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BERNOULLI CONVOLUTIONS
AND DIFFERENTIABLE FUNCTIONS

BY

R. KAUFMAN(})

ABSTRACT. Bernoulli convolutions, similar in structure to convolutions
with a constant ratio, are considered in relation to differentiable transforma-
tions. A space of functions on the Cantor set leads to highly singular measures
that nevertheless resemble absolutely continuous measures sufficiently to con-
trol their Fourier-Stieltjes transforms.

To each number 8 in (0, 1) there corresponds a measure u whose Fourier-
Stieltjes transform f is defined by fi(u) = M7 cos(uf™). Moreover, i vanishes at
infinity unless 7! is a PV number and  # % [6, pp. 36—41], [8, pp. 147—
152]. The measure u has an interesting property apparently not observed until
now, and this property is shared by measures close to u in structure. Operating
in a certain space of functions on a Cantor set, we can produce highly singular
measures with the same property.

Let § = (6,); be a sequence of numbers in (0, 1), and let § = lim 6,,, 0 <
<6 <1, fulfill the condition for the vanishing of {i(®) mentioned before. We
define A by the formula i(u) =TIy cos(uf, - * 6,), observing that A is carried
by the set Z(S) of all infinite sums Z+6, --- 6

-
THEOREM 1. The measure \ has the property

R)) lim I exp iug(t) - N(df) = 0

for every ¢ in C'(~co, ) with ¢’ > 0 everywhere.

THEOREM 2. For each Hausdorff measure-function h, there is a probability
measure N, with property (R,), whose support has h-measure 0 and is contained

in Z(S).

1. The next lemma contains a substantial part of the analysis in the theo-
rems. To each 4 > 1 we denote by A, (u) the partial product in A(u), extended
over indices n for which 16, - - - 6,ul < A.
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LEMMA. To each € > 0 there is an A so large that li " (u)! < € when
lul > A.

To prove this we choose 4 so that |fi(u)| < e when lul > A. For large u

A A(u) M7 cos(vg, * * * ¢,), wherein 4 < v < 46™2 and the numbers Pireves

. . belong to the tail of the sequence S—in fact they belong to («‘)n);,° , with
01 **+0,lul <A. The infinite product is then uniformly close to fi(v), for
large u, and this proves the lemma.

Instead of giving the proof of Theorem 1 immediately, we introduce some
machinery leading to Theorem 3, a stronger result. Let C be the Cantor set of
sequences x = (x, )7, X, =—1,+1. Cis a topological group and the Haar mea-
sure o is the customary product measure. The distance d(x, x') = 27V if x =
Xy .5 Xy =Xy butxy,, #xy,,. The modulus of continuity w(f)of a
mapping f of C into a metric space—in particular into C itself—is given by

w, (f, ¥) = sup d(f(x"), f(x)): d(x, x') < 27%.

The space )\? is composed of continuous mappings of C into itself such that
2w, (f) — 0 in g-measure, while Ay (1 < p < =) is defined by the same rela-
tion in LP(0). These spaces are complete metric groups.

C is mapped onto Z(S) by the transformation Y(x) = Z6, - - - 6,x, and
this also maps the measure ¢ onto A, i.e. A = g © Y™ as set-functions.

THEOREM 3. Let I denote the identity map of C, let f belong to A%, and
let I + f denote a sum in the group C. Then Y, = Y (I + f) transforms o onto
a measure \, with property (R,).

ProOF. For large u we define n(u) = n to be the least integer such that
10, ---6,ul<A (4 is fixed until the end of proof). Then we divide C into cylin-
ders C; (1 <j <2") of o-measure 27". Of course these are just cosets of the
subgroup x; = *--=x, =+ 1. Now w,(f) is constant on each C;—let its value
be 27". On C; we can write

Y(x + fG)) = Y(x + %) + 00, -+ 0,),

for some element J?i of C. Now n; = n — + o except on sets C; whose total o-
measure tends to 0, and when n; — n is large, then lul6, - -0, i is corresponding-
ly small. Therefore we can focus on the estimation of exp iuy © Y(x + x;), and
observe that uniform continuity of ¢’ gives

up° Y(x + %) =ug () - Y(x + X)) +z; + o(1),
where J; belongs to Z(S), whence ¢ (7 ) =1 > 0. Thus the integral over C; has

absolute value < 0(27) + 27" IX A(v)l with lvl = nlul. By the lemma we can
make this < €27 by increasing 4 and lul, and this proves the theorem.
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THEOREM 2. For each Hausdorff measure-function h, I + f maps C onto
a set of h-measure 0 in C, except for a subset of first category of \.

In the proof we use operators T, , defined by
Tf)=f(xys--.r X, 1,1,..0)
Clearly wp (T, f — ) < wy(f), and of course

Wy(Tf = ) < sup d(T, f(x), f(x))-
Therefore T, f — f uniformly as k — + o° and moreover
sup Vleop(T, f-NHI, = 0.

Thus \j contains a dense subgroup of functions f with a finite range. Suppose,
for definiteness, that f is constant on sets of diameter 2" and let N>r, N=

Ny <My<:-<N,<M,<--+,1<q<2". We divide C into the standard
sets C, of measure 27V and define

Y(x) = Tp(x) + Tyy(x) onC (N =N, M= Mq).

In estimating flcw (I]I)" we first consider k = 1,2, ...,N,. Nowd(y, 1) <
2N everywhere and d(y, 1) <272 except on C;. But C, meets exactly one
of the cylinders of index k, so0 llw,xll, < 27No=®/P + 27N2_ This is small in
comparison with 27, provided N and N2 =N, are large. When N, <k <M,
we find lew, (¥)I, < 27*27N/P + 27N2_ and this can be made small enough by
increasing N and N, — M;. When k > M,, the argument remains the same, ex-
cept that w,(¥) = 0 on C;, etc. Thus ¥ has a small norm in A3, for appropriate
choices of N, Ny, M, . .

It remains to investigate the mapping properties of f(x) + x + ¥(x). On
C,» this equals f(x) + x + Tp,(x) + Tp(x). Using the fact that f is constant on
sets of diameter 277, and N = N, > r, we see that C, is mapped into at most
2N sets of diameter 2. By makmg the sum Z2Vq - h(2™Ma) < q (say), we
obtain a function f + ¥, close to fin \ P, such thatI + f+ ¢ transforms Cinto a
union of sets By, with Zh (diam B,) <n. Moreover, this remains true for all f*
in a neighborhood W* of f + ¥, because the metric in Af is stronger than the
uniform metric. Taking a sequence 1, — 0, we obtain a dense Gj-set in A2
with the property that (I + f)C has h-measure 0.

Theorem 2' leads directly to Theorem 2 because Y is uniformly continuous:
to each k there is an h; so that h-mes Y(F) < h,-mes F for every subset F of C.

2. In the definition of property (R, ), the continuity of ¢’ is essential. If,
for example, we allow all absolutely continuous functions ¢, with 1 < ¢’ <2 ae.,
then the corresponding measures would necessarily be absolutely continuous [6] .
Therefore it is interesting to state a theorem in which ¢’ need not be continuous,
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nor even locally integrable. For this kind of theorem we take 0, = 2; although
this can be avoided, the complications are great. Compare [1], [7].

THEOREM 4. Suppose that (t) is defined on [~1, 1] and is differentiable
almost everywhere with derivative ¢' # 0. Let fE€ )\(l). Then for almost all y in
C, the mapping H.,: Hygx) =y o Y(x + y + f(x)) transforms the measure o onto
a measure Ny such that \,(=°) = 0.

The proof depends on Marcinkiewicz’ variant of Lusin’s theorem [8, pp.
73—77]: to each € > 0 there is a function ¢, of class C' [-1, 1], such that
m{p # ps}<e. Now ¢' = ¢y ae. on {¢ = p,}so there is a closed set, of mea-
sure > 2 — ¢, on which ¢y # 0 and ¢ = ¢,. By parabolic interpolation [8] we
can adjust ¢, off the closed set so that it remains in C![-1, 1] and ¢} # 0 ex-
cept on a countable set.

We claim that

lim f exp iugy © Y(x +y + f(x))a(dx) =0

for every y in C. Indeed, if J C (—1, 1) is an interval on which ¢4 > 0 or ¢, <
0, then ¢, can be extended from J to a function ® of class C!(~o, ), with &’
>0 or @' < 0 everywhere. By Theorem 2 and a known theorem [8, p. 145],
lim f; () = 0. Since ¢} = 0 only on a countable closed set, this is sufficient to
establish our claim.

Now the o-measure of the x-set

poYx +y+f(x) Fpx° Yx +y + f(x)

is a Lebesgue-measurable function of y, whose integral over Cis < e. So the g-
measure is < €, except for a y-set of measure < €”. Under this bound on the
o-measure

lim sup I f exp iup © Y(x + y + f(x))o(dx) | < €.

Since € was arbitrary, the limit is O for almost all y. In these arguments we used
the observation that A, the distribution of the function Y, is d¢/2 on (-1, 1),
and combined this with Fubini’s theorem.

Differentiability of ¢’ is not the weakest condition for Marcinkiewicz’ in-
terpolation process [8, p. 228] and the theorems cited lead to a stronger version
of Theorem 4. If we allow A to be singular, for example by taking 6 < %, then
¢’ must exist a.e. for \. Marcinkiewicz’ theorem becomes quite technical in this
situation.

