BERNOULLI CONVOLUTIONS AND DIFFERENTIABLE FUNCTIONS

BY

R. KAUFMAN(1)

ABSTRACT. Bernoulli convolutions, similar in structure to convolutions with a constant ratio, are considered in relation to differentiable transformations. A space of functions on the Cantor set leads to highly singular measures that nevertheless resemble absolutely continuous measures sufficiently to control their Fourier-Stielties transforms.

To each number θ in (0, 1) there corresponds a measure μ whose Fourier-Stieltjes transform $\hat{\mu}$ is defined by $\hat{\mu}(u) = \Pi_1^{\infty} \cos(u\theta^n)$. Moreover, $\hat{\mu}$ vanishes at infinity unless θ^{-1} is a PV number and $\theta \neq \frac{1}{2}$ [6, pp. 36-41], [8, pp. 147-152]. The measure μ has an interesting property apparently not observed until now, and this property is shared by measures close to μ in structure. Operating in a certain space of functions on a Cantor set, we can produce highly singular measures with the same property.

Let $S=(\theta_n)_1^\infty$ be a sequence of numbers in (0,1), and let $\theta=\lim \theta_n$, 0< $<\theta<1$, fulfill the condition for the vanishing of $\hat{\mu}(\infty)$ mentioned before. We define λ by the formula $\hat{\lambda}(u)=\Pi_1^\infty\cos(u\theta_1\cdots\theta_n)$, observing that λ is carried by the set $\Sigma(S)$ of all infinite sums $\Sigma\pm\theta_1\cdots\theta_n$.

THEOREM 1. The measure λ has the property

$$(R_1) \qquad \lim \int \exp iu\varphi(t) \cdot \lambda(dt) = 0$$

for every φ in $C^1(-\infty, \infty)$ with $\varphi' > 0$ everywhere.

THEOREM 2. For each Hausdorff measure-function h, there is a probability measure λ_1 with property (R_1) , whose support has h-measure 0 and is contained in $\Sigma(S)$.

1. The next lemma contains a substantial part of the analysis in the theorems. To each A > 1 we denote by $\hat{\lambda}_A(u)$ the partial product in $\hat{\lambda}(u)$, extended over indices n for which $|\theta_1 \cdots \theta_n u| < A$.

Received by the editors July 18, 1974.

AMS (MOS) subject classifications (1970). Primary 42A72; Secondary 46E15, 28A10. Key words and phrases. Bernoulli convolution, M_0 -set. (1)Alfred P. Sloan Fellow.

LEMMA. To each $\epsilon > 0$ there is an A so large that $|\hat{\lambda}_A(u)| < \epsilon$ when |u| > A.

To prove this we choose A so that $|\hat{\mu}(u)| < \epsilon$ when |u| > A. For large u $\hat{\lambda}_A(u) = \prod_1^\infty \cos(v\varphi_1 \cdots \varphi_n)$, wherein $A \le v < A\theta^{-2}$ and the numbers $\varphi_1, \ldots, \varphi_n, \ldots$ belong to the tail of the sequence S—in fact they belong to $(\theta_n)_p^\infty$, with $\theta_1 \cdots \theta_p |u| < A$. The infinite product is then uniformly close to $\hat{\mu}(v)$, for large u, and this proves the lemma.

Instead of giving the proof of Theorem 1 immediately, we introduce some machinery leading to Theorem 3, a stronger result. Let C be the Cantor set of sequences $x = (x_{\kappa})_{1}^{\infty}$, $x_{\kappa} = -1$, +1. C is a topological group and the Haar measure σ is the customary product measure. The distance $d(x, x') = 2^{-N}$ if $x = x'_{1}, \ldots, x_{N} = x'_{N}$ but $x_{N+1} \neq x'_{N+1}$. The modulus of continuity $\omega_{\kappa}(f)$ of a mapping f of C into a metric space—in particular into C itself—is given by

$$\omega_{\kappa}(f, x) = \sup d(f(x'), f(x)) : d(x, x') \le 2^{-\kappa}.$$

The space λ_1^0 is composed of continuous mappings of C into itself such that $2^{\kappa}\omega_{\kappa}(f) \longrightarrow 0$ in σ -measure, while λ_1^p $(1 \le p < \infty)$ is defined by the same relation in $L^p(\sigma)$. These spaces are complete metric groups.

