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HYPERSURFACES OF ORDER TWO
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TIBOR BISZTRICZKY

ABSTRACT. A hypersurface s"-   of order two in the real projective

n-space is met by every straight line in maximally two points; cf. [ 1, p. 391 ].

We develop a synthetic theory of these hypersurfaces inductively, basing it

upon a concept of differentiability. We define the index and the degree of

degeneracy of an s"~   and classify the s"-   in terms of these two quantities.

Our main results are (i) the reduction of the theory of the S^      to the non-

degenerate case; (ii) the Theorem (A.5.11) that a nondegenerate !¡~   of

positive index must be a quadric and (iii) a comparison of our theory with

Marchaud's discussion of "linearly connected" sets; cf. [31.

Preface. The theory of plane curves is of major importance in our study of

the hypersurfaces of order two. This theory is the first step in our induction and

the means by which we define tangents. The introduction of these curves follows

the approach of P. Scherk in [5] and R. Park in [4].

A. Marchaud introduced in [2] the "surfaces of order two" in the real pro-

jective three-space. Our theory is based on that paper.

We compare our hypersurfaces with the quadrics by direct construction (see

Appendix) and also by showing that these hypersurfaces are identical with the

common boundaries of certain pairs of linearly connected sets; cf. [3].

This paper has developed out my doctoral thesis of the same title, written at

the University of Toronto, under the supervision of Professor Peter Scherk. My

thanks are due to him for his continued help in the preparation of this paper. I

would also like to thank Professor 0. Haupt for bringing to my attention the theory

of linearly connected sets.

1. Curves in P2. The theory of hypersurfaces is based on that of curves in

the real projective plane. In this chapter, we give a precise definition of the curves

of order two and introduce tangents.

1.1 Introduction. Let P" he a real projective space of« dimensions;« > 1.

We define a topology of P" in the usual manner. Thus^ is compact and con-

nected.
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Let Pk, Qk, . . . denote fc-flats in Pn; - 1< k < n - 1. The (« - 1)- and

0-flats in Pn are the hyperplanes and the points of P" respectively. The unique

(— l)-flat is denoted by 0.

For a collection of flats Pk, Pm,. . . , Pr, [Pk, Pm,. . . , Pr) denotes the

flat in Pn spanned by them.

1.2. Plane curves.

1.2.1. A parameter curve C is a continuous map from P1 = {t, /',...}

into P2. A line T is the tangent of a parameter curve C at a point t G P1 if

r=limfW;f,^C(0,C(/)].

1.2.2. The parameter curve C is differentiable if the tangent of C at every

t E Pl exists. C is degenerate if C is injective and C(P1 ) is a line.  Finally, C is

roiu/Zy degenerate if CiP1) is a point.

If C is degenerate, then C(Pl ) is the tangent of C at f for each t EP1.

1.2.3. A (plane) curve V is the union of a finite collection of sets Ca(Px)

where the C0's are parameter curves.

A line T is a tangent of T at p if T is the tangent of some Ca at r where

P = c0(t)EC0(Pl)cr.

1.3. Order.

1.3.1. A differentiable parameter curve C is of order 2 if 2 is the maxi-

mum of the number of points of P1 mapped into collinear points by C and if a

line meets C(Pl ) at exactly one point if and only if it is the tangent of C at that

point.

As a parameter curve is a closed curve, this implies that a differentiable

parameter curve C of order 2 is injective and there is a unique tangent at each

point of C(PX ).

1.3.2. Let T be a plane curve.  Then V is of order 1 if T = C(Pl) where

C is a degenerate parameter curve. T is a nondegenerate curve of order 2 if

T = C(Pl) where C is a differentiable parameter curve of order 2.  Finally, T is

a degenerate curve of order 2 if either T = C^1 ) where C is a totally degenerate

parameter curve or T = Cx(Pl) U C2(Pl) where Cj and C2 are distinct degen-

erate parameter curves.

We refer to the plane curves in 1.3.2 as the curves of order < 2. We shall

denote a nondegenerate plane curve of order 2 by Sl. We quote without proof:

1.3.3. Lemma.   Let S1 C P2 be a curve of order 2.

(1) A line T is the tangent of Sl at p if and only ifTC\Sl ={p}.

