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3
ABSTRACT. Helmholtz' 2nd theorem (that every vector field on R with

vanishing curl is gradient of a function) can be viewed as a statement about the

group of translations of R3. We prove similar theorems for other Lie transforma-

tion groups, in particular for semidirect products of abelian and compact semi-

simple groups. Using Hodge theory we also obtain results analogous to the 1st

Helmholtz theorem, but only for compact Lie transformation groups.

I. Introduction. The two Helmholtz theorems are standard tools of vector

analysis. The first theorem states that every smooth vector field $ on R3 in

exactly one way can be decomposed into two terms

* = VF + curl V,

where FE C°°(R3) and where V is a smooth vector field on R3. The second

states that a smooth vector field 4> on R3 is of the form & = dF provided curl * = 0.

In [14] Lomont and Moses obtained results that were quite analogous to

the two Helmholtz theorems above, replacing the linear momentum operator V by

the angular momentum operator L = 3c x V. A simpler and more direct proof

was presented by J. B. Keller [10]. Their results were extended further by Can-

non and Jordan [3] who studied, instead of vector fields, i.e. maps of R3 into R3,

maps of R3N into R3.

In connection with an application [13] of the above results to the no-inter-

action theorem of particle dynamics, H. Leutwyler observed that the second

Helmholtz theorem and its analogs are "of a purely group-theoretical nature and

have an immediate generalization to a large class of Lie groups" [12, p. 544].

Group theory enters because the operators V and L are the infinitesimal generators

of the translation group in R3 and of the rotation group 50(3). Leutwyler's

demonstration of his generalization-hereafter referred to as Leutwyler's theorem-

can be found in [12].
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The purpose of the first part of this paper is to extend Leutwyler's theorem

(as stated in §11) to more general actions of Lie groups and to give coordinate

free and structure constant free proofs. The results can be stated as follows:

Let g be a Lie transformation group of a manifold m. Let 3 denote the Lie

algebra of g.

In §111 we show (Theorem 1) that Leutwyler's result is equivalent to

h\$, cm) = 0.
The main result of §IV is Theorem 2 which generalizes a theorem due to

van Est [6]. It can be stated as follows:

Let F be a weakly c G-module and assume the first de Rham cohomology

group of g vanishes. Then hl(g, F) and h1^, F) are isomorphic vector spaces,

not just when F is finite-dimensional as in [6], but even when F is a quasi-com-

plete locally convex topological vector space. Leutwyler's original theorem is a

consequence of Theorem 2 with F = C°°(Af) (§V, Corollary 5).

§VI presents a simple way of handling Leutwyler's problem in the case

where g acts on a product of homogeneous G-spaces.

The second part of the paper (§§VII-IX),which is essentially independent

of the first one, generalizes the angular momentum first Helmholtz theorem to

any actions of compact Lie groups, not just the action of SO(3) on C°°(R3) as

in the Lomont-Moses case.

With the notation above, the problem can be phrased: How to decompose

any linear map <I>: 9 -> F in a way consistent with the action of G on F? This is,

of course, a generalization of the problem in the first part of the paper where we

impose the additional assumption that 4> should be a cocycle, since we there

wanted to show that //^(g, F) = 0.

To see the connection with Helmholtz' first theorem,we note that any vec-

tor field 3> on R3 via its components ^ G C°°(R3), / = 1, 2, 3, can be identified

with a linear map $: R3 -> C°°(R3), namely the one determined by

*(«/) = */  for/=1,2,3,

where (e1, e2, e3) is a basis of R3. Helmholtz' first theorem may thus be inter-

preted as a result about how one can decompose the linear maps from R3 (= the

Lie algebra of the group of translations of R3) into C"(R3). Similarly the corre-

sponding Lomont-Moses theorem can be interpreted as a result about how to

decompose any linear map 4>: so(3) —> C°°(R3) in a way consistent with the

action of 50(3).

Our contribution, which encompasses the above-mentioned results of [3]

and [14] (see Example 9 of §IX), can be summarized as follows:

Let there be given a strongly continuous, weakly c representation of a

compact Lie group G on a quasi-complete, locally convex topological vector space
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F. This induces a g-module structure on F, where g is the Lie algebra of G.

Then every linear map    9 -*• F can in exactly one way be decomposed

into three terms,

tj> = dF + 5* + 0,

where d is the coboundary operator on the g-module F, F G F, 5 is the codifferen-

tial operator corresponding to d under a given inner product on g, ^: g x g —*■ F

is an alternating bilinear map, and©: g —> F is a harmonic linear map.

If, in particular, G is semisimple as in the Lomont-Moses case where G =

50(3), then the harmonic term vanishes.

The main idea of the proof is to use Hodge theory to decompose the differ-

ential 1-forms on G and then to transfer the decomposition to the F-valued 1-forms

on g.

The author would like to thank P. Kristensen from the Physics Department

for drawing his attention to Leutwyler's results, and to thank Verner Beck and

Jorgen Tornehave for illuminating discussions.

II. The notation and Leutwyler's problem. Throughout this paper G denotes

an n-dimensional Lie group with identity element e, Lie algebra g and exponential

map exp: g —*■ G. We assume furthermore that G acts as a Lie transformation

group on a manifold M (for definition, see [7, Chapter II, §3]), where by a mani-

fold we will always understand a paracompact C°° manifold. The action of g G G

on p G M is written gp.

If X G g and g&G we let Xg = L(g)^X, where L(g) denotes left translation

in G by g G G.

Each X G g induces a vector field X* on M by

X*(/) := J"/(exp(- tX)m)\t=0   for m G M, /G C~(Af),

and it is well known that the map X !-»• X* is a Lie algebra homomorphism of g

into the Lie algebra of C°° vector fields on M (see for example [15, p. 34]).

To state Leutwyler's problem we let {Xx,. . . , Xn} be a basis for g and in-

troduce the corresponding structure constants cGB where A, B, C = 1, 2, . . . , n

by

(1) \Xa>xb\ = £ cab^c-
C = l

We shall examine whether the system

(2) *af = fa> A=*l,...,n,

of 1st order partial differential equations has a solution FG C°°(M) given Ft,

..., Fn G C°°(Af). It follows immediately from (1) that a necessary condition
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for a solution to exist consists of the compatibility conditions

(3) X*FB - X£FA = £ ccABFc  fotA,B = 1.n.
c=i

Leutwyler's problem. Has (2) solutions F G C°°(M) for any Fx.Fn

G C°°(M) satisfying (3)?

We will say that Leutwyler's problem can be solved if the answer to this

question is yes.

Simple examples show that the Leutwyler's problem in general cannot be

solved, so the question we ask is: What conditions on G and M guarantee that

Leutwyler's problem can be solved? Leutwyler, himself, considered [12] the fol-

lowing types of Lie groups:

(a) groups with compact covering group,

(b) translation groups,

(c) semidirect products of (b) with (a).

He assumed furthermore that M was a vector space with G acting as a group of

linear transformations. His result may, in the terminology above, be phrased as

follows:

Leutwyler's theorem. IfGisof type (a), (b) or (c), and if the transla-

tions are represented injectively in the cases (b) and (c), then Leutwyler's problem

can be solved.

III. Reformulation of Leutwyler's problem. We proceed to reformulate

Leutwyler's problem in cohomological terms. To make the exposition more self-

contained we recall the definition of the 1st (Hochschild) cohomology group of

a Lie algebra 9 with respect to a g-module F. For more information we refer the

reader to [9]. The action of X G 9 on F G F will be denoted X • F.

Definition 1. A linear map $: 9 -+ F is said to be a cocycle if

XA ■ *(X2) - X2 • HXJ - «Wx, X2]) - 0  for all Xt, X2 G 9.

It is said to be a coboundary if there is an F G F such that $ = SF, meaning

$(X) = X'F foraU-STEg.

It is easy to see that the vector space 5J(9, F) of coboundaries is a subspace of

the vector space Z*(9, F) of cocycles. We may thus define the 1st cohomology

group //'1(9» F) as the quotient vector space

^(9, F) -ZHo,, V)lBl(z, F).

Finally we will use the notation

#°(9, F) = {F G f\X ' F = 0 for all XG 0).
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We shall now use the cohomology above in the special case where F= C°°(Af)

and the g-module action is

X-F=X*F  for FEC°° (AO-

Consider for Flf . . . , F„ G C°°(Af) the linear map S>: 9 -»• C~(Af) deter-

mined by

*(xa) = FA fOTil»l....,«.

Two small computations show that

4> is a cocycle if and only if (3) holds, and

* is a coboundary if and only if there exists an F £ C°°(Af) such that (2)

holds.

Hence Leutwyler's problem can be solved if and only if every cocycle is a

coboundary, so we have proved

Theorem 1. Leutwyler's problem can be solved if and only if

(4) 7Y1(9.C°°(A0) = {0}.

Note that the basis {AT,, . . . , Xn} for g does not occur in (4) so that Leut-

wyler's problem only depends on the action of g on C°°(Af) and not on any

choice of basis.

IV. A general theorem. The main result of this section is Theorem 2 which

has Leutwyler's theorem as a corollary (see §V).

F will from now on denote a locally convex topological vector space over

the reals with topological dual F'. It is a standard result that F' separates the

points of F. The pairing between F' and F will be written <•,•>.

We assume given a strongly continuous representation of the Lie group G on

F by continuous linear operators; the action of g G G on F G F will be written

g • F. Note that we get an action of G on F' (the contragredient representation),

defined by

(g- u,F) :=(u,g-1 -F>  for uE F', F £ F, gEG.

We will finally assume that G "acts weakly C°° on F" in the sense that the

map g H- g • F of G into F for each fixed F G F is weakly C°°, where by "weakly

C" we mean:

Definition 2. A map    G -* F is said to be weakly C°° if

(a) <u, ip) G C~(G) for each u E F\

(b) To each differential operator D on G with C°° coefficients there exists

a map yD: G -*■ F such that

Diu, <p) = <«, </>fl>  for all u E F'.
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Definition 3. Let <p: G -*■ F be weakly C°°. The differential dip of <p at

e G G is the linear map dip: g -*■ F which is determined by

<u, d^X)) = Ar<w, <p>  for all X Gg and u G F'.

Let us, for F G F and AT G g, define X • F G F as the differential of the map

gH-g ' F.

Note the formula

(5) XgQi H- <u, h • F>) = <«, g • A- • F>  for* G G, FG F, u G F',

which as a consequence has that the map (X, F) (->• X • F of g x F into F makes

F into a g-module.

Remark. It is not necessary above or in the sequel that u ranges over all

of F'; an inspection of the proofs below shows that a fixed invariant subset that

separates the points of F will do.

Example 1. With the notations of §11 we let F= C°°(Af), where

C°°(M) always will be equipped with its standard topology (uniform conver-

gence on compacta in M of functions and their derivatives of all orders), making

it into a Montel space. The Lie group G acts on C°°(M) by

(g • F)(m) := F(g~ 1m)   for all g G G, m G Af.

It is easy to check that all the assumptions above hold. In particular we find

X-F=X*F for all Ä" G g, F G F.

Definition 3'. An V-cocycle <p is a weakly C°° map <p: G -*■ F satisfying

(6) <p(gh) = <p(g)+g- <P(.h)  for all g, h G G.

An f-coboundary <p is a map ip: G -* F of the form

(7) fig) = g ' F - F,  where F is an element of F.

Each F-coboundary is an F-cocycle. The quotient vector space between the vec-

tor space of F-cocycles and the vector subspace of F-boundaries Bl(G, f) will

here be denoted Hl(G, F).

Lemma 1. Iff. G    F is an f-cocycle (-coboundary), then its differential

dip: g -*• F is a cocycle (coboundary).

Furthermore we have the formula

(8) Xg(u, <p) = (u,g • dip(X))  for all « G F'.A'Gg.f GG.

Proof. (8) is a simple consequence of (6). Using it we have
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(u,d*{ix,Y]y>= [*,y] <«,*>

= X(g h> Yg(u, <p» - Y(g k Xg(u, *>»

= JTfc r+(u,g- d<fOn» - Y(g \-+ (u,g • dyiX)))

= <«, x • c?v<r)> - <«, r • dtfx)),
which shows that cty is a cocycle.

If V? is a coboundary, i.e. of the form ip(g) = g • F - F for some F E F,

then it follows immediately by the very definition of X • F that cf^X) = X • F

for all XEg. □

Definition 4. According to Lemma 1 we may without ambiguity define a

linear map /: Hl(G, F) -* Hl(a, F) by

KV + BHG, W-dip+B1^, F).

Proposition 1. I is an injection. In particular, if Hl(a, F) = 0, then

H\G, F) = 0.

Proof. If dip is a coboundary, i.e. dy(X) = X • F for some FE F and all

AT E g, then we find again by (8) that

Xg(uM')> = (u,g'(X'F)).

But Xg(h H-(u,h • F-F)) = (u, g • (X • F)>, so

Xg{(uM')) -<!/,(•) • F-F>} = 0.

