
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 215, 1976

INVOLUTIONS ON HOMOTOPY SPHERES

AND THEIR GLUING DIFFEOMORPHISMS

BY

CHAO-CHU LIANG

ABSTRACT.   Let hS(P2n+X) denote the set of equivalence classes of

smooth fixed-point free involutions on (2n + l)-dimensional homotopy spheres.

Browder and Livesay defined an invariant a(L2"+1, T) for each (S2"+1, T) e

hS(P2n+X), where a e Z if n is odd, a e Z2 if n is even.  They showed that for

n > 3, o(22" + 1, T) = 0 if and only if (L2"+1, T) admits a codim 1 invariant

sphere.   For any (E , 7"), there exists an .4-equivariant diffeomorphism /of

S" X S" such that (E2"+1, 7") = (Sn X £>"+1, .4) U^ (Dn+1 x Sn, A), where

^ denotes the antipodal map.   Let ß(f) = a(22"+1, 7").  In the case n is odd,

we can show that the Browder-Livesay invariant is additive: "ß(fg) = ß(f) +

ß(g)".  But if n is even, then there exists / and g such that ß(gf) = ß(g) + ß(f) *

ß(fg).  Let Dq(s" x s", .4) be the group of concordance classes of .4-equivariant

diffeomorphisms which are homotopic to the identity map of S    x S . We can

prove that "For n = 0, 1, 2 mod 4, hS(P n    ) is in 1-1 correspondence with a

subgroup of Dq(s" x Sn, A)".  As an application of these theorems, we demon-

strated that "Let E0        denote the generator of bPsk+^.  Then the number of

(28fc+3> Tys ^jj o(28fc+3( TX _ 0 ¡s either 0 Qr equa, tQ the number of

(SSk+3, T)'s with o(SSk+3, T) = 0, where sSk+3 denotes the standard sphere".

0. Introduction.  In [7], [8], Browder and Livesay studied differentiable

fixed-point free involutions on homotopy spheres.  They defined the Browder-

Livesay desuspension invariant o for each free involution (2m, T): a(2m, T) = 0,

for m even; o(2m, T) G Z, for m = Ak + 3; o(Sm, T) G Z2, for m = 4k + 1.

For i« > 6, they proved that a(2m, T) = 0 if and only if (2m, T) admits a

codim 1 invariant subsphere (Sm~x, T\Sm~x) embedded in it. It was shown by

several people that all these desuspension invariants can be realized, [2], [6],

[21], [33], and [34] etc.

Livesay and Thomas, [20], showed that any (22" + 1, T) can be obtained by

gluing (Sn x Dn + X,A) and (Dn+X x Sn,A) together by an ¿-equivariant diffeo-

morphism / of their boundaries, where A is the antipodal map. We shall denote

this (S2"+1, T) by (2f, Tf). The purpose of this paper is to investigate the rela-
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tion between the free involutions on odd dimensional homotopy spheres and their

gluing diffeomorphisms.

Let A denote the antipodal map on S" x S", defined by A(x,y) = (—x, —y)

for (x, y)ESn x Sn. An ^-equivariant map /: S" x S" -* S" x S" is a map

such that fA = Af, we shall call / an A -map. An A -map / induces a map /':

Sn x S"IA -*■ Sn x Sn/A, where S" x Sn/A denotes the orbit space of Sn x S"

under the action of A. Iff' is a diffeomorphism (or a homotopy equivalence), we

will call / an A -diffeomorphism (or an A -homotopy equivalence). Considering the

action of A x identity on S" x S" x [0, 1], we have the notion of A -homotopy

and A -concordance etc. (see §2 below).

Let D(Sn x S",A) denote the group of .4-concordance classes of A -diffeo-

morphisms of S" x S". Define T2„+1 = {fED(Sn x 5",^)|/is homotopic to

identity}, (but /might not be A -homotopic to identity). J2n + X is a subgroup of

D(Sn x Sn,A). We will show that the gluing diffeomorphism can always be

chosen from J2n + X, (§4).

Two involutions (2, 7) and (2\ 7') are called equivalent, (2, 7) = (2\ 7'),

if there exists an orientation-preserving diffeomorphism /: 2 -»■ 2' such that f°T

= T' of  Let hS(P2n + x) denote the set of homotopy smoothings of 72" + 1, [34],

which is also the set of equivalence classes of differentiable free involutions on

(2« + l)-homotopy spheres, [21].  In §5 below, we will prove that for n = 0,1,2

mod 4, hS(P2n + x) is in 1-1 correspondence with a subgroup G2n+X ofJ2n+x.

Thus, in these cases, hS(P2n + x) forms a group by carrying over the composition

law of diffeomorphisms in C2„ + 1.

Also, we will show in Theorem 6.15 below that the Browder-Livesay index

invariant is additive.  For m = 4k + 3,f and g G 7m, we have 0(2^-, T¡) +

0(2,, Tg) = ciS,,, Tfg).
From Theorems 5.2 and 6.15, we can deduce the following theorem con-

cerning the curious involutions in the sense of [13]. Let 2£ denote the generator

of bPn + x, [17]. 5" denotes the standard sphere.

Theorem 8.2. For n = 8k + 3, the number of curious involutions (2£, 7)

with of2g, 7) = 0 is either 0 or equal to the number of involutions (Sn, 7) with

a(Sn,T) = 0.

Everything considered here is assumed to be in the smooth category.

This paper is essentially the author's doctoral thesis written at Cornell Uni-

versity. I wish to thank my thesis advisor, Professor G. R. Livesay, for his con-

stant help and encouragement. I also wish to thank Professors I. Berstein,

P. J. Kahn, and H. C. Wang for many useful discussions.

1. Livesay-Thomas decomposition theorem. We have the following theorem

from [20].
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Theorem 1.1. For any free involution on a homotopy sphere (22n + x, T),

n>3, there exists an A-diffeomorphism g of Sn x S" such that (22n + x, T) =

(Sn x Dn+X,A) L)g (Dn + X x S",A), denoted by (2^, Tg).

Note. ML) N denotes a manifold obtained by gluing two manifolds M and

N together by a diffeomorphism g : M0 -*■ N0, where M0 G dM and N0 G dN.

We shall prove the following proposition in §4 below.

Proposition 1.2. For any (S2" + 1, T), where n¥=3,7, there existsan A-

diffeomorphism g of S" x S" such that g is homotopic to the identity and
(Z2n + x,T) = ÇZg,Tg).

Notation.  Let "~" denote homotopic, and "~-4" denote ¿-homotopic.

Lemma 1.3. If g is an A-diffeomorphism ofS" x S" such that g ~ Id

(the identity), then there exists a pair of A-homotopy equivalences fx,f2 ofS" x Sn

such that fx ~f2 ~ Id, where fx (ff) extends to an A-homotopy equivalence

hx(h2)ofSn xDn+x (Dn+X xSn);andg~A f2fx.

Proof.  Let /?• denote the projection of 5" x S" onto the ;'th factor Sf,

j = 1 or 2. Pj is ¿-equivariant: p¡(Ax, Ay) = A(pj(x, y)). Let g¡ = pf ° g.  We

define fx by fx(x, y) = (x, g2(x, y)). g~x is also an ¿-diffeomorphism. Let k¡ =

Pj °g~x. We define f3 by fAx, y) = (kx(x, y), y).

h ° i(x, y) = f3(gi(x, y),g2(x, y)) = (kx(gx(x, y),g2(x, y)),g2(x, y))

= (x, g2(x, v)) = /,(*, v).

fx and /3 are obviously ¿-maps.

Since g ~ Id, (x0, y) -*■ (x0,g2(x0, y)) is a degree 1 map of x0 x S" to

itself for each x0 G 5". Hence fx\x0 x S" -*x0 x S" is a homotopy equiva-

lence for each x0GS". We have a locally trivial fibre bundle S2 -*• S" x SnIA

-*■ S^/A, with base space SI ¡A and fibre 5^. The map /,': S" x Sn/A -»■ S" x

Sn¡A, induced by fx, is fibre preserving. The restriction of f\ to each fibre is a

homotopy equivalence. Hence f[ is a fibre homotopy equivalence by a theorem

of Dold [10], and so fx is an ¿-homotopy equivalence. Similarly, we can show

that /3 induces a fibre homotopy equivalence f'3 of the bundle S" -*■ Sn x S"¡A

-* S"/A. Let f2 be the fibre homotopy inverse of f'v and write f2 for the double

cover of/2 such that f2 is the ¿-homotopy inverse for /3. Now since f3° g = fx,

it follows that g ~^ /2/j.

Since the ¿-map g2: S" x S" -*■ S2 extends to an ¿-map g2: Sn x Dn+X

-*■ Dn+X by radial extension, we define an ¿-homotopy equivalence hx of 5" x

Dn+1 by hx(x, y) = (x, g2(x, y)). An ¿-homotopy equivalence h2 of Dn + X x

S" can be defined similarly. /, ~/2 ~ Id follows from [19, 2.5].   Q.E.D.
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Lemma 1.4. Suppose (22"+1, 7) = (2,, 7,) = 5" x Dn+X UH 5" x S"

x IL)g Dn + X x S" for an A-diffeomorphism g as in (1.2).  77ze« there exists an

equivariant homotopy equivalence F: (22"+x, 7) -> (S2n + x, A) = 5" x Dn + X

Uw S" x Sn x 7 Uw £)" + 1 x S" stxc/x that each summand is mapped into the

corresponding one by an A-homotopy equivalence.

Proof. For such an A -diffeomorphismg, there exists fx,f2,hx, h2 as in

(1.3). Write f2 x ,h2x for A -homotopy inverses of f2,h2. Let H he an A -homo-

topy between f2x ° g and fx with H(x, 0) = fx(x). We then define F = h,H,

h2x on each summand as follows:

(22n + 1,7) = 5" xD"+x  VldSn xS" xl UgDn + \ x S"

F *l H h2l

(S2n + x,A) = Sn xDn + x   uIdS" xS" xl uldDn+x xS"    Q.E.D.

An invariant m-manifold for (2fc, 7) is an embedded m-manifold Mm C 2*

which is invariant under 7.  An invariant Mm for (2k, 7) is called characteristic

if there is an equivariant map F: (2fe, 7) -*■ (SN', A), N>k, such that F is trans-

verse to SN+m-k C SN and F-x(SN+m-k) = Mn,m

Proposition 1.5. Let (22n + x, 7) = (2,, 7,) for an A-diffeomorphism g

as in (1.2). If one of fx, f2 corresponding to g in (1.3) is A-homotopic to Id,

then (22" + 1, 7) admits Sm, where m = 1, . . . , n, as characteristic spheres, such

that (Sm, T\Sm) is conjugate to (Sm, A).