C is mapped onto $\Sigma(S)$ by the transformation $Y(x) = \Sigma \theta_1 \cdots \theta_{\kappa} x_{\kappa}$ and this also maps the measure σ onto λ , i.e. $\lambda = \sigma \circ Y^{-1}$ as set-functions.

THEOREM 3. Let I denote the identity map of C, let f belong to λ_1^0 , and let I + f denote a sum in the group C. Then $Y_1 = Y_0(I + f)$ transforms σ onto a measure λ_1 with property (R_1) .

PROOF. For large u we define n(u) = n to be the least integer such that $|\theta_1 \cdots \theta_n u| < A$ (A is fixed until the end of proof). Then we divide C into cylinders C_j $(1 \le j \le 2^n)$ of σ -measure 2^{-n} . Of course these are just cosets of the subgroup $x_1 = \cdots = x_n = +1$. Now $\omega_n(f)$ is constant on each C_j —let its value be $2^{-n}j$. On C_j we can write

$$Y(x + f(x)) = Y(x + \overline{x}_j) + O(\theta_1 \cdot \cdot \cdot \theta_{n_j}),$$

for some element \overline{x}_j of C. Now $n_j - n \to +\infty$ except on sets C_j whose total σ -measure tends to 0, and when $n_j - n$ is large, then $|u|\theta_1 \cdot \cdot \cdot \theta_{n_j}$ is correspondingly small. Therefore we can focus on the estimation of $\exp iu\varphi \circ Y(x + \overline{x}_j)$, and observe that uniform continuity of φ' gives

$$u\varphi \circ Y(x + \overline{x}_i) = u\varphi'(\overline{y}_i) \cdot Y(x + \overline{x}_i) + \overline{z}_i + o(1),$$

where \overline{y}_j belongs to $\Sigma(S)$, whence $\varphi'(\overline{y}_j) \ge \eta > 0$. Thus the integral over C_j has absolute value $< o(2^{-n}) + 2^{-n} |\hat{\lambda}_A(v)|$, with $|v| \ge \eta |u|$. By the lemma we can make this $< \epsilon 2^{-n}$ by increasing A and |u|, and this proves the theorem.

THEOREM 2'. For each Hausdorff measure-function h, I + f maps C onto a set of h-measure 0 in C, except for a subset of first category of λ_1^p .

In the proof we use operators T_{κ} , defined by

$$T_{\kappa}f(x)=f(x_1,\ldots,x_{\kappa},1,1,\ldots).$$

Clearly $\omega_N(T_{\nu}f - f) \leq \omega_N(f)$, and of course

$$\omega_N(T_{\kappa}f-f) \leq \sup d(T_{\kappa}f(x), f(x)).$$

Therefore $T_{\kappa}f \rightarrow f$ uniformly as $\kappa \rightarrow +\infty$ and moreover

$$\sup_{N} 2^{N} \|\omega_{N}(T_{\kappa}f - f)\|_{p} \longrightarrow 0.$$

Thus λ_1^p contains a dense subgroup of functions f with a finite range. Suppose, for definiteness, that f is constant on sets of diameter 2^{-r} and let N > r, $N = N_1 < M_1 < \cdots < N_q < M_q < \cdots$, $1 \le q \le 2^N$. We divide C into the standard sets C_q of measure 2^{-N} and define

$$\psi(x) = T_N(x) + T_M(x)$$
 on $C_a(N = N_a, M = M_a)$.

In estimating $\|\omega_{\kappa}(\psi)\|_p$ we first consider $\kappa=1,2,\ldots,N_1$. Now $d(\psi,1)\leqslant 2^{-N}$ everywhere and $d(\psi,1)\leqslant 2^{-N}2$ except on C_1 . But C_1 meets exactly one of the cylinders of index κ , so $\|\omega_{\kappa}x\|_p\leqslant 2^{-N}2^{-\kappa/p}+2^{-N}2$. This is small in comparison with $2^{-\kappa}$, provided N and N_2-N_1 are large. When $N_1\leqslant\kappa\leqslant M_1$ we find $\|\omega_{\kappa}(\psi)\|_p\leqslant 2^{-\kappa}2^{-N/p}+2^{-N2}$, and this can be made small enough by increasing N and N_2-M_1 . When $\kappa\geqslant M_1$, the argument remains the same, except that $\omega_{\kappa}(\psi)=0$ on C_1 , etc. Thus ψ has a small norm in λ_1^p , for appropriate choices of N, N_1 , M_1 , \ldots .

It remains to investigate the mapping properties of $f(x) + x + \psi(x)$. On C_q , this equals $f(x) + x + T_M(x) + T_N(x)$. Using the fact that f is constant on sets of diameter 2^{-r} , and $N = N_q > r$, we see that C_q is mapped into at most 2^N sets of diameter 2^{-M} . By making the sum $\sum 2^N q \cdot h(2^{-M}q) < \eta$ (say), we obtain a function $f + \psi$, close to f in λ_1^p , such that $I + f + \psi$ transforms C into a union of sets B_s , with $\sum h(\dim B_s) < \eta$. Moreover, this remains true for all f^* in a neighborhood W^* of $f + \psi$, because the metric in λ_1^p is stronger than the uniform metric. Taking a sequence $\eta_r \to 0$, we obtain a dense G_δ -set in λ_1^p with the property that (I + f)C has h-measure 0.

Theorem 2' leads directly to Theorem 2 because Y is uniformly continuous: to each h there is an h_1 so that h-mes $Y(F) \leq h_1$ -mes F for every subset F of C.

2. In the definition of property (R_1) , the continuity of φ' is essential. If, for example, we allow all absolutely continuous functions φ , with $1 < \varphi' < 2$ a.e., then the corresponding measures would necessarily be absolutely continuous [6]. Therefore it is interesting to state a theorem in which φ' need not be continuous.

nor even locally integrable. For this kind of theorem we take $\theta_n \equiv 2$; although this can be avoided, the complications are great. Compare [1], [7].

THEOREM 4. Suppose that $\varphi(t)$ is defined on [-1, 1] and is differentiable almost everywhere with derivative $\varphi' \neq 0$. Let $f \in \lambda_1^0$. Then for almost all y in C, the mapping H_y : $H_y(x) = \varphi \circ Y(x + y + f(x))$ transforms the measure σ onto a measure λ_1 such that $\hat{\lambda}_1(\infty) = 0$.

The proof depends on Marcinkiewicz' variant of Lusin's theorem [8, pp. 73-77]: to each $\epsilon > 0$ there is a function φ_* of class C^1 [-1, 1], such that $m\{\varphi \neq \varphi_*\} < \epsilon$. Now $\varphi' = \varphi'_*$ a.e. on $\{\varphi = \varphi_*\}$ so there is a closed set, of measure $> 2 - \epsilon$, on which $\varphi'_* \neq 0$ and $\varphi = \varphi_*$. By parabolic interpolation [8] we can adjust φ_* off the closed set so that it remains in C^1 [-1, 1] and $\varphi'_* \neq 0$ except on a countable set.

We claim that

$$\lim \int \exp iu\varphi_* \circ Y(x+y+f(x))\sigma(dx) = 0$$

for every y in C. Indeed, if $J \subseteq (-1, 1)$ is an interval on which $\varphi_* > 0$ or $\varphi_* < 0$, then φ_* can be extended from J to a function Φ of class $C^1(-\infty, \infty)$, with $\Phi' > 0$ or $\Phi' < 0$ everywhere. By Theorem 2 and a known theorem [8, p. 145], $\lim \int_J (\cdot) = 0$. Since $\varphi'_* = 0$ only on a countable closed set, this is sufficient to establish our claim.

Now the σ -measure of the x-set

$$\varphi \circ Y(x + y + f(x)) \neq \varphi_* \circ Y(x + y + f(x))$$

is a Lebesgue-measurable function of y, whose integral over C is $< \epsilon$. So the σ -measure is $< \epsilon^{\frac{1}{2}}$, except for a y-set of measure $< \epsilon^{\frac{1}{2}}$. Under this bound on the σ -measure

$$\lim \sup \Big| \int \exp i\mu \varphi \circ Y(x+y+f(x))\sigma(dx) \Big| < \epsilon^{\frac{1}{2}}.$$

Since ϵ was arbitrary, the limit is 0 for almost all y. In these arguments we used the observation that λ , the distribution of the function Y, is dt/2 on (-1, 1), and combined this with Fubini's theorem.

