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SOME C*-ALGEBRAS WITH A SINGLE GENERATOR*1 )

BY

CATHERINE L. OLSEN AND WILLIAM R. ZAME

ABSTRACT. This paper grew out of the following question: If X is a com-

pact subset of Cn, is C(X) ® M„ (the C*-algebra of n x n matrices with entries

from C(X)) singly generated?  It is shown that the answer is affirmative; in fact,

A ® M„ is singly generated whenever A is a C*-algebra with identity, generated

by a set of n(n + l)/2 elements of which n(n - l)/2 are selfadjoint.  If A is a

separable C*-algebra with identity, then A ® K  and A ® U   are shown to be sing-

ly generated, where K is the algebra of compact operators in a separable, infinite-

dimensional Hubert space, and U is any UHF algebra.  In all these cases, the gen-

erator is explicitly constructed.

1. Introduction. This paper grew out of a question raised by Claude Scho-

chet and communicated to us by J. A. Deddens: If X is a compact subset of C,

is C(X) ® M„ (the C*-algebra ofnxn matrices with entries from C(X)) singly

generated? We show that the answer is affirmative; in fact, A ® Mn is singly gen-

erated whenever A is a C*-algebra with identity, generated by a set of n(n + l)/2

elements of which n(n - l)/2 are selfadjoint. Working towards a converse, we

show that A ® M2 need not be singly generated if A is generated by a set con-

sisting of four elements. If A lacks an identity, our results are weaker, and we

obtain them only in the commutative case.

Informally, one might say that there are enough degrees of freedom in M„

to allow a small generating set for A to be combined into a single generator for

A ® M„. For countably generated A we prove two natural infinite analogs: If A

is any separable C*-algebra with identity, then A ® K and A ® U are singly gen-

erated, where K is the algebra of compact operators on a separable, infinite-di-

mensional Hubert space and where U is any UHF algebra. In all these cases, we

explicitly construct a generator.

Single generators for C*-algebras and for von Neumann algebras have been

studied by R. G. Douglas, C. Pearcy, T. Saitô, N. Suzuki, D. Topping, W. Wogen
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and others (see [5], [8]—[10], [12]—[16]). Our results generalize some of this

work.

Throughout, we write M„ for the C*-algebra of « x « scalar matrices. If A

is any C*-algebra then the elements of A ® M„ may be viewed as « x « matrices

with entries from A. If F,, .. . , Bk are elements of the C*-algebra 8, then by

C*(F,, . . . , Bk) we mean the C*-subalgebra generated by F,, . . . , Bk. We

write o(B) for the spectrum of F G 8. For general facts about C*-algebras, the

reader is referred to [4] or [11].

2. Matrix algebras.

Theorem 1. lei A be a C*-algebra with identity which is generated by a

set ofn(n + l)/2 elements, of which «(« - l)/2 are selfadjoint. Then A ® Mn

has a single generator.

Proof. Suppose that {a,,a2, . . . ,a„, o,.bn(n-i)/2} k a generating

set for A, where each b¡ is selfadjoint. By translating with scalar multiples of 1A ,

we can assume that each b- is positive, that all the generators are invertible, and

that their spectra are contained in disjoint discs in C Our generator for A ® Mrt

will be the upper triangular matrix:

Ô,    b2    ...   b„_x

T =

bn     • • •    b2n-3

b«tn-n(n-l)/2i

\0     0     0     ...   a„

It suffices to show that C*(T) contains all the matrices of the form:

Ai

0    0    ...   0

(for 1 < i <«, 1 </<«(« - l)/2) and all the elementary matrices Ekm, where

Ekm has 1A in the kth row and mth column and zeros elsewhere (for 1 < k < m,

1 < m < n).

Observe first that o(T) C \Ja(a¡). Since the spectra of the a¡ axe in disjoint

discs in C, we can find [5, p. 22] a sequence {ps} of complex polynomials which

converge uniformly on some neighborhood of o(T) to a function /which is 1

near o(ax) and 0 near a(a¡) for i # 1. Using the analytic functional calculus, we

conclude that {ps(T)} converges uniformly to an element f(T) E C*(T). Also,
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{ps(a¡)) converges in A to f(a¡), where f(ax) = 1A , f(a¡) = 0 for i =s* 1. Now, for

each s, ps(T) has the form

PmK))

with some elements of A above the diagonal. Thus

f(af) *
*

0

fK)

A direct calculation shows that [f(T)]n[f(T)*]n has a nonzero entry only

in the upper left-hand corner, and that entry is of the form 1A + p where p is a

positive element of A. Since 1A + p is invertible in A, it follows that 1A G

C*(1A + p) G A. Hence Ex x G C*(T). This means that

T-EXXT =

bn(n-l)/2

0   0    0      ...a,

is in C*(T). Now we can imitate the preceding argument to get E22 G C*(T).