Proof. Suppose fx ~A Id. We take 77 in (1.4) to be an A -homotopy between

f2x ° g and Id, and hx = Id. Let Sm = Sm x 0 C S" x Dn + X. From (1.4), we

see that F^OS"") = hxx(Sm) = Sm. Since hx = Id, (Sm, T\Sm) is equivalent to

(Sm,A).   Q.E.D.

Remark 1.6. In [6], Browder showed that there exists a smooth involu-

tion (2Qfc + 1, 70) which admits no m-dimensional homotopy sphere, m ¥= 4/ + 1,

as characteristic manifold. Hence, any ,4-diffeomorphism g of Sn x Sn such that

(2,, Tg) = (2*fe + 1, 70) is not yá-homotopic to the identity by (1.5).

2. Nonuniqueness of the decomposition. The decomposition for 022"+1,7)

in (1.1) is not unique: we may have different v4-diffeomorphisms / and g such

that (22n + 1, 7) = (2/, Tf) = (Zg, Tg). But we have the following

Proposition 2.1 [20]. For n > 3, (22" + 1, 7) = (2/5 Tf) = (2r 7,) ///

there exist A-diffeomorphisms 77: S" x Dn + X -»• S" x D"+x and K: Dn+X x S"

-+ Dn + X x S" such that, when we restrict our attention to the boundary, g = KfH.

Two diffeomorphisms /and g of a manifold M are called concordant, if

there exists a diffeomorphism 77: M x [0, 1] —► M x [0, 1] such that 77(jc, 0) =
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(f(x), 0), H(x, 1) = (g(x), I). Similarly, we have the notion of ¿-concordance

between two ¿-diffeomorphisms.  If/and g are ¿-concordant diffeomorphisms of

Sn x Sn, then (2L, TA = (2^, Tf), which can be seen by constructing an equi-

variant diffeomorphism F between them as follows:

(2/, Tf) = 5" x D" + x   ufSn x Sn x I uId Dn + X x Sn

Id H Id

(Zg, Tg) - S" x Dn + X   uId S" xS" xl Ug Dn + X x Sn

where H~x is an ¿-concordance between /and g.   Q.E.D.

Now, we are going to determine the ¿-diffeomorphisms H and K in (2.1)

within ¿-concordance classes.

Definition. A bundle map fa for S" x S" over the first factor is a map

of the form fa(x, y) = (x, a(x) • y), where the homotopy class {a} G itn(SOn +,)

and a is a smooth map of S" to SOn + x.

A bundle map fa is a diffeomorphism.  If {a}, {b) G nn(SOn + í) are homo-

topic, then/a and/ö are concordant. Conversely, if fa and fb are concordant,

then it was shown in [19, 5.2] that a and b are homotopic.  Actually, we have

Lemma 2.2. [19]. The concordance classes of orientation-preserving diffeo-

morphisms ofS" x S", which can be extended to orientation-preserving diffeo-

morphisms ofS" x Dn+X, are in 1-1 correspondence with n„(SOn+x).

We write 5" = {x = (x0,. . ., xn) G Ä"+1|2£=0 xf = 0« ¿ acts on Sn

as an (n + l)-square matrix with -1 on its diagonal and 0 elsewhere. For (x, y)

GS" xSn,A(x,y) = (-x,-y).

Lemma 2.3. Let b G irn(SOn+x).  Then the bundle map fb defined above

is an A-equivariant bundle map if and only if b factors through P" by the double

covering map ir: S" -*Pn.

Proof. fbA - Afb *=*fbA(x, y) = Afb(x, y) «- (-x, b(-x) • (-y)) =

(-x, -b(x) ' y) <=> b(-x) 'A • y = A • b(x) • y. Since A lies in the center of

SOn+x, we have b(x) • y = b(-x) • y for all y G S". Hence fbA = Afb iff b(x)

= b(-x) for all x G S" iff b factors through n: Sn -► P".   Q.E.D.

Lemma 2.4. Every A-diffeomorphism ofS" x S", n > 3, which can be

extended to an orientation-preserving A-diffeomorphism of Sn x Dn+ x is A-con-

cordant to an A-equivariant bundle map over the first factor.

Proof.  Let /be such an ¿-diffeomorphism, and h be its ¿-equivariant

extension to S" x D"+x. f'(h') denotes the map induced by f(h) on the orbit

space Sn x S"IA(Sn x Dn+X/A). Let i': S" x 0/¿ -» S" x Dn+X/A he the
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inclusion. h'\S" x 0/A and i' are homotopic by [24]. Hence, they are isotopic

by a theorem of Haefliger, [12]. By the equivariant isotopy extension theorem,

[28], there exists an A -equivariant diffeomorphism 77 of S" x D" + x such that H

is equivariantly isotopic to identity, H\S" x S" = identity, and H ° h\S" x 01 A =

i, the inclusion.  Let 77"+x be a small disk in D"+x, with 77" +1 and D"+' con-

centric.  Both S" x Bn+X and 77 ° h(S" x Bn+X) axe equivariant tubular neigh-

borhoods of 5" x 0 in Sn x Dn+X. Then by the uniqueness of the equivariant

tubular neighborhoods, [4, p. 310], there exists an A -equivariant diffeomorphism

G of S" x D"+x such that G is A -equivariantly isotopic to identity, G\Sn x Sn

= Id, and G ° 77 ° h\S" x Bn + X is an A -equivariant bundle map covering the

identity on 5". The restriction of G ° TT o h to S" x D"+x-interior S" x Bn+X

gives us an A -concordance between / and an A -equivariant bundle map.   Q.E.D.

Similarly, every A -diffeomorphism of S" x S" which extends equivariantly

toD"+1 x S" is ,4-concordant to an A -bundle over the second factor.

Proposition 2.5. The A-concordance classes of orientation-preserving A-

diffeomorphism H (or K) in (2.1) are in 1-1 correspondence with the Image n*

of[Pn,SOn+x] in[Sn,SOn+x].

Proof.  Let h be an A -diffeomorphism of S" x S", which can be extended

equivariantly to S" x Dn + X. h is .4-concordant to an A -equivariant bundle map

fb by (2.4), where b E irn(SOn + x).  From (2.3), we know that b factors through

it: S"-*7",i.e. 2> G Image it*.

The above correspondence 77 -*■ b is well-defined. If Tf' is A -concordant to

77, and b' E Image tt* corresponds to 77', then fb and fb, are A -concordant, hence

concordant, b is homotopic to b' by (2.2). This correspondence is 1-1 and onto,

since the mapping given by b -*fb for b E Image it* is its inverse.   Q.E.D.

3. The image of 7T*: [P",SOn+x] -*■ [S",SOn+1]. In this section, we

will compute [P",SOn+x] and its image under tt*: [Pn,SOn+x] -* [S",SOn+x]

Let us first recall some facts about nn(SOn+x), which, for instance, can be found

in [16] or [18].

Let sm+: TTk(SOm) -+ nk(SOm + x) denote the homomorphism induced by

the natural embedding s: SOn -*• SOn+x. Consider the following exact sequence,

-■• nk(SOm) A*- TTk(SOm+x) ̂ nk(S>») -*♦ rrk_x(SOm)

Let <„ denote the generator of Trm(Sm). Write rm=3m + 1^, + 1G *m(SOm+l).

Putting m = n, n + 1 in the above exact sequence, we have the following proposi-

tion from [18] :

Proposition 3.1. For n odd, # 1, 3,7, n„(SOn+x) is the direct sum of

two cyclic subgroups image 9n+1 and image sn^. Moreover, sn+1+: image s„+ Ç
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nn(s@n +1) -*" nn(s@n+2) '* an Isomorphism. For n even, irn(SOn + x) is the

direct sum of image bm + j and a certain cyclic subgroup G such that sn+Xif: G G

fn(SOn+x) -*■ n„(SOn+2) is an isomorphism.

From now on, we will write TÎor rn = bn + xin+x,if no confusion will arise.

Let o denote the generator of the other cyclic summand of itn(SOn+x). Here we

list the values of n„(SOn+x) and tr„(SO„+2) = rrn(SO) for n > 3 and « =£ 7,

from [16].

«(mod 8) 0 1 2        3        4     5     6       7

itn(SOn + x)   Z2+Z2    Z + Z2    Z2    Z + Z   Z2   Z   Z2    Z + Z

7,0 7,0 7 7,0        7      7       7        7,0

■nn(SO) Z2 Z2        0        Z       0     0    0       z

Consider the maps it: Sn -*Pn, i: P" -+ P"+x, j: P" -*■ Sn; which are

the double covering, the inclusion, and the map pinching the complement of an

open ball to a point. / generates [Pn, Sn] = H"(Pn) = Z or Z2, n odd or even;

by Hopfs theorem, [23].

The element 7 G it„(SOn+x) is also the characteristic map for the tangent

bundle of 5"+1, [14] or [30]. We can choose a representative for r such that

t(x) = 7(-x) for x G Sn, [14], which is defined as follows: let a: S" -> SOn+x

he the map defined by the requirement that a(x) be a reflection through the hyper-

plane in Rn+X orthogonal to x, and let e denote the north pole of 5", then we

have t(x) = a(x)a(e), [14, p. 89]. Hence this t factors through rr: 5" -» P",

and Tp G [P", SOn+x] is defined by r = Tp7r.

Let q: SOn + x -*■ 5" denote the projection in the fib ration SOn -*■ SOn + x
->S".

Proposition 3.2. The following diagram is homotopically commutative.

Sn   -E-». pn

son+l~^s"

Proof. We have to show that £Tp is homotopic to /. From the above

description of t, t(x) = a(x)a(e); we see that q7(x) = a(x)a(e) = a(x)(-e), which

is the point on 5" obtained by moving e toward x along the great circle passing

through e and x by an angle twice the angle between e and x. We note that «77

maps the interior of the northern hemisphere D1   of S" onto S" - {e) as a

homeomorphism, and maps the equator S"~x to -e.  Since n maps interior D"

homeomorphically onto P" - P"~l, and q7 = qTpir, we see that q7p is just the
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map pinching the complement of an open ball to a point, which is/.    Q.E.D.

Lemma 3.3. 77 is null-homotopic in [P2k, S02k+X ].

Proof. We have 77 = Tp7tj: P2k -*■ S2k -* S02k+ x. Consider / = 77:

p2k _> p2fc   Since f factors through S2k, fJjrx(P2k)) = 0. Hence /is a non-

orientation-true map in the language of [25].  By Theorem 1.2 of [25], (see also

[25,1.3(d)]),fis null-homotopic.  Q.ED.

Let KO~k(-) denote the reduced real TT-theory. We have KO~k(X) =

[LkX,BS0] for any finite CW complex X, [14]. KO~x(P") = [2 P",Bso] =

[7", VBS0] = [P",SO], the latter one is equal to [7", SOn+2] because (SO,

SOn+2) is (n + l)-connected.

For any fibration F-*■ E -*■ B, and any finite CW complex X, there is a

fibre mapping sequence • • • -»• [X, SIE] -*■ [X, Í25] -*• [X, F] -* [X, E] -*

[X, B], [23], which is exact.

Lemma 3.4. For n odd, Z -*■ [P",SO„ + x] -+ [7", SOn+2] -* 0 is exact.

For n even, Z2 -*• [7", SOn+x ] -*■ [7", SOn+2] -* 0 is exact.

Proof.  Substitute SOn+x -*■ SOn+2 ->■ S"+1 and 7" into the above fibre

mapping sequence.   [7",5"+1] =0.   [7",Í2S"+1] = [2 7",5"+1] =

Hn+1(2 7") = 7T"(7") = Z, n odd; = Z2, « even.   Q.E.D.

We also need the following from [6] or [11].

Proposition 3.5. KO~x(Pm) = Z2,form?3 mod 4; KO~x(Pm) = Z +

Z2,for m = 3 mod 4, wAere i/ie Z summand is the image ofKO~x(Sm) under

the degree 1 map j: Pm -»• Sm.  The inclusion Pk Ç Pm induces KO~x(Pm) -*■

KO~x(Pk), which is an isomorphism on Z2 and annihilates the Z factor.

Replacing Pk by the mapping cylinder Mn of tt: Sk —*■ Pk, we can change

it into a cofibration 7r': Sk —*• Af^, and we may consider i: Pk -*-Pk+x as the

cofibre. For a simple space X, we have the following Puppe exact sequence, [27],

-► [27*,X] ^TTk+l(X)Jl> [7*+i,X]

-?->[Pk,X]-^rTk(X).

Putting k = n — 1 and X = SOn+x in the above Puppe sequence, we have

the following exact sequence:

->TTn(SOn + x)-£+[P",SOn+x]

-^ [P"-l>SOn+x] ^TTn_x(SOn+x).

For« odd,/7r: S" ->Pn ->5" is of degree 2. Hence tt*/*: rrn(SOn + x) -*■

[7", SOn+x] -* TTn(SOn+x) is just the multiplication by 2.



INVOLUTIONS on homotopy spheres 371

If n = 3 mod 4, then irn(SOn+ x) = Z + Z, generated by t and a. it*j* is

1-1, hence /* is 1-1. Thus [P", SOn + x ] contains Z + Z.  One of the generators

is rp, since 7r*rp = Tprr = t. Therefore /*r = 2rp. For m = 2 mod 4, vm(SOm+f)

= 0 and [Pm, SOm+2] = KO~x(Pm) = Z2 by (3.5). Hence, the exact sequence

(3.6) becomes 0-*Z + Z-£ [P",SOn+x] -+Z2^>0. Since j*r = 2rp, we

see that [P", SOn+x] = Z + Z, generated by 7p and b = j*o. tt*b = 7r*/*a

= 2a.

If n = 5 mod 8, then nn(SOn+ x) = Z, generated by r. The argument in the

preceding paragraph shows that [P", 50rt +l] = Z, generated by rp, and/*r = 2tp.

Now consider the following commutative diagram, where the rows are Puppe

sequences and the columns are fibre mapping sequences.

1Wi(S"+1)-^-* [P",SiSn+x] ->[Pn+1,SlSn+x] =0

(3-7)        itn(SOn+x) -U [P",SOn+x] -U [P»-x,SOn+x]

*n(SOn+2) -^ [P\SOn+2] -^ [P"~x,SOn+2]

If n = 1 mod 8, then it„(SOn+x) = Z + Z2, generated by t and o respec-

tively. Since/* is 1-1 on the Z summand, and 7r*rp = t, [P", SOn+x] contains

a Z subgroup which is generated by 7p. Let i„ + 1 denote the generator of

7rH+i(5"+1)-  In the diagram (3.7), din + x = t and [P",i2S"+1] = [2P",5"+1]

= H"(P") = Z is generated by jx in+x.  [Pn, SO„+2] = KO~x(P") = Z2 by

(3.5). The middle column of (3.7) reads Z ^ [Pn, SOn+x] ^ Z2.  If

9i(a/iln + i) = Tp for some integer a, then/*(ar) = aj*ain+x =ox(ajxin+x) = rp,

a contradiction. Hence rp G image Bx, s'^7p + 0.   [Pn, SOn + x] = Z, generated

by 7p. Also j*7 - 2tp, j*a = 0.

We now consider the case n is even.

Lemma 3.8. For n even, [P", SOn+x ] = Z2, which is generated by rp.

Proof.  In the diagram (3.7), jx is onto. Let t^ + i generate nn+x(Sn+x).

jlln+l generates [P", fiS"+1] = H"+X(Z Pn) = Z2. dxijxln + l) =/*3t„+1 =

/*r = t; = 0 by (3.3). The map s^ in the middle column in (3.7) is onto by (3.4).

Hence s¡: [Pn, SOn + x] -> [P", SOn+2] = KO~x(Pn) = Z2 is an isomorphism.

Thus [Pn,SOn + x] =Z2, generated by rp.   Q.E.D.

Summing up, we have the following:
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Theorem 3.9. Assume n # 1, 2, 3, 7. For n even, [Pn, SOn+x] = Z2,

generated by rp, and ir*rp = tE TTn(SOn+x). Forn = l mod 4, [7", SOn+, ]

= Z, generated by rp, and ir*Tp = t. For n = 3 mod 4, [7", 5C„+1] = Z + Z,

generated by Tp and b, where b = j*o, and ir*rp = t, tt*b = 2a.

Let Im 7T* denote the image of [7", SOn+x] in nn(SOn + 1) under n*.

«(mod 8)          0 1 2       3 4 5 6        7

irn(SOn+x)   Z2+Z2 Z + Z2 Z2Z + Z Z2 Z Z2 Z + Z

r,a T,a 7      t, a r r t t,o

Imn*            t t t      r,2a r t t t, 2a

Corollary 3.10. n>3and*l. Let s\: [P",SOn+l] -* [P", SO„+2]

= KO~x(P") be induced by the inclusion.  Then s'Ajp) generates the Z2 sum-

mand ofKO~x(Pn); and for n = 3 mod 4, s'jib) generates the Z summand of
KO~x(Pn).

Proof. We have proved the corollary for « even in (3.8). For n odd, s'a

[Pn, SOn+x] -+ [7", SOn+2] is onto, (3.4). In (3.7), let i„+1 generate

7Tn + x(Sn+x),fxi„+x generates [7", Í25n+1]- ox(jxi„+x) =j*oin+x =/*r =

2tp. Hence s^ maps rp to the generator of the Z2 summand of KO~x(7"), and

maps ô to the generator of the Z summand for n = 3 mod 4 by the exactness of

the middle column in (3.7).   Q.EJD.

4. Proof of Proposition 1.2. We are going to prove Proposition 1.2 in this

section.  Let D(Sn x S")(D(S" x Sn,A)) denote the group of concordance

04-concordance) classes of diffeomorphisms 04-diffeomorphisms) of Sn x Sn.

0: D(Sn x Sn,A) -+D(S" x S") is the homomorphism forgetting the action.

Define D0(S" x S") = the subgroup of D(S" x S") consisting of those elements

which are homotopic to Id. Let/2n+1 = 0~x(Do(S" x S")). Given a diffeo-

morphism (an .4-diffeomorphism) /of S" x Sn, we will write {/} ({f}A)

for its concordance class in D(Sn x Sn)(D(Sn x Sn,A)).

If/is a diffeomorphism of 5" x 5", then/,, induces an automorphism of

Hn(Sn x S"). We can associate to /„ its matrix representative M¡ with respect to

the natural basis {S" x 0, 0 x S"} of Hn(Sn x Sn). Mf is an element of GLi2,Z)

the group of 2 x 2-unimodular matrices.  Let 4>: D(Sn x S") -*■ GL(2, Z) be the

homomorphism defined by / -* M¡. We have fg -*■ Mg • Mf.

From [19], we have the following:

Proposition 4.1 [19]. Ifn is even, then image 4/ consists of eight matrices:
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Co1 ±°) and (±°  ±01). Ifn = l, 3, 7, then image \¡/ = G¿(2, Z). If n is odd, but

n ¥= 1,3,7, then image \[/ is the subgroup ofGL(2,Z) consisting of matrices (ac %)

where ab = cd = 0 mod 2.

Lemma 4.2. If fis a diffeomorphism ofS" x S" such that S" x Dn+1 L)f

Dn+i x s" isa homotopy sphere, thenMf = ("c bf).

Proof. Write Vx = S" x Dn+X, V2 =Dn+1 x S", Wx = oV2 =Sn xS". Let

ik: bVk -* Vk, k = 1 or 2, be the inclusion. Let {x, y) denote the natural basis

{Sn x 0, 0 x S") of Hn(S" x S"), and ux,u2 the generator of Hn(Sn x Dn + X),

Hn(Dn+x x Sn) respectively. From the Mayer-Vietoris sequence, we have

0 ~^Hn(bVf) ^iHn(Vx) © Hn(V2) — 0

where/, = /,„, and j2 = i2 „/„. ixifx = ux,iXify = 0, i2#x = 0, i2,y = u2.

Let Mf = (ac b). f+x = ax + by and /„ v = ex + dy. Hence jxx = ux, jxy = 0,

j2x = i'2*/*x = bu2, j2y = i2%/+v = du2. Thus the matrix for (jx, jf) with

respect to the basis {x,y)and {«1,«2}is(¿ *), which is unimodular,íi = ±l.  Q.E.D.

Lemma 4.3. n>3and±l. If(Z2n+1, T) = (2/5 Tf)for some A-diffeo-

morphism fofS" x S", then there exists another A-diffeomorphism g such that

Mg is the identity matrix, and (22n+1, T) = Ç2g, Tg).

Proof.  If n is even, then it follows from (4.1) and (4.2) thatZr//= (*„' °x).

Consider the ¿-diffeomorphisms hx and h2 of S" x S" defined by hx(x, y) =

(x, -y) and h2(x, y) = (-x, y). hx (or hf) extends equivariantly to

(Sn xDn+1,A)(or(Dn+x x Sn,A)). One of the ¿-diffeomorphisms /, fhx,

h2fhx, or A2/has the corresponding matrix = identity matrix. Take g to be this

map.  Also, (22"+1, T) = (S^, Tg) by (2.1).

If« is odd and # 1,3,7, then Mf= (% ¿f) by (4.2). We can compose/with

hx or «2 if necessary, to make Mf = (ac bf) and det Mf = +1. From (4.1), b =

c = 0 mod 2. Since a - be = 1, we see that (a b) = (!! b)(x ?).

We choose a representative for t as in §3, satisfying t(x) = t(-x). Consider

the maps /T and gT, defined by fT(x, y) = (x, t(x) • y) and gT(x, y) = (t(v) • x, y).

fT andgT are ¿-diffeomorphisms. Theorem 7.10.1 of [14] showed that the map

q » t in (3.2) is of degree 2. Hence Mfj = (¿ 2) and Mg  = (\ \). Define g =

£-c/2)ff(-bj2)   Since jj^ _ ji^ji//j we see that Mg is the identity matrix.

(2f, Tf) = (2^, Tg) by (2.1).   Q.EX>.

Lemma 4.4. A diffeomorphism f of S" x S" is homotopic to Id if and

only ifMf is the identity matrix.
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Proof.  If/and g are diffeomorphisms of 5" x Sn such that {/} = {g} in

D(Sn xS"),thenMf = Mg.LetG= {{f}ED(Sn x Sn)\Mf is the identity matrix}.

Theorem II of [28] showed that 0 -»-TT! + T2""1"1 -*G ->H2 -*■ 0 is exact,

where 77,., i = 1 or 2, is isomorphic to imageis,: TTn(SO„) -*■ n„(SOn+x)}. Let a

he a smooth map representing {a} E image s# Ç irn(SOn+x). We define two dif-

feomorphisms fa and ga of 5" x 5" by fa(x, y) = (x, a(x) • y) and ga(x, y) =

(a(y) • x, y). The maps {a} -*■ {fa} and {a} -* {ga} axe isomorphisms of image s+

to TTj and 772 respectively, (compare 2.2). r2n+1 is the Kervaire-Milnor group

[17] and acts by leaving the complement of a 2«-disk in 5" x S" fixed.

Let a be a smooth map representing a homotopy class {a} G itn(SOn+1)

such that {a} = s#0 for some ß E irn(SOn). We can take a\D" = Id, where

D" (D£) denotes the lower (upper) hemisphere of 5". Hence fa\D" x S" = Id.

Let e denote the north pole of S". Since {a} = s#p\we can take/JS" x {e}=Id.

By the homotopy extension theorem, fa is homotopic to a map h such that h is

the identity on a neighborhood A of 5" x {e} and fa = h on £>2 x Sn. h keeps

the complement of a disk S" x S")|M^ is the identity matrix}.

Since every element {h} of G has a representative h such that /i leaves the

complement of a 2n-disk fixed, we can apply the Alexander trick to see that h is

homotopic to Id. Thus G - D0(S" x S").   Q.E.D.

Combining (4.3) and (4.4) together, we have proved Proposition (1.2). From

now on, when n > 3 and =£ 7, we will assume the A -diffeomorphism /in the

decomposition (22n + 1, 7) = (2^-, 7A be homotopic to Id.

5. Group structure on hS(P2n+x). Given an involution (22" + 1, 7), «>3

and ¥= 7, there exists an .¿-diffeomorphism/of S" x S" such that (22n+1, 7) =

(2/, Tf), and (2/5 Tf) = (2^, 7^) ifgE{f}A EJ2n+x = 0-1(T>o(5" x S")).

But {/}^ GT2m + 1 is not uniquely determined by (22"+1, 7).  Suppose we can

find a subgroup G2„ + 1 of/2„ + 1 such that C2„ + 1 is in 1-1 correspondence with

hS(P2n + x) under the mapping {f}A -► (2,, Tf). Then (hS(P2n + x), *) forms a

group by carrying over the composition law in G2n + x : (Lf, 7^)*(2y, Tg) =

i^fg, Tfg). In this section, we will show that such a subgroup G2n+X exists for

«so, 1,2 mod 4.

Theorem 5.1. For n even, and > 2, such a subgroup G2n + X ofJ2n+x

exists, hence (hS(P2n + x), *) is a subgroup.

Proof.  From [19] or (4.4) above, we know that D0(S" x 5") is the semi-

direct product of 77j + r2" + 1 and 772, where Hx and 772 are isomorphic to

imageis*: iTn(SOn) -*■ Trn(SOn+x)}, which is equal to irn(SOn + x), [18].

Tn(SOn + x) = Z2, generated by r for n ^ 0 mod 8; TTn(SOn + x) = Z2 + Z2, gen-

erated by 7 and a for n = 0 mod 8.  Every element of D0(Sn x Sn) can be
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uniquely expressed in the form h2yhx, where h¡ G H¡ and y G r2n+x, [17]. We

define a subgroup F2n + X of D0(Sn x S") as follows: F2n+X = T2" + 1 for n £0

mod 8; if « = 0 mod 8, then F2n + X is the semidirect product of (ox) + r2n + x

and (ct2), where (o¡) denotes the cyclic group of order 2 generated by o¡: ox(x, y)

= (x, o(x) • y), o2(x, y) = (o(y) • x, y). Let G2n + X - 0~x(F2n + l).

We choose a smooth representative for t G 7r„(SO„ + 1) such that t(x) =

t(-x). Define 7X and t2 by t,(x, y) - (x, t(x) • y) and r2(x, v) = (riy) • x,.y).

Tx and t2 are ¿-diffeomorphisms of S" x S". Since t commutes with o in

7r„(5G„ + 1), [19], we see that any element of D0(S" x S") can be uniquely

expressed in the form bya, where b G (r2), a G (tj), and y G P"2„ + j.

If A G {h)A GJ2n + x, then 0({«}x) = {r|}{/}{ri}, where {/} GF2„ + 1,

and c, d = 0 or 1 uniquely determined by {h)A . We define £ = T2hrx, which is

an ¿-diffeomorphism of S" x S". Since {r,} is of order two in D0(Sn x Sn),

0({g)A)£F2n + x. ÇEg,Tg) = ÇZh,Tn)by(2.1). On the other hand, if {f)A,

{g)A G G2n+X and (2^-, Tf) = (2^, Tg), then g is ¿-concordant to rf/rf, where

c, d = 0 or 1, by (2.1) and (3.9).  But 0({/}yl), 0({g)A) G F2n+,. Hence c =

d = 0,{/}^={^.   Q.E.D.

Theorem 5.2. For « = 1 mod 4, «5(P2" + 1) is i« 1-1 correspondence

with J2n + X; hence (hS(P2n + x), *) forms a group.

Proof.  As in (5.1), we know that D0(S" x S") is the semidirect product

of ZZj + r2" + 1 and H2, where ZZj and H2 are isomorphic to image{s#: nn(SOn)

-*■ n„(SOn + x)), which is 0 for « = 5 mod 8; and Z2, generated by o for « = 1

mod 8.  aéimagefr*: [Pn,SOn + x] -»■ [5'",50„ + 1]} by (3.9).  Hence no ele-

ment in D0(Sn x S") is concordant to an ¿-bundle map by (2.5). Thus

hS(P2n + x) is in 1-1 correspondence with/2„ + 1 = 0-x(Do(Sn x Sn)) by (12)

and (2.1).   Q.E.D.

Remark 5.3. For « > 7 and « = 3 mod 4, we have the exact sequence:

0-*Z + r2" + 1-> D0(Sn x Sn) -»• Z -»• 0, where each Z is isomorphic to

image{s#: ir„(SOn) -* nn(SOn + x)), generated by o. We know that 2mo G

image jt* but (2m + l)o £ image it* by (3.9). Let ox and o2 be defined by

°\(x, y) = (x, o(x) ' y), o2(x, y) = (o(y) • x, y). If none of the four diffeo-

morphisms ox,o2, o2ox, and oxo2 is concordant to an ¿-diffeomorphism, i.e.

(of), {of), {a2ox), {oxo2) g image 0, then we can take G2n + X = 0"1(r2n + 1)

as in (5.1) and (5.2).

Remark 5.4.  77îe case « = 3, «5(P7). Viewing S3 as the unit sphere in

the quaternionic space, we define {r}, {r} G n3(S04) by r(x) • y = xyx~x, t(x)

•y = xy.  7T3(504) = Z + Z is generated by {r} and {t), [14, p. 94]. As in (3.9),

we can show that imaged*: [P3, S04] -* n3(S04)) is generated by {r} and 2{r}.
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Let ij and t2 he defined in the same way as ox and a2 in (5.3).  If {tx}, {t2},

{11/2} > {tyi^ £ image 0.tnen (1-2) is also true in this case and (hS(P7), *) forms

a group.

6. Additivity of Browder-Livesay index invariant.  In [7], [8], Browder and

Livesay defined a desuspension invariant a for any free involution f22" + 1, 7) as

follows: construct an (n — l)-connected characteristic submanifold A2" for

(22"+1, 7), i.e. 22"+1 = A U 77, A n B = A, 74 = 77, 7A = A, and A, B axe

(2n + l)-submanifolds of 22"+x. Let K„ = Ker(77„(A) -+ H„(A)). If n is odd,

they define a unimodular even symmetric bilinear form T7 on Kn (modulo torsion)

by B(x, y)-x- T*y.  Let c<22" + 1, 7) = (1/8) index B EZ.  If« is even, they

use Z2 as coefficients and define the unimodular bilinear form T72 on Kn (with Z2

coefficients) by T72(jc, y) = x • T#y.  They also defined a quadratic form

ty: Kn -* Z2 associated to B2,B2(x, y) = \¡j(x +y) + <p(x) + i¡j(y), such that,

if x E Kn is represented by an immersed sphere d, then i//(;c) = 1 iff d (ITd in

general position consists of an odd number of pairs of points. Write o(22n+1,7)

= c(\¡j) E Z2, the Art invariant of \}j.   They also showed that for « > 3,

o(22"+1, 7) = 0 iff (22" + 1, 7) admits a codimension 1 invariant sphere (for

details, see [8]).

