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CONTINUOUS COHOMOLOGY FOR
COMPACTLY SUPPORTED VECTORFIELDS ON R"

BY

STEVEN SHNIDER(})

ABSTRACT. In this paper we study the Gelfand-Fuks cohomology of
the Lie algebra of compactly supported vectorfields on R” and establish the
degeneracy of a certain spectral sequence at the E; level. We apply this result
to the study of another spectral sequence introduced by Resetnikov for the
cohomology of the algebra of vectorfields on S™.

Let | be the Lie algebra of compactly supported smooth vectorfields on
a manifold M. For U a precompact open subset of M let L;; be the set of vector-
fields supported in U with the C* topology, then L = UUc m Ly and we give
L the topology of a strict inductive limit. Let C9(L) be the vectorspace of all
continuous skewsymmetric R-multilinear functions from L x + <+ x L (g times)
into R. Define

d?: ci(L) — c1t(L),
@y - Egr) =D CDNEL 5L - LB B

where [, ] denotes the Lie bracket of vectorfields and # indicates omission.
Then d9*! 0 d? =0 and C*(L) = @D,=o,....« C? (L) is a differential complex
with differential d = @d?. The cohomology of (C*(L), d) is known as the
Gelfand-Fuks cohomology of L with coefficients in R.

Let pr;: M? — M be the projection on the ith factor of the g-fold cartesian
product of M and let pr}T be the pull-back of the tangent bundle to M along
pr;. Define T9 =pr{T® -+ ® praT as a bundle over M2, A vectorfield £ on
M defines a section pr}T in a natural way and a g-tuple (&, ..., Eq) of vector-
fields defines a section prt; ® - - - ® prak, of T'? over M. Linear combina-
tions of sections of this type are dense in the space of compactly supported sec-
tions of 79, denoted [T?] ., with the inductive limit topology defined similarly
to that on L = [T],. Thus an element X € C9(L) defines a continuous function
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N [T9]¢ — R. If Homg([T9] o, R) denotes the continuous R multilinear
functions, then we have a map C%(L) — Homg ([T, R). If we let BY(L)
denote the set of not necessarily skewsymmetric continuous R-multilinear functions
L x -+ +x L — R, then we have an isomorphism:

) B9(L) = Homg([T] ¢, R).

Let Z, be the permutation group on g-letters and corresponding to ¢ € Z, and
A EBI(L) let 0 ° A € BI(L) be defined by

@° N> -+ -5 E) = €MEp(1)ys - - + 5 Eogq))

where ¢, is the sign of o as a permutation. With these definitions C(L) is the
subspace of Z,, invariants in BI(L).

()] BY(L)*? = CcY(L).
Let 0'(M?) be the space of distributions on M9,
D'(M?) = Homg (C5 (M ?), R) = Homg([1] ¢, R).

Consider Cg'(M7) as a left C*(M?) module making D'(M7) a right C™(M?)
module. Then

Homp ([T %] ¢, R) = Homg([T?] @ e yyq, [11cs )
) = Hom_, 4 ,(IT9] Hom([1] ¢, R))

= Hom oo 10, ([T], D) = D'M?) B 1, [T°].

Let 2, act on M? by permuting factors o(x,, . . . , D= &pm1(gy - s ¥, _l(q)).
This mduces an action on Cy'(M?) and by duality on D'(M?). Let =, act on

Te’ by permutmg factors and multiplying by €, then for w, ® - ® w, €
[79°],6,® - ®f € [T andu€ D’(M")

0u®w ® - Buw)lt @ &
=¢:‘,,(a°u®c.c.>a_l(l)®---®¢..>a.,(q))[‘gl ®---®£q]

= e, (0° u)[{w 131y’ 51)::, 0:--0 (wa-l(q)’ Eq)xq]

= &atllwy1y £ —1(1) BT s")"cr‘l(cl)]
= egul{wys £5(1ys, ° Wg» Eoayxg]
=eU®w; ® B wyl) @ " ®E,pl-
Therefore