Then T-ExlT-E22TG C*(T), and continuing in this fashion, we get E¡¡ G

C*(T), 1 < i < n.

From these, we obtain the following elements of C*(T):

rô   bx   0   ...
0   0     0    ...

V0   0     0   . . .   0i
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fb\   0   ...   ON
0     0    ...   0

(ExxTE22)(ExxTE22f =

KO 0    ...   0,
and

fbx 0    ...   0\

0 0    ...   0

[(F,XTE22)(EXXTE22)*]>=[   • • ]=/?,

\0     0    ...   0>

Since fi, is invertible in A, b\x E C*(bx); by multiplying

(b\x    0   ...   0\      /O   Ô,    0    ...   ON

o      o...o\/oo    0   . . .   0 (

|=F,2,

0     0    ...   0>

we conclude that F12 G C*(T).

Similar arguments show that each A¡, F;-, and Ekm is in C*(T). We con-

clude that C*(T) = A ® M„, as desired.

As an immediate corollary, we have an affirmative answer to the question

raised by Schochet.

Corollary 2. If X is a compact subset of C", then C(X) ® M„ is singly

generated.

Proof. This follows immediately from Theorem 1. We note that, if X is

appropriately translated, then a simple generator for C(X) ® M„ is

1     0     0

z2    1     0

F =

0      2,

^     0     0     ...   0

Remark 3. The proof of Theorem 1 works equally well when A is a von

Neumann algebra and we interpret generation in the sense of von Neumann alge-

bras. This result for von Neumann algebras and the following corollary genera-

lize theorems of W. Wogen [16].
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Corollary 4. If A is a finitely generated C*-algebra with identity (resp.

von Neumann algebra) and A - A ® M„ for some n, then A has a single genera-

tor.

We do not know whether these are the best possible results. This issue is

settled for C(X) ® M2 by the following theorem, first proved by Donald Hadwin.

Theorem 5. If C(X) ® M2 is singly generated, then X is homeomorphic to

a subset ofC2 x R, and C(X) is generated by a set of 3 elements of which one

is selfadjoint.

Proof. We will view C(X) ® M2 as the algebra of continuous functions

from X into M2 (with the usual topology). Let T be a generator for C(X) ® M2.

If x and y are distinct points of X then there is a polynomial in T and T* whose

value at x is close to the zero matrix and whose value at y is close to the identity

matrix; it follows that the matrices T(x) and T(y) are not unitarily equivalent.

Moreover, since T generates C(X) ® M2 it follows that T(z) generates M2 for

each zGX; i.e., T(z) is an irreducible matrix. It is well known [1] that each irre-

ducible 2x2 complex matrix is unitarily equivalent to a matrix of the form

\0   ßl

where a, ß G C, p > 0, and that this representation is unique up to the interchange

of a and ß.  Let tr(4) denote the trace of A. Note that a + ß = tr(A), a2 +

ß2 = tr(A2), lal2 + \ß\2 + p2 = tr(A*A). Since the trace is invariant under uni-

tary equivalence, it follows that the map <p: X —► C2 x R defined by

tfx) = (tr(r(*)), tr(7Xx)2), tr(r(*)*r(x)))

is a continuous one-one mapping and thus a homeomorphism. Since the coordi-

nate functions generate C(y(X)), which is isomorphic to C(X), the proof is com-

plete.

For a C*-algebra without identity, the situation is more complicated and we

obtain results only in the commutative case. If A is a commutative C*-algebra,

we identify A with CQ(Y) for some locally compact Hausdorff space Y. Suppose

that A = CQ(Y) is generated by the set {ax,. . . , ak) of k functions. Since these

functions must separate the points of Y from 0,/= *L\a¡\ is a strictly positive

function in C0(Y). Set b¡ = Re(a¡) + \\a¡\\ + l,c¡ = lm(a¡) + b,l + 1 for each

i; each b¡ and c¡ is then a strictly positive, continuous function on Y (although

not in C0(Y) of course). The Stone-Weierstrass theorem now shows that the set

{f,fb\,fcx, . . . ,fbk,fck) of 2k + 1 strictly positive functions generates C0(Y).