From now on, we assume n > 3. 'Suppose (22" + 1, 7) = (T,f, Tf) for an

¿-diffeomorphism/of Sn x S",let/: 5" x Sn/A-*Sn x sm-x/A-^Pn+m =

(Sn x Dm/A) Uw (D"+x x Sm~x/A), with m large, be the natural inclusion.

Both/ ° (f/A) and/ are classifying maps for the same Z2-bundle. Hence they are

homotopic, by a map F: (Sn x S" x I)/A x Id -*■ pn+m. We may suppose that

Fis smooth and transverse regular on pn+m~1 = (5"1 x Dm~x/A) U,d (D"+1 x

Sm~2/A), relative boundary. The double cover M of F-1(7"+m_1) is a charac-

teristic submanifold of (5" x S" x I, A x Id), with dM = Mx - MQ, where Mx =

f~x(Sn x Sn~x) x l,M0 = (Sn x S"-x) x 0. We recall that a codim 1 charac-

teristic submanifold M of a free involution (W, 7) is a codim 1 submanifold of W

such that W = A U T7, where A and T7 are codim 0 submanifolds of W, A C\B = M,

and TA = B, [8].

In the rest of this section, we will write (W, 7) = (S" x S" x T, A x Id),

Wx=Sn xSn x 1,R'0 = S" xSn x 0; also, let W = VU TV, VC\TV = M,

V¡=VC\ W¡ for i = 0, 1, where V0 = 5" x Dn, Vx = f~x(Sn x D").

Since Sn x Sn/A is the total space of a spherical fibre bundle S" -> Sn x

Sn/A -+ Sn/A, (§1). By Gysin sequence, TTfc(S" x Sn/A; Z2) = Z2 for k ¥= n,

and = Z2 + Z2 for k = n. Hence 77fc(S" x Sn/A; Z2) = Hk(W/T; Z2) =

H2n+x-k(W/T,dW/T;Z2).

We want to make a characteristic submanifold M of (W, 7) as highly con-

nected as possible.
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Lemma 6.1. 77iere exisrs a connected characteristic submanifold M for

(W, T)wlth bM = Mx-M0.

Proof.  Let M be a characteristic submanifold constructed above with dM =

Mx -MQ. Then (M, bM)¡T carries the unique nonzero element of H2n(W/T, bW/T,Z2)

= Z2, dual to the 1 -dimensional cohomology class F*x, where x generates

H1(Pn+m; Zf) and F is the classifying map constructed above, [32]. Hence a

component of M/T carries this element. Let M' be the double cover of this com-

ponent. If M' (~\M0= 0, then we can take v G HX(WQ/T; Zf) = HX(W/T; Zf)

= Z2 representing F*x, hence H2n(M'/T, bM'/T; Zf) -*• H2n(W/T, bW/T; Zf) is

trivial, a contradiction. HenceMQ DM' ^ 0. SinceM0 is a closed connected

manifold, M0 G M'. Similarly Mx Ç M'. It is clear that T interchanges the two

components of W - M', so that M' is a characteristic submanifold. We will write

M for M'.   Q.E.D.

Lemma 6.2. There exists a simply connected characteristic submanifold M

for (W, T) with bM = Mx-M0.

Proof. Since dim W = 2« + 1 > 7 and nf(W) = 0 for / < 2, the proof is

exactly the same as in Lemma 2.2 of [8] by applying [4] : We apply equivalent

handle exchanges in the interior of W to make M 1-connected.   Q.E.D.

From now on, we assume the characteristic submanifold M is 1-connected,

with bM = Mx - MQ. Consider the following diagram of exact sequences:

Hk(Mx) —> Hk(Vx) 8 Hk(TVx)-> Hk(Wx)-> Hk_x(Mx)
ï                            Ï                               I

Hk+x(W)->Hk(M) ->  Hk(V)®Hk(TV)-> Hk(W)-> Hk_x(M)
ï I

0 -+ Hk(M, Mf) -> Hk(V, Vf) 0 Hk(TV, TVf)
(6.3) i I

"fc-iW —+Hk_x(Vx)®Hk_x(TVx)

Hk}x(M)

We can replace Mx, Vx by M0, V0 in (6.3).

Lemma 6.4. By performing equivariant surgery (equivariant handle exchanges)

in the interior of W, we can transform M into an (n — 2)-connected In-character-

istic submanifold.   We also have irk(M, Mf) = nk(M, Mf) = irk(V, Vx) = nk(V, V0)

= 0/or k < n — 2.

Proof.  Suppose M is already (k - l)-connected, k - 1 < n - 2. From

(6.3), we have
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0 —* Hk(M) -► Hk(V) ® Hk(TV) -► 0

0 —► Hk(M, Mx) —► Hk(V, Vx) ® Hk(TV, TVx)—*0

Using the first exact sequence, we can perform equivariant handle exchanges

in the interior of W to kill Hk(M) as in [8], (see [8, 2.3] for details). The other

part of the lemma follows from the above diagram, the induction hypothesis, and

the Hurewicz theorem.   Q.E.D.

From now on, we will assume M to be (« - 2)-connected. Letting k = n - 1

in (6.3), we have

Z + Z-»Hn_x(Mx)

ff„W)-►77„_1(xV)^^77„_1(F)e77„_1(7I0

*     (ß, ß') '
Hn_x(M,Mx)^^^Hn_x(V,Vx)®Hn_x(TV,TVx)

where ">—»■" means 1-1, "-»" onto, and ">-»" isomorphic; a, a', ß, ß' axe maps

induced by inclusions.

As in [8, 2.3], we see that Hn_x(M, Mx) = Ker ß ® Ker /?', 7„(Ker /?) =

Ker ß', both ß: Ker ß' -+ Hn_x(V, Vx) and ß': Ker ß -» Hn_x(TV, TVX) axe

isomorphisms. Similarly, Hn_x(M) = [a + b\a E Ker a, ô G Ker a'} with

Ker a n Ker a = lxnage(Hn(W) -+Hn_x(M))

= lmage(Hn_x(Mx)-+Hn_x(M)) = {a},

a cyclic group.  Suppose a = px, for some integer 7, where {x} is a direct sum-

mand of Hn_x(M). Since both a = Ker a' -*■ Hn_x(V) and a': Ker a -+

Hn_x(TV) are onto with kernel = {a}, if p +0 or 1, then x contributes two

copies of Zp in Hn_xiV) ® 77„_, (7F), which is impossible by a simple counting

argument.  Hence Ker a C\ Ker a' = {a} is a direct summand of Hn_xiM) •

TT„_,(M) = {a} + H, and 77>-»- 7T„_1(F) ® Hn_xiTV). We can perform equi-

variant handle exchanges in the interior of W to kill 77 as in [8, 2.3]. Thus we

have the following:

Lemma 6.6. 77y equivariant handle exchanges in the interior of W, we can

make M in - 2)-connected, with Hn_xiM) a cyclic group; and irkiM, Mx) =

TTkiM,M0) = Ofork<n.

In the rest of this section, all homology will be taken with rational coeffi-

cient Q, except where explicitly stated.

Letting k = n in (6.3), we have
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Q Q + Q Q + Q Q

(6.7)

Hn(Mx)

HAM)

Hn(M,Mf)

(6,5')

(a, a)

(ft ß')

»HAVf)®Hn(TVx)

I"
> Hn(V) ® Hn(TV) -

I"
Hn(V,Vx)®Hn(TV,TVx)

■*Hn(Wf)-~Hn_x(Mf)

Q = Hn_x(Mx)

Hn(W)   ^>Hn_x(M)

Z/„_,(M)

where M is the characteristic submanifold for (W, T) as in (6.6).

Lemma 6.8. In the diagram (6.7), i2 maps Ker a into Ker ß injectively.

Proof.  i2 maps Ker a into Ker ß by the commutativity of (6.7). Hn(Mf)

-*■ Hn(Vf) is an isomorphism.  Since Hn(Vf) -*■ Hn(TV) is trivial, Hn(Vf) ->

Hn(V) is 1-1.  But ai, =/,S from (6.7).  Hence Ker a n Im i, = 0.   Q.E.D.

Lemma 6.9. In the diagram (6.7), if x G Ker ß n Ker i3, r/ie« there exists

y G Ker a such that i2(y) = x.

Proof.  By exactness, there exists w G Hn(M) such that i2(w) = x.  Let

a(w) = t, j2(t) = ;2a(w) = ßi2(w) = 0. Hence there is a z G Hn(Vf) such that

jx(z) = t.   But 5: Hn(Mf) -* Hn(Vf) is an isomorphism. Define y = w -

i, 8~x(z). We have a(.y) = 0 and i2(y) = x.    Q.E.D.

In the diagram (6.7),Hn_x(M) = Q or 0 by (6.6).

Lemma 6.10. Let m = rank Hn(V, Vf) in the diagram (6.7)

(a) IfHn_x(M) = Q, then rank Z/„(M) = 2m + 1, rank Ker a-m.

(b) Z/ZZ„_j(M) = 0, r/ier« rank Z/„(M) = 2m, rank Ker a = m - 1.

Proof, (a) If Hn_,(M) = Ö, then Hn_x(Mf)-+Hn_x(M) is an isomor-

phism. Since rank Hn(M, Mf) = 2 rank (3 = 2m, rank ZZ„(Af) = 2m + 1. Hence

rank Ker a = rank Ker a' < m.  But i3 = 0.  rank Ker a > rank Ker ß = m by

(6.8) and (6.9). Thus rank Ker a = m.

(b)  If Hn_x(M) = 0, then i3 is onto.  Since rank ZZ„(Af, Mf) = 2m as in

(a), rank Hn(M) = 2m.  Hence rank Ker a < m — 1 from (6.8). But rank Ker a >

m - 1 by (6.8) and (6.9). Thus rank Ker a = m - 1.   Q.E.D.
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Given such a characteristic submanifold M for (W, 7) as in (6.6), we can

define a bilinear form C(j on Hn(M) by C[¡(x, y) = x • 7„,y.  Let B[¡ =

C¡j\Kei a, where (a, a'): Hn(M) -* Hn(V) ® Hn(TV) is the map induced by in-

clusion as in (6.7).

Now, we assume « odd in the rest of this section, hence Cj£ is symmetric.

