
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 214, 1975

ON THE DOUBLE SUSPENSION HOMOMORPHISM
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ABSTRACT. This paper studies the family of unstable Adams spectral sequences,

E2t(S2n+i). The main results deal with the range of filtrations for which these

groups stabilize and for which the groups £2'f(n2,S2''+1, S2"-1) stabilize.

This paper is concerned only with the 2-primary homotopy of spheres and

all spaces should be considered as being localized at the prime 2.

Let Wn be the fiber of the map S2"-1 —> fi2S2n+I. Using the unstable

Adams spectral sequence theory of Kan et al. [1], we can construct a spec-

tral sequence for Wn. We wish to normalize so that E2'2(Wn) = Z2 and is

the first nonzero group, i.e., £°'f(rv'„) = 0 for all t and Es^{Wn) = 0 for all

s if t = 0, 1. Our main result is:

Theorem 1. There are natural maps

fiJ-'O^A Er(W2/-^- • Es.t(W)

4. • • • •£■> Ext71'f-1(/7*(P2), Z2)

so that fn is an isomorphism for 6s > t + 20 - An.

In [3], Exf/(H*(P2), Z2) is calculated for 6s > t + 14 and the E„ of the

Adams spectral sequence is also obtained for the same range.

This result fits into the general picture in the following way. The Fruden-

thal suspension theorem says that trk(S") depends only on k - n for k < 2«

- 1. The EHP sequence -rfc(5") —> nk+l(Sn+l) -* rrj+l(S2n~1) and the

suspension theorem assert that the amount by which the suspension is not an

isomorphism is stable provided k < 4« - 3. If we think in terms of the

Adams spectral sequence then the analog of the Frudenthal result is the follow-

ing result which is due to Curtis.

Theorem (Curtis). ££f(S") —> E%\Sn+2) is an isomorphism for 3s >

t + 6 - n and n odd.

This stability has implications for nk(S") for arbitrary k. An obvious cor-
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ollary of our Theorem 1 is the foUowing analog of the "meta-stable" stability

implied by the EHP sequence.

Theorem 2. The measure of the amount by which f.       S2"-1) —*■

£%t(s2n+l) fails to be an isomorphism, ie., Es2-t(tiiS2n+l,S*n~1), is indepen-

dent ofn for 6s > t + 20 - An.

2. Preliminary definitions. The key tool used in this paper is the a-

algebra [1] and [5]. We recall its definition and some of its properties. A(n) is

a graded Z2-algebra generated by monomials in Xj, / « 0,1.such that if

X/jX/j ... X,. is a basis element then (1) ix < n, (2) 2ik > ik+l. Such mono-

mials are called admissible. a multiplication is defined by juxtaposition. The

following relations are used to change such a product into a sum of admissible

monomials. Let D be a derivation withD\ =       and Df = z>(df-1). Then

Z)f(XJX2f+ j) = 0 for all / and t > 0. In A(n) there is a boundary operator d

such that

i=0 x    ' '

We can bigrade A(«) by assigning filtration (1, i + 1) to Xf. Then Hs t(A(n), d)
= £'5',(5'l+1).

The EHP sequence produces short exact sequences

0 -> A*-Kn - 1)     As-f(n) ->• AJ-1,f-"-2(2n) 0

where the first is the obvious inclusion and the second map is defined by forget-

ting X„ when it occurs as a leading element in a basis element.

To prove Theorem 1 we wish to look at the double suspension. Let A(Wn) =

k2A(4/i) © K,A(4rt - 2) and assign k; filtration (1, i + 1). Then we have

(2.1)        0 — As''(2« - 2) -> As-<(2n) ̂ A5''-2n+2(rV„) -+ 0

where the first map is the obvious inclusion and the second map satisfies pfXj^Xj)

= k2X7, pfX^-jX/) = KjX7 and, if the basis monomial X7 starts with X,- for i <

2n - 1, then pQ\/) = 0. From (2.1) we can define a boundary operator, d, in

A(Wn), so that the sequence (2.1) is a short exact sequence of chain complexes.

Theorem 1 will be proved explicitly by proving the following.

Theorem 3. There is a natural sequence of chain maps

As'f(Wt) C As'f(W2) C • • • C As'f(W„) -»-► k2A ©KjA,

where the last term is associated with A(P2) such that A(Wn)IA(Wn+1) has zero

homology if 6s > t + 14 - An, for n> 1.
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3. The chain complex A(Wn). The first step in proving Theorem 3 is to

determine the differential in A(Wn).

Proposition 3.1. d(k2\i ®kxXj) = k2dkI © ^(XqX/ + dkj + a) where a =

OifKjE A(4n - 1) C A(4/i) and a « (dX4ll+1)V      = X4nX7-.

The proof is long and so we delay it until the end of this section.

Definition 3.2. The map fn: A(Wn) —> A(lVn+}) is given by /„(k2Xj ©KjA^)

= k2\j © Kj(X7 © eX4„+1Xj') where e = 0 if X7 E A(4n - 1) and e = 1 if X/ =

X4„X/>.

Proposition 3.3. fnis a chain mapping.

Proof. The proof is clear from 3.1. Indeed,

f(d(K2\j © KlX,)) = f(K2d\j © Kj (dkj® \0\j © edX4n + 1XJ0)

= k2d\j © k1(eX4n+ ,-iX^ © d\j©X0X/ © e(d\n+

= k2d\j ®kl(dQ<j®e\n+1-KI') © XqXj)

= d/„(K2X/©K1X/).

Sketch of the proof of Theorem 3. We will construct the chain complex

A(Wn+lIWn) and find an artificial complex A(C„) which maps into A(Wn+l/Wn).

This map will be shown, using an induction hypothesis, to induce an isomorphism.

This is done in §4. Then in §5 we look at an A j free stable complex X and

show that A(Cn) maps into A(X) and also induces an isomorphism in an appro-

priate range of dimensions. Finally, we recall that Exts^t(A1, Z2) = 0 for a cer-

tain range of dimensions and this completes the proof.

Proof of Proposition 3.1. We need to calculate the differential in

k2A(4ai) © KjAf^/i - 2). The differential is evaluated by the following sequence

of maps:

(3.4)   k2A(4«) © KlA(4n - 2) -> A(2n) 4* A(2n) —> k2A(4«) © KjA(4n - 2)

where the first map is given by k; —•> X2n+f_2 and the last map is p of 3.1. Thus

we need to put in admissible form (d\2n)\I and (<2,X2„+i)X/ and determine the

coefficient of X2n_j. We need the following lemma.

Lemma 3.5. XfA(fc) C A(fc - i - 1) U A(fl.

Proof. We wish to look at      where \j E A(ic). If X^ is also in A(2i)

then \p<j is admissible and in A(/). We suppose that XfXy is not admissible as it

stands. If l/l = 1 then XfXy = Sfc>2j+ j ak\j+i_kXk and this is in A(J - i - 1).

Suppose we have established the lemma for all i and / such that l/l < n. Sup-

pose /j = 21. Then
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h-ih =       V = AiA/i-i V

e X,X/1_1A"-1(2/1) C XjATj.) C A"+1(0

and this is the lemma. Suppose j\ =21+1. Then X^jX/.X/ = X/+ jX/.-aX/ e

X/+1 A"(/i + 1) e A(/ + 1) which is the lemma. Now suppose we have established

the lemma for Xj-Xj if I7l<n or if l/l = n then /, - 27- 1<q. Suppose l/l = n

and /, - 2/ - 1 = <?. Then

/l>k>2/+l

If/, >£>2/+ 1 then

^•+/1-AA"-1(2/1) C Xf+/l_kA"(2/1 - k - 1).

Since 2; i - k -1 - 2(i + /, - k) - 1< q the induction hypothesis implies that the

last expression is in A"+,(/, -1 - 2). Finally

A/l-,-IX2l+iA',-1(2/1) C X/l_f_1A(2/1 - 2/ - 2) C A(/, - i - 1).

This completes the double induction and the proof of the lemma.

Now we can compute the coefficient of X2n_! in (d\2n)\I. If / begins with ij <

An then

d0^2n)h = 22 ( 2"-   ' ) ^n-lh-xWn-lW

I>1 v   ' /

and

X2n-A-iA(4« - 1) C X2„_!A(4« -/- 1) C A(2n - 2).

Thus if X7 E A(4« - 1), d^^) = K2d\t + k^X,.

Using 3.5 in a similar way, we see that if it = An then

(<fx2n)x/ = £ ^2rt r,^x2n_I.xf_1x4nx/.

wherecSA(2«-2).

Lemma 3.6.

^4^+1 ~ 22 (    j rAn~2t+l\t-V
l>l\ j
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Proof.

d\n +1 = Z        + j       hn-fo-1'

Thus we need to show that (4n+= 0 (mod 2) if / = 1 (mod 2) and

(4«+i-2<) = (2"-') mod 2. Note that if a generates Hl(RP) then

Sqia*n+i-j m fn+i-jyjn+i and if K generates i72 (CP) then Vic2"-' =

?n?)k2n. Since a4"+1 $ im Ä?1(*B+/W) = 0 (2) for; = 1 (2). Since there is

a stable map/: 2CP •—> RP so that /*(a2f+') = k'' we see that

We return to the proof of 3.1. Note that A2/j-i^4/j-i^i V = ^ since 2(2« -1)

+ l=4n-l. Thus

Z ^2"I- I^A2n-l-V4-i-2/+l?V2/-lV - ^«-1(^411+ l)V

by 4.3.  Hence <i(X2n)A/ = ^2/1-1(^0^/ + (^4n+i)A/') + c' where c' G

A(2« - 2).  Putting all of this together, we see that d(\2nkj + X2b-ia/) =

\m-i(d^j + AoA/ + «) + ^2nd^i + c" where c" G A(2n - 2) and this proves the

proposition.

4. The chain complex A(F„) = A(W„+1/W„). Let A(F„) be the quotient

chain complex of the map/„. Then A(F„) = k2 ®4=i X4„+fA(8n + 2f) ©

«10/=-! A4n+iA(8n + 2/) and A(F„) receives a differential from A(Wn+1).

The differential is calculated by the following composite A(F„) A(Wn+1)

A(W„+1)     A(Fn) where 1 is the vector space inclusion and p is the projection.

The exact form of this differential is very complicated and we will not need it.

Let

A(C„) = k2 © [f\4„+1 © A4n + 3)A(8" " 2) © (A4„ + 2 + A4„ + 4)A(8")]

+ »c, ©[OWi © A4n+i)A(8" - 2) © (X4„ + X4„+2)A(8«)].

Let g: A(C„) —>• A(FJ be given by

SiKiQ^4n + 2jh + A4n + 2/-lA/)) = K/(A4n + 2/A/ A4n + 2/-l(A8n+1V + \r))

for / = 1, 2, / = 2 and / = 1, i = 1 and where X7- is zero unless \j = X8nX/-;

\j E A(8 n) and \j E A(8« - 2);

^(k1(X4„X/ + X4„_jX7)) = k^X^Xy + X^^X,).

Lemma 4.1. dg C im g.
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Proof. The d in A(Fn) is calculated by retracting A(Fn) into A(Wn+,),

calculating d in A(Wn+,) and projecting back to A(F„). When this is done for

the image of g we get the following formulae:

<fcK2X4„ + 4X/ = K2(A4n+4rfX7 + X4„+3(X0A/ + (^8n+i)V

+ Kl(X4n + 2(X2X/ + XlX8n + lfy) + e/tX4/i + lX3X/

+ X4„(X4 x7 + X3X8n+ ̂0)

where en = (m) mod 2 and where X7- = 0 unless X7 = X8nX/>.

cffeK2X4„+3X/) = «.(X^+jX, + X4„X3)X, + K2X4n+3dX/,

d(?K2X4n+2X/) = K2(X4n+2dX7 + X4n+1(X0X/ + (^X8„+1)X7. + X8„+1(iX/0)

+ Ki(X4n+lXlX/ + X4/j(X2X/ + XlX8n+lV) + X4n-lX3X/)>

d(gn2\dn+1Xj) = K2lAn+1d\j + K1X4nX1X/,

c?(gK1X4n+2X/) = K1(X4n+1(X0X/ + c?(X8n+1)X/0 + X4n_1X2X/ + X4n+2c?X/)

+ X4n-l(XlX8n+l + dX8n + 3)V'

d(?K1X4n+1X/) = K1(X4n+1dX/ + x4lf_1x1x/),

dfeK1X4„X/) = k1(X4„c?X/ + X4„_1(X0XJ + dX8n+,XJ0),

rffeKlX47i-lV) = KlX4n-ldX/-

To see this observe that ^(k/X4„+1)X/ in A(Wn+1) involves terms of the form

K/X4n-pXp+f-lX/ or' if' = 2> termS like K/-lX4n-pXp+iV If / ^ 1 and ' is

neither 0 nor 2, terms such as these, when made admissible, project to zero in

Äff,,). Indeed, X4„_pXp+fXJ C A(4/i - i - 1) UA(4« - p) C A(4/j - 2) except

for the above exceptions. In the case of exceptions when i = 0 the argument is

just that of §3. When / = 2 we see that

PK1£fX4n+1X8„+1 =2Z(4n +.1 ~'^1x4„_1x8n_2f+3x2<_1.

Also dX8n+3 = 2(8"+i3-f)X8„+3_,\_1.  The argument from Lemma 3.5

shows that these are the same and thus pk1d(\4n+1)kSn+1 =

"l^n-i^i^n+i * ^8«+3))- Fh"8 we see *hat m ^ cases *he above for-

mulae describe what happens.

It is a simple direct verification now that dg C im g. We will do the first one

term by term. Suppose that X/ = X8„X7'. The other case is easier. Consider
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K2(A4n + 4('-7A8ri)A/' + A8ndV) + ^4n + 3&0^&nh' + dA8/i+lV + A8n+l^V)-

The classes (c?X8„)X/' C A(8« - 1) by (3.5). The class

AoA8«V + 0^8« +i)V CA(8« -2)

by (3.4). Thus the above term is gin2rK4n+4(a + \Bnd\f) + X4n+3(£))) where

a G A(8n - 1) and b G A(8« - 2). The class k2X4„+2^1^/ is handled by not-

ing that XxXr C A(8/i - 2) C A(8«). Continuing with the terms of dgn2'\4n+4Xj

we see X2X, c A(8w - 3) c A(8n); XjX8„+1X/- c X^i&n + 1) c A(8« - 1);

X3X, C A(8n - 4) C A(8« - 2); X4X7 C A(8« - 5) C A(8n); X3A(8n + 1) C

A(8n - 3) C A(8«). All the other cases are similarly handled. This proves the

lemma.

A key step in the proof of 2.2 is the following result.

Lemma 4.2. For a fixed t, if Theorem 3 is true for all t' < t, then g induces

an isomorphism in homology for 6s > t + 3 - 12«.

Proof. We will filter the map g in the following fashion.

Ai ="i(A4„ ,A(8«-2)©X4nA(8«))-i>/c1(X4„_1A(8/i-2)©X4nA(8«)) = 51)

n n
2

A2=AX ©K1(X4„+1A(8/!-2)©X4n + 2A(8rt))->/c1 © \4n+iA(8n + 2i) = B2,
i=~l

A3=A2 ©K2(X4n+1A(8/2-2)©X4„+2A(8«))

— B2 © k2 0 X4n + 1A(8« + 20 = B3,
i=l

A4= A(C„)     A(F„) = fi4.

For the resulting spectral sequence we see that ^''''(C) = (A^JAjf'* =

As-i >*-**-*i(Win] where e( = 0, -2, -3, -5 for i = 1, 2, 3,4 respectively. Also

£$f-'(F) = <Bl+1/5,),■, = As~1,f_4"~e''(H/2„+6.) where e, is as above and 5,. =

0, 1, 1, 2 for / = 1, 2, 3, 4 respectively. The map g induces

gi:Es6t\C)-+EV-XF)

andfj is an isomorphism,^ and£3 are/2n and#4 is/2„+1 °/2„. These are

quite easily seen but let us look at g4.

£4(K2X4n+3a + ^4„+4x8n+8ö + X4fI+4c)

= "2(X4n+3a + X4„+4X8„+8 + X4n+3X8n+9£> + X4n+4c)

and this is just what/2n does. The second inclusion is just the identity.

If Theorem 3 is true for t' < t, then g induces an isomorphism at the E{
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level, g^-^C) - £^,f''(F) for all / if 6s > / - I2n + 24. Thus gm is an iso-

morphism for all i, if 6s > / - 12« + 30.

This proves the lemma.

5.  A second auxilary complex. The complex A(Cn) does not represent any-

thing geometric that has been identified. It was introduced because it also is

comparable with an identifiable stable complex.

The following is an easy exercise in stable homotopy.

Proposition 5.1. Let Ax be the subalgebra of A, the Steenrod algebra, gen-

erated by Sq1 and Sq2. There is a space X such that H*(X) is a free module

over Ax on one generator x.

Proof. Take K(Z2, n) for n > 6 and kill Sq*, Sq4Sq2 and everything in

dimension above n + 6. The resulting space is X.

There is a choice of X so that Sq4Sq2x = 0 and one in which Sq4Sq2x =

Sq3Sq3x. Let Xx have Sq4Sq2x # 0 and X2 have Sq4Sq2x = 0. In both Xk

we require Sq6x = 0.

Proposition 5.2. A(XK) = ©-=1 <&j±2i-3 KtJA with

^(K2,4) = K2,3X0 + K2,2A1 +K1,2A2 + (^)mod 2 K1,1A3 +K1,0A4>

d(K2,3) = ,cl,2Al + K1,0X3>

d(n2>2) = K2i,A0 + "i ,1 Al + Ki,oA2 + Kl,-lh>

d(.K2,0 = Kl,0Xl>

tf(Kl,2) = Kl,lX0 + K1,-1X2»

*l,o)"*lrlV

Proof. The L.C.S. Ex term for a stable complex is given by Ht(X; Z2) ®

A and the differential is given by d(a ® 1) = S,^* a ® X,., where Sq+:

Hj(X; Z2) —> Hj^X; Z2) is the dual Steenrod square. A direct check of the

squaring operations in A, gives the result. The following picture may help the

reader. Each 0 represents a cell and 0-0 represents Sq1 and 0 0 represents Sq2.

Note that there are several other 5c74's nonzero in the complex. Since Sqs +

Sq4Sq1 = Sq2Sq3 and Sq2Sq3 # 0 and Sq1Sq4x = 0, we see that Sq4Sq1x ±

0. Since Sq6 = SqsSqi + Sq2Sq4 and SqsSq1 ± 0 we see that Sq6 = 0 im-

plies Sq4x   0. These are reflected in the differentials given above.

Let g: A(C„) —► A(X^), where («) is the congruence class of n mod 2, be

given by:
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*K/A4n + 2iA/ = Kj,2ih + K2,2/-lX8n+lV. / = 2, ' = L 2;/ = L * = 0.

£Kj.A4„ + 2X, = Kli2A/ + Ki,lA8/i + lV + k1,-1a8ji + 3a/''

where X/- •= 0 unless X7 = X^X/-; and c?K/X4n+2f_1X/ = K/^f-iA/-

k(Sq4)-,

Figure 1. H*(X)

Proposition 53. g is a chain map.

Proof. This is a direct comparison of the two sets of formulae.

Analogously to Lemma 4.2 we have

Lemma 5.4. For a fixed t, if Theorem 3 is true for t' < t, then g induces an

isomorphism in homology for 6s > t + 3 - 12n.

The proof follows closely to that of Lemma 4.2.

6. Proof of Theorem 3. The last step in the proof of Theorem 3 is the fol-

lowing:

Proposition 6.1 [3, Corollary 4]. Hst(A(Xfny d)) = 0 if 6s> t - 4n

+ 14.

Now the proof of Theorem 3 follows easily. First note that Theorem 3 is

true if t = 1. Then note that the case n = 1 is not needed in the induction and

thus

{(s, t); 6s > t + 30 - 12«} D {(s, t); 6s > t - 14« + 14}  if « > 1.

The first is when Hs t(A(X(n), d)) ^Es2J(Fn) (4.2 and 5.4) and the second is

when the left-hand side is isomorphic to zero (6.1).
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