(2) There is a line L C P2 such that L C\Sl = 0.

2. Hypersurfaces of order two. We shall study the (differentiable) hyper-

surfaces 5"_ ' of order two by constructing their tangent hyperplanes and intro-

ducing two invariants: the index and the degree of degeneracy of an Sn~l.
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2.1. Introduction.

2.1.1. A hypersurface of order two in P2 is an 51. We wish to define

hypersurfaces Sn~l of order two in P"; « > 3.

2.1.2. A set S C P" (n > 3) is a hypersurface in Pn if it is compact and

if every point p E S has a neighbourhood in S which is the continuous image of

the union of a finite number of open (« — l)-balls such that outside an (« — 2)-

dimensional subset of that union, the mapping is locally homeomorphic.

In view of 2.1.1, we may assume that Sm ~I, a hypersurface of order 2 in

Pm, is already defined; 2 < m < « — 1.

2.1.3. Letn>3. Let M be a set in Pn;Pk C Pn, 2 < k < « - 1. The

k-section Pk C\ M is

(1) nondegenerate if Pk n M is an Sfc_1 ;

(2) degenerate if P* n M is either an «i-flat or a pair of distinct (k — 1)-

flats; -1 < m < * - 1.

2.1.4. A hypersurface S" ~1 CP" (n > 3) is of order 2 if every inter-

section of S"-1 with a hyperplane is either degenerate or nondegenerate and

there is a hyperplane P£_1 such that P£_1 fl S"'1 is an S"~2.

Henceforth, S"_1 will be a hypersurface of order 2; « > 3.

2.1.5. Lemma.  lerP* CP", 1 < k <« - 2. ThenPk OS"'1 is a flat

or a pair of (k - I )-flats or anSk~1.

Proof.  Let P"_1 be a hyperplane throughPk. By 2.1.4,P"-1 DS"'1

is either degenerate or nondegenerate.

If pn-i n 5"_1 is degenerate, then our assertion is trivial.

Suppose P"'1 n S""1 is an Sn~2. Let « = 3.  Then P2 O S2 is an S1

and the lemma follows from § 1. Assume that the lemma is true for Pk CPm;

3 < m < « — 1.

Since F"-1 OS"'1 is an Sn~2, we have Pk DS"'1 = Pk DS"-2. If

k = n - 2, then Pn~2 OSn~2 is either degenerate or nondegenerate by 2.1.4.

If k < « — 2, the lemma follows by the induction hypothesis.

Corollary.  (1) The plane section P2 HS"'1 is either a flat or a curve

of order 2.

(2) Any line, not lying in SH~l, meets S"-1 at most twice.

2.1.6. Let H"-1 be a hypersurface in Pn such that P""1 OH""1 is

either a flat or a pair of (« - 2)-flats for all Pn~x C Pn. It is immediate that

H"-1 is either a hyperplane or a pair of distinct hyperplanes.

2.2. Differentiability.   Let p E Pk n Sn~l, 2 < it < n - 1.  If there is

aP2 suchthatpGP2 CPk,P2 ClS"'1 and P2 nS"-1 #{p},thenP* D

5" ~ ' is proper at p.
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If P2 nSn~l is proper at p, then there is a tangent of P2 C\S"~l at p

by 2.1.5, Corollary and 1.23.

2.2.1. A line is a tangent of S"~l at p if it is a tangent of P2 CiSn~l

at p for some P2 through p.

2.2.2. Lemma. Sn~l has a tangent at p for all p.

Proof.  Let p and q be distinct points of Sn~l. By 2.1.2, there is a

point r G pn\Sn~l. If [p, q, r] CP2, then P2 n S"~l is proper at p.

2.2.3. A point p ES"~l is differentiable if there is a hyperplane rc con-

taining all the tangents of5"-1 at p. Otherwise, p isa singular point of Sn~l.

2.2.4. Lemma. Let p ^ q in S"~l.  Then \p, q] is a tangent ofSn~l

at p if and only if [p, q] C Sn~l.

Proof.  Let [p, q] be a tangent of Sn~l at p. Then [p, 17] is a tangent

of P2 n 5"_1 at p for some P2 through [p, q]. If P2 n S"-1 is a curve of

order 1, then [p, q] = P2 n 5""1.  If P2 fl 5""1 is a curve of order 2, then

i>2 n Sn~l is degenerate by 1.3.3. Thus, P2 n S"~l is a pair of lines, one

of which is [p, fl].