Lemma 6.11. index C¡a = 2 index BfM.

Proof.   There are two cases:  (a) Hn_x(M) = Q. H„(M) = Ker a ® Ker a' ®

Im ix by (6.8) and (6.10). For x E Hn(M), let x E H"(M, bM) denote its Poin-

caré dual. If x, y E Ker a, then x, y E Image{a* : 77"(P, 3 V) -*■ H"(M, BM)}.

Let x = a*u, y = a*V. x • y = (a*u U a*v, [M]) = (u U v, a„,[M]> = <ixUu, 0>

= Q Similarly, jc • y = 0 for x,y E Ker a. Since Im ix Ç Image{i: Hn(dM) -*■ Hn(M)},

we see that x • z = 0 for x G Hn(M) and z G Im í,. We have 7„ Ker a = Ker a',

7* Ker a' = Ker a, and 7# Im ix = Im ix. Hence C£¡(x, y) = 0 for x E Ker a,

y E Ker a'; or x E Im /, ; y E H„(M). Thus CfM = C£ |Ker a + C/JKer a' + a 1 -dim

trivial form. But C^|Ker a = Cj^lKer a' = 77/^. Hence index CiM = 2 index 77^.

(b) Hn_x(M) = 0. Let i: Hn(dM) -+Hn(M) he induced by the inclusion,

i is injective, because Hn + X(M, 3x17) s xY""1^) s Hn_x(M) = 0. 77„(3xl/) =

7T„(M0) 0 7T„(xl7i) = Ô + ß.  The proof of (6.8) shows that

Im i n (Ker a ® Ker a') = 0.

Hence Hn(M) = Ker a ® Ker a' © Im i by (6.10).  As in the case (a), we can

show that Cl¡ = C/^|Ker a + C[¡\YLex a' + a 2-dim trivial form.  Hence

index CfM = 2 index 77/^.   Q.E.D.

Let S be an involution on a manifold X2p.  Let 77' denote the bilinear form

defined on Hp(X2p) by B'(x, y) = x - S^y. If 77' is symmetric, define as(X) =

index 77'. We need the following theorem from [31].

Theorem 6 .12. [31, II. 4]. Let Sx and S2 be involutions on Xx and X2,

with BXX = disjoint union Yx U X0 and 3X2 = disjoint union Y2 U X0, and

SX\X0 = S2\X0. Let (X, S) denote (Xx UXq X2, S, U S2). Then as(x) =

°ai(*i) + oS2(X2).

Now, we are ready to prove the folowing:

Theorem 6.13. Let (22"+1,7) be a free involution on homotopy sphere

22" + 1, where « is odd and > 3, and (22" + 1, 7) = (2^ Tf)for an A-diffeomor-

phism f of S" x 5".  77ien index BfM = 8a(22" + 1, 7).

Proof. From the Mayer-Vietoris sequences, we see that N = S" x D" U,d

MUfDn+x x S"~x is an (n — l)-connected characteristic submanifold of

(Zf, Tf) = iSn xDn+x,A) UId (Sn xS" xI,A x Id) U^, (Dn+X xS", A).
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2r = E U TfE, EDTfE = N, and

ZZ„(A0 = Ker(ZZ„(/V) - Hn(E)) ® Ker(Hn(N) -* Hn(TfE)),

[8]. Let Kn = Ker(Hn(N) -* Hn(E)), and B = the symmetric unimodular bilinear

form defined on Kn by Z?(x • y) = x • Tf^y.  a(2^, Tf) is defined to be

(1/8) index B.

Consider the sysmetric bilinear forms C, C,, C2, defined on

Hn(N),Hn(Sn xD"),Hn(Dn+x x Sn~x)

respectively by C(x, y) = x • r/#^, C,(x, y) = x • A*y, C2(x, y) = x • A^y.

Since Hn(Dn+x x Sn~x) = 0 and ZZ„(5" x S"~x) -* Hn(S" x D") is onto,

index C2 = index C, = 0.  Hence index C = index C[¡ by (6.12).  But

index C(j = 2 index ZZj^ by (6.11). Similarly index C = 2 index B [8, p. 75].

Hence index BfM = index B = 80(2^ Tf) = 8o(22" + 1,T).   Q.E.D.

Remark 6.14. If the characteristic submanifold M in (6.13) satisfies

(6.8)(a), i.e. Hn_x(M) = Q, then the symmetric bilinear form B^ defined on

Ker a in (6.7) is actually isomorphic to the unimodular symmetric bilinear form B

defined on Kn in (6.14). By the Mayer-Vietoris sequence we can show that if

/: Ker a -* Kn is an isomorphism under the map induced by the inclusion, then

we show that for x, v G Ker a, x • T+y = jx • jT^y, which follows from the

fact that some multiples of x and T^y can be represented by the immersions «,

and h2 of manifolds Mp, Np -* X2P, [32], and Theorem V.l.3 of [5] : The

geometric intersection number of M and N = the intersection number of the homol-

ogy classes hx AM] • A2# [N]. Hence B[¡ is isomorphic to B. But given an

involution (2^, Tf), we do not know whether we can always find such an M or not.

Given a free involution on a homotopy sphere (22n+1, T), n # 3, 7, we

can always find an ¿-diffeomorphism /of S" x S", which is homotopic to

identity, such that (22" + 1, T) = (2/, Tf) by (1.2). The next theorem tells us

that the Browder-Livesay index invariant is additive: Given two involutions

(2^, Tf) and (2^, Tf) with /and g homotopic to identity, we have oÇEf, Tf) +

0(2,, Tg) = 0(2^, Tgf).

Theorem 6.15. Iff, g^J2n+\ ■ 0~x(Do(S" x S")),n odd, then

o(2f, Tf) + 0(2,, Tg) = 0(2^, Tgf).

Proof. Let M, N' be characteristic submanifolds for (W, T) = (Sn x S" x

I, A x Id) associated to /, g respectively as in (6.6). M and ZV' are (« — 2)-con-

nected, H„_X(M) and Hn_x(N') are cyclic, bM = f~x(Sn x Sn~x) x 1 - S" x

S"~x x 0 and bN' = g-x(S" x Sn~x) x 1 - Sn xS""1 x 0. Since/-1 x Id

is an equivariant diffeomorphism for (W, T),N= (/-1 x Id)(/V') is a character-

istic submanifold of (W, T)and bN = f-xg-x(S" x Sn~x) x 1 -f~x(Sn x Sn~x)
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x 0. Furthermore, the bilinear form CN, defined on Hn(N') by CN>(x, y) = x •

T^y is isomorphic to Cf¡¡, hence, index CN, = index Cfj.

Now, we glue two copies W' and W" of W together along Wx of W' and W0

of W" by the identity. Consider M Ç W' and A Ç W". 7 = M U A is a character-

istic submanifold for (W' U W", 7) = (W, 7) with 37 = f-1g-l(S" x Sn~x) x

1 - S" x Sn~x x 0, and 7 satisfies (6.6). 7 is (« - 2)-connected and Hn_x(P)

is cyclic by the Mayer-Vietoris sequences.  Hence Cj? and Bp^ are defined.

By (6.12) again, we have index C§,f = index CN. + index C(¡. Hence

index C|^ = index Cf, + index CfM, which implies index 77|^ = index 5^ +

index B{¡ by (6.11). Thus oÇLgft Tgf) = a(2'r 7^) + 0(2,, Tf) by (6.13).  Q.EX>.

Remark 6.16. Actually, we have showed that given an ¿-diffeomorphism

/of S" x Sn,n odd, we can associate an index ß(f) to /which is defined to be

the index of the form B£¡ above.  By the standard argument as in [8, 3.2], we see

that Bl¡ is independent of the choice of the characteristic submanifold M. The

proof of Theorem 6.15 shows that the induced map ¡3: D(Sn x Sn,A) -*■ Z is a

homomorphism for « > 3.

7. The Arf invariant case. Theorem (6.15) is no longer valid in the case n

is even, as shown by the following example.

Proposition 7.1. 7/« is even and > 2, then there exist two A-diffeomor-

phismsf, g of S" x S" such that fand g are homotopic to Id, and a(2y, Tf) =

o&g, Tg) = oiSgf, Tgf) = 0 but a(2/jf, Tfg) = 1.

Proof.  Let t be one of the generators of irniSOn + x). We choose a repre-

sentative fer r such that ifx) = t(- x), and define two ¿-diffeomorphisms / and g

by fix, y) = ix, 7(x) • y), gix, y) = (r(y) • x, y), f and g axe homotopic to Id,

(4.4).  It follows from (2.1) that (2/; Tf) = (2^, Tg) = Ç£gfi Tgf) = iS2n+x,A).

Hence their Browder-Livesay invariant is 0.

P. Orlik showed that if (24fc+1, 7) extends to an involution with fixed

point on a 7r-manifold W4k+2 whose boundary is 24fc+I, then o(24fc+1, 7) =

C(W4fc+2), the Arf invariant of W4k+2, [26], [21, p. 69]. We will construct

such a W to show that a(2/?, Tfg) = 1.

Following [22], we define W to be

rDn+\ xZJ"+i)i \jg(Dn + x x Dn+x)2Uf(Dn+x xDn + x)3,

where g is the diffeomorphism gluing (D" + x x Sn)x and (D"+x x Sn)2 together,

/is the gluing map from (Sn x Dn+X)2 to (Sn x Dn+X)3. Since /and g axe A-

equivariant, we define an involution 7' on W by gluing the antipodal map A on

each summand. The restriction of 7' to bW = 2/? is 7.  C(WAk+2) = 1 follows

from [6, V].   Q.E.D.

As in the index case, given an involution (22"+1, 7) = (2p Tf) we can find an
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(« - 2)-connected characteristic submanifold M of (W, T) — (S"xS"xI,Ax Id)

with bM = S" x S"~x x 0 Uf-^S" x S"~x) x 1 and Hn_x(M) is cyclic.

In the rest of this section, all homology will be taken with Z2 coefficients,

unless stated otherwise explicitly.

As in (6.10), we have two cases: either (a) Hn_x(M) = Z2, or (b) Hn_x(M)

= 0.  In case (a), since Z = Hn_x(M¡; Z) -*■ Hn_x(M; Z) is onto (6.7), we see

that Hn_x(Mf) -*■ Hn_x(M) is an isomorphism.