3. In this final section we suppose 8, = 8 < % for all n and write Z(9) for
the support of the measure p. If M is an infinite set of positive integers, then
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Z(0, M) stands for the set of sums Zx,,0” in which x,, =—1,+ 1 and x, = +1
for n ¢ M. Then Z(0, M) carries a measure A whose Fourier-Stieltjes transform is

[T cos u6™ x [] exp — iu6™.
M M

As we observed earlier Z(9) admits decompositions into 2" cylinders; their dia-
meter is exactly 20”7 1(1 — 6)™! and their distances at least [1 - 6(1 - )] -
26". When M’ contains segments of unbounded length, then some function ¢
of class C!(~oo, %), with ¢’ > 0, transforms Z(0, M) onto a set of uniqueness
[3, 2VII]. Incidentally, this is also true when 6 = %, but then Z(%, M) is a set
of uniqueness as soon as M’ is infinite. Let us say that M is deficient if M’ con-
tains segments of unbounded length.

THEOREM 5. Let h be a positive function on (0, 4) and h(0+) = 0. Then
Jfor a certain deficient sequence M the product measure \ on 2(0, M) has this
property:
lim [ exp ~ iup(t) - N@f) = 0,

whenever ¢ € C'[-2, 2], ¢’ > 0 everywhere, and 1¢'(a) - e B < h(lb - al)
foralla, bin [-2,2].

Sets with the two properties claimed for Z(9, M) were first constructed in
[4], by a complex process; the examples given below are essentially variants of
Theorem 1.

By the hypothesis on #, there is a function I'(u) > 0, defined and increas-
ing without limit for u > 1, such that D()h(u " T'()) — 0. It is convenient to
set D(w) = I(lul) if u < -1.

Now we are led to define the infinite product A.(u) = IT cos u6”: 6" lul <
I'(u). We shall prove that if lim A, = 0, then \ has the property claimed in Theo-
rem 5. First we choose & > 0 so that § < ¢’ < 5! on [-2, 2], and define n =
n(u) to be the largest integer such that lul” > §~'T(61u). Now Z(8) is cover-
ed by cylinders of order n, of length < 6"*!(1 —9)™ <2841 u) =L,
say. Here uLh(L) — 0 by the characteristic property of I. Thus  is represented
on each cylinder by a linear function at + b, with an error o ™),and § <a<
671, The integral of exp — iuat over a cylinder has magnitude 2" I lcos u 6™ 1.
The latter product is no larger than I\,(au)l, because the inequality 6™ laul <
I(au) leads to 0™ lul <87 u), so m > n. Since \, vanishes at infinity,

lim f exp — iup - do = 0.

To finish the proof of Theorem 5, we exhibit a deficient set M such that
Ay vanishes at infinity. The complement M’ will be a union of segments p, < n
<p,+rwithp, >1andp,,,>3r+p,(r=1,2,3,...). The characteristic
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property of 6, that 67! ¢ PV, is equivalent to 117 cos uf™ = 0 for every u # 0
(see the references in the introduction). By Dini’s theorem on monotone sequences,
the convergence to 0 is uniform on every compact subset of the positive line.
Thus there are numbers Q = Q(r) so that l'I{2 lcosud™I<r!foro<u<

6~". Now let py, p,, ..., p, be defined so that forr=1,2,3, ...

p,>p,_, +r+Q(2r) and (@ Pr)>e-20Ng-2r,

In proving that A vanishes at infinity we define s = s(u) by the inequality
0 <6°u<1 (u>1)and examine two possible inequalities for s in relation to
M': either p, + 2r <5<p,,, for a certain 7, or p, <s <p, +2r. One of
these must obtain, as soon as s > p,. In the first case A\, () contains all factors
cos u6” in which p + r <n <s and u6" < I'(u). In particular, this extends to
all n such that 1 <s-n<r-1and " <T'(w). In different terms \4(«) con-
tains all factors cos u8° - 677 wherein 1 <q <r-1,0"7 <T'(u). Now 0 < uf*
< 1, while  and I'(«) increase without bound, so this situation is covered by
Dini’s theorem.

In the case p, <s <p, + 2r, A4(u) contains all factors wherein p,_, +r
< n <p, and u" < T'(u). Now uf” < 0", and I(w) = I'(e~16~°) >
672("g~2", Hence the inequalities on n are fulfilled if p, — Q(2r) < n <p,.
Writing u6™ = 9" PrudPr, we observe that

M) < Qﬁ" Icos v8™1, with 6 <v<072",
so I\ ()| <r1. This complletes the proof that A,(=) = 0, and also the proof
of Theorem 5.
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