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BERNOULLI CONVOLUTIONS

AND DIFFERENTIABLE FUNCTIONS

BY

R. KAUFMAN (x)

ABSTRACT.   Bernoulli convolutions, similar in structure to convolutions

with a constant ratio, are considered in relation to differentiable transforma-

tions.  A space of functions on the Cantor set leads to highly singular measures

that nevertheless resemble absolutely continuous measures sufficiently to con-

trol their Fourier-Stieltjes transforms.

To each number 0 in (0, 1) there corresponds a measure p whose Fourier-

Stieltjes transform p. is defined by p(u) = n" cos(«0"). Moreover, p vanishes at

infinity unless 0-1 is a PV number and 0 =£ Vi [6, pp. 36-41], [8, pp. 147-

152]. The measure p has an interesting property apparently not observed until

now, and this property is shared by measures close to p in structure. Operating

in a certain space of functions on a Cantor set, we can produce highly singular

measures with the same property.

Let S = (0„)~ be a sequence of numbers in (0, 1), and let 0 = lim 0„» 0 <

< 0 < 1, fulfill the condition for the vanishing of p(°°) mentioned before. We

define X by the formula X(u) = If" cos(«0j • • • 6n), observing that X is carried

by the set 2(5) of all infinite sums 2 ± 0, • • • 0„.

Theorem 1.   The measure X has the property

(Ri) lim J exp iu<pit) • Hdt) = 0

for every <p in Cx{-<*>, °°) with tp' > 0 everywhere.

Theorem 2.   For each Hausdorff measure-function A, there is a probability

measure Xx with property (Rx), whose support has h-measure 0 and is contained

in 2(5).

1. The next lemma contains a substantial part of the analysis in the theo-

rems. To each A > 1 we denote by XA(u) the partial product in X(u), extended

over indices n for which l0j • • • 6nu\ < A.
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Lemma.    To each e > 0 there is an A so large that IX^(«)I < e when

\u\>A.

To prove this we choose A so that lp(«)l < e when lui > A. For large u

XA(u) = Ylx cos(u0x •••</>„), wherein A < u < A0~2 and the numbers <px,. ..,

ipn,. .. belong to the tail of the sequence 5-in fact they belong to (0n)p , with

6x • • • 6p\u\ <A. The infinite product is then uniformly close to p(u), for

large u, and this proves the lemma.

Instead of giving the proof of Theorem 1 immediately, we introduce some

machinery leading to Theorem 3, a stronger result. Let C he the Cantor set of

sequences x = (xK)x, xK = -1, +1. C is a topological group and the Haar mea-

sure a is the customary product measure. The distance d(x, x') = 2~N if x =

x\,.. ., xN = x'N but xN+ j =£ x'N+ j.   The modulus of continuity wK(f) of a

mapping / of C into a metric space-in particular into C itself—is given by

uK(f, x) = sup d(f(x'), f(x)): d(x, x') < 2"\

The space Xx is composed of continuous mappings of C into itself such that

2KuK(f) —> 0 in a-measure, while XÇ (1 < p < °°) is defined by the same rela-

tion in Lp(o). These spaces are complete metric groups.

Cis mapped onto 2(5) by the transformation Y(x) = 20 x • • • 6KxK and

this also maps the measure a onto X, i.e. X = o ° Y'1 as set-functions.

Theorem 3. Let I denote the identity map of C, let f'belong to Xx, and

let I + f denote a sum in the group C.  Then Yx = Y0(I + f) transforms o onto

a measure Xx with property (Rx).

Proof. For large « we define n(u) = n to be the least integer such that

10 x • '-dnu\<A(A is fixed until the end of proof)- Then we divide C into cylin-

ders Cj (1 </ < 2") of a-measure 2~". Of course these are just cosets of the

subgroup xx = • • ' = xn = + I. Now o?„(/) is constant on each Cy—let its value

be 2~~"/. On Cf we can write

Y(x + f(x)) = Y(x + xj) + 0(9 x ■ • • 6„j),

for some element x- of C Now n- - n —*• + °° except on sets C.- whose total a-

measure tends to 0, and when n, - n is large, then I«I0X • • • 0„. is corresponding-

ly small. Therefore we can focus on the estimation of exp iu<p ° Y(x + xj), and

observe that uniform continuity of <p gives

W o Y(x + Xj) = wv>'<7/) * Y(x + xj) + Tj + o(\),

where y¡ belongs to 2(5), whence ip'fyj) >r¡>0. Thus the integral over C;- has

absolute value < o{2~") + 2~n IX¿(t;)l, with lui > rj\u\. By the lemma we can

make this < e2~" by increasing A and lui, and this proves the theorem.
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Theorem 2'.   For each Hausdorff measure-function A, 7 + / maps C onto

a set of h-measure 0 in C, except for a subset of first category of Xpx.

In the proof we use operators TK, defined by

TKf{x)=f{xx,. ..,xK, 1,1, ...).

Clearly (¿N(TKf-f) < <¿N{f), and of course

o>N(TKf-f) < SUP ¿(TKf(x),f(x)).

Therefore TKf—>•/uniformly as k —► + °° and moreover

sup2JVllcJjv(7'K/-/)L-^0.
AT y

Thus X^ contains a dense subgroup of functions / with a finite range. Suppose,

for definiteness, that / is constant on sets of diameter 2~r and let Af > r, N =

Nx <MX < • • • < A^ <Mq < ■ • •, 1 < q < 2N. We divide Cinto the standard

sets Cq of measure 2~N and define

*(x) = TN{x) + TM{x)   on Cq{N = Nq,M = Mq).

In estimating llcoK(^)llp we first consider it = 1,2, ... ,NX. Nowd{\Ji, 1) <

2~N everywhere and d(\jj, 1) < 2-JV2 except on Cx. But Cx meets exactly one

of the cylinders of index k, so HoKxllp < TNTKlp + 2-jV2. This is small in

comparison with 2~K, provided Af and Af2 - Afx are large. When Nx < k < Mx

we find llc;K(i//)llp < TKTN,p + 2~N2, and this can be made small enough by

increasing Af and N2~MX. When k >Mx, the argument remains the same, ex-

cept that coK(i/0 = 0 on Cj, etc. Thus ^ has a small norm in X^, for appropriate

choices of Af Nx, Mx, . . . .

It remains to investigate the mapping properties of /(x) + x + ^(x). On

Cq, this equals f(x) + x + TM(x) + TN(x). Using the fact that / is constant on

sets of diameter 2~r, and N = Nq > r, we see that Cq is mapped into at most

2N sets of diameter 2~M. By making the sum 2 2Nq • h(2~M<¡) < r¡ (say), we

obtain a function / + \¡/, close to / in XÇ, such that I+f+ip transforms C into a

union of sets Bs, with 2A (diam Bs) < r¡. Moreover, this remains true for all /*

in a neighborhood W* of f+ ty, because the metric in Xpx is stronger than the

uniform metric. Taking a sequence r\r —> 0, we obtain a dense G6-set in Xpx

with the property that (7 4- f)C has A-measure 0.

Theorem 2' leads directly to Theorem 2 because Y is uniformly continuous:

to each A there is an hx so that A-mes Y(F) < Aj-mes F for every subset F of C.

2. In the definition of property (Rx), the continuity of <p' is essential. If,

for example, we allow all absolutely continuous functions <p, with 1 < <p' < 2 a.e.,

then the corresponding measures would necessarily be absolutely continuous [6].

Therefore it is interesting to state a theorem in which <p' need not be continuous,
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nor even locally integrable. For this kind of theorem we take 9n = 2; although

this can be avoided, the complications are great. Compare [1], [7].

Theorem 4. Suppose that ip(t) is defined on [-1, 1] and is differentiable

almost everywhere with derivative <p' ¥= 0. Let fE Xj.   Then for almost all y in

C, the mapping Hy: Hy(x) = v? ° Y(x + y + f(x)) transforms the measure o onto

a measure Xx such that Xx(°°) = 0.

The proof depends on Marcinkiewicz' variant of Lusin's theorem [8, pp.

73-77] :  to each e > 0 there is a function <p* of class C1 [-1,1], such that

m{ip^ <¿>*}< e. Now </ = tp* a.e. on {<¿> = ^„Jso there is a closed set, of mea-

sure > 2 - e, on which <p'# i= 0 and <p = <pt. By parabolic interpolation [8] we

can adjust <p* off the closed set so that it remains in C1 [-1, 1 ] and ¡p* # 0 ex-

cept on a countable set.

We claim that

lim J exp iuip* ° Y(x + y + f(x))o(dx) = 0

for every y in C. Indeed, if / ç (-1, 1) is an interval on which ip* > 0 or <p% <

0, then y* can be extended from / to a function i> of class C1^00, °°), with $'

> 0 or $' < 0 everywhere. By Theorem 2 and a known theorem [8, p. 145],

limjff (•) = 0. Since </4 = 0 only on a countable closed set, this is sufficient to

establish our claim.

Now the a-measure of the jc-set

<poY(x+y +f(x)) *<p*oY(x+y + f(x))

is a Lebesgue-measurable function of y, whose integral over C is < e. So the o-

measure is < eVl, except for a >"set of measure < eVl. Under this bound on the

a-measure

lim sup   J exp ip¡p ° Y(x + y + f(x))o(dx) I < eVl.

Since e was arbitrary, the limit is 0 for almost all y. In these arguments we used

the observation that X, the distribution of the function Y, is dt/2 on (-1, 1),

and combined this with Fubini's theorem.

Differentiability of <p' is not the weakest condition for Marcinkiewicz' in-

terpolation process [8, p. 228] and the theorems cited lead to a stronger version

of Theorem 4. If we allow X to be singular, for example by taking 9 < Vi, then

<p' must exist a.e. for X. Marcinkiewicz' theorem becomes quite technical in this

situation.

3. In this final section we suppose 9n — 9 < H for all n and write 2(0) for

the support of the measure p. If M is an infinite set of positive integers, then
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2(0, M) stands for the set of sums 2x„0n in which x„ = -1, + 1 and x„ = +1

for n £ M. Then 2(0, M) carries a measure X whose Fourier-Stieltjes transform is

I]cosu0" xY\exv-iu6n.
M M'

As we observed earlier 2(0) admits decompositions into 2" cylinders; their dia-

meter is exactly 20" + 1(l - 0)-1 and their distances at least [1 - 0(1 - 0)"1] •

20". When Af* contains segments of unbounded length, then some function <p

of class Cx{-°°, °°), with tp > 0, transforms 2(0, M) onto a set of uniqueness

[3, 2VTI]. Incidentally, this is also true when 0 = H, but then 2(H, Af) is a set

of uniqueness as soon as Af* is infinite. Let us say that M is deficient if M1 con-

tains segments of unbounded length.

Theorem 5.  Let h be a positive function on (0, 4) and A(0 +) = 0. Then

for a certain deficient sequence M the product measure X on 2(0, M) has this

property:

lim J exp - iwp(t) • X{dt) = 0,

whenever <pECx [-2, 2], </ > 0 everywhere, and l</(a) - ip'(b)\ < A(lô - al)

for all a, bin [-2,2].

Sets with the two properties claimed for 2(0, M) were first constructed in

[4], by a complex process; the examples given below are essentially variants of

Theorem 1.

By the hypothesis on h, there is a function V{u) > 0, defined and increas-

ing without limit for u > 1, such that r(u)h(u~x T(u)) —*■ 0. It is convenient to

setr(«) = r(lwl)ifu<-l.

Now we are led to define the infinite product X*(m) = U cos ud": Qn\u\<

T(u). We shall prove that if lim X* = 0, then X has the property claimed in Theo-

rem 5. First we choose 8 > 0 so that 8 <<p' < 8~x on [-2, 2], and define n =

n(u) to be the largest integer such that \u\8n > S-1r(S-1«). Now 2(0) is cover-

ed by cylinders of order n, of length < 0"+ x(l - 0)-1 < 25i/-1r(S-1u) = L,

say. Here uLh(L) —* 0 by the characteristic property of T. Thus ip is represented

on each cylinder by a linear function at + b, with an error o(u~x), and S < a <

5_1. The integral of exp - iuat over a cylinder has magnitude 2~n U™ I cos u 0m I.

The latter product is no larger than IX*(a«)l, because the inequality 0m lawl <

T(au) leads to 6m lui < 5-1r(6-1«), so m > n. Since X* vanishes at infinity,

lim / exp - im^> • do = 0.

To finish the proof of Theorem 5, we exhibit a deficient set M such that

X* vanishes at infinity. The complement l\f will be a union of segments pr < n

<p, + rwithpx > 1 andpr+ x >3r + pr(r = 1,2,3,.. .). The characteristic



104 R. KAUFMAN

property of 0, that 0 1 $PV, is equivalent to IIJ0 cos u0 " = 0 for every u ¥= 0

(see the references in the introduction). By Dini's theorem on monotone sequences,

the convergence to 0 is uniform on every compact subset of the positive line.

Thus there are numbers Q = Q(r) so that up Icos u6~" I < r-1 for 0 < u <

9~r. Now let px, p2, . . . ,pr be defined so that for r = 1, 2, 3, .. .

Pr >Pr-i +r + 0(20   and   r(0"pO > 0-Ö(2')0-2'.

In proving that X* vanishes at infinity we define s = s(u) by the inequality

0 < 9su < 1 (u > 1) and examine two possible inequalities for s in relation to

M1:  either pr + 2r < s < pr+ x for a certain r, or pr < s < pr + 2r. One of

these must obtain, as soon as s > px. In the first case X*(u) contains all factors

cos u0" in whichp + r<n<s and u0" < T(u). In particular, this extends to

all n such that l<s-n<r-land 9"~s < T(u). In different terms X*(u) con-

tains all factors cos u9s • 9~q wherein 1 < q < r - 1, 9~q < T(u). Now 0 < u0s

< 1, while r and T(u) increase without bound, so this situation is covered by

Dim's theorem.

In the case pr<s<pr + 2r, X*(u) contains all factors wherein pr_x + r

< n < pr and u9n < T(u). Now u0" < 9"~s, and T(u) > r(0_10_s) >

0-G(2/O0-2r Hence ^ inequahties on n are fulfilled if pr -Q(2r)<n<pr.

Writing u9" = 9n~Pru9pr, we observe that

Ô(2r)

lX»(a)K   H   Icosu0"l,   with 0 < v < 9~2r,
i

so IX*(u)l < f"1. This completes the proof that X*(°°) = 0, and also the proof

of Theorem 5.
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