Suppose Hn_x(M) = Z2. We see that the map i3 in (6.7) is trivial (taken

with Z2 coefficient). We define a bilinear form B^M on Ker a in (6.7) by B{j =

x • T^y. By using the Mayer-Vietoris sequences, and applying [32] and [5,

V. 1.3] as in (6.14), we can show that B?M is isomorphic to the bilinear form B2

defined by Browder and Livesay in [8]. In particular, B{j is unimodular.

Following [8], we can define a cohomology operation ty'M on Ker a, (for

details, see [8, §4] ). For x, y G Ker a, we have Zij^(x, y) = i//^(x + y) +

^m(x) + $M(y)> [8, 4i]. Since BfM is unimodular, the Arf invariant for \¡/^ is

well-defined, [5], as follows. Choose a sympletic basisxx, . . . ,xn,yx, . . . ,yn

for Ker a such that BfM(x, ,y¡) = b,¡, BfM(x¡ ,x¡) = BrM(y¡ ,y¡) = 0, the Arf in-

variant c,(/, M) = 2?=1 4>it(xM(jf).

Lemma 7.2. Suppose Hn_x(M) = Z2 in (6.7), and tyfM is defined as in

[8]. 77¡en any x G Ker a can be represented by an immersed manifold X", and

ii{¡(x) =liffXC\TX ingeneral position consists of an odd number of pairs of points.

Proof. The representability of x G Ker a by an immersed manifold follows

from [32], since the coefficient group is Z2. The other assertion can be proved

by exactly the same argument in [8, 4.6].   Q.E.D.

Proposition 7.3. For n even, if the manifold M associated to (Zf, Tf) as

in (6.7) with Zcoefficient satisfies Hn_x(M) = Z2, then cx(f, M) = o(2^, Tf).

Proof. We noted before that BfM is isomorphic to B2 in this case. Let \¡/

he the quadratic form associated to B2 defined in [8]. From (7.2), [8,4.6], and

[5, V. 1.3] again, we see that ^ and ty are isomorphic. Hence their Arf invari-

ants are equal.   Q.ED.

Proposition 7.4. For n even, and f,g€J2n + v ÏÏ there exist M, N asso-

ciated to Ç2f, Tf), (2,, Tf) as in (6.6) such that Hn_x(M) = Hn_x(N) = Z2,

then oÇSf, Tf) + 0(2,, Tg) = 0(2^, Tgf).

Proof. As in (6.15), let P denote ML) N, the characteristic submanifold

associated to (2,^-, Tgf). We denote the domain on which B^,B^, Bff is defined

by Ker a, Ker ß, Ker y respectively. By the Mayer-Vietoris sequence, we see that

Hn_x(P) = Z2, and Ker 7 = Ker a ® Ker ß under the inclusion. Using (7.2) and
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[5, V. 1.3] as in (7.3), we see that the quadratic form tyff is the direct sum of

¥M and i>%. Hence 0(2,, Tf) + oÇZgf, Tgf) by (7.3).   Q.ED.

Corollary 7.5. Let f be the A-diffeomorphism defined in (7.1). Mis an

(n — 2)-connected characteristic submanifold for (Sn x S" x I, A x Id) such that

bM = f-x(Sn x S"~x) x 1 -Sn x Sn~x x 0. If Hn_x(M) is cyclic, then

Hn_x(M; Z2) = 0.

Proof.  Let g he the ¿-diffeomorphism defined in (7.1) by g(x, y) =

(t(v) • x, y). Since g(Sn x Sn~x) = S" x S"-1, we can take A = S" x Sn~l

x I to be a characteristic manifold associated to f2^, Tg) as in (6.6). Hn_x(N;Z2)

= Z2. Assume Hn_x(M; Z2) = Z2. From (7.4), we would have 0(2,^, Tfg) =

0(2,, Tf) + o(2g, Tg) = 0. This contradicts (7.1). Hence Hn_x(M; Z2) = 0.  Q.E.D.

8. Curious involutions. Let 24)fc_1 denote the generator of bPAk, a cyclic

subgroup of r4fc_1, consisting of those homotopy spheres which bound paralleliz-

able manifolds, [17]. Let (24k_1, 7) be a fixed point free involution such that

24fc_1 G bP4k, we can write 24k_1 = m 24,*-1 for some integer m, which is

well-defined mod 2. Following [13], we will call an involution 024*-1, 7) curi-

ous if m + o024*-1, 7) mod 2 is equal to 1.

Lemma 8.1. The number of curious involutions ÇZ%k~x, 7) with a(2^fc_1,7)

= 0 is finite.

Proof. The number of the normal cobordism classes [74fc_1, G/0] is

finite, [21]. In each normal cobordism class, there is exactly one p.l. involution

with the zero Browder-Livesay's index invariant, [21] or [33]. Since ttAPL/O)

is finite, the number of differentiable involutions with zero index invariant in each

normal cobordism class is finite by smoothing theory.   Q.E.D.

Let S" denote the standard sphere. As an application of our previous

theorems, we have the following:

Theorem 8.2. Let n = &k + 3; the number of curious involutions (2q, 7)

with o(2£, 7) = 0 is either 0 or equal to the number of involutions (Sn, 7) wir«

o(5", 7) = 0.

Proof.  From (5.2), we know that hS(P6k+3) is in 1-1 correspondence

with/8Jfc+3 = 0-x(Do(S4k+x x S4fc+I)), a subgroup of the group

D0(S*k+1 xSAk+x,A)

of concordance classes of ¿-diffeomorphisms of 54k+1 x S*k+X, consisting of

those ¿-diffeomorphisms which are homotopic to identity.

Let C = {/S/jfc+alS, = 28,*+3, 0(2,, Tf) = 0}, and C' = {feJSk+3Wf

= S8k+3, 0(2,, Tf) = 0}. There are two cases:
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(a) ¿is odd. D0(SAk+x x S4k+1) = T8ft+3 by (5.2). Let7er8fc+3

be the element which corresponds to 28,fe+3. If C is not empty, then 0(f) = y

for all/GC, where 0:Z?o(S4fc+1 x S4k+X, A) -*D0(S4k+x xS4*+1)isthe

forgetting map in §4. Take g G C, 0(g~x) = y~x, hence 2 _x = -2jfe+3; and

o(2 _j, T _,) = -o<2,, Tg) = 0 by (6.15). Using (6.15) again, we see that the

mapping f-*f°g~x for /G C maps C into C' because S  _x = 54fc+3. This

correspondence is 1-1 and onto, since the inverse is given by « —► A » g for A GC'.

(b) ¿is even. From (5.2), we know that D0(S4k+x x 54k+1) is the semi-

direct product of (rjj) + r8*+3 and (of), where ox and o2 are defined by

<>i(*. y) = (*. <*(*) * y) and ff2(*' >0 = (o(y) ' x, y), o\ = o\ = Id in

D0(S4k+x xS*k+1), [19]. IfCisnotempty, thenfor/GC, 0(/) = 7,o27O1,

70j, or o27, [19], where y is the element of r8fc+3 corresponding to 28)fc+3.

(i) If there exists a g G C such that 0(g) = y. Since 7~x lies in the cen-

ter ofD0(S4k+1 xSAk+x), [19],and0(£-1) = 7"I,weseethat0(j/-1) = Id,

a2ox, a,, or o2. Hence 2   _, = SSk+3. By applying (6.15) as in-(a), we see

that the mapping/-*■/° g~1 for/GC gives a 1-1 correspondence between

C and C'.

(ii) If 0(f) =É y for every fGC, but there exists g G C such that 0(g) =

70-,. Then 0(g~x) = o^V1 = o^-1, and a&g_it Tg_x) = -<j(2,, T,) = 0

by (6.15). In this case, 0(f) = yox, o2y, or a27a, for /G C.  As in (i), we have

0(fg~x) = W, o2ox, or o2. Hence 2   _, = SSk+3. By (6.15) again, the map-

ping f-+f°g~x for fGC gives a 1 -1 correspondence between C and C'.

(iii) If 0(f) & 7, 70j, for every / G C, but there exists gGC such that

0(g) = a27- Then the mapping /-*■ g~ xf gives a 1-1 correspondence between

C and C' as in (i).

(iv) If 0(f) = o270, for all fGC.  Take g G C, 0(g~x ) = afx y~x o2 x,

and o(2 _,, T _,) = 0 by (6.15) as before. For/G C,/->/<» g_1 gives 1-1

correspondence between C and C' by (6.15) as before.   Q.ED.

9. Decomposition of (22", 2"). In this section, we will prove an analogue

of (1.1) for free involutions on even dimensional homotopy spheres.

Proposition 9.1. Forn> 3, (22n, T) = (Sn x Dn, A) U, (Dn+1 x

Sn-X,A) for some A-diffeomorphism gof(Sn xS"-x, A).

Proof.  Let Pm denote the real projective space. There is a homotopy

equivalence/: P2n -> Q2n = 22n/T. Let /: P" -+P2n be the inclusion. For

dimensional reasons, f\Pn is homotopic to an embedding by [12]. By the homot-

opy extension theorem, we see that / homotopic to a smooth map g such that

g\Pn is an embedding.

Let vx denote the normal bundle of P" in P2", and i>2 the normal bundle

of gP" in Q2n. Let r, and t2 denote the tangent bundles of P2n and Q2n. By
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Theorem 3.6 in [1] ,g*72 and 7X axe /-equivalent.  Since the projection KO(P2")

—>J(P2n) is an isomorphism, g*72 and 7X axe stably equivalent. Let 7p denote

the tangent bundle of 7". g*72\Pn is stably equivalent to Tj|7n. Since g\Pn is

an embedding, (£|7")*(rj|gP") is stably equivalent to 7,|7". The induced map

commutes with the Whitney sum; hence r_ ® vx is stably equivalent to 7p ®

g*v2. By adding a stable inverse for 7p, we see that vx is stably equivalent to

g*v2. But i>j, the normal bundle of 7" in T2", is equivalent to mt? = 1? ® i? ®

• • • © 7?, « times, where tj is the canonical line bundle over 7". Hence by Corol-

lary 1.10 in [5] ,g*v2 and vx are actually equivalent. By lifting this equivalence

of normal bundles to the double cover, we see that there is an equivariant embed-

ding h = (S"x D", A) -+ (22", 7). The image solid torus is unknotted by [12],

the complement is diffeomorphic to Dn+X x Sn~x by the «-cobordism theorem.