Hence, - <"> (*) * F - F> = constant. Since the left-hand side vanishes

at e E G, the constant is 0, so we find ip(g) = g • F - F for all g E G, showing

is a coboundary. □

We will later (Theorem 2) show that / under mild conditions is surjective as

well, but first we want to digress a little and analyze the cocycle condition.

Let us recall the few basic facts about integration of vector valued functions

that we will need shortly:

Let T be a compact Hausdorff space with a Radon measure ju, and let

/: T -*■ F be a continuous function. Then we define fT fdu E F'* by

Jr fdty := /r("' for all u E F'.

If F is quasi-complete, then fT fdp actually belongs to F by [1, Corollaire,

p. 12] and [11,(3), p. 241]. Furthermore, if / depends on a parameter co in a

topological space J2 in such a way that /: T x J2 -> F is continuous, then co h->

fT f(s, cS)dß(s) is a continuous map of £2 into F.

Let L(F, F) denote the vector space of all continuous linear operators in F.

Assume p: T-* L(F, F) is such that the map (t, F) h-> p(t)F of T x F into F is
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continuous. If again F is quasi-complete, we can define a continuous linear map

fTp(t)dp(t)GL(h F) by

fT p(r) dp{t)F = fT p(t)Fdp(t)  for F G F.

(Cf. [1, Lemma 3, p. 26 and its preceding remarks].)

Proposition 2. Suppose F is quasi-complete. Then every F-cocycle is

continuous. Conversely, any continuous map <p: G-+ F satisfying (6) is a« F-cocycle.

Proof. First let ip be an F-cocycle. By (6) it suffices to prove <p is contin-

uous at e G G, i.e. that the map X r-» <pCexp(Ä")) of 9 into F is continuous. Now

(8) implies for any u G F' that

<«, <p{exp X)> =    ±(u, ^MtX)))dt       Xexp{tx)(u, ri-pdt

= £(u, exp(tX) • d<p(X))dt = (u,f0 exp(rA-) • d^X)d^,

where the last equality sign is justified because the map t I—*■ exp(tX) • dtp(X) is

continuous from [0, 1 ] to F by the strong continuity of the action of G on F.

So

<p(exp X) =    exp(rA0 • d<p(X)dt.

Since clearly X |—> c?<p(A0 is linear it suffices to prove that X H- /J exp(r.Y) • Fdf

is continuous from 9 into F for any fixed FEV. But that is a consequence of

the fact that the integrand depends continuously on the parameter X G g.

This proves the first half of the proposition.

Assume now, conversely, that <p: G -*■ F is a continuous map that satisfies

(6). Let dp be a left Haar measure on G, and let / G C°°(G) be a real-valued func-

tion with compact support and fG fdp. = 1.

We multiply the identity (6) with f(h), integrate with respect to dpQi) and

find

fG f(h)tigh)dp(h) = <p{» + g • fG f(hyp(h)dp(h).

The last term is continuous by the assumption on the action of G on F, so it suf-

fices to prove that g H- fG f(g~ih)tfh)dp.Qi) is continuous. But the integrand

clearly depends continuously on (g, h) G G x G. □

Lemma 2. If F is quasi-complete and if G is compact then Hl(G, F) = 0.

Proof. Let <p be an F-cocycle. It is then continuous. Upon integrating (6)

over G with respect to dp{h) where dp is the normalized Haar measure on G, we

find that <p is an F-coboundary with F = -fG <p(h)dp(h). □
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Theorem 2. Let G be a connected Lie group acting weakly C°°'ly on a

quasi-complete, locally convex space F- Let us furthermore assume that H\G) = 0

(de Rham cohomology). Then the linear operator I: Hl(G, F) -* Hl(a, F)

defined above is an isomorphism onto.

Remark. Theorem 2 is a generalization to mfinite-dimensional vector spaces

of a result due to van Est [6]. It should be mentioned that G. Hochschild and

G. D. Mostow [8] also have studied the case of an infinite-dimensional module.

Example 2. The assumption Hl(G) = 0 is essential as the following

example shows:

Let the group G = SL(2, R) act on the upper half plane P as follows:

la  b\       az + b   ,   la  M _ „
\c  d)'z = cTTd   f0r(c d)GG'zGR

It is well known that G is a connected, simple group with H1(G) = R.

The isotropy group of i E P is the group of rotations SO(2), so P is diffeo-

morphic to G/SO(2).

By brute calculations it can be shown that        C°°(P)) ss R and that
Hl(G, C°°(P)) = 0.

Proof of Theorem 2. The injectivity of / is the content of Proposition 1

above, so it is left to prove that I is surjective.

Let therefore <I>: g -»• F be an arbitrary cocycle. Partly motivated by (8) we

will for each u E F' study the map co": TgG -*■ R, defined by

<g>", Xg) :=(u,g- ^(X)) foxgGG,Xea.

For the sake of clearness the rest of the proof is divided into a couple of lemmas.

Lemma 3. w" is a closed differential l-form on G, and

L(g~1       = o>*'u for all gG G,uEr~'.

Proof. It is obvious from the very definition of cj" that it is a differential

l-form on G. To prove it is closed it suffices to show that duu(Xg, Yg) = 0 for

all A7, Y E g, g E G. Now, by a well-known formula and (5):

duf{Xg, Yg) = Xg(uu(Y.)) - Yg(o>u(X.)) - cog([X, Y]g)

= Xg(h K (a, h • - Yg(h h* (u, h •

-<u,g -*ax,Y\y>

= (u, g • (X • *(T))> ~ <«,g ' (X' -<u,g- *([X, Y])>

= (u,g • {X •       - Y • dXAT) - *([Ar, 7])}> = 0

since 4> by assumption is a cocycle.
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The rest of the proof is a simple manipulation with the symbols involved:

Wrlr*t%w = «f-i»(t(r     = o>ug-ihVg-ih)

= <u, #-!A • *(*)> = <* • a, A • $(*)> = co^u(A-ft). □

According to Lemma 3 co" is a closed 1-form on G, so by the assumption

H1(G) = 0 there exists a function /(•,«)£ C°°(G) such that co" = c/7( •, u).

The function is unique modulo a constant which we fix by requiring that I(e, u)

= 0. Then

(9) 7te,u)=J"7G>«,

if 7: [a, b] -*■ G is any differer.tiable curve in G with 7(a) = e and 7(6) = g.

Lemma 4.

(10) I(gh, u) = /t>, u) + /(A, g-1 • «) /or a// g,hGG,uG F\

Proof. (10) results by a simple application of Lemma 3:

Tfcft. «) = jf co" = £ co" + £* co" = /(*, «) + £ L(g)*co«

= I(g, u) + fg co*~1 •■ = /(& «) + /(A,    1 • «). □

Lemma 5. There exists an F-cocycle ip: G -*■ F such that

/(& «) = <u, ̂ )>  for all £ E G, u E F'.