Differentiability of φ' is not the weakest condition for Marcinkiewicz' interpolation process [8, p. 228] and the theorems cited lead to a stronger version of Theorem 4. If we allow λ to be singular, for example by taking $\theta < \frac{1}{2}$, then φ' must exist a.e. for λ . Marcinkiewicz' theorem becomes quite technical in this situation.

3. In this final section we suppose $\theta_n = \theta < \frac{1}{2}$ for all n and write $\Sigma(\theta)$ for the support of the measure μ . If M is an infinite set of positive integers, then

 $\Sigma(\theta, M)$ stands for the set of sums $\Sigma x_n \theta^n$ in which $x_n = -1, +1$ and $x_n = +1$ for $n \notin M$. Then $\Sigma(\theta, M)$ carries a measure λ whose Fourier-Stieltjes transform is

$$\prod_{M} \cos u\theta^{n} \times \prod_{M'} \exp -iu\theta^{n}.$$

As we observed earlier $\Sigma(\theta)$ admits decompositions into 2^n cylinders; their diameter is exactly $2\theta^{n+1}(1-\theta)^{-1}$ and their distances at least $[1-\theta(1-\theta)^{-1}] \cdot 2\theta^n$. When M' contains segments of unbounded length, then some function φ of class $C^1(-\infty,\infty)$, with $\varphi'>0$, transforms $\Sigma(\theta,M)$ onto a set of uniqueness [3, 2VII]. Incidentally, this is also true when $\theta=\frac{1}{2}$, but then $\Sigma(\frac{1}{2},M)$ is a set of uniqueness as soon as M' is infinite. Let us say that M is deficient if M' contains segments of unbounded length.

THEOREM 5. Let h be a positive function on (0, 4) and h(0+) = 0. Then for a certain deficient sequence M the product measure λ on $\Sigma(\theta, M)$ has this property:

$$\lim \int \exp -iu\varphi(t) \cdot \lambda(dt) = 0,$$

whenever $\varphi \in C^1[-2, 2]$, $\varphi' > 0$ everywhere, and $|\varphi'(a) - \varphi'(b)| \leq h(|b - a|)$ for all a, b in [-2, 2].

Sets with the two properties claimed for $\Sigma(\theta, M)$ were first constructed in [4], by a complex process; the examples given below are essentially variants of Theorem 1.

By the hypothesis on h, there is a function $\Gamma(u) > 0$, defined and increasing without limit for u > 1, such that $\Gamma(u)h(u^{-1}\Gamma(u)) \to 0$. It is convenient to set $\Gamma(u) = \Gamma(|u|)$ if u < -1.

Now we are led to define the infinite product $\lambda_*(u) = \Pi \cos u\theta^n$: $\theta^n |u| < \Gamma(u)$. We shall prove that if $\lim \lambda_* = 0$, then λ has the property claimed in Theorem 5. First we choose $\delta > 0$ so that $\delta < \varphi' < \delta^{-1}$ on [-2, 2], and define n = n(u) to be the largest integer such that $|u|\theta^n \ge \delta^{-1}\Gamma(\delta^{-1}u)$. Now $\Sigma(\theta)$ is covered by cylinders of order n, of length $< \theta^{n+1}(1-\theta)^{-1} \le 2\delta u^{-1}\Gamma(\delta^{-1}u) = L$, say. Here $uLh(L) \longrightarrow 0$ by the characteristic property of Γ . Thus φ is represented on each cylinder by a linear function at + b, with an error $o(u^{-1})$, and $\delta < a < \delta^{-1}$. The integral of $\exp -iuat$ over a cylinder has magnitude $2^{-n} \prod_n^\infty |\cos u| \theta^m|$. The latter product is no larger than $|\lambda_*(au)|$, because the inequality $\theta^m |au| < \Gamma(au)$ leads to $\theta^m |u| < \delta^{-1}\Gamma(\delta^{-1}u)$, so $m \ge n$. Since λ_* vanishes at infinity, $\lim \int \exp -iu\varphi \cdot d\sigma = 0$.

To finish the proof of Theorem 5, we exhibit a deficient set M such that λ_* vanishes at infinity. The complement M' will be a union of segments $p_r \leq n \leq p_r + r$ with $p_1 > 1$ and $p_{r+1} > 3r + p_r$ (r = 1, 2, 3, ...). The characteristic

property of θ , that $\theta^{-1} \notin PV$, is equivalent to $\Pi_1^{\infty} \cos u\theta^{-n} = 0$ for every $u \neq 0$ (see the references in the introduction). By Dini's theorem on monotone sequences, the convergence to 0 is uniform on every compact subset of the positive line. Thus there are numbers Q = Q(r) so that $\Pi_1^Q |\cos u\theta^{-n}| < r^{-1}$ for $\theta \leq u \leq \theta^{-r}$. Now let p_1, p_2, \ldots, p_r be defined so that for $r = 1, 2, 3, \ldots$

$$p_r > p_{r-1} + r + Q(2r)$$
 and $\Gamma(\theta^{-p_r}) > \theta^{-Q(2r)}\theta^{-2r}$.

In proving that λ_* vanishes at infinity we define s=s(u) by the inequality $\theta < \theta^s u \le 1$ (u>1) and examine two possible inequalities for s in relation to M': either $p_r + 2r \le s < p_{r+1}$ for a certain r, or $p_r < s < p_r + 2r$. One of these must obtain, as soon as $s>p_1$. In the first case $\lambda_*(u)$ contains all factors $\cos u\theta^n$ in which p+r < n < s and $u\theta^n \le \Gamma(u)$. In particular, this extends to all n such that $1 \le s - n \le r - 1$ and $\theta^{n-s} \le \Gamma(u)$. In different terms $\lambda_*(u)$ contains all factors $\cos u\theta^s \cdot \theta^{-q}$ wherein $1 \le q < r - 1$, $\theta^{-q} \le \Gamma(u)$. Now $\theta < u\theta^s \le 1$, while r and $\Gamma(u)$ increase without bound, so this situation is covered by Dini's theorem.

In the case $p_r < s < p_r + 2r$, $\lambda_*(u)$ contains all factors wherein $p_{r-1} + r \le n < p_r$ and $u\theta^n < \Gamma(u)$. Now $u\theta^n \le \theta^{n-s}$, and $\Gamma(u) \ge \Gamma(\theta^{-1}\theta^{-s}) > \theta^{-Q(2r)}\theta^{-2r}$. Hence the inequalities on n are fulfilled if $p_r - Q(2r) \le n < p_r$. Writing $u\theta^n = \theta^{n-p} r u\theta^p r$, we observe that

$$|\lambda_*(u)| \leq \prod_{r=1}^{Q(2r)} |\cos v\theta^r|, \ \text{ with } \theta \leq v \leq \theta^{-2r},$$

so $|\lambda_*(u)| < r^{-1}$. This completes the proof that $\lambda_*(\infty) = 0$, and also the proof of Theorem 5.

REFERENCES

- 1. H. Federer, Geometric measure theory, Die Grundlehren der math. Wissenschaften, Band 153, Springer-Verlag, New York, 1969. MR 41 #1976.
- J.-P. Kahane, Séries de Fourier absolutment convergentes, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 50, Springer-Verlag, Berlin and New York, 1970. MR 43 #801.
- 3. R. P. Kaufman, A functional method for linear sets, Israel J. Math. 5 (1967), 185-187. MR 38 #4902.
- 4. ———, Sets of multiplicity and differentiable functions, Proc. Amer. Math. Soc. 32 (1972), 472-476. MR 49 #5678.
 - 5. ——, Menshoff's set of mulitplicity, Math. Scand. 34 (1974).
- 6. R. Salem, Algebraic numbers and Fourier analysis, Boston, Mass. 1963. MR 28 #1169.
- 7. H. Whitney, On totally differentiable and smooth functions, Pacific J. Math. 1 (1951), 143-159. MR 13, 333.
- 8. A. Zygmund, *Trigonometric series*. Vol. II, Cambridge Univ. Press, New York, 1959, 1968. MR 21 #6498; 38 #4882.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS, URBANA, ILLINOIS 61801