Consider (Sn x Dn, A) **■ (22", 7) <£ (Dn+X x SH~l, U), where we

define an involution on the right-hand torus by U = k'~xTk'. Both « and k' are

equivariant embeddings. The ¿-invariant diagonal sphere in S"~x x S"~x Ç

Sn x Sn~x on the left-hand side is mapped by k'h\Sn x Sn onto a ¿7-invariant

sphere SA_1 on the right. On the boundary of Dn+X x Sn~x, U is equivalent

to A. We equivariantly collar Sn x S"~x in (Dn+X x Sn~x, U) by [9, 21.2],

and push SA-1 a little way inside the boundary.  U is equivalent to ¿ on a tubu-

lar neighborhood A of this interior copy of 5A~x, which can be proved by applying

Lemma 2 of [20] to show that the normal bundle of P"~x = 5A-1/¿ in Ais equiva-

lent to the normal bundle of 7""1 in72" . The orbit space (D"~x x Sn~x -N)/Uis

an «-cobordism between two copies of a manifold diffeomorphic to S" x S"~x/A

Since the Whitehead group Wh(Z2) = 0, this A-corbodism is diffeomorphic to

(Sn x Sn~x/A) x 7 by the s-cobordism theorem. Therefore (Dn+X x Sn~x, U)

is equivalent to (Dn+X xS"-x,A).   Q.E.D.

Similar to (2.1), we have the following:

Proposition 9.2. n > 3, (22n, 7) = (2,, 7,) = (2^, Tg)for some A-dif-

feomorphisms f and g of Sn x Sn~x iff there exists A-diffeomorphisms H : S" x

D"^Sn xD" andK:D"+x x S""1-*7)"+1 x Sn~x such that f = KgHon

Sn xSn~x.

Proof.  Exactly the same as in [20]. Suppose we have two distinct decom-

positions, (S" x Dn, A) -^ (22", T)^L(Dn+x x S"-X,A), i = 1 or 2. On

5" xS"-x,f=kxxhx andg = k2xhx. Note that hx,h2 = Sn x rj-»-22" + 1

are equivariantly homotopic embeddings, since both are lifted classifying maps for

7" in Q2". Hence hx(Sn x 0) and h2(Sn x 0) are equivariantly isotopic by a

global isotopy by [12] as in the proof of (2.4). By the equivariant tubular neigh-

borhood theorem, [3], there is an equivariant isotopy of 22" such that, after

composing with the first isotopy, there is an equivariant diffeomorphism r: 22" -*•
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22" with H = h2xrhx, an equivariant bundle map. let K = k\~xr~xk2: D"+x x

S""1; we note that fc, =rxk2K~x. Hence f=kxxhx=Kk2xrhx=Kk2xh2H

= KgH. H extends equivariantly to all of Sn x Dn, and H extends equivariantly

toallofZ)"4"1 xSn~l.   Q.E.D.

10. Equivariant Manor's pairing. Milnor defined in [22] a certain pairing 2

on s^TTn(SOn) ® nn(SOn + x) to r2n+1, the group of homotopy spheres, where

s^irn(SOn) denotes the image of s+: iin(SOn) -*■ nn(SOn + x). The pairing is

defined as follows. Let a G itn(SOn),a' G/nn(SOn+f);define two diffeomorphisms

/, and f2 on 5" x S" by fx(x, y) = (x, s^a(x) • y) and /2(x, y) = (a'(y) • x, y).

Let«=/, o/-2,S(s#a,a') = 5" xDn+x L)hDn~x xS".

If the above s^a and a' lie in the image of n*: [Pn,SOn+x] ~*^n(SOn+x),

then we can take representatives of s#a and a' such that s#a(x) = s#a(—x) and

a'(x) = a'(-x). Hence h = fx ° f2 is an ¿-diffeomorphism, and 2(5^, a')

admits a free involution, which is (2ft, Tf). In §7, we used a' = s^a = 7 in

7rn(50n + 1), n even, to construct an involution on the Kervaire sphere with non-

zero Arf invariant.  For « odd, we will see that all the involutions obtained in

this way have zero index invariant.

From (3.1) and (3.9), we know that in *AßOH+f),sjtJßOn) n ii*[Pn,SOn+x]

= {2d) for « > 7, « = 3 mod 4;and = 0 for n = 1 mod 4. Hence we only have

to consider the case where n = 3 mod 4 and n¥=3,7.

Lemma 10.1. If f is an A-diffeomorphism of S" x S" such that f leaves

S" x S"'1 or Sn~x x Sn invariant, then 0(2,., Tf) = 0.

Proof. S" x D" L)fDn+x x S"~x or Sn~x x Dn+X L)fD" x S" is a

codim 1 invariant sphere of (2^., Tf), because S" x Sn~x,S" x D",Dn+x x

S"~x,etc. are all invariant under A.    Q.ED.

In nn(SOn + x) for « h 3 mod 4 and n * 3, 7, rr*[P", SOn + x] = Z + Z,

generated by t and 2a; rr*[P", SOn + 1] D s^Trn(SOn) = Z, generated by 2a, (3.9).

We first consider 2(2a, 2a). Let a = s^a, where a G ttn(SOn), [18]. We

can choose a representative for 2a such that 2a(x) = 2a(-x).  Let / represent

a G iin(SOn) such that /|the southern hemisphere = identity. Since « is odd, ¿/

is homotopic to /. The map g: S" -*• SOn defined by g = / on the northern

hemisphere and = ¿/ on the southern hemisphere represents / + Af, hence 2a,

and g(x) = g(-x). We have fx(x, y) = (x, sfla(x) • y), f2(x, y) = (sfla(y) • x,

y),andh=fx * fv Since 2a G it n(SOn), s fla(Sn) • Sn~x GSn-x,fx(Sn x Sn~x)

GS" x S"~x. But 2a(x) G SOn, which has a matrix representation [2a(x)]. We

define d G Tr„(SOn) by d(x) = [2a(x)]~x, the inverse matrix for [2a(x)]. The

diffeomorphism /3 defined by /3(x, y) = (x, s^d(x) • y) is the inverse for /,, and

f3(Sn xS"-x)GSn xSn~x. Hence/,(5" xS"-x) = Sn xSn~x. SimÜarly,
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f2(Sn x Sn~x) = S" x S"-1. Thus h=fxof2 leaves 5" x Sn~x invariant.

0(2^,7^ = 0 by (10.1).

Now, we consider the ¿-diffeomorphisms gx and g2 of 5" x 5" defined by

g2 = f2 in the preceding paragraph and gx(x, y) = (r(y) • x, y), where r(y) =

a(y)a(e) as in §3. e is the north pole of Sn, a(y) = the reflection through

the hyperplane orthogonal to y.   This representative of t satisfies t(x) = t(-x).

7(Sn-x) • 5" = a(S"-x)a(e)Sn = a(S"-x)Sn = 5". Hence ̂ (5" x S"~x) ç

Sn x Sn~x. But a(y)a(y) = identity. Thuss.fS" x S"~x) = S" x Sn~x. « =

g2 o gx leaves Sn x Sn~x invariant. o(2„, Tn) = 0 by (10.1).

Suppose j3j and ß2 are two representatives for ß E irn(SOn + x) such that

0,00 = ßt(-x); we define two ¿-diffeomorphisms hx and «2 by h¡(x, y) = (x,

ßi(x)-y). Since7r*[7",50n+1] -*TTn(SOn + x)isl-lfoxn = 3mod4andn>7,

(3.9), we see that hx and «2 are ¿-concordant by (2.4) and (2.5). Hence the con-

struction of the (2ft, Tn) is independent of the choice of representatives for ß E

Image tt*. Thus we have

Proposition 10.2. Every involution (28"+7, 7) constructed above by

using Milnor's pairing: 2 = 2(2«xo, 2«a) or 2(2ma, m), has zero Browder-Live-

say index invariant.

Added in proof.  Lemma 6.11 is not true.  Since 7 changes the orientation

of the characteristic submanifold M, we have

index C[¡ I Ker a = - index C[¡ I Ker a'.

Thus index CTM = 0.

Here we will adapt the proof of [31, Theorem II.4] (instead of applying

the Theorem itself, which was stated as Theorem 6.12 above) to verify Theorems

6.13 and 6.15.

Let M, A, and 7 be the characteristic submanifolds for (W, T) = (S" x S" x

I.Ax id) associated with/, g, and gf respectively as in (6.15)

M0 =S" xSn-x,Mx =/~x(5" x 5"-1) = A0,   A, =rxg-x(Sn x Sn~x),

Vl=rx(Sn xD"),   P = MVMiN,   V=VMUViVN,   etc.

Let
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(0Ll,0L\):HnM-+HnVM ® HnTVM,

(a2, a2): HnN->HnVN ® HJVN,   and

(a, a'):   H„P -+ HnV ® H „TV

be the maps induced by inclusion as in (6.7).

Theorem.

index Bg/ = index BgN 4- index B^.

Proof. (6.10) and (6.11) stated that

HnM = Ker a, ® Ker a, ® Im ix,

where i, : HnbM —► HnM is the inclusion. We take Q as coefficient from now on.

Let m = rank Hn(V, Vf). We can classify M into two types:

(a) Hn_xM = Q, rank HnM = 2m + 1, rank Ker a, = m, and Q = Hn_xMx

—* Hn-XM is onto.

(b) Hn_xM = 0, rank ZZ„Af = 2m, rank Ker a, = m - 1.

Consider the following exact sequence.

Hn(Mx)

Q + Q H„VM

■* HnM ® HnN

HJV„ ® HVM ® H TV,

■+H P
n ■~Hn_xMx

1n± ' M n" N ■+HnV ®HJV-

If one of M, N is of type (a), then we can show that Ker a, 4- Ker a2 —* Ker a

is an isomorphism by a simple counting argument, and index Bg¡f = index BgN 4-

index B^ follows from the statement in (6.14).

Now we assume that both M and N are of type (b).  Let (a*, a'*): H" V

® H"TV —> H"P be the map induced by inclusions. We have the following exact

sequence.

k

1
HnMx Ker ax ® Ker a2

h +¡2
* Ker a

Im a'* -

-"•ff-i«i

L
**-*H"MX

Let AB Im k denote the annihilator of Im k under Bg/. Then we may

use the argument in [31.114] to show that AB Im k = Im/, + Im/2. But we

also have

Lemma [31, II.3]. If B is a symmetric bilinear form on a vector space V,

and if there is a subspace CGV with C C AC, then index B = index B I AC.
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Thus our theorem follows from this Lemma and (6.14) as above.   Q.E.D.

The proof of Theorem 6.13 is similar.
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