Proof. We first claim that to eachgGG there exists an element tp(g) E F

such that I(g, u) = (u, <p(g)> for all u E F'.

Since any neighbourhood of e in G generates G, it follows easily via (10)

that it suffices to prove the claim for g close to e E G, so that we may assume

g = exp X for some IGg. Now,

Kg, u) = £ co" = £ co^(fJO(*exp(fJO)A

=       exp(tX) • *(Xy>dt = ^, fQ exp(rZ) • $(*)*),

which proves the claim.

(6) is simply (10) rewritten, ip is obviously weakly C°° since (u, <p( •)> =

/(•, u) E C°°(G), so <p is an F-cocycle. □

Now,

X(u, <p( •)> = */(•, u) = <i/( •, u)(X) = <co", X) = <«, W>,

showing that dtfJC) = &(X) for all jc E g. This finishes the proof of Theorem 2. □
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Corollary 1. Let G be a connected, compact and semisimple Lie group

acting weakly differentiably on a quasi-complete space F. Then Hl (g, F) = 0.

Proof. It is well known that H1(G) = 0 when G is a compact semisimple

Lie group (see, for example, [4, Theorem 21.1, p. 114]). The corollary thus fol-

lows from Theorem 2 and Lemma 2. □

Corollary 2. Let G be a connected, compact, semisimple Lie group act-

ing as a Lie transformation group on a C°° manifold M. Let F be a closed G-in-

variant subspace of C°°(Af). Then H1^, F) = 0.

Remark. The action of G on C°°(M) is described in Example I.

Proof. It is well known that C°°(M) is a Montel space, hence quasi-com-

plete. F is then also quasi-complete as a closed subspace. The result is thus

immediate from Corollary 1 as soon as we have checked that G acts differentiably

on F or rather just that it does in the weakened form indicated in the remark

after Definition 3. Here we may as an invariant, separating subset of F' take the

evaluations at points of M. □

Corollary 3. Let G be a connected Lie group, acting as a Lie transfor-

mation group on a C°° manifold M. Assume H1(G) = 0, and that there exists an

embedded submanifold M' of M such that the map (jg, m) h-> g • m is a diffeo-

morphism ofGxM' onto M. Then H\G, C°°(M)) = 0and Hl(a, C°°(M)) = 0.

Proof. It suffices to prove that Hl(G, C°°(M)) = 0, so let <f>: G -> C°°(M)

be a cocycle. Define F: M = G x M' -*■ R by

F(gm') := <p(g-1)(/w') for^GG.m'eAf'.

Then by an easy calculation, <p(g) = g • F - F, so it is left to show that

F£ C°°(M), or equivalently, that the map (g, m')\->- <p(g)(m') belongs to C°°(Af>

By (8) we know that

Xg[y{-Km')} = Or • ̂ )(m') =        1 ' m'),

so that (g, m') K Xg-)(m')] is in C°°(Af).

By the cocycle condition (6) we need only check differentiability for g

close to the identity, i.e. that

[(X, m')H- v<exp X)(m')] G C°°(9 x Af').

Let now {Xt,..., Xn} be a basis of g. Then
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so it suffices to prove that

tfexp X)(m') = c^expX ̂/Jc«')

= Joljrexp(^W*)(W')l*

= JJ ̂ (expC-fA-) • mV

(*!.*„> w') h* £ tfjexpjf 5^'

belongs to C"(R" x Af') for each fixed H G C°°(Af). But the map t H- Ht, where

#,0,.X„, m') := ^exp^XyA^ • m'^,

is clearly continuous from [0, 1] into C°°(Rn x Af') so the result follows from

well-known facts about integration of vector valued functions. □

Example 3. Let G act on Af := G x G x • • • x G (r factors) by

g ' (*i.«?2» • • •       := (ggi>gi2> • • • >£<?,)•

If Hl(G) = 0 then all the hypotheses of Corollary 3 are satisfied with

Af' = {e} x G x • • • x G,

soHl(s, C~(Af)) = 0.

V. Use of the Levi decomposition. We proceed by studying how Leutwyler's

three types of groups enter in the cohomology framework, and we use the results

to prove (a generalized version of) Leutwyler's theorem.

Any Lie algebra g is, by Levi's theorem [9, p. 91], a semidirect sum g =n

+, § of a soLvable ideal n and a semisimple subalgebra     Leutwyler's type (c)

group corresponds to a Levi decomposition of g: Indeed, the Lie groups that have

compact covering group are exactly the compact semisimple ones (that is a conse-

quence of [7, Theorem II. 6.9 and Proposition II. 6.6]).

Let the Lie algebra g be a semidirect sum

OD g = n+s&

of an ideal n and a subalgebra § of g. So we have a short exact sequence of Lie

algebras, 0—► n    g —► lj —► 0. The Hochschild-Serre spectral sequence of homo-

logical algebra (see [2, p. 351]) associates by purely algebraic manipulations to
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each such short exact sequence a long exact sequence of cohomology spaces

(12) 0 -> tf1 ftj, H°(yx, C°°(Af>)) - H1 (g, C~(Af))

with obvious actions.

If Leutwyler's problem can be solved for n, that is according to Theorem 1

if H1^, C°°(M)) = (0), then the long exact sequence (13) tells us that

(13) Hl (g, C"(M)) ■ H1 (£), H°(n, C~(Af))).

So in that case the problem boils down to the Leutwyler problem for except

for the fact that C°°(M) should be replaced by the subspace H°(n, C°°(M)).

Therefore we now find a criterion which ensures H1^, C°°(A/)) = 0. It is

very close to Corollary 3.

Let N be the analytic subgroup of G corresponding to n. The situation may

here be very complicated even in the case N = R (a dynamical system) where the

compatibility conditions (3) trivially are satisfied. Note, for example, that Leut-

wyler's problem cannot be solved if X* vanishes at a point of M. Whether

X*C°°(M) = C°°(M) depends on the behaviour of the integral curves of X* (see

[5,pp.212ff]).

In applications to physics, n will often be the ideal in g that corresponds to

the translations. In such cases the map X (-»■ X* is injective from n into TpM for

each p EM. An equivalent way of stating this is that the map g h>g • p of N

into M should be an immersion for each fixed pEM. With     := {gEN\g • p=p],

a third equivalent formulation is that Np is a discrete subgroup of N for each

p EM.

Theorem 3. //

(1) there exists an embedded submanifold M' of Msuch that (n,p)\-+n'p

is a regular map of N x M' onto M, and

(2) each orbit N • p intersects M' in exactly one point, and

(3) Hl(NjNp) = {0} for each pEM(de Rham cohomology), then

//1(n,C"(A0) = {0}.

Proof. Let 3>: rt -> C°°(M) be any cocycle.

Any orbit O = N • p is, by assumption (1), an immersed submanifold of

M under the obvious immersion of N/Np onto 0.

Let u)0: Tp 0 -*■ R be the linear map

^0iX*) = ^X){p)  for A-Gn.

Now u0 is a smooth differential 1 -form on the manifold 0. We compute its

exterior differential: If AT, YE n, then
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duQ(X*, Y*) = X*u0(Y*) - Y*to0(X*) - <o0{[X; Y*])

= X*$(Y) - Y*$(X) - &([X, Y]) = 0,

since 4> is a cocycle. Since Hl(0) = Hl(N/Np) = 0, by assumption (3) there is a

function f0 G C°°(0) such that co0 = df0. It is unique modulo an additive constant.

Let F be the function defined by F\0 = f0 for all orbits 0. If the additive

constants can be chosen in such a way that F G C°°(M), then $ is a coboundary,

viz. $ = 8F:

[(6TO)](p) = (X*F)(p) = X*F =

= dfN.p(X*) = 03N.p(X*) = *(X)(p).

Hence Leutwyler's problem can be solved. It is thus left to show that f0 may be

chosen so that F G C°°(M). Let us normalize the f0 by requiring that F\M, = 0.

It now suffices to show that H(n, p') := F(np') is a C°° function on N x Af',

because («, p') t-»- «p' is regular. But H( •, p') is that solution to

(XAynH( •, p') = -*(XA)to>'),    A = 1,..., n,

that satisfies H(e, p') = 0. Well-known results about the dependence of solutions

to differential equations now ensure the result. □

Remarks, (a) Example 3 with G = N is an easy consequence of Theorem 3.

(b) It can be shown that Hl(N) = 0 in Theorem 3 so the theorem is more

restrictive about the group than Corollary 3 which, on the other hand, assumes

more about the manifold.

(c) Condition (3) is probably rather restrictive. It follows for example

from [16, Corollary 7.28, p. 123] that Np cannot be a lattice in case N is a nil-

potent simply connected group.

Corollary 4. Let g = n +s § be a semidirect sum where Ij is semisimple. If

(a) the map X i-> X* is an isomorphism of n onto TpM for each p EM,

(b) H\M) = Q,
thenHl(%, C°°(M)) = 0.

Proof. The hypotheses of the theorem are clearly satisfied since Af in this

case is transitive under the action of N. By the earlier formula (13) it suffices to

prove that H1^, H°(n, C°°(M)) = 0. But H°(n, C°°(M)) reduces to the constant

functions by assumption (a) of the corollary, so H°(n, C°°(M) ** R.

The corollary is now a consequence of Whitehead's 1st lemma (see [9]). □

Example 4. The hypotheses of the corollary are satisfied for the Poincare

group P| := R4 xs 0(3, 1) acting on R4.

Theorem 4. Let us assume g = n +s   where n is an ideal in g with

Hl(n, C°°(Af)) = 0 and where § is a compact semisimple subalgebra of g. Then

#'(3, C-(M)) = {0}.
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Proof. Going back to (14) we see it is enough to show that

H%H%,C~(M) =0.

But that is a particular case of Corollary 2.

Corollary 5. Leutwyler's theorem (cf. §11).

Proof.

Case (a). We have already remarked in the beginning of this section that the

groups with compact covering group precisely are the compact, semisimple groups,

so the case is taken care of by Corollary 2.

Case (b). Since the translation group N obviously has a cross section-for

example the subspace orthogonal to all the translations from AMt follows by an

appeal to Corollary 3 that H1^, C°°(M)) = 0.

Case (c). Here we just combine Case (b) and Theorem 4. □

VI. The case of transitive action. If we are given just a subgroup of G, not

necessarily a semidirect decomposition of g, then we can still in some cases manage

to solve Leutwyler's problem. The present section is essentially devoted to the

case of a product of transitive G-spaces. The idea is the obvious one: We first

solve Leutwyler's problem for G acting on itself, and then see whether the solu-

tion can be chosen invariant under a given subgroup K, so that Leutwyler's prob-

lem can be solved for G acting on G/K.

Let us first note a purely algebraic lemma. F will be a g-module, F0 a

g-submodule. We may ask whether the generalized Leutwyler problem can be

solved for F0 if it can for F, i.e. whether Hl(a, F0) = 0 when Hx(a, F) = 0.

Lemma 6. // there exists a projection PofV onto F0 such that

(14) P(X • F) = X • P(F) for all X C-F Et,

then Hl(s,r~) = 0 implies Hl(a, F0) = 0.

Proof. Any cocycle $: g -+ F0 may be viewed as a cocycle with values in

F, and so by assumption there exists an F G F such that $(X) = X • F for all

X e g. Applying P to both sides of this identity we find by (14) that

<*>(*) = X-PF,

so $ is the coboundary of PF G F0. □

From now on let the situation be as in §IV: F is a locally convex topologi-

cal vector space on which there is given a strongly continuous, weakly C°° repre-

sentation of a connected Lie group G, etc. In this section we will assume that

there, in addition, is given a representation p of a group AT on F by continuous

linear operators such that
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O5) g - p(k)(F) = p(k)(g • F)  for aägeG,kEK,FE F.

Then

FK := {F E Flp(fc)F = F for all k E K}

is a closed subspace of F, invariant under the actions of G and 9.

Proposition 3. If Fis a quasi-complete, locally convex topological vector

space, ifK is a compact group, and if the map (k, F) h- p(k)(F) on K x F into

F is continuous, then #'(9. F) = 0 implies Hl(%, FK) = 0.

Proof. It follows from well-known properties of integration of vector

valued functions that

P ~ fK P(k)dp(k),

where dp is the normalized Haar measure on A', is a continuous projection of F

onto F^. Obviously

P(g • F) = g • P(F)  for all £ € G, F G F,

from which we get (14) by differentiation, so that the result is trivial by Lemma 6. □

Remark. If F, in addition to being quasi-complete, is barrelled, then strong

continuity of p suffices in Proposition 3, because the map (k, F) (-» p(k)F by

Banach-Steinhaus then automatically is continuous.

We will now specialize the above results to the case of a Lie transformation

group.

Let G be a connected Lie group with H1(G) = 0, acting as a Lie transforma-

tion group on a manifold Af. Then Af' := G x M is a G-space under the action

g'(g1,m) = (ggl, gm) for g.g^G.mE M, and H^a, C"(Af')) = 0 accord-

ing to Corollary 3.

Let A' be a compact subgroup of G and define a representation p of K on

F = C~(Af') by

[p(k)F] (g, m) := F(gk~ l,m)  for all F e C°°(M), gEG, mEM, k EK.

Then p satisfies all the hypotheses of Proposition 3, so we conclude that

FK = {FE C^iAfyFigk, m) = F(g, m) for all g E G, k E K, m E M]

= C~(G/A- x Af),

so we have proved

Theorem 5. Let G be a connected Lie group with Hl(G) = 0 acting as a

Lie transformation group on a manifold Af. Let K be a compact subgroup of G.

Then Leutwyler's problem for G acting on G/K x Af has solutions.
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Corollary 6. Let Gbea connected Lie group with HX(G) = 0, and let

Kx, . . . ,Kr be closed subgroups.

Then Leutwyler's problem for G acting on G/Kx x • • • x G/Kr has solu-

tions if one of the groups Kx.Kris compact.

Remark. Leutwyler's result about "inhomogeneous compact groups" of

the form R" xs H, acting on R" x • • • x R", is an obvious consequence of

Corollary 6.

If the subgroup K from Proposition 4 is not compact, our procedure breaks

down. But we can still obtain some results if we use the special form of the action.

Let us first of all agree on the notation: G is a connected Lie group with

Hl(G) = 0 acting as a Lie transformation group on a manifold Af, and AT is a

closed subgroup. Let it: G x M—*G/K x Af be the projection, and let X (X*) be

the vector field on G x Af (G/K x Af) corresponding to X E g under the action

off?.

We want to see whether Leutwyler's problem for G acting on G/K x Af has

solutions so we let $: g ->■ C°°(G/K x Af) be an arbitrary cocycle. Then X H-

$(X) ° 17 is a cocycle w j.t. C°°(G x Af), so according to Corollary 3 there exists

HeC°°(G x Af) such that

(16) $(X)°it = XH  for all* Eg.

Furthermore it follows from (16) that H is unique modulo functions that are con-

stant on the orbits of the action of G on G x Af, so we may and will normalize H

by requiring H(e, m) = 0 for all m E M.

An easy computation shows that the function p(k)H for fixed k E K also

satisfies (16) and, hence, differs from H by at most a function that is constant on

the orbits. That function is fixed by the normalization, which gives us

(17) H(gk, m) = H(g, m) + H(k, g~lm)  for all g E G, k E K, m E Af.

Theorem 6. Let H\G) = 0. Leutwyler's problem for G acting on G/K x Af

has solutions if and only if every solution HEC°°(G x Af) of (17) on K x Af is of

the form H(k, m) = b(k~1m) - b(m) for some function b E C°°(Af).

Proof. Let first 4> (a cocycle) and H be as above. If H is of the form

stated in the theorem, then an easy computation shows that

Hx{g, m) :=H(g, m)-b(g-1m)

depends only on the coset gK and m, so that Ht can be viewed as a function on

G/K x Af. Replacing H with Hx, we find $ = 8Hl.

Assume conversely that Leutwyler's problem has solutions. If HEC°°(G x Af)

satisfies (17), then XH for any XE g only depends on the cosets and may, hence,
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be written in the form

XH = <p(AO o 7t  where $(*) E C~(G/K x M).

Obviously $ is a cocycle, so by assumption there is an F E C°°(G/K x M) such

that $ = 8F. Now

XH = WZ) o TT = o ff = X(F o ir),

so that H - F° it is constant on the orbits and,hence, of the form

H(g, m) -F(gK, m) = b(g-xm)  for some b E C°°(A/).

Putting g = e here we get FfAT, m) = -b(m) and so

ot) = K*"1w)

as desired. □

Remark. Part of the theorem may easily be stated in cohomological terms.

With the notation of Varadarajan [17, pp. 27ff]:

Leutwyler's problem has solutions if every smooth (K, M, R)-cocycle is a

smooth coboundary.

We are mainly interested in r > 1, since the case r = 1, in the application

we know of, corresponds to the situation where there is just one particle in the

universe! For the sake of completeness we mention how the set-up above simpli-

fies in the case r = 1, where we put K = Kx.

(17) reduces to

(18) H(gk) = H(g) + H(k)  for g E G, k E K.

Let Hom(L7, R) denote the set of continuous homomorphisms of the group

G into (R, +).

Theorem 7. Let Hl(G) = 0. Leutwyler's problem for G acting on G/K

has solutions if and only if every solution H E C°°(G) of (18) reduces to 0 on K.

In particular, Leutwyler's problem has solutions ifHomQC, R) = {0}.

Corollary 7. Leutwyler's problem has solutions if

(a) K is compact, or

(b) if is semisimple with at most finitely many components, or

(c) K = N xs H, where Hom(H, R) = {0} and {/£ HomfTV, R)\f(h~1nh)

= f(n)for n E/V, h EH} = (0).

Remark. The standing assumption in this section, Hl(G) = 0, cannot be

relaxed, in general, not even in the case r — 1. In the case of SL(2, R) acting on

P := SU2, R)/S0(2), one finds tf^cj. C°°(P)) s R (cf. Example 2).

Example 5. Example 4 is a consequence of Theorem 7, because R4 =

?l/0(3, 1) and 0(3, 1) is semisimple and H»(Pj) = 0.
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Example 6. Let G = R3 50(3) be the group of orientation preserving

rigid motions of R3 with the action

(v, A)(x) = Äx+~v for(U)GG,j?eR3.

Extend this action diagonally to an action of G on

(R3)r = G/50(3) x • • • x G/50(3)  (r factors).

By Corollary 6 we get H1^, C~(R3")) = 0.

Example 7. Let G = R4 xs 70(R3) be the Galilei group. Here 70(R3) =

R3 xs 50(3) is the group of orientation preserving isometries of R3. The group

G acts transitively on R4 with isotropy group 70(R3), so we may view R4 as

G//0(R3).

It is a consequence of Corollary 7 that Leutwyler's problem has solutions in

this case.

Remark. The action of the Galilei group on R3" x R can be treated by

help of the spectral sequence. In that way one easily regains Leutwyler's results

about this case. We omit the discussion because the results are not new and be-

cause the proof involves the second Hochschild cohomology group that we have

not introduced.

VII. Preliminaries on Hodge theory. Let Af be a Riemannian manifold. Let Slr

= ür(M) for r = 0,1,... denote the real vector space of all differential /--forms on

Af equipped with the usual Frechet topology. Then both the exterior differential d

and the codifferential 6 of Hodge theory are continuous linear operators.

From now on let Af be compact. Then J2r(Af) can, by Hodge's theorem,

be expressed as a direct sum

(19) or = dtf-* e snr+1 e nu^,

where ftnarmonic denotes the subspace of harmonic differential r-forms. The

decomposition is orthogonal with respect to the Z,2-product of differential

forms. All three subspaces of Q,r are closed. The projections on them are, of

course, continuous with respect to the Z2-product and, hence (by the closed

graph theorem), also continuous with respect to the usual Frechet topologies

above.

The following lemma is well known.

Lemma 7. // Hl(M) = 0 (de Rham cohomology), then the only har-

monic \-form on M is 0.

In particular, if Af = G is a compact semisimple Lie group, then

"Lmonic^MO}.
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Proposition 4. The maps 8: Slr -*■ BSV and d: Q,r -*• dQ.r have continu-

ous right inverses, say 6: 5S2r -> Slr and d: dQ.r -*■ Slr, with the following property:

IfL : J2° 8 fi1 © • • • -* S2° e S21 © • • • is any linear graded map

which commutes with d and 8, then it commutes with 8 and d.

Proof. We will only treat the map 5, because d can be handled quite

analogously.

Let us first note that 5S2r as a closed subspace of the Frechet space J2r_1

itself is a Frechet space. Similarly for dQ.r~l.

Now 5 vanishes on the parts Sf2r+1 and ßnarmonic of J2r = d£lr~l +

6J2r+1 + ^harmonic, so to prove the existence of a right inverse 5: 8£lr —*■ d£lr~l

it suffices to check that 5: dSV"1 -*■ 6J2r C J2r_1 is injective. 8 will automati-

cally be continuous according to the closed graph theorem, since 5: dQ.r~i —► Sßr

is a continuous map between Frechet spaces.

But if 8dur~l = 0 for some cor_1 G nr_1, then

||£fwr-1||2 = (d<J-l,dur-1) = (Sdof-1, of-1) = 0.

The statement about L is obvious with the above definition of IT. □

Let G be an n-dimensional Lie group with Lie algebra g. Let (•, •) be an

arbitrary inner product on g. Then we get a Riemannian structure (•, •) on all of

G by left-translations, namely the one defined by

(L(g)mX, L{g\Y) := (X, Y)  for all g E G, X, Y G g,

so that we can apply the Hodge machinery described above.

Lemma 8. For any gEGwe have

(20) L(g)* * = * L(g)*,

(21) L(g)*8 = 8L(g)*, L(g)*l = 81(g)* and L(g)*d = dL(g)*.

Proof. According to Proposition 4 the two last statements of (21) follow

from the first, so we need only prove that one. For that it suffices to prove (20).

That again follows if we check that L(g)* * co = *L(g)*co for all co G £2r of the

form co = co1 A • • • A cor, where {co1,. . ., co"} are left-invariant 1-forms on

G such that {co1,. . . , co"} is a positively oriented orthonormal basis of g*. Now,

L(g)* * (co1 A • • • A co') = L(g)*uT+1 A • • • A co"

= cor+1 A • • . A co" = * (co1 A • • • A cor)

= * Lig)*^1 A • • • A of). □

VIII. Vector valued forms.

Definition 5. Let V and F be real vector spaces. An T-valued r-form co

on V is an alternating r-linear map co: V x V x • • • x V (r factors) —*■ F.
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We let Ar(V, F) denote the real vector space of F-valued r-forms on V, and

let Ar(V) be the space Ar(K) = Ar(V, R).

Lemma 9. There is a canonical injection I: Ar(V) ® F -*■ Ar(V, F), viz.

the linear map determined by

/(co ® /)(t>,, • • • , vr) = C^Wj, . . . , vr)f

for co G Ar(F),/G F andallvi,...,vreV.

If V is finite dimensional, then I is a surjective isomorphism.

Proof. Elementary and left to the reader. □

In the sequel, V will always be finite dimensional, and we will identify

Ar(V) ® F and Ar(V, F) as above without explicitly mentioning it each time.

If, in particular, V is oriented and endowed with an inner product, then we

have Hodge's star operator

*: Ar(V) -* An-\V),  where n = dim V.

The operator

* ® id: Ar(V) ® F -> A"-r(V) ® F

will of convenience again be denoted by *. So

*: Ar(V, F) -*■ An~r(V, F).

Another special case is the one where V = 9 is a Lie algebra and where F is

a g-module. In this case we have a coboundary operator d: Ar(V, F) -*■

Ar+1(V, F), given by the standard formula

(dfyix1.xr+l) = £(-iy+1jr/ • n(x\, xr+1)

+ Z(-i y+'W, *], a-1 xi.r+1)
«"</

for   G Ar(K, F) and X1.Xr+1 G g.

If 9, in addition, is equipped with an inner product, then we define, by help

of Hodge's star operator, the codifferential

5 := (_iyH-n + l , d     Arö> p) _ Ar-t(9) p)

and the "Laplace-Beltrami" operator

A := d8 + 5d: Ar(g, F)    A'(g, F).

An r-form S2 G Ar(g, F) is said to be harmonic in case dQ. = 0 and 6S2 = 0.

Then, of course, AJ2 = 0.
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Let us now turn to the special case that we have studied earlier:

Fis a locally convex topological vector space. G is a Lie group and there is

given a strongly continuous, weakly C°° representation of G on F. Then F is, in

particular, a g-module.

We shall see how the operators d and 5 on the differential forms of G induce

the corresponding operators d and 5 described above:

Let us for f2 E Ar(g, F) and u E F' define a differential r-form £2" on G by

Slu(Xg.Xrg) := (u, g • Q&1, . . .,Xr))  for* EG, X1, . . . , Xr E g.

A small calculation now shows that

d(Üu) = (dSl)u   for all J2 £ A'(g, F) and u E F\

which provides us with an equivalent definition of d.

To get a similar characterization of 5 we note the following lemma.

Lemma 10. If O.E. A'(g, F) and u E F\ then *(S2") = (*J2)".

Proof. An easy manipulation of the very definition of Q," shows that

I(g_1)*£2" = Qß'u for all gEG. That again implies easily that it suffices to

prove the lemma at the identity, that is *(£lu)e = Since both sides are

linear in    we may assume Q. is of the simple form f2 = co ® /£ Ar(g) ® F.

Then we find, by easy calculations,

= <«,/>* cj  and   * TO = * ««, />co) = <u, /> * to,

which proves the lemma. □

Corollary 8. 5: Ar(g, F) -*■ Ar_1(g, F) may be defined by

(5J2)" = 6(S2") for SI £ Ar(g, V)anduE F'.

IX. The generalized angular momentum first Helmholtz theorem. Let F be

a quasi-complete, locally convex topological vector space. Let us furthermore

assume given a strongly continuous, weakly C°° representation of a compact Lie

group G on F.

Theorem 8. Any linear map $: g-» F can in exactly one way be decom-

posed as

<D = dF + 8* + 0

where F £ F, * E A2(g, F) fl«c/ 0 is fl harmonic map of g z'«ro F.

//"g zs semisimple, then 0=0.

Remark. The individual terms dF, 8* and 0 are uniquely determined, but

F and ^, of course, are not.
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Remark. An example due to Keller shows that the assumption about F

being a G-module, in general, cannot be relaxed to F being a g-module.

Example 8. The Lie algebra g of the circle group G = 50(2) = {e'9|f3 G R}

is spanned by 3/30 and, hence, can be identified with R. We define a Riemann-

ian structure on 50(2) by requiring that 3/30 be a unit vector.

If we let d0 denote the 1-form dual to 3/30, then it is easy to describe the

Hodge star operator. Indeed

*l=dd  and  *d6 = I.

A 1-form co = f(6)dd is harmonic if and only if / is constant, and 6co = 0

if andonlyif/2Y(0)c'0 = O.

Let
F0 = {FG FIAT-F=0 for all ATGg}

= {FG r~\g • F = F for all £ G G}.

We find that a linear map <J>: 9 -»• F is harmonic if and only if $(9) C F0.

The theorem above now implies that any linear map    9 -*■ F can be

written in the form

* = czF + 0 where FG Fand0: g-» F0,

or equivalently:

Any element <I> G F may be written as

* = (3/30) • F + 0,  whereFG Fand©G F0.

In the special case where 50(2) acts as a group of rotations on R2 we find,

in particular, the well-known result that each C°° function on R2 in exactly one

way can be expressed as the sum of a radial function and a function of the form

3F/30 where FGC°°(R2).

Example 9 (The Lomont-Moses [14] and Cannon-Jordan [3] Cases).

The Lie algebra 9 = so(3) of the compact semisimple group G = 50(3) is, via

standard identifications, spanned by Xx, X2 and X3 G g where

/o  0 6\       /o 0 -i\       /o 1 o\
ATi=(o    0   ll X2=lo  0   0 L X3 = 1-1   0 OL

\o -1 0/       v 0  0/        \0  0 0/

With respect to the scalar product

(X, Y) = -trace(Arr)  for X, Y G g,

they form an orthogonal basis of g with HA^H = \\X2\\ = \\X3\\ = 1/V5.

Let {co1, co2, co3} be the left-invariant 1-forms on G, dual to {Xjy/2,

1/V2AV l/V2Af3}.
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Straightforward computations and the theorem above now imply:

To any linear map 4>: so(3) -* F there are elements F, F,, F2, F3 G F such

that

* = dF + S((co2 A co3) ® Fx + (co3 A co1) ® F2 + (co1 A w2) ® F3),

or equivalently,

4<A'1) = A'1 -F + Fj-X3 -F2 +X2 • F3,

#(*2) = X2'F + F2-Xi-F3+X3-F1,

<KX3) = X3'F + F3-X2'Fl +A-j -F2.

In the Lomont-Moses case F = C°°(R3), we can identify the smooth vector

fields on R3 with the maps $: R3 =" 9 -*■ F, viewing 3> as the vector field with

components ^iXt), $(X2) and $(X3). The Cannon-Jordan case can be obtained

quite similarly: We let 50(3) act on C°°(R3 x • • • x R3) by diagonal action.

What remains of this section is devoted to proving Theorem 8.

For any fixed u G F' we study the differential 1-form <£" on G, defined by

<*", Xg) := <«, g • 4<*0>  forg G G, XGq.

Lemma 11. The map «k^o/ F' into J22(G) is linear and continuous

when F' is equipped with the topology of uniform convergence on compact sub-

sets of F.

Proof. Trivial from the definition of the topologies and the fact that G

acts weakly C°° on F. □

By Hodge's theorem 4>" can in exactly one way be expressed as

<J>" = dF(u) + 5t//(u) + #(u)

where F(u) G C°°(G), \b(u) G J22(G) and t?(u) is a harmonic 1-form on G. By

Proposition 4 we can even determine F(u) and \(/(u) in such a way that the maps

cj>" 1-». F(«),     H- \p(u) are continuous and linear. We have now proved

Lemma 12. The maps u h- F(m), u k \p(u), u h> d(u) of F' into C°°{G),

ß2(G) and S21(G) are all continuous and linear when F' is equipped with the

topology of uniform convergence on compact subsets of F.

Lemma 13. For any g£G we have

L(g-1)*Fiu) = Hg'ti), L(g-lW(u) = Wg'u), and L(g-l)*d(u) = d(g ■ u).

Proof. This follows easily from the fact that Z,(g-1)*<I>" =      , which

was proved in Lemmas 3 and 8. □
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Lemma 14. There are elements FGF,*e A2(g, F) and 0 e {£2 e

A*(g, F)|£2 harmonic} such that for all gEG, X, YEQ we have

F(u)(g) = (u,g-F),

MuXXg, Yg) = <u,g- MX, Y))   and   d(u)(Xg) = <u,g- ©(*)>.

Proof. Since the three statements are proved in the same way we content

ourselves by treating the first one.

As already noted the map u H- F(u)(g) is for any fixed g 6 G a continuous

linear functional on F'. Now F is assumed to be quasi-complete and thus [11,

§23.9(2)] polar semireflexive so that the dual space of F' is F. Hence, we see

that to each gGG there exists exactly one element /(g) £ F such that

F(u)(g) = <«, /(*)>  for all u G F'.

By Lemma 13 we next see that

(uJig-'h)) = F&Xg-'h) = (L(g)*F(u))(h)

= F(g • u)Qi) = {g-u,/(«)> = (u, g-lf(h)),
or

f(gh) = g • /(A)  for all g, he G.

Equivalently f(g) = g • f(e), so that for the F of the lemma, we may take

F = f(e). □

By the formulae d($u) = (d<$>)u, etc., which we established earlier, it fol-

lows that

<E> = dF + 5* + 0.

The uniqueness of the decomposition is also a trivial consequence of the

formulae <i(4>") = (d$)u and the uniqueness of the decomposition in Hodge's

theorem.

Finally the statement about the semisimple case is a corollary of Lemma 7.

This proves the theorem. □
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