TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 214, 1975

ON THE DOUBLE SUSPENSION HOMOMORPHISM
BY

MARK MAHOWALD

ABSTRACT. This paper studies the family of unstable Adams spectral sequences,
E‘;’ t(s2n+l)_ The main results deal with the range of filtrations for which these

groups stabilize and for which the groups E‘% t(n2s2n+l’ SZn—l) stabilize.

This paper is concerned only with the 2-primary homotopy of spheres and
all spaces should be considered as being localized at the prime 2.

Let W, be the fiber of the map S2"~! — Q2§27*1, Using the unstable
Adams spectral sequence theory of Kan et al. [1], we can construct a spec-
tral sequence for W,. We wish to normalize so that E3-2(W,) = Z, and is
the first nonzero group, i.e., E®**(W,) = 0 for all ¢ and E§*(W,) = O for all
sif t =0, 1. Our main result is:

THEOREM 1. There are natural maps
i f; fae
By By ) = - - = BH)
I5 s -f; Extj',“"“(l?*(ﬂ), Z,)
So that f, is an isomorphism for 6s >t + 20 — 4n.
In [3], Ext$'(H*(P®), Z,) is calculated for 6s >t + 14 and the E,, of the
Adams spectral sequence is also obtained for the same range.

This result fits into the general picture in the following way. The Fruden-
thal suspension theorem says that 7, (S") depends only on & — n for k < 2n
— 1. The EHP sequence m,(S") — ﬂkH(S"“) — 1ri+l(S2”—l) and the
suspension theorem assert that the amount by which the suspension is not an
isomorphism is stable provided k¥ < 4n — 3. If we think in terms of the
Adams spectral sequence then the analog of the Frudenthal result is the follow-
ing result which is due to Curtis.

THEOREM (CuRrTIS). ES'(S™) — E3'(S"*?) is an isomorphism for 3s >
t+ 6 —nand nodd.

This stability has implications for m,(S") for arbitrary k. An obvious cor-
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170 MARK MAHOWALD

ollary of our Theorem 1 is the following analog of the “meta-stable” stability
implied by the EHP sequence.

THEOREM 2. The measure of the amount by which f: E3*( $*"~1) —
E3*(S*"*1) fails to be an isomorphism, ie., E3{(Q28*"+1, 5271 s indepen-
dent of n for 6s >t + 20 — 4n.

2. Preliminary definitions. The key tool used in this paper is the A-
algebra [1] and [S]. We recall its definition and some of its properties. A(n) is
a graded Z, -algebra generated by monomials in A;,i =0, 1, . . ., such that if
ANy e 7\;, is a basis element then (1) i, <n, (2) 2i, >i;,,. Such mono-
mials are called admissible. A multiplication is defined by juxtaposition. The
following relations are used to change such a product into a sum of admissible
monomials. Let D be a derivation with DX, = A, ; and D* = D(D*"!). Then
D*Q\\;;4,) =0 foralli and ¢t > 0. In A(n) there is a boundary operator d
such that

d\, = ¥ ( i )xn—i)‘i—r

i=0
We can bigrade A(n) by assigning filtration (1, i + 1) to A;. Then Hg (A(n), d)
= E.;,t(sn+ l).
The EHP sequence produces short exact sequences

0 — A% (n— 1) = AS(n) —> A5 17 2(2n) — 0
where the first is the obvious inclusion and the second map is defined by forget-
ting A,, when it occurs as a leading element in a basis element.
To prove Theorem 1 we wish to look at the double suspension. Let A(W,) =
Kk, A(4n) © ky A(4n — 2) and assign k; filtration (1, i + 1). Then we have

@) 0 — AM'(2n - 2) — A'(2n) B> AS*2042(p ) — 0

where the first map is the obvious inclusion and the second map satisfies pQA, ,A;)
= KkaAps PAy,—1Np) = Kk A; and, if the basis monomial A; starts with \; for i <
2n = 1, then p(A;) = 0. From (2.1) we can define a boundary operator, d, in
A(W,), so that the sequence (2.1) is a short exact sequence of chain complexes.
Theorem 1 will be proved explicitly by proving the following.