Conversely, let \p, q] CSn~l. Choose a point r GPn\Sn~l. Then [p, 4]

is a tangent of fp, ç, r] C\ Sn~l at p.

2.2.5. Theorem.   Let p ESn~l be differentiable.  Then every line

through pin it is a tangent ofSn~l at p; cf. 2.2.3. In particular, the tangent

hyperplane it = ir(p) of Sn~l at p is unique.

Proof.  Let L be a line;pELC-n. Choose a point q ES"~l\ir. By

2.2.4, [p, q] <£Sn-1. Then [L, q] nsn~l is proper at p with a tangent Tat

p. As T C w, we have r = 7r n [¿, g] = L.

2.2.6. S"-1 is differentiable if each point contained in any Sl C 5"_1

is differentiable.

We shall prove that the hypersurfaces of order 2 are in fact all differentiable;

cf. 2.2.9.

2.2.7. Lemma.   Let {p, q} C S"'1 ; [p, q] </:Sn~l.  Let Tbe a line such

that T n 5" "! = {p}.  77ze« T is a tangent ofSn~l at p.

Proof.  Let P2 = [T, q]. By 2.1.5, P2 n Sn~l is a flat or a pair of

lines or an Sl. Since TCiSn~l = {p}, the first two instances imply that [p, q]

CSn~l. Thus, P2 n Sn~l is an 5l and by 1.3.3, Tis a tangent of Sl at p.

2.2.8. Lemma.   Let {p,q}CSn-l;\p, q\ <jLSn~l.   Them(p)={rE

Pn \r lies on a tangent of S"~x at p} is a flat.
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Proof.  By 2.2.2, r(p) ¥= 0. Let rx + r2 be points in r(p). We may as-

sume that p G [rx, r2]. Thus, P2 = [rx, r2, p] is a plane and T¡ = \p, r¡] are

distinct tangents of S"_1 at p; / = 1, 2.

If F, U F2 C S"-1, then either P2 C Sn~1 or P2 D Sn~l - Tx U F2.

If say Pj CS"-1 and P2 çi5',-1,then either P2 OS""1 = F, orP2 OS""1

is a pair of lines.  But P2 £ 5"_1 implies that P2 n 5""1 ={p} by 2.2.4. Thus

if P2 n Sn~x is a pair of lines, then both lines pass through p.

If Tt n 5""! = {p}; i = 1, 2, then Pt # P2 implies that P2 n 5"-! is

not an S1 by 1.3.3.  Hence P2 n 5"_1 is the point p or a line or a pair of lines,

all through p.

Let T be a line; pETCP2. By the preceding, either F C S"~ ' or P n

5"-i ={p}. Then T C r(p) by 2.2.4 and 2.2.7 respectively. Hence, [r,, r2) C

P2 C T(p) and r(p) is a flat.

2.2.9. Theorem. S"'1 is differentiate; n> 3.

Proof.  Let P2 be a plane such that P2 n 5""1 is an S1. Let p G S1.

Then [p, q] (tS"'1 for each qES^ip} and thus, cj £ r(p) by 2.2.4. Hence,

dim T(p) < « - 1 and there is a hyperplane tt containing r(p).

2.2.10. Theorem.   A point vES"-1 is singular if and only if [v, p] C

S"-1 for all p ES"-1.

Proof.  From 2.1.4, it is immediate that there is a plane Pg such that

Pf2 n Sn~! is an Sl. By 13.3, there is a Une L C P2 such that L n S1 =

LOS"'1 =0.

Let v E S"-1 be singular. By 2.2.6 and 2.2.9, v $ S1. Then by 2.1.5

Corollary, [Z,, v] DS"-1 ={v}.

Let p G Sn~x\{v}. Then clearly,P3 = [/, v, p] is a 3-flat. Let P2 C P3

be a plane through [u, p]. By 2.2.6 and 2.2.9, P2 ns""1 is either a line or

a pair of Unes. As the line P2 n [L, v] meets 5"_ 1 only at u, every line in

P2 DS"'1 passes through v. Thus, [u, p] CS"-1.