@ o™ ® e w9 [T9*])%a = c(L).
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To compute the cohomology of CY(L) we use the spectral sequence defined as
follows. Let D'(M)|,,q be the distributions with support on the subset M7 =
{Gegs - - ,xq)l at mos{ck of the points x; € M}. Set

’ .\ Z
CUD) = @MY g O yrqy (17D,

then CJ(L) C CZ, (L) and d2CI(L) C CZ+(L). If we define F*C? = C?
we have a decreasing filtration preserved by the differential and thus a cohomology
spectral sequence.

Note that M is a union of submanifolds. In fact if S is a partition of ¢
elements into k sets, let M{ be the set of points in M7 consisting of (x, ... »%g)
such that if 7, j are in the same subset of the partition then x; = x;. There is an
obvious diffeomorphism of M* and M¢, and M = U, partition of KM3- Any
element of 7'(M?)|3s can be written as a sum of normal derivatives of distribu-
tions on MJ, see Schwartz [4]. P. Trauber in his Princeton thesis [6] has used
the isomorphism (4) and this fact to give a nice description of the E; term of the
spectral sequence and then applied the methods of relative homological algebra to
compute E,. We summarize his results below, making the obvious extension to
the case of compactly supported vectorfields. Let D(M) be the differential oper-
ators on M, not necessarily of finite order, topologized as follows. For U a pre-
compact open subset of M, let D¥(U) be the differential operators of at most
order k on smooth functions with support in U. As sections of a vector bundle
D¥*(U) has a nuclear locally convex topology and so the inductive limit D(U) =
li_rp x D*(U) does also. For U C V there is a restriction map D(V) — D(U) and
the precompact open subsets of M together with these restriction maps form a
directed system. Let D(M) = li‘r_nuc m D(U), as a projective limit of nuclear
spaces it is a nuclear space. If we use the cofinal family U9 =U x +- - x U
(g times) of precompact open sets on M7 to define the topology on D(M?), then
because

DU =D )& - - - ® D*(U)

and ® is an exact functor we have D(U%) = D(U) & - - - ® D(U) and D(MY) =
DM)® - -+ & D(M). Similarly [T9°] = [T*] & - - - & [T*]. Let DMY)|,q
be the differential operators Cg(M?) — Cg'(Mg). Composition on the left
defines a left D(MJ) module structure on D(M?)I,,q and cT™(M3%) € D(MJ).
Relative to these structures we have the following

ProrosiTiON (Trauber [6]).

@@ D™ q)bug, = D'MJ) ®D(M§) DM q)lm§,

(b) D(Mq)lMg = C“(Mg) ®C°°(M‘7) D(Mq)s
where the C* (M) module structure on C*(Mg) is restriction followed by mul-
tiplication. Using these isomorphisms we have
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DOy B e pray 7]
=PMH S, M9 c (M3 ® e ity DM B e 110 [T9°]
=DM Bpgy € MY B n yyq) OO &+ & Do)

®(J“’(M)é---§C"'(1u) ([T*]1 &---& [T*])

®---&DWM) Oy [T*1-

Let D ® T*=DM) @ () [T*] and let X be the elements of pclsitive
degree in the exterior algebra over C*(M) of D@ T*let X¥ =X & ---® X
(k times) and let X*(g) be the subspace of X* consisting of elements with g
factors of T*. Trauber proves the following

THEOREM (Trauber [6]).

@ Ci(L)= (D’(M")IMz ® [T9°1)79 = (@M% ® 1) XK@,

c®(M9)

F*cx) _[_ovwm* ® Q) Sk
(b) F"‘“C*(L) - <D’(Mk)|M£ . D(M") X .

He also points out the following interpretation of the isomorphism (a).

