and the proof of Theorem D uses Smale's

S2-stability theorem for diffeomorphisms [10].

Theorem D contains the following known results:

Theorem (Jacobson [6]). Let f G End(5!) with all singularities of f in

the stable manifolds of sinks, and suppose f satisfies Axiom A. Then f is Sl-stable.

Theorem (Shub [8]). An expanding endomorphism of a compact mani-

fold is structurally stable.

To obtain the latter theorem from Theorem D, we note that for an expand-

ing endomorphism every point is nonwandering.

Theorem A may also be used to give examples of diffeomorphisms. Gucken-

heimer in [4] uses this idea to give an example of a basic set which is not locally

the product of a Cantor set and a manifold. In fact Guckenheimer states the

following proposition (Propositon 6.1 of [4]) which is similar to Theorem A.

Proposition. Suppose f:Mn —+Mn is a map such that f\ fi(/) is a local

homeomorphism. Then 3 g G Diff (S 2n + 2) such that £l(g) contains components

homeomorphic to the components o/lim(/, £2(/)).

However, Guckenheimer's proof of this proposition is incorrect. See §6 for

an example and further discussion.

The example in §6 shows that Guckenheimer's proof does not work when

singularities such as folds are present. However, his proof is valid when / is an

open mapping, and in his example / is an open mapping, so the example is cer-

tainly correct.

Clearly the hypothesis of Proposition 6.1 is more general than the hypoth-

esis of Theorem A, so the validity of this proposition remains an open question.

I would like to thank J. Franks, R. Clark Robinson and R. F. Williams for

helpful conversations about this work.

2. Preliminary definitions. Fix /G End(Af). A point x G M is said to be

wandering if there is a neighborhood 0 of x such that /"(0) nO=0forall/J>O
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(here /" is defined inductively by f1 = /and/" =/° fn~l). The set of points

which are not wandering is called the nonwandering set and denoted by f>2(/).

A point x E M is called a singularity of / if Df (x) (the derivative of / at x)

is not an isomorphism, or equivalently if /is not a local diffeomorphism at x.

A point x EM is called a periodic point of /if /"(*) = x for some n > 0.

The minimum of {«: f"(x) = x} is called the period of x. We let per(/) denote

the set of periodic points of /. A periodic point x of period n is called a sink (or

contracting periodic point) if all eigenvalues of Df"(x) have absolute value less

than one. _

We say / satisfies Axiom A if per(/) = fi(/) and ß(/) has a hyperbolic

structure. The second condition means that there are constants 0 < X < 1 < y,

and c > 0, and k > 0, and a continuous splitting of the tangent bundle of M re-

stricted to S2(/), Tn,f)(M) = ES © E" such that Df preserves the splitting and

\\Df"(x)\\ < cXlxll for x E Es, while \\Dfn(x)\\ > kyn\\x\\ for xEEu. Here

|| || denotes any Riemannian metric on M, and the definition is independent of the

choice of Riemannian metric (see [9]).

If x is a sink of /, the stable manifold of x is denoted Ws(x), and consists of

those pointsy EM such that x is a limit point of orb(y). Here

orb(7) = {fn(y): n > 0}.

Note that Ws(x) is an open subset of Af.

We say /has a spectral decomposition if we can write £2(/) as a finite union

of pairwise disjoint closed sets, fi(/) = J2X U • • • U J2n with/(J2f) = fif for

i = l,...,«, such that each £2(. contains a point whose orbit is dense in ß(.

The J2f are called basic sets.

Any two maps /: K —> K and g: L —*■ L of topological spaces are said to

be topologically conjugate if there is a homeomorphism h: K —► L such that

A(/(x)) = g(h(x)) for all x E K. We say / e End(Af) is J2-stable if there is a

neighborhood Af(/) in End(Af) such that any gEN(f) is J2-conjugate to /, i.e.

/| J2 (/) and g| J2(g) are topologically conjugate.

Finally let (K, d) be a compact metric space and /: K —► K a continuous

map. We define lim(/, K) to be the set of sequences (a0, ava2,...) such that

for each / > 0, we have atEK and /(af) = at_v We put a metric d on lim(/, K)

defined by:
CO

<*((«0' av a2>--- ). (<V bv b2> •••))= £ dO*,-. 6I)2"'.
1=0

/induces a homeomorphism F on lim(/, K) defined by

F(a0, alta2,...) = (/(a0)./(ai)./(fl2)' • • •) = (/(«<>)> ao»ai» • • • )•

We will (as in the statement of Theorem A) think of lim(/ ZT) as the space,

together with the homeomorphism induced by /
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3. Proof of Theorem A.

Lemma 1. Let (K, d)be a compact metric space and f:K —> K a continu-

ous map. Suppose per(/) = K. Then perCF) - lim(/, A'), where Fis the homeo-

morphism induced by f on lim(f, K).

Proof. Let (a0, av av . . . ) E lim(/, A'). Let e > 0. Pick n so large

that 2;~ „ D2~' < &e, where D is the diameter of K. Pick b e per(/) close

enough to an to insure that

t rf(/'(«./V„))2('-',)<^e.
i=0 z

Then (fn(b), fn-\b),. . . ,/(*), b, r\b),f-2(b), . .. ), where f1 is taken in

orb(o), is a periodic point of F within e of (a0, av a2, . . . ). Q.E.D.

We now prove Theorem A. It may be helpful for the reader to see the exam-

ple in §6, to help visualize the construction.

Theorem A. Let f E End(Af) with all singularities of fin the stable mani-

folds of sinks. There is a diffeomorphism f of a tubular neighborhood of Af, into

itself such that f\£l(f)is topologicdlly conjugate to lim(/, f2(/)) Furthermore,

f satisfies Axiom A if and only if f does.

Proof. Since the singularity set is closed, it must be contained in the

stable manifolds of finitely many sinks st, s2,.. . , sp. Let n be the dimension

of M and /: Af —► s2n+2 be an embedding. For simplicity we may assume i is

the inclusion, i.e., Af C S2n+2. Let A^ be a tubular neighborhood of Af in

S2n + 2. Perturb/to an embedding/,: Af —► N such that tt(/j(x)) =/(x), ex-

cept possibly on a closed subset of U£=i Ws(s{), where u: N —* M is the pro-

jection. It follows from the dimensions of Af and S2n + 2 that fx is isotopic to

the inclusion i. Hence by the isotopy extension theorem (Theorem 5.8 of [7])

/j may be extended to a diffeomorphism f2 of S2n+2. Let/ = f2\N. We can

modify f2 so that / maps N into itself and:

1. /is a contraction on each fiber of Af over Af, and / has sinks sv s2,... ,

sp corresponding to sv s2,..., sp.

2. f is fiber preserving except possibly on a closed set B, such that B con-

sists of a closed subset B0 of Af and its fibers,

U (/TO) C Ü W%)  and   U f"(B0) C (J W%).
n>0 i—l n>0 i=l

Let

\=d(\J (fy(B),N - U W(ßtj\
\n>0 i=l /
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and

\=d(\J fn(B0),M- U
\n>0 i=l /

Let X = min{X1, X2}. Then X > 0. Since by construction for i = 1,. . ., p we

have a correspondence between s,- and    it suffices to consider the parts of £2(/)

and J2(/) not in Ws(s;) or M/I(sf) respectively, and we adopt this convention for

the remainder of this proof.

Step 1. jt(T2(/)) = J2(/).

First we show tt(S2(/)) D f2(/). Let x E fi(/). We must show there is a

point in £l(f) in fib(x), the fiber over x. Suppose each point in fib(x) is not in

J2(/). Then each point in fib(x) has a neighborhood such that no iterate (with

respect to /) of the neighborhood intersects itself. Since fib(x) is compact we can

take a finite subcover, {Ult .. . , Um} of these neighborhoods. 3e < X such that

if d(x, y) < e then Rb(y) C Ul U U2 U • • • U Um. By choosing e smaller if

necessary, we may assume for / = 1.m that fib(^) O Ul + 0 if d(x, y) < e.

Let Ä" = U fib(j>) where the union is taken over all y with d(x, y)<e. Then K

is compact and {Ui,. . . , Um} is a cover of TV. Hence 35 > 0 such that any

subset of K, of diameter less than 5 is contained in some Uj.

Pick vV2 so large that if n > N2, and the first n iterates of z are not in B,

then(/)" (fib(z)) has diameter less than 6. Since x E J2(/), ly EM, with

d(x, >0 < e, and an n > N2 such that d(x, f"(y)) < e. Since e < X, none of the

first n iterates of y are in B, so (/)" is fiber preserving on fib( y). By choice of

N2 and 5, (/)" maps fib(^) into one of {Ut.Um) say Uf. Then (/)"(öy)

n (f7;.) ̂ 0. This contradicts the choice of the Ut't. Hence tt(S2(/)) D J2(/).

We now show J2(/) D 7r(S2(/)). We must show that if a point in fibCv) is in

J2(/)then^E£2(/). Let zE fib(7) be in n(/). Lete>0. Pick 5 > 0 such that

if d(q, z) < 5 then d(Tr(g),y) <e. Without loss of generality we may assume that

X>max{e,5}. 3t7EjVsuchthatcf((7,z)<5 withri((/)''(£7),z)<5 forsome/i>0.

Hence fib(7i(tj)) is mapped by (/)" in a fiber preserving way. Hence d(n(q),y) < e

and d(f"(i:(q)),y) < e. Since e is arbitrary,^ E J2(/). Hence $l(f) D tt(J2(/)).

Step 2. /|n(/) is topologically conjugate to Um(/, J2(/)).

By Step 1, we have an onto map n: J2(/) —> ß(/). This induces a continu-

ous map p: lim(/, Ü2(/)) —* Um(/, J2(/)) defined by p(av a2,... ) =

(7r(a1), 7r(a2),. . . ). First we show p is 1-1. Suppose p(av a2,. . . ) =

p(bv b2,. . . ) with fly   bj for some /. Then at and Af are on the same fibers for

each /. Pick « so large that diameter ((/)"(fibOc))) < d(ajt bj), if x and its iter-

ates are in the part of M, where / is fiber preserving. Then       and bJ+n are on

the same fiber of a point in I2( f), so d((f)n(aj+n\ (f)"(bj+n)) < dty, &,-).

This is a contradiction since (/)"(<*,•+„) = af and (/)"(&/+„) = ty. Hence p is

1-1.
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Next we show p is onto. Let (a0, alt...) G lim(/, J2(/)). Notice

(/)'(jr-1(af)) is a decreasing sequence of nonempty compact sets. Hence

f\>o (/)"(,r-1(aw)) *s nonempty, and if A0 is in this intersection then

P(b0, (/)-1(6o)> (f)~2(b0), ...) = (aQ,ava2,... ). Hence p is onto. It

follows that p is a homeomorphism. Since it is fiber preserving, p is a conjugacy

between lim(/ ß(/)) and lim(/, fi(/)). But /is a homeomorphism on J2(/)

so lim(/, f2(/)) is topologically conjugate to/|£2(/).

i7ep 3. /satisfies Axiom A if and only if/ does.

It is clear by the construction of /that / has a hyperbolic structure if and

only if / does.

If per(/) = £2(/), then per(/) = fi(/) by Lemma 1 and Step 2.

Suppose per(/) = J2(/). Lety G (J2(/) - per(/)). By Step 1, 3Z G

fl(/) in fib(y). Let (ef) be a sequence of periodic points of/approaching Z.

Since / is fiber preserving on fib(rr(ef)) for each /', it(e{) is a sequence of periodic

points of /approaching y. Hence per(/) = S2(/). Q.E.D.

4. Proof of Theorem B.

Theorem B. Let /G End(Af) with all singularities of f in the stable mani-

folds of sinks. Then f(Sl(f)) = fl(/).

Proof. Let / be the diffeomorphism of a tubular neighborhood Af of Af,

constructed in Theorem A, and let rr be the projection it: N —>• Af. By the proof

of Theorem A, we have the following commutative diagram

it

£2(/)->S2(/)

where it maps J2(/) onto S2(/). Since / is one-to-one, it follows that/maps

J2(/) onto fl(/). Hence by the diagram /maps J2(/) onto S2(/). Q.E.D.

We conclude this section by giving an example of a map/G End(5J) such

that/(J2(/)) ¥= £l(f). The example is shown in Figure 1. Here e is an expand-

ing fixed point off, c is a contracting fixed point of /, s,, s2, s3 and s4 are

singularities, and the crucial condition is that/2(Sj) = e.

Note that sx is wandering. This is true because if 0 is a small open interval

about s,,/(0) is a half open interval with right endpoint/(Sj), and/2(0) is a

half open interval with right endpoint e. Thus all points in 0 wander to c. How-

ever f(sx) G J2(/) because if U is an open interval about /(Sj), f(U) will be an

open interval containing e, so some iterate of U will intersect U (since e is expand-

ing), Also /(jj) is the image only of the point Sj. Hence f(st) G S2(/) but
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Figure 1

5. Proof of Theorems C and D. In the proof of Theorem C we use Smale's

spectral decomposition theorem for diffeomorphisms, which states that if / is a

diffeomorphism of a compact manifold (without boundary) onto itself, and /

satisfies Axiom A, then / has a spectral decomposition (see [9]). This theorem

is valid for a diffeomorphism of a tubular neighborhood into itself (such as the

one constructed in Theorem A), because such a diffeomorphism can be extended

to a diffeomorphism of a sphere (of suitable dimension) onto itself.

Theorem C. Let f G End(M) satisfy Axiom A, with all singularities of f in

the stable manifolds of sinks. Then fhasa spectral decomposition.

Proof. Let /be as in Theorem A and let S2(/) = S2, U • • • U t\n be the

spectral decomposition for/. Let J2f = v(ß.) for /' = 1, . . ., n. We will show

the fi/s give a spectral decomposition for /. Since it maps Sl(f) onto S2(/), we

have S2(/) = f2j U • • • U Sln. Also, if at has a dense orbit in t\f, then K(at)

has a dense orbit in J2f. Since/is fiber preserving on ß(/),/(J2f) C S2/Vi. By

Theorem B,/(fif) = fifVr

It remains to show that if / ¥= j, then £2f fl    = 0. Let x G SI. fi Q...

Then 3y G tl. ,z G £2;. such that 7r(y) = it(z) = x. Since / is a contraction on

fib(x), d((f)n(y), (/)"(z)) —»■ 0 as n —*■ °°. This is a contradiction since

(f)"(y) e ß/. V« > 0, and (/)"(z) G fy, V« > 0, and J2, and    are disjoint

compact sets. Q.E.D.

Let /G End(Af) satisfy Axiom A with all singularities of /in the stable

manifolds of sinks. Let £l(f) = £lx U • • • U £ln be the spectral decomposition
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of J2(/). We define W'(ß,) and Wu(Sl,) by saying x E W*(ftf) if f(x) -*

J2f as n —► oo, and x E W"(J2f) if there is a sequence (x~"), with x° = x and

/(x_/) = x _,'+1 Vz > 1, such that x ~n —> £2f as n —► °°. We write S2. < fi,

if W"(£2y.) n W,(J2f)   0. We say a set {J2fi,. . . , £2^} of distinct £2f, forms a

cycle if r > 1 and 12^ < £2^ < • • • <     < £2^. / is said to satisfy the no-

cycle property if there are no cycles.

Lemma 2. Let f and f be as in Theorem A. / satisfies the no-cycle property

*=*■/does.

Proof. We first remark that if £2fc consists of the orbit of a sink, then £2^

cannot be a part of a cycle. Hence we may consider only those S2fc which do not

consist of the orbit of a sink.

(=>) It suffices to show that if S2f <     then J2f < £2;. Let x E Wffiy) n

WX&i). Since (/)"(x) —> S2;., ,orb(x) n 5 = 0, where 5 is as in Theorem A.

Hence / is fiber preserving on orb(x), including negative iterates of x. Thus 7t(x) E

WCSlj) n w*(a,).
(«=) It suffices to show that if £2, < Slj then £2, < £2,. Let x E Wu(Q,j) n

Ws(Q,i). Then / is fiber preserving on orb(x) including negative iterates of x. Let

(x~n) be a sequence of points with x° = x, and f(x~") = x~n + 1, such that

x-" —► Slj as n -* oo. From the proof of Theorem A, f)n>0 (/)"(fib(*""))

consists of a single point j> in fib(x). Then the sequence ((f)~"(y)) has a limit

point y0. Then ir(y0) is a limit point of (x~n), so ir(y0) E      Since ̂ 0 E

£2(/), we must have y0 E £2,. Hence ̂  E ^"(fy). By exactly the same argu-

ment it follows that y E Ws(Cli). Hence £2, < £2;.. Q.E.D.

Theorem D. Let f E End(M) with all singularities of f in the stable mani-

folds of sinks. Suppose f satisfies Axiom A and £2(/) consists of expanding basic

sets, together with finitely many sinks. Then fis Qrstable.

Proof. Let A* be a tubular neighborhood of M, and let / be constructed as

in Theorem A. Note that / automatically satisfies the no-cycle property. Hence

/satisfies Axiom A and the no-cycle property, by Theorem A and Lemma 2.

By the £2-stability theorem for diffeomorphisms [10] there is a neighborhood

N(f) in EndCAO such that g E N(f) implies:

(1) g is ^-conjugate to /,

(2) g satisfies Axiom A and the no-cycle property, and

(3) g has expanding and contracting directions corresponding to those of/.

Pick a neighborhood N(f) of / in End(M) such that g E N(f) implies

gEN(f), for some diffeomorphism g obtained from g as in Theorem A.

Let g E N(f). We will show g is £2-conjugate to /. Let h: £2(/) —♦ £2(g)

be a conjugacy.
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It follows by construction of /, and our hypothesis that two points in £2(/)

are on the same stable manifold if and only if they are on the same fiber. (By

definition, two points x and y in £2(/) are on the same stable manifold if and

only if d((f)"(x), (f)"(y)) —* 0 as n —* °° See [5] or [9] for some discussion

of stable manifolds and the generalized stable manifold theorem.)

Since h (being a conjugacy) preserves stable manifolds it follows that zx and

z2 in £2(/) are on the same fiber if and only if A(z,) and h(z2) are on the same

fiber. Hence the map h: S2(/) —* £l(g) defined by h(x) = 7r(/i(7r-1(x))) (where

we choose any 7r-1(jc) in J2(/)) is well defined.

First we show h is continuous. Let (xn) be a sequence of points in £2(/)

such that xn —*■ x as n —*■<*>. For each n > 0, choose xn G £2(/) such that

it(x„) = xn. Then the sequence (xn) must have a limit point x G Sl(f) (since

fi(/) is closed). Clearly ir(x) = x. By continuity of h, h(x) is a limit point of

(ft(x„)). Hence ir(h(x)) is a limit point of (ir(h(xn))). But h(xj = ir(h(x)) and

Kxn) =t(K^„))» so Hx) is a limit point of the sequence (h(xn)). Hence h is

continuous.

Since h maps points on different fibers to points on different fibers it fol-

lows that h is one-to-one.  h is also onto since if y G £2(g) and x =

f (W~1 (f ~100)) (where we take any choice of rr-1 (y) in £2(£)) then A(jc) = y.

Hence A is a homeomorphism.

Finally let x G £2(/). Pick Je G I2(/) such that it0c) = x. Then ir(f(x)) =

f(x). Hence h(f(x)) = ir(h(f(x))) = ir(g(h0c))) = «(»r(S(i))) = This

shows that A is a conjugacy and completes the proof that /is J2-stable. Q.E.D.

6. An example. We conclude by giving an example of an endomorphism /

and the associated diffeomorphism /. I would like to thank Candy Block for

doing the drawing.

The example is pictured in Figure 2. We have drawn the image f(Sl) inside

51, but / is a mapping from S1 onto itself. Here e is an expanding fixed point of

/, c is a contracting fixed point of /, and Sj and s2 are singularities. Also,/(fc) =

/(/) = e, f{k~l) = k and/(c_1) = c. Furthermore, the interval (k, e) is in the

stable manifold of c, where we use the notation (a, b) to denote the arc from a

counterclockwise to b.

Since f(k~l, I) = (k, e), the interval (AT1, /) is in the stable manifold of c.

Hence both of the singularities of / are in the stable manifold of c, so the hy-

pothesis of Theorem A is satisfied.

Since the map / happens to be of degree one, we may let N = S1 x / (as

indicated in Figure 2 by the dotted lines) rather than N = S1 x D2 (as we would

have to do in general). We perturb / to an immersion f1:S1—*N, where /, may

be just the map actually pictured in Figure 2. Then we extend ft to a diffeomor-
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phism f: N—+N. We can make/fiber preserving except near the singularities

(as indicated in Figure 2), where it is impossible to do so.

Figure 2

Guckenheimer in Proposition 6.1 of [4] says to construct / to be fiber pre-

serving on all of N, and the remainder of his proof depends on this. This is not

possible when folds are present.
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