THEOREM 3. There is a natural sequence of chain maps
As't(wl) (« As't(w2) C---C As’t(wn) —> e —> K2A @KIA,

where the last term is associated with A(P*) such that AW,)/AW,, ,.,) has zero
homology if 6s >t + 14 — 4n, forn > 1.
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3. The chain complex A(W,). The first step in proving Theorem 3 is to
determine the differential in A(W,).

PROPOSITION 3.1. d(k,A; © &, N;) = k,dN; © K (\gA; + dA; + a) where a =

The proof is long and so we delay it until the end of this section.
DEFINITION 3.2. The map f,: A(W,) —> A(W,, . ,) is given by f,(k,\; ® k7))
)\4’.)\1'.

PrOPOSITION 3.3. f, is a chain mapping.
Proor. The proof is clear from 3.1. Indeed,
@A @ ky\))) = [k, dN ® k (@, NN, © €d\g, 11 0))
= KodN ®k (ENg,, 1 1 ANy @ AN, DA, ® €(dNg, 4 1)Ny)
= KkdN ® k(A D €Ny, 4 1 N) OGN
=df, (kN ® K \)).

SKETCH OF THE PROOF OF THEOREM 3. We will construct the chain complex
AW, +1/W,) and find an artificial complex A(C,,) which maps into AW,y 1 [W,).
This map will be shown, using an induction hypothesis, to induce an isomorphism.
This is done in §4. Then in §5 we look at an 4, free stable complex X and
show that A(C,) maps into A(X) and also induces an isomorphism in an appro-
priate range of dimensions. Finally, we recall that Extfi‘(A,, Z,) = 0 for a cer-
tain range of dimensions and this completes the proof.

PROOF OF PROPOSITION 3.1.  We need to calculate the differential in
k,A(4n) ® k, A(4n — 2). The differential is evaluated by the following sequence
of maps:

(B4)  KkyA®@n) kA4 - 2) — AQn) <> A@2n) — Kk, A@dn) ® k;Adn - 2)

where the first map is given by k; — X, ;_, and the last map is p of 3.1. Thus
we need to put in admissible form (d),,)\; and (@\,, 4 1)\; and determine the
coefficient of A,, ;. We need the following lemma.

LEMMA 35. NAK) C A(k =i — 1) U AQ).

ProoF. We wish to look at A\, where A\; € A(k). If A, is also in A(2i)
then A, is admissible and in A({). We suppose that A\, is not admissible as it
stands. If IJ1=1 then A\N; = B55,1 1 @0y ;g\, and this is in AG —i - 1).
Suppose we have established the lemma for all / and J such that 71 <n. Sup-
pose j; = 2I. Then
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Moty = Mo Ay = A iy
e NN, 1A (27) CANATG) € AT D)
and this is the lemma. Supposej; =2+ 1. ThenA_ Nj Ay =Ny 1N 2 Ay €
Ny 1 A"Gy + 1) € A( + 1) which is the lemma. Now suppose we have established

the lemma for A7y if W1<n orif l/l=n then j; — 27 —1<gq. Suppose Ul=n
andj, —2i—1=gq. Then

AN = 2 G ji-kNAy N i A Ay
J1>k>2i+1

Ifj, 2k>2i+1then
Nigjy—kMeA 1 2F)) C Ny ARy — k= 1)
Since 2;, =k —1-2(i +j, —k)— 1 <q the induction hypothesis implies that the
last expression is in A"*!(j, —i—2). Finally
Nymict M 1 AT Q1) C N ARy = 2= 2) C A —i— 1)
This completes the double induction and the proof of the lemma.

Now we can compute the coefficient of A,,,_; in (d\,,,)A;. If I begins with i, <
4n then

2n—i
d(Ay )N = 1§>:1 < i > Aan-Nim1MA2 n-1 R0

2n-i
+ 2 ( i )Rzn—ixt—l)\l
i>1

and
ApeiNi—gA4n = 1) C N,,_, A(dn —i - 1) C AQn - 2).

Thusif Ay € A(4n — 1), d(k,A)) = k,dN; + K AN,
Using 3.5 in a similar way, we see that if i; = 4n then

2n—-i
@)\ = El < i >R2n—iki—l)‘4n>‘l'

2n =i
= 1?1 ( i > an-1Mn—2i 102100 F €+ X 1Ay

where c € A(2n - 2).
LEMMA 3.6.

2n—i
dNpy1 = §< i )7\4n—21+17\2t—1~
i
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PrOOF.
n+1-j
dk4n+l = Z ( j >)\4n_i)\i_l.
i>1
Thus we need to show that (4'”’,"" )=0 (mod 2) ifj=1 (mod 2) and
(Ar+1-25 = @n- 1y mod 2. Note that if a generates H'(RP) then
Sqla#n+1=7 = (4n+ 17741+ 1 and if k generates H*(CP) then Sq*/k*"~ =
Gn7he?m. Since o*"*! ¢ im Sql(4"+jl'f) =0 (2)forj=1 (2). Since there is
a stable map f: = CP — RP so that f*(a®*+1) =k’ we see that

<4n+ 1 —2i> E<2n.—i> i
2i i

We return to the proof of 3.1. Note that A,,,_;A4,_1 A\ Ay = 0 since 2(2n—1)
+1=4n-1. Thus

i>>:; <2ni l> 2n-1Mn-2i4 102610 = A2p1 @4 A
by 4.3. Hence d,,)\; = Ayp_1 QoM + @, 4 1)\p) + ¢ where ¢’ €
A(2n — 2). Putting all of this together, we see that d\,,A; + N\, ;A=
M1 (@ + AN, + @) + \,,d\; + ¢" where ¢” € A(2n — 2) and this proves the
proposition.

4. The chain complex A(F,) = A(W, . ,/W,). Let A(F,) be the quotient
chain complex of the map f,,. Then A(F,,) =k, @F; Ay, ABn +21) ®
“191?:—1 N4+ 1A@n + 2i) and A(F,) receives a differential from A(W,, 4 ;).
The differential is calculated by the following composite A(F,,) L AW, ) 4,
AW, 1) £, A(F,)) where i is the vector space inclusion and p is the projection.
The exact form of this differential is very complicated and we will not need it.

Let

AC,) =3 ®[Qans1 O Ngps3)ABR =2) ® (N\gpyp + Mgy 4)AEBN)]
+ g ©[0apeg ® Agpy AGH = 2) ® Ay, + Mgy AGA)].

Let g: A(C,) — A(F,) be given by
8 Qans 2N + Mans2-10)) = £ Qan 12N Mant2j-1Qanside + 2)

forj=1,2,i=2andj=1,i=1 and where Ay is zero unless A\; = Ag,A;';
N € A@ n) and A; € A(8n — 2);

8k 1(andy + Aan—i D) = k1 (Agpy + Agpp_yAp-

LemMMAa 41. dgCimg.
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ProOF. The d in A(F,) is calculated by retracting A(F,) into A(W,, . ,),
calculating d in A(W,,, ;) and projecting back to A(F,). When this is done for
the image of g we get the following formulae:

dgxoMansads = KaQansadls + Ng,4 30N + [@hg, Ay
+ Agpe190) + 0, 0 0)

tE1ans 2N+ Mgy A + 604541050

+Xn(Aa A+ A328,4121))
where €, = (m) mod 2 and where A, = O unless A; = Ag A,
dgroMn+3Ny) = K1 Qansady + Mg A0 + Koy 340,
d@raNan+2A1) = K2(Nap4200 + Ay s Aody + @gpy Ny + Agpy 1 dAy))
o Aani 1 MA F A N + M Ag, 3 Ap) + Mg A51Y),
dEroAapn110)) = kg1 Ny + K Mg A Ay,
gy Nans2N) = K1 Agp g 1 oA + dgp g AP + Moy gdy + R 2dRy)
F An-1(Agn1 + dhgp 300y
dg 1 An+1Ny) = £1(ap s 180 + Ngp AN,
d(gr i A hp) = K1 Agnd + Ngp Aoy + g1 121)),
dgr Agp_1A)) = Ky Agp1dAs
To see this observe that d(k;A4,, . )N, in A(W, ) involves terms of the form

KXan—pApsi—1 Ay OF, i/ = 2, terms Like K, Ng, _Apy Ap. £/ % 1 and iis

neither 0 nor 2, terms such as these, when made admissible, project to zero in
A(E,). Indeed, Aan—php+ihs © A(@n —i—1)UA(4n — p) C A(4n — 2) except
for the above exceptions. In the case of exceptions when i = 0 the argument is
just that of §3. When i = 2 we see that

P @y Ngnsy =20 (4" +i1 -l)kl)‘4n—l)‘8n—2i+3)‘2i—l‘

Also dAg, .3 = ZC"43 ), 4 3-N—;- The argument from Lemma 3.5
shows that these are the same and thus pk,d(\;, 4 Mgpey =
KiAgn—1AAgpn41 + dAgp43)). Thus we see that in all cases the above for-
mulae describe what happens.

It is a simple direct verification now that dg C im g. We will do the first one
term by term. Suppose that A; = Ag, A The other case is easier. Consider
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"2(7\4n+4(d)‘sn)>‘1' + )‘8nd)‘l') + 7\4n+30‘o>‘8n>‘1’ + d7\sn+ 1)‘1' + )‘8n+ld)‘l')‘

The classes (dg, )\ C A(8n — 1) by (3.5). The class
AOASII)\I' + (ﬂ8n+ l))\j’ CA(3n - 2)

by (3.4). Thus the above term is g(k, N4, +4(@ + Ag,dA\p) + A4, 4 3(b))) where
a€ A(8n - 1) and b € A(8n — 2). The class K,\y, 4+ 2A;A; is handled by not-
ing that A, A; C A(8n — 2) C A(8n). Continuing with the terms of dgk,N,, 4+ 4N
we see Ay A; € A(8n — 3) C A(8n); Ay Ag, 4 1Ay CNA@BR + 1) CABn —1);
A3, C A(8n — 4) C A(8n — 2); Ag\; C A(8n — 5) C A(8n); A ;A(8n + 1) C
A(8n — 3) C A(8n). All the other cases are similarly handled. This proves the
lemma.

A key step in the proof of 2.2 is the following result.

LEMMA 42. For a fixed t, if Theorem 3 is true for all t' < t, then g induces
an isomorphism in homology for 6s >t + 3 — 12n.

Proor. We will filter the map g in the following fashion.

Ky (an (AGR =2) &Ny, ABD) 5> k(0  AGBR - 2) 0, ABR)) = B,,

N N

4,

: 2
Ay =4, Ok (A, AB=2) BN, L ABN) = & @ Ay, AR +20) =B,
i=-1
Ay = A, Bry(\gny  ABT=2) N, ,ABR))
— B, ®k, @ Ny, ABn +20) =B,
i=1
4,= AC,) — A(F,) = B,.
For the resulting spectral sequence we see that £5"/(C) = (4, ,/4)"" =
ASTLt4n—€i(y, ) where ¢; = 0, -2, -3, =5 fori = 1, 2, 3, 4 respectively. Also

EG(F) = (Byy1/B)"" = AV CU(W, 5 ) where ; is as above and §; =
0,1,1,2 fori =1, 2, 3, 4 respectively. The map g induces

8 E§*0) — B3 ()
and g, is an isomorphism, g, and g5 are f,, and g4 is f,,,,; ° f5,. These are
quite easily seen but let us look at g,.
8a(K2Nap 438 + NgpyaNgppgd T Ngp440)
=K2(Aan+38 F Nappatgnes T Mansahansod T 24,440)

and this is just what f,, does. The second inclusion is just the identity.
If Theorem 3 is true for ¢' < ¢, then g induces an isomorphism at the E,
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level, g,EH(C) = ES(F) for all i if 6s >t — 12n + 24. Thus g, is an iso-
morphism for all i, if 6s > ¢ — 12n + 30.
This proves the lemma.

5. A second auxilary complex. The complex A(C,) does not represent any-
thing geometric that has been identified. It was introduced because it also is
comparable with an identifiable stable complex.

The following is an easy exercise in stable homotopy.

PROPOSITION 5.1. Let A, be the subalgebra of A, the Steenrod algebra, gen-
erated by Sq* and Sq®. There is a space X such that H*(X) is a free module
over A, on one generator x.

PrROOF. Take K(Z,, n) for n > 6 and kill Sg%, Sq*Sq* and everything in
dimension above n + 6. The resulting space is X.

There is a choice of X so that Sg*Sq%x = 0 and one in which Sq*Sq®x =
Sq°Sq%x. Let X, have Sq*Sq%x # 0 and X, have Sg*Sq*x = 0. In both X,
we require Sq®x = 0.

PROPOSITION 52. A(Xy) = D%, @7L,i-3 %, ;A with

d(ky,4) = k3,300 F K3 2Ny F K1 20 + (K)moa 281,183 + Ky 004,

d(ky,3) = Ky oAy F Ky A3,

d(’(z’z) = Kz’lxo + Kl’l)\l + Kl’oxz + Kl’_IX3,

d(xz,1) = Ky ,0\y>

d(ky,2) = k1R + K1 1R

dky 1) =Ky 30,

d(ky o) =Ky 1o

ProoF. The L.CS. E, term for a stable complex is given by Hy(X; Z,) ®

A and the differential is given by d(z ® 1) = Z,S¢% a ® A,_, where Sg’:
H(X; Z,) — H;_{X; Z,) is the dual Steenrod square. A direct check of the
squaring operations in 4, gives the result. The following picttgi may help the
reader. Each O represents a cell and 0—0 represents Sq* and 0 O represents Sq2.
Note that there are several other Sq*’s nonzero in the complex. Since Sq° +
Sq*Sq! = 842Sq> and Sq*Sq® # 0 and Sq'Sq*x = 0, we see that Sg*Sq'x +#
0. Since Sq° = S¢°Sq' + Sq®Sq* and Sq5Sq" # 0 we see that Sg® = 0 im-
plies Sq%x # 0. These are reflected in the differentials given above.

Let g: A(C,) — A(X, (n))»> Where (n) is the congruence class of n mod 2, be
given by:
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BN y2dr = Ko F Ko Ngpprlys T=2,i=1,27=1,i=0,

LI YTRY VAR TV TP, YR VU SUPD PHEY VN

Whel'e AI' = 0 unless RI = )\snkl'; al‘ld g_Ki)\4’l+2[“lAI = Ki’zi_lxl.

l———k(Sq )
N

FiGure 1. H*(X)

PROPOSITION 53. g is a chain map.

Proor. This is a direct comparison of the two sets of formulae.
Analogously to Lemma 4.2 we have

LEMMA 54. For a fixed t, if Theorem 3 is true for t' < t, then g induces an
isomorphism in homology for 6s >t + 3 — 12n.

The proof follows closely to that of Lemma 4.2.

6. Proof of Theorem 3. The last step in the proof of Theorem 3 is the fol-
lowing:

ProposITION 6.1 [3, COROLLARY 4]. H_ (A(X(,), d)) =0if 65>t —4n
+ 14.

Now the proof of Theorem 3 follows easily. First note that Theorem 3 is
true if £ = 1. Then note that the case n = 1 is not needed in the induction and
thus

{G, £);6s>t+30-12n} D {(s, £);6s>t—-14n + 14} ifn>1.

The first is when Hy (A(X(,, d)) = E3"(F,) (4.2 and 5.4) and the second is
when the left-hand side is isomorphic to zero (6.1).
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