Let J ¥(T) be the bundle of k4ets on M, for U a precompact open set let
1470y v be the sections with support in U, this is a Fréchet nuclear space. De-
fine /()] = limy; lim, [/ k] v~ This is a nuclear l.cs. such that

) DOT*= Homc,,(M)([J “(M] e, C=M).

There is a continuous function j*: [T], — [J=(T)] ¢ Which associates to
any compactly supported vectorfield its infinite jet at each point. The bundle
J*(T) has a canonical connection V: [J=(T)] ¢ — [T* ® J™(T)] ; introduced
by Spencer, see [2]. If §€ [/ “(7)] ¢ then F=j () for some & € [T] if and
only if V=0 in [T* @ J*(T)] o The connection V has O curvature and thus
gives a representation of D(M) on [J*(T)] C.(z) The image of j* is the subspace
of D(M) invariants in [J*(7)] .. Using the isomorphism D(M9) = DM®---
® D(M) we get a representation of D(M?) on [J=(T)] ¢ -8 “Mle»

(2) For any vector bundle E with connection V: E — T*® E we write Vx for the
germ of a differential operator V) = (VS)(p)(Xp) € l_s‘p where X € Tpand S€ Ep. If
VxVy — VyVx = Vx,y] = 0 we say the connection has curvature zero and we get a Lie
algebra representation of [T] — [Diff E] = differential operators on E. This extends to a
representation D(M) —» [Diff E].
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which we will also denote by V also. Forf; ® -- - ® LEEVT@M®---®
V"Ml andn, ®--- @7, €DON) ® - - ® D(M),
VMQ_._..@,,QEI ®---®¢ = V519 ® Vi ® 0 ® aniq-

Now L, L=, L{o °°(T)] ¢ is a Lie algebra map; therefore there is a cociiain

map CY(T=(D)] o) U N C9(L) which is the same as

] oo 2 pad 00 (]M)‘ *
VM) B opyay UMIES -+ @ T7(DE — VM) @ gy [T°]
or equivalently

M) ®c°°(Mq)D @T*®---DOT*
© ® .
—— DM ®C°°(Mq) [T?7].

Since the image of j is the subspace of D(M) invariants it is not hard to see that
(i*)* factors through the tensor product over D(M?) to give an isomorphism

q D... B ' (M9 q*
D’(M)®D(MQ)D®T*® OD®T* = VM) B yyqy [T’

This allows us to identify the differential on the complex X appearing in the pre-
vious theorem: X is the exterior algebra on [J™(7)]% and the differential d, on

X is the usual coboundary operator in the cochain complex on the dual of a Lie

algebra. We can restate the previous theorem

QW) 8, ) AT U"DIE® -+ & AT =M™

@ = FrCHL)F*+1e%(L)
as cochain complexes with the isomorphism induced by (F=)*.

To compute H*(F~*/F~**1) we note that X * is flat as a D(M*) module
since X = A*D ® T* is flat as a D module in each degree of the exterior power.
Therefore the higher derived functors of ®D(Mk) X¥ in the category of differential
complexes vanish.

T4, X*)=0, p>0,
MKy Ky = p7*
Tof ™, X =H A8,
However we can also compute the differential derived functor by resolving X*.

Let Y, = D(M*) ® AP [T(M")] define 3, Y, — Y,_, by

® X*d).

ap(u®£l/\ ...AEP)-——-;(—IY_I“E,’@E]A ...Agl/\.-./\sp

: Z,(_l)l+iu ® [&;, E}] NEg AN-eeA gx

/\.../\gj/\.../\sp.
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Then Y = © Y, gives a resolution of C *(M*) as a left D(M*) module and ten-
soring on the nght over C=(M*) with X* we get a resolution:

DM*) ® AlTOM")] ®

k
c=(mk) X

c=rk)

©) €

Xk
Let A be a right D(M*) module then tensoring on the left over D(M*) with 4

k k
A8 iy AT B i X

(10) id®e,

A® x*

D(Mk)

as an augmented complex with homology (making X* a chain complex using
negative indexing) equal to

k
Tor2M*)(4, X*) = H (4 ® btk X5).

Computing the 9 spectral sequence of the double complex we have

E} _q=A® N[TMY)] ® o, i) HIX).
Here we need an additional fact. Let L be the algebra of formal power
series vectorfields, i.e., the fiber of J*(7) over a point of M, L = hmk Jk @,.
Let L* = lim J¥(T)%, then H(X) = C*(M) ®g H(A*L*) and the D(M) module
structure on H(X) is trivial, see [S] or [la, pp. 205—206]. Therefore, we have

HX® =Cc"M*) @ HATL*® - - - ® ATL¥)
with D(M¥) acting trivially. Hence

E:_,=HA® A[TM¥)]) ®p HATL* ® - - - ® A*L®),

c=(Mmk)

() E3=GrH,A®

k
Dk X%).
Let T(* - M ¥_,) be the distributions on M* — M¥_, which extend to
distributions on M*. The inclusion i: CoM”* - k- —1) —CoWM *) induces an

isomorphism

DANOO ),y = TOr* -y,

Since T'(M* - M¥_,) is dense in D'(M* — ME_,) and DM* - ME, ) ® oo k)
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A[T(M*)] is dual to Q,(M* - ME_,) the de Rham complex of compactly sup-
ported differential forms we have a nondegenerate pairing

VO - M5 _ 1) @ iy A7 [TU)] x QpM* ~ M) > R.

Moreover, the differential a,, on the left factor is dual to the de Rham differential.

Thus if A = D'M*)DME))

(12) H4®

c=qurky MTOO)) = HE(L® ~ M)

Putting all this together we conclude

THEOREM 1. Let F~*C*(L)/F~**1C*(L) be considered as a chain com-
plex using negative indexing; then there is a homology spectral sequence with

E2_, = (HE(M* - ME_,)* ® HIAYL* ® - - - ® AL#)™F
and
o0 — -] —k 1 p—k+1
E3_, =Gr(HIP(F*[Fr+1)),

In the special case when M = R” we have X = C™(M) ® A*L* and X* =
C™(M*)®z AtL* ® - - - ® A*L*. This gives the following isomorphism
Xk

k _ apk
D’(M M -—1) ®C°°(Mk)

=pM*-ME_)H)®

A [T(Mk)] ®ceo (Mk)

C“(Mk) A[T(Mk)] ®C°°(Mk) C“(Mk)

13 @ A*L*®---®A*L*

= (DM* -ME_)® A[TM")]) ®g (ATL*® - - - ® ATL¥).

c*=(M¥)
One can apply the Kunneth theorem to the latter complex, therefore its homology
is

HOM* - ME_)) ® A[TM)]) ®f HXAYL*® - - - ® A*L?)
and we conclude that E2 = E*.

THEOREM 2. If L is the Lie algebra of compactly supported vectorfields
on R™, then with respect to the filtration defined earlier there is a spectral sequence
with

P F7kexL)
! F*+1cx()

) l [HE(R™ - R™E_,)* ®p HIATL* ® - - - ® ATL®)]Z%.
q-p=
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We will give an explicit expression for this isomorphism and show that the
spectral sequence collapses at E, .

When M = R” we can find a global basis [T(M*)] as a C=(M*) module
which consists of commuting vectorfields; then

[TMF)] = CR™*) @ R™*,  A[T(M*)] = C=(R"™*) ® AR™.

Let X* = C*(R™) ® A(L ® - - - ® L)*, ie., the full exterior algebra. It is clear
that X* is a direct summand of X* as a D(M*) module. Let j be the inclusion
and w the projection X* L, X* " x*_ Both i and 7 are cochain maps. Since
L=R"®L%°wehave LO® - - ®L=R"* Q@ LO®---® L° and there is an
obvious interior product AR™* ®r Xk — Xk, Using the isomorphisms given
above we get a map

~ k Yk vk
AT © e iy X* — X,

Composing on the right with id ® j and on the left with = we get

2 k k k
it AITOL*)] @ty X — X

which we will denote
BE NN, ®ar>E A /\sp.Ja.
Tensoring on the left over C*(M*) with D(M*)

id ® i: D(M*) ® A[TMMF)] ®

k k k
oy X* = D) ® Xk,

c=(Mk)
Composition with the left module structure on X* with D(M*) ® X* — x*
gives

c= k)

v: DIM*) ® A[TM")] ® Xk — x*,

c=(Mk) c=(Mk)
u®E A ---Ng, @a—>uE, A creANE, Ja).

We will show that ¥ is a cochain map. Passing to Z, invariants we get an explicit
isomorphism for the E' term of the spectral sequence given in the previous
theorem.
The map ¥ is defined with respect to a fixed parallelisation of 7\M*), with
respect to which we have
D(Mk) ®C°°(Mk) A[T(Mk)] ®C°°(Mk)
= D(R"*) ®; AR™ @ ATL*® - - ® ATL*.
The differential is given by
du®E A AN, ®a)=F ) ug ®E A AE A NE, ®a

+DPu®E AN g, ®dja

Xy
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where d; is the differential in AL* ® - - - @ AL*,
WA NE,®a)
=d@E, A NEda) =ud@E A-cc AE, )
=u(z;(—1)‘~l(g,/\ A B A A Y, dad £0)
+EDPE Ao A g, 1dy0)

By definition ad is the adjoint representation of L ® -+ -®L on AL ®--- DO L)*
dual to the adjoint representation of L ® -+ - ®L on AL ® --- ®L). For
a€EAL®---®L)f*and§,...,¢E, € R"¥ we have ad {0 = £; * @ where
indicates the module structure and &; are considered as constant coefficient dif-
ferential operators. Furthermore (¢, A - -A £ A--- A £, Jad (o) =
ad &g A AE A NE,da), thus P is a cochain map.

We can represent the induced map on cohomology

[HER™ - (RME_,) @ HYAYL* ® - - - ® AL "* — HIP(F*[F*+1)

more conveniently as follows. Forn € L,j*(n) € Cy(M) ® L so if « € AL* we
can form j”(n) Ja € Cg(M) ® AL*. Fora=3Zc¢, ®---® ol EAL*®

- ++® A*L* and for § a partition (a,, . . . , @)@y, - - ., Bs;) ** * (€45 - - - » Cs)
of g into k sets it makes sense to partition a set of q vectorfield n,, .. ., Mg into
Nays--«sMaggs--sMoyseeesNbsgsee-sNeys---sNesk and form

g(f”(n.,l) Aee s NP, )Ah) NGE@p,) A" AT (5, )1 02)

At NG Ao NP, ) ).

We will write j=(n,) A+ -+ A j“(nq)_l 5@ to mean the interior product just
defined. Let i: R™¥ L ®:--® L be the injection defined earlier and
AL ® -+ ®L)* 5> AR™** the extension of the dual map to exterior algebras.
Let ¢ be the isomorphism

Co®R™) ® AR™* £ 0 R"F)

given by the choice of a parallelism. Finally for S, the partition above, let €g be
the sign of the permutation

(1 e 8, "'k-Sk'l‘l'"k)
al.o.asllocclooocsk

Then for A € TR™ - ®")E_,) ® AP [TM")]a € (ATL* @ - - @ ATL*)T we
have
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VA ® )y, . . ., 1,,)

19 = T AL G @A -+ A (0,,) L g)]
and
as) VN ® 6) + (- DT PYQ ® d0) = do (VA @ )

where d is the differential in D'(M* - M¥ 1) ® A[T(M")], d, is the differential
in A*L*® - - - ® A*L* and d is the differential in F*C*(L)/F~**1C*(L).
Let vy, € R" and (vl, ... ,vk) € R and let Ra’j,;" = {@g .- >0l Y
S(i D then
Hg(R"k - (R")ﬁ—x) = Hg (Rnk - U nitcl:)-n)

i<j<k

= Hg(s"" - U ;’,{‘5")

i<j<k

aH”(S"", U S""lj")
i<j<k

Hence
HERE - @)=, (5, U S
I<j<k

and composing these isomorphisms with { we have

( (S"k U ?53")®H"(A+L*®-'-®A+L*))2"
(16)

For Z12; [0;] ® [;] an element of the left-hand side if we choose representative
cycles g; and representative cocycles o; we get a representative element of

D2, [o] ® (o))

(771, e oy nq—p)

(17)
> z ), esti* (@) A+ A J7 () 52)-

9 partmons

If we pull back d,: E~%"+k — pk+1.a+k by the isomorphism ® we
get a mapping forq —p = h,
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- Tk
[Hp (s"" ,USE j)"> @HIA'L*® -+ ® A*L*)]
k

Q
—

_ k-1
(B (5, Y ) @1 ® - @ ALy [,
i<j<k—1 -1

It is computed as follows. Forny,7m,,...,m,4; €L,

°<Jl l§l [01] ® ["‘1])(771’ cee nh+1)
= 3 1)"+f<1><1§ [o] ® [%])
=1

i<j<h+1

A

’([n[’nj]’nl»o--,ﬁi’~°-’njs-- -,77;,.1.1)

g 50 0 PR
= 2 ZZL es®i*(™([n; 1) A J™(y) A== - NT7(ny)
i<j<h+1 1 S 1l
NN -
Ao Aj (ni) /\"'/\j ("n+1)—'s°‘1)

P>

i<j<h+11

Ma

);, J:,fsﬁ”'*([f”(ﬂi)’i“(n,-)] ANiT@)A--- A%

1
AN 00
A KT AN (g ) S s®D)-

Now a is a tensor product of k cycles ¢; ; € Z(A*L*). To compute the last
term we see what is happening to each 0oy ;. For @ € Z(AL*) and Nys o+ 5 Mg
el

i+
S G ), ] A ) A oA )

i<j<s

AN 00
A ATm) A AN (g ) )

=T T eV @) m,) - T

i<j<s il <i2<"'<it—s<n
/\ .
. .]“(ni) o .]“(ns)’ eil P eit_‘)

dxil A oA dxit_’
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<00 00 {\
+ 2 X O a(le;  im@), =y - T @)
7 iy <ipg<mi<iy_ <n

...j“(ns’eil ...éir...eit-x)
dx't A--o A dx't-S

) 100 .00 ~
T Y X age d e
rj i1 <ipg<--<i, o<n 9x

=dei*(i"(Mm) A AT (g)da).

This shows what happens to each factor of a;; hence the end product is

<I>(Jl 2[01] ® [0‘1])("21, e Mpgy)

- \'1:‘ sz'fozes'd‘pi*(]m("l) A ANy ) ds®)

= ;% J;ales"ﬁi*(lm("?l) AceeA jﬂ(’?n+1)—|s'a)

where S’ ranges over partitions of # + 1 elements into k sets. We can decompose
30, into a sum of 3; ;ya; where [3; 50,1 C S(",’;)" ". When ¢i*(j"(n,) A- - A

7™ (M4 1) g0) is integrated over S(","‘i)"", the ith and jth factors are identified by
restricting to the diagonal in the product of the ith and jth factors. This gives a

mapping
HATL*® -+ - @ AYL*) = HAYL*) ® - - - ® HA'L*)
~— ~ g ~~ — I
e | :

HATL*® - - - Q@ ATL¥ = H(A\"’L*) Q-+ @ HATLY
SN————— ——

k-1 k-1
by multiplying the ith and jth factors, just as restriction to the diagonal induces
the cup product in singular cohomology. Therefore the d, operator involves
multiplication in the cohomology algebra of the formal Lie algebra. It is known
that this multiplication is trivial [S], [7], so d; = 0. In a similar way one can
see that all the higher differentials involve multiplication in the formal algebra
so we have

THEOREM 3. There is a spectral sequence for the continuous cohomology
of the algebra of compactly supported vectorfields on R" which collapses at the
E, level.

Ektk o [q@ H, (Snk’ Uszllc-n) ® éH+(L)] Ek.

-p=l i<j
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Let L be the algebra of vectorfields on the n sphere S”, let p € S” and
let T be the ideal of vectorfields flat at p in some, hence any, coordinate system.
Let C*(L) be the Gelfand-Fuks complex for the continuous cohomology of L,
and define a filtration

F*CU(L)= M€ CUL)I NGy - - -»£) =0if g =k + 1 of farein T},

then F¥ D F*¥+1 and dF* C F*. This is the filtration defining the Hochschild-
Serre spectral sequence for H(L) with respect to the ideal T.

ER?=HP(LIT,HY(T), E%9=~Gr,(HP*9(L)).
There is an exact sequence of Lie algebras

0—-T1T—L—L—0.

Thus E$*9 = H"(L HY(1)). The action of L on H(T) is defined as follows:
forn € L let n € L be a vectorfield such that ]""(')p = 7 then Lie derivation
with respect to 77 defines a map Dz: T — T which in turn defines a cochain
map Dz: cx(D)—cxT L) and therefore amap D}: H ) — H*D). If
j (nl)p =j (nz)p then "?1 n2 €T and asis well known Dy, 7, induces the
trivial map in cohomology, so Dﬂl Dﬁz Resetnikov [3] has stated the
following theorem for arbitrary M but it is not clear to us that his proof is cor-
rect.

THEOREM. Since L acts trivially on H *(T_'), the E, term of the previous
spectral sequence is E5'? = HP(L) ® H "(T). Furthermore if L is the algebra
of compactly supported vectorfields on R”, then HI([) = HY( Lo)-

Proor. Let {U;} be a decreasing sequence of open sets which form a
neighborhood basis at p. Let K; = S™ — U,; then K is compact, and if we define
¢: 8™ — {p} — R” by stereographic projection with p as north pole then the
¢(K;) form a compact exhaustion of R"”. Let L, be the algebra of vectorfields on
S” with support in K, there are inclusions 1" L; — L;; therefore, we can define
L. =lim L;. Cleatly L., = L¢, compactly supported vectorfields. Let Y% L,
— T be the inclusion; then ¥/ - 7 = ¢! 50 we can define ¢: L, — T. This
induces ¥*: H(T) — H(L..). For n €L let I; € L be a vectorfield such that
j (ﬁ,) = 7 and supp %; C Uj; then for A € H*(L) we have n )= [D%)\] for
any i Clearly y** [DF\] = 0 and from the fact that y*n - [A] = 0 if and only
if (U)*n + [\] = O for all i we conclude Y*n - [A] =0. To conclude the proof
it is sufficient to show that Y* is injective. In fact, Y* is an isomorphism. To
see this, look at the spectral sequences defined at the beginning of the paper.
Since T can be thought of as rapidly decreasing vectorfields on R”, the space
that arises in defining C*(L) is S'(R™). From this observation we see that the
spectral sequence converging to H*(F""C*(I)/F"‘ +1c%(T)), which is E, of
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another spectral sequence, has E> _,

S REIS® S gnye ) @ AR © HYATL* @ - © ATLH] X,

We can identify the factor on the left from the following exact sequences (see
Schwartz [4]). If p is the north pole of S”¥,

0— E@E")l, > EE™) — S®R™) — 0

k 1gnk 'R™*)|——— 0.
0= E6™p —~ EE™I [ S® g

i<j<k
Thus

(S ®R*IS® ™) gnye ) ® AITR™D) = H,(8™, US;3)

and B2 _ (D)= B2 _ (L.).
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