Since 5"_1 is not contained in any hyperplane, the converse follows by

2.2.4 and 2.2.3.

Corollary.   The set V of all the singular points ofS"'1 is a flat; more-

over, VCTt(p)forallpESn-1\ V.

2.2.11. 5""1 is d-(times) degenerate if dim V = d - 1. Obviously, 0 <

d < « - 2.  For brevity, 5"_1 is [non] degenerate if [d = 0] d > 0.

2.3.  The index of S"'1.

2.3.1. 5"~! has the index i if i = ind S"~1 is the maximum dimension

of any flat of P" contained in Sn~!.
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2.3.2. Remark,   dim V < ind S"-1 < « - 2.

Let M be a set in P". Then [M] is the flat spanned by the points of M.

2.3.3. Lemma.   Let ind S"'1 = i.   Then every point ofSn~l lies in an

i-flat contained in S"~*.

Proof.  Since ind S"_1 = i, there is an /-flat P* CSn~l.

Let v E V. By 2.2.10, [Pl, v] is a flat in Sn~ ' and thus, i < dim[¿»', v] <

ind Sn~l = i. Hence, [?'', v] = P' and V C Pl.

LetpGS"-1^1'. Then p is differentiable and p £ 7i(p) n P*. By 2.2.4,

[p, 7i(p) n P'] CS"-'. Clearly, dim(ir(p) n P') = / - 1 and dim [p, u(p) n P'] = /.

Corollary 1.  Let ind Sn ~' = i; p E S" ~! \ V.  Then

(1) P' C 7r(p) n 5""1 i/flnc? only ifp E P'' CJ""1;

(2) V=npicsn-1P<.

Proof. The proof of 2.3.3 implies (1) and V C Dptcsn-iP{ = W-

Let q E W and let p G Sn~l. By 2.3.3, p lies in an /-flat P'0 C Sn~'.

Thus, [p, q] cptç C S"-1 and by 2.2.10, q E V.

Corollary 2.  Let ir(p) n S"~l = Sn~2 for some pES"~l\V.  Then

indS"-1 <n-3.

Proof.   By 2.1.4, there are no (n - 2)-flats in Sn~2. Thus p does not

lie in an (« - 2)-flat. By 2.3.3, ind S""1 < « - 3.

2.3.4. Lemma. Let {p, q} C S""1; \p, q] ÇtS"-1.   77ien

dim^nS"-1] =dim[7r(^)nS"-1].

Proof.  Let k = dim[n(p) n S"~']. By the symmetry in p and g, it is

sufficient to prove that k < dim[7r(c7) nj""1].  Thus, we may assume k > 0.

Choose points pa G jr(p) n 5"_i such that [n(p) C\ Sn~l] = \p, px,

...,pk). By 2.2.4, La = [p, p0] C S""1 and <? É "GO- Thus, [Ia, «7] n

S"-1 contains the line [q, q0] for some ^0 G L0. Then g0 G n(q) and

[?,<?,.<7fc] C K^HS"-1]. Since [p(i?] ^S""1, we have q ±qa *p

for o=l,..., A:. Thus, [n(p) OS""1] = [¿,, ¿2.¿J = [p, ?,,

. . . , qk] andPk~l = [qx.qk] is a (A: — l)-flat. Obviously,q $Pk~l

and thus the fc-flat [q, Pk~• ] C tr(q) OS"-1. Hence, dim[ii(q) n Sn~' ] > k.

2.3.5. Remark.   LetpGS"_1\K. Then

(1) 7r(p) n Sn~' is a Ar-flat if and only if dim[n(p) nS""1] = k, 0 <

k<n-2;

(2) ii(p)nsn-1 isanS"-2 if and only if dim[jr(p) OS"'1] =n- 1

and ind 5"_' <« -2.

2.3.6. Theorem. Let ind 5"~ ' = /; 0 < / < n - 2.  Then we have
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precisely one of the following three cases:

(1 ) ti(p) n S"-' is an i-flat forallpESn~l\V;

(2) n(p) HS"-1 isa pair of distinct (n - 2)-flats for all p eSn~l\V,

í = n - 2;

(3) tr(p) n S"-1 is an Sn~2 for all p G Sn~ l\V, 0 < i < n - 2.