(In general it will not be possible to obtain a set of 2k strictly positive generators:
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consider the closed unit disc minus the origin.)  In view of these observations we

formulate our next result as follows.

Theorem 6. // Y is a locally compact Hausdorff space and C0(Y) is genera-

ted by a set of2+ n(n - l)/2 strictly positive functions, then C0(Y) ® M„ is

singly generated.

Proof. Write 2 + «(« - l)/2 = m and let [ax,a2.am} be a set of

strictly positive functions which generates C0(Y). Set b = ax + ia2. We will

show that the matrix

«3

0

0

ln + 2

F =

v0   0    0        ...   0
generates C0(Y) ® M„.

To begin, we remark that, if /is any strictly positive function in CQ(Y),

then the closed subalgebra generated by / is a C*-subalgebra and contains a se-

quence {hk} of strictly positive functions such that {hkf} is an approximate iden-

tity for C0(Y). Now,

fg   o
0   0

T"(T")* = Í

where g is a strictly positive function. The above remark implies that C*(T) con-

tains matrices

0    .

0    .

where {uk} is an approximate identity for CQ(Y). Hence, UkT converges to an

element S of C*(T) where

Then

a3   fl4    • • •   an +

0   0     0     ...   0

\o   0    0     ...   0
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(T-sy
-2

and

[(T-S)"-2(T*-S*)"~2]Vl =

.0    0   0    ...   0

where h is some strictly positive function in C0(Y). Arguing as above, we see

that C*(T) contains matrices

'Ô   0     0

0    vk    0    ...   0

0   0     0    ...   0
vk= '

sO   0     0   ...   0/

where {vk) is an approximate identity for C0(Y). Then, {SVk) converges to

R G C*(T) where

/0   a3    0    ... 0\

R=\

0    0     0

0     0

and thus C*(T) contains

(a3   0   ...   ON

0     0    . . .   0

A3 = (RR*)* =

SO     0    . . .    0,

Using our initial remark, we conclude that C*(T) contains matrices
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0

0

^0     0   ...   0/

where {hka3} is an approximate identity for C0(Y). Then

A)   V3    0
0   0

HkAz

M„

is also in C*(T). We continue this process and complete the proof as for Theo-

rem 1, with a sequence of matrices which have the elements of an approximate

identity for A in the ith row and /th column (such as {Vk} and {HjçA^}) playing

the role of the elementary matrices used in Theorem 1.

Corollary 7. // Y is a locally compact subset of C", then C0(Y) ®

has a single generator whenever n > 5.

Proof. For a locally compact Y C C", C0(Y) can always be generated by

a set of 2« + 1 strictly positive functions: let / be a strictly positive function in

C0(Y), and translate F so that the real coordinate functions x,, . . . ,x2n are

strictly positive. Then {f,fxx, . . . , fx2n} generates C0(Y). If « > 5, then

2n + 1 < 2 + «(« - l)/2.

3. Infinite-dimensional algebras. In this section we establish two infinite anaj

logs of the results of §2. Let K he the C*-algebra of compact operators on a

separable, infinite-dimensional Hubert space ff.

Theorem 8.// A isa separable C*-algebra with identity, then the C* ten-

sor product A ® K has a single generator.

Proof. The algebra A is generated by a countable set {an} of elements,

and we can assume these are selfadjoint. Using scalar multiplication and translat-

ing by scalar multiples of 1A , we assume without loss of generality that o(an) C

[2~2"~x, 2~2n], for each «. In particular, each a„ is positive and invertible.

We first describe a generating set for A ® K consisting of two elements A

and B. Let {en} be an orthonormal basis for fi.  Let Ff/- G K be defined by

Eyiej) = e„ and E(j(ek) - 0 if k *j. Now, lla„ ® F„„ll = lla„ll IIF„„II < 2~2n\

so the series 2™_, an ® Enn converges in norm to a positive element A E A ®



SOME C -ALGEBRAS WITH A SINGLE GENERATOR 213

K. Let S G K be the weighted backward shift defined by Sen = n~xen~x, for n >

2, and Sex = 0. Set B = 1A ® S. We claim that C*(A, B) = A ® K.

Observe first that since S is irreducible, C*(S) = K. Thus 1A ® K G

C*(A, B) for each K G K. Since

"m ® Al =Oa ® *1*)0a   ® ̂ „MU  ® ̂ i),

we conclude that am® EXXG C*(A, B), each m, and therefore a ® Exx G

C*(A, B) for each a G A. But then, for any a G A,

a ® E¡¡ = (1 ® £n)(fl ® £, ,)(fl ® Fi;)

is in C*(A,B), and linear combinations of such elements are dense in A ® K.

Thus our claim is proved.

We now note the following isometric *-isomorphisms of C   tensor products:

(A ® K) ® M2 ~ A ® (K ® M2) ̂  A ® K.

Thus it suffices to exhibit a single generator for this first algebra, which we will

identify "with the 2 x 2 matrices whose entries lie in A ® K. Our generator is

ÍB  a\
T=l

\0       0;

Now

where

TT*

AA* + BB* = Hal ® Enn + 1A  ® !,*-%„

= Zi(^+»"2lA)®£'nJ-
Notice that

o(a2n +n~2lA)G [2~4n-2 + n2, 2~4n + n~2]

and that these are disjoint intervals. Furthermore,

o(AA* + BB*) = \Jo(a2n +n_2lA) U {0}.

Thus the characteristic function of o(a2 + n~21A ) is continuous on o(AA* +BB*);

so using the functional calculus, we obtain 1A  ® Enn G C*(AA* + BB*), for

each n.

In particular, this means that Uk = 1A ® Zkn=xEnn is in C*(AA* + BB*).

Furthermore, {Uk) forms a positive approximate identity for A ® K', so we con-

clude that
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JBÁ)ñ > n
\0    0/ \0      0/       \0    0/

is in C*(F). Thus C*(T) contains (° ¡J), (^ * °) and (£ g) since A is positive.

Hence, if Xk = ïkn=xa~x ® Enn then

/* °\ /o A m /° "A

\0      0/ \0   0/       \0   0 /
is in C*(T) for each i. Finally, as in previous proofs, it is clear that the 2 x 2

matrices over A ® K are generated by the set

^0    0/    \0   0

and the proof is complete.

Recall that a uniformly hyperfinite (UHF) algebra of type {pn} is a C*-al-

gebra Ü, which is the closure of the union of an increasing sequence M, C M2 C

... of C*-subalgebras containing 1 ü, where each M„ is isomorphic to M . For

each«, pn dividesp„ + x [7].

Theorem 9. Let A be a separable C*-algebra with identity and let U be a

UHF algebra.   Then A ® U is singly generated.

Proof. We will give a detailed proof only when U is of type {2"}. In the

general case, we exhibit the generator.

Since any two UHF algebras having the same type are isomorphic [7], it

suffices to construct a convenient representation U of a type {2"} algebra and

then exhibit a generator for A ® Ü. To this end, let H he a separable, infinite-

dimensional Hubert space, and let EXX,EX2 he infinite-rank projections such that

F, ,F, 2 = 0, F,, + F, 2 = /.  Choose a partial isometry Ux such that Ux U* =

F,,, U*UX = F, 2. Now choose infinite-rank projections E2 x and E2 2 such that

E2XE22 =0 and F2, + E22 = F,2, and a partial isometry U2 such that

U2U* = E2X and tV*<72 = F22. Continuing, we obtain partial isometries U3,

U4, . . . . Let U be the C*-subalgebra of 8(H) generated by Ux, U2, . . . ; then

U is a UHF algebra of type {2"} [15, p. 81].

The algebra A is generated by a countable set {a,, a2, . . . } of selfadjoint

elements. As in previous proofs, we can assume that each A- is positive and in-

vertible, and that a(an) C [2~2n~x, T2n\ for each n.  Our generator for A ® U

is

F= Z [(«„ ® UnU*n) + (2-"lA ® Un)\,
n=l

this series is absolutely convergent since

ll(a„ ® UnU*) + (2-"lA ® Un)\\ < lla„ll WU„U*\\ + rnWHl < 2~2n + 2~n.
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The element T is like the infinite operator matrix of Figure 1, although to

interpret this literally as a representation of T would lead to confusion.

1
2

1
4

Figure 1

In order to show that T generates A ® U, it suffices to show that C*(T)

contains 1A ® U¡ and a¡ ® 1A for each i,j.

Now, Pj = 1A ® Ux U* and Qx = 1A ® U*UX are orthogonal projections

in A ® U with sum lAm .  Furthermore, Px TPX = ax ® UXUX, Px TQX =

2"11A ® Ux and Qx TPX - 0.  In effect, T is "upper triangular" relative to the

decomposition 1A8(J = Px + Qx. This implies that

o(T) C o(ax ® C/, C/,*) U o(Qx TQf)

C[2"3,2-2]U o(QxTQx).
Now

Qx TQX = E [(an ® i/„ £/„*) + (2-» 1A ® C/„)]
n=2

and P2 = 1A ® U2U* and Q2 = 1A ® U*U2 are orthogonal projections in A ®

U, with sum Q, = 1A ® U*UX. Furthermore,

PiÖi TQXP2 = P2 TP2 =a2®U2 U*,

Q2QiTQlP2 = Q2TP2 = 0,

so that

Thus

0(0, Tg,) C o(fl2 ® J72 Í/*) U o(Q2 TQf)

G[2~s,2-4]KJa(Q2TQf).

o(T) C [2~3, 2~2] U [2-5, 2~4] U o(Q2TQf).
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If we define Pn = 1A ® UnU*, Qn = 1A ® U*Un for each n and continue

in this way, we get

o(T) C Ü [2-2k-x,2-2k]Uo(QnTQn).
k=ï

Since \\Qn TQJ —* 0, we have
oc

0(7) C U[2~2*_I,2-2*]U{0}.
k=i

We can also conclude that, for each n,

00

o(Ô„7(2„) C U [2-2*-1, 2~2k] U {0} C [0, 2"2*].
k>n

Now, since T = ax ® Ux U* + 2~x 1A ® Ux + Qx TQX, direct computation

shows that, for any polynomials q,

q(T) = q(fif) ®UxUx* + b®Ux+ q(Qx TQf),

where this is also "upper triangular", and b is some element of A. Choose a se-

quence {qn) of polynomials such that qn —► 1 uniformly on a neighborhood of

[2~3,2~2] and such that qn —* 0 uniformly on a neighborhood of [0, 2~4].

Then q„(T) and qn(af) converge to elements of A ® U and U respectively, and

qn(QxTQf) converges to zero. Thus

qn(T)^S^lA ®UxUx* + c®Ux

in C*(T), for some c G A. Then 55* = (1A 4- cc*) ® UXUX, so that C*(SS*)

contains 1A ® UXU*. Hence C*(T) also contains a x ® UXUX, 1A ® Ux and

QXTQX. Therefore C*(T) contains

ax ® U*UX = (1A ® U*)(ax ® Ux U*)(1A  ® C/,)

and

ai ® U = ai ® ̂ r^i + ai ® ui Ui-

We now apply the same analysis to QXTQX to conclude that C*(T) contains

h ® U2,a2® U*UX = a2 ® £/2*f72 +a2 ® ^2^2*' and 02^02- But then

C*(T) contains

a2 ® UXU*=(1A ® i/x)^ ® »yfiyjXlA ® U*),

so a2 ® 1A G C*(T). To complete the proof, we need only analyze Q2TQ2,

Q3TQ3,.\. in turn.

For the general case, we construct a UHF algebra of type {pn). On a sepa-

rable Hubert space H, choose infinite-rank projectionsExx,Ex2,.. . ,EXp   such

that ExjEXk = 0iij^k and ~ZE¡¡ = I. Choose partial isometries UX2, Ux3,.. .,

UXpi such that Ux*Uxj = Exj and UxjUxj = Exx for each/. Set q2 = p2lpx

and choose infinite-rank projections E2x,... ,E2q   such that EyE2k = 0 if/ #
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k and SF2/- = EXp . Choose partial isometries U22,U23, . . . , U2q2 such that

U*U2]- = E2j- and U2jU2¡ = E2X for each/. Continuing in this fashion, we ob-

tain a family {U¡A of partial isometries where 1 < i < °°, 1 </ < q¡ (qx = px).

Then the C*-subalgebra U of 8(H) generated by {U¡¡} is a UHF algebra of type

{pn}. Let {a«: 1 < i < °°, 1 </ < q¡} he a set of positive, invertible elements

that generates A, and with a(afj) C [2_2''_2/_1, 2-2''-''], each /,/. Then our gen-

erator for A ® (J is

T=    £   (aii®Elj)+    Z   &-'-%  ®Ut¡).
K/<°» l</<«
i <j<q¡ Kj<Qi

We omit the proof that C*(T) = A ® U.

Remark 10. The existence of a single generator for a UHF algebra was es-

tablished by D. Topping [14]. For A = C, Theorem 10 yields an explicit con-

struction of such a generator; as far as we know, this is the first explicit construc-

tion of such a generator.
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