Proof.  Let p G Sn~X\V. By 2.3.3, there is a Pi through p in Sn~1. By

2.2.4, Pl C n(p) and thus, k(p) = dim[n(p) n S""1 ] > i.  By 2.3.5, either

k(p) = i or k(p) - n — 1.  It remains to be shown that k(p) is independent of p.

Let{p1( p2}CS"-1\V;px ±p2. If [p,, p2] ^S"'1, then 2.3.4 impües

that¿Cp,) = ¿(p2).  Let [p,, p2] C S""1.  Since 5"_1\Fçf Tr(p,) U n(p2),

there is a p3 G S"_1\K such that p3 £ 7r(pj) U ir(p2). Therefore, k(px) =

k(P3) = k(Pi)-

2.4. Nondegenerate Sn~l. In this and the following section, we examine

the properties of the nondegenerate and the degenerate S"-1 and we consider

a relationship between them.

2.4.1. Lemma.  Let S"-1 be nondegenerate; ind S"'1 = i.   Then either

i = 0om(p)= [n^nS"'1] forpES"-1.

Proof.  Let {p0, p,}C S"'1; [p0, px] <£S*~l. By 2.3.3, there is a

P'a, pa E P'a C Sn~l ; o = 0, 1. Clearly, P0 * P\.

Suppose a <? GP0 nP'j. ThenPQ UP[ C n(q) HS""1 and by 2.3.6,

[iî(q) n S"-1 ] = 7r(c7).  Assume that [n(p) fï S"-1 ] ¥= 7r(p) for some and hence

for all p G S"'1 (2.3.6). Then by the preceding, P0 D P', = 0. By 2.3.6,

7T(p0) n S"-l = Pq and thus, 7r(p0) Pi P\ = 0. Hence, PJ = {p,} and / = 0.

2.4.2. Lemma.  Let {p0, p,}C ^-'XFjP1 = [p0, px] C 5""1.   77ie«

t(P0) n ^l) c n(p) for all p E PX\V.

Proof.  Let « G (7r(p0) n ^(p, ))\P!.

If u G S"-1, then [P1, h] HS"'1 contains the UnesP1, [p0, «] and

[p1( ii] by 2.2.4. Thus, [P1, w] C S"'1 by 2.1.5.

Ifu^S"_1,then [pa, u] OS"'1 = {p0}by 2.2.4. Hence, 2.1.5 implies

that [P1,«] ni"-1 =Pl. Thus, [p,u] nsn~x ={p}forallpGP1 and the

lemma follows by 2.2.7.

2.4.3. Lemma. Let S"'1 be nondegenerate.  Let Pk - [p0, .... pk] C

S"-1.  Then M = fl^=07r(po) is an (n - k - l)-flat.

Proof.  Our statement is trivial for k = 0.

Assume that the lemma is true for any Pk~! C S"~l. Since [p0,...,

P*-11 c s"~1 - we have that P"~k = Hf^nipj) is an (« - Jt)-flat.  Then

M = Tt(pk) n Pnx-k and n - k - I < dim M <n - k.
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Let q G 5"~1\U/Í0ir(p/.). Then \pk, pa, q] is not in S"-1 and there is

a line La C \pk, pa, q] n S"-1 such that L0 = [q, qg] for some q0 E \pk, p0] ;

o = 0,l,. .. ,k-l. By 2.2A, pki=q0*pa and qEn(q0).

By our construction,Pk = [p0, p,, . . . , pk] = [q0, qx,..., qk_x, pk].

Thus, [c70, .... qk_x] C S"'1 is a (A; - l)-flat and by the induction hypothesis,

C)k=¿Tr(q0) = Pn2-kisan(n-k)-ñat.

By 2.4.2, q0 G \pk, po] C S""1 implies that ti(pk) n ir(p0) Ç ti(qo);

0 = 0,l,. .. ,k-l. Thus,M = Ti(pk)nP'xt-k CP^'k and qEP"~k\M.

Since Pk C M in 2.4.3, we have

2.4.4. Theorem.   Let Sn~l be nondegenerate.   Then ind Sn~l < tt(n - 1).

Corollary 1.  Ifn = 3, then ind S2 = 0 or 1 and n(p) n S2 is the point

pora pair of distinct lines through p respectively.

Corollary 2.  Ifn>4 and ind Sn~l > 0, then n(p) nsn~l is an
Sn~2.

It should be noted that our results concerning the surfaces of order 2 in

P3 coincide with the theory in [2]. Of particular importance is the following

result of Marchaud. While his proof is incomplete, it is easy to verify.

2.4.5. Theorem (Marchaud [2]).   A nondegenerate S2 with the index

1 is a quadric.

2.5. DegenerateSn~l. Let 5"_1 be d-degenerate; ind Sn~x = i. Thus,

dim V = d - 1 and 0 < d < / < « - 2. Put m = « - d and let Pm be an m-flat

such that Pm nV= 0. Then Pn = [V, Pm].

2.5.1. Lemma.   Sn~l =U [V, p],p ePm n Sn~l.

Proof.  Let q G 5"_1\K   Then [V, q] n Pm is a point p and [V, q] =

[V,p] C5""1.

2.5.3. Lemma. P^ n S"~l is a nondegenerate Sm_1.

Proof.  Let pEPm n S""1 (2.5.1). By 2.2.10, p<£V implies that there

isap'GS"-1 suchthat \p, p] (/LSn~i. Hence p $ V.  By 2.5.1, p E [v, q]

where v EV and qEPm C\ S"'1. Thus, [v, p, p'\ is a plane and by 2.1.5 and

2.2.10, [it, p, p']nS"-' = [u, p] U [it, (7, p'] •  Thus, \p, q] n Pm n 5"-1 =

{p, 4} and P£" n 5"_1 is not a flat.

Let Pk C Pm n 5"- '. Then 2.2.10 and Pk n F = 0 imply that the

(k + d)-ñat [V, Pk] lies in Sn~l. Thus, k + d<i<n-2andk<i - d<

n- d- 2 = m -2.

By 2.1.5, P^ OS"-' isan5m_1. By 2.2.10 and the preceding, Sm~l

is nondegenerate.
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2.5.3. Lemma. indSm_I =i-d.

Proof.  Since ind Sn~l = i, there is a P' C Sn~1. Then V C P1 and

pn = rpif pm j    ThuS) pi n pm ¡g an ^ _ d).flat contained in Sm "1.

From the proof of 2.5.2, ind 5m_1 < i - d.

In summary, we have

2.5.4. Theorem.   Let S"'1 be d-degenerate; ind S"~1 = /'. Z,ei Pn-d n

K = 0 77ze« P"_d n S"'1 is a nondegenerate S"-«*-1 with the index i - d

andSn-*=\Jpesn_a_x[V,p\.

This theorem reduces the study of a degenerate S" ~1 to that of a suitable

nondegenerate S"~d~l. But in 2.4, we have already classified the latter accord-

ing to the index.

2.5.5. Theorem.   Let S"'1 be ddegenerate; ind S"-1 » i Let p E

S"-1\VandletPn-d C\V = 0;pEPn-d.   Then there are exactly the follow-

ing three cases:

(1) n(p) n s»-«*-« = {p}.   Then ir(p) OS"'1 = [V, p] and i = d.

(2) ■n(p)nSn-d-1 =P\ UP2, P\ ±P\;n-d = 3.  Then ir(p)n S"'1

= pn-2 y pn-2 wherepn-2 = r/>l?  r/] • a = ^ 2.

(3) Ti(p)nSn-d-1 =Sn~d-2;n-d>4.  Then n(p)D S"-1 is an

S"-2 and d<i<tt(n+d- 1).

Proof.  Let Ts'(p) be the tangent hyperplane of S"~d~x at p.  Then

n'(p) = n(p) nP"~d and ii'(p) n S"-"'1 = n(p) n S"-«*-1. Así"-0-1 is

nondegenerate, we obtain the intersections ir'(p) n S"-1 by 2.4.1 and 2.4.4.

(1) If jr(p) n 5"-d-1 ={p}, then ind S»-*"1 = / - d = 0. Since

dim V = d- 1, [F,p] Cii(p)nS"-1 is a cZ-flat. Clearly, ind S"'1 =d im-

plies that tt(p) HS"'1 = [V,p].

(2) linens"-"-1 =P\ UP2, then ind S"-d_1 = i - d = 1 and

n - d = 3. Thus, / = « - 2 and the result follows by 2.3.6.

(3) Ifir(p)r)S"-d-1 =Sn-d-2,thenSn-d-2Cn(p)nS"-x,n-d

> 4 and 0 < / - d < lA(n - d - 1) by 2.4.4. Obviously, n(p) n S"~1 is

anS""2.

2.6. Decomposition.   To facilitate the study of nondegenerate S"_1,s,

we shall decompose them, whenever possible, into nondegenerate hypersurfaces

of smaller dimension.

Let Sn~l be nondegenerate; ind S"_1 = i > 1 and « > 4.

2.6.1. Lemma.  For any p ES"~X, ir(p) nS"'1 isa l-degenerate Sn~2

with ind S"~2 =i and the singular point p.

Proof. By 2.5.5, n(p) n Sn~l is an Sn~2. Since ind 5"_1 = /, there is
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a P' C 7T(p) n 5"_1 and thus, ind S"~2 = i.

Let q ES"'2. By 2.2.4, \p, q] C^nS""1 = Sn~2 and by 2.2.10,

p is a singular point of 5"-2.

\fpi=q, then n(p) =£ ir(q) by 2.4.3. Hence by 2.4.1,

[ir(q)nSn-1] =n(q)^7i(p)=[ir(p)nSn-i} =[Sn~2].

Thus, there is a point u ESn~2 such that [u, q] <£S"-1.  In particular, [«, <?]

ÇlSn~2 and S"-2 is differentiable at q by 2.2.10. Hence, p is the only singular

point of S"-2.

2.6.2. Lemma. Let{p, q} C S"~l; \p, q] <£S"_I.   Themt(p) n-n(q) D

S"~l is a nondegenerate S"~3 with ind S"~3 = i - 1.

Proof.  Since [p, q] ÇlSn-\ P"-2 = n(p) n n-fa) is an (« - 2)-flat. Note

thatP"-2 nS""1 Cir(p)C\Sn-1 CSn~l.

By 2.6.1, ir(p) n 5"_I is 1-degenerate with ind 5""1 = / and with the

singular point p. Since n(p) = [P"~2, p], 2.5.4 yields that P"~2 n (7t(p) n

S"-1) = P"-2 n 5""2 is a nondegenerate S"-3; ind S"-3 -1-1.

Corollary. P" = [Pn~2, p, q].

2.6.3. Theorem. There is a sequence of points p0, q0,. . . , p., qi in

S" *l such that, for0<k< i,

(1) C\k^(tr(p0) n *(qa)) = Rn~2kis an (n - 2k)-flat,

(2) {pk, qk} = \pk, qk] n (R»~2k O Sn~l), and

(3) ifn - 2k > 1, then Rn~2k n Sn~l is a nondegenerate 5"_2k_1;

indS"-2*-1 =/-*:.

Proof.  Let p0 G S"-1. Since S"-1 is differentiable, there is a q0 E

S"'1 such that [p0, q0] (/LS"'1 by 2.2.10. Then Rn~2 = v(p0) n Jr(p0) is

an (n - 2)-flat and by 2.6.2, Rn~2 fî 5""1 is a nondegenerate 5"-3; ind Sn~3

-/—1. We now choose points{pj, c7,} C 5""3 such that [p,, ^j] Ç Sn~3.

The tangent hyperplane of S"-3 is the (« - 3)-flat tr(p) n fl"-2; thus

Ä"-4 = "(P,) n jrfo,) n A""2 = D (*(P0) n ir(qo))
o=0

is an (n - 4)-flat.

If n > 6 and / > 2, we can repeat this construction. By 2.6.2, i?"-4 O

sn-3 =Rn-4 n ¡¡n-i h a nondegenerate 5"_s; ind Sn~s = / - 2. Obviously,

we can choose {p2, c72} C Sn~s such that [p2, ç2] ÇlSn~5.

Thus, as long as « - 2(A: - 1) > 4 and / 2* A;, we can repeat our construc-

tion obtaining a sequence of points p0, q0,. . . , pk, qk which satisfy the condi-

tions (l)-(3).

By 2.4.4, « > 2/ + 1. If « > 2/ + 1, then / > k implies that n - 2(k - 1)
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> 4. Thus, the construction yields p0, q0, . . . , p¡, q¡.

If « = 2/ + 1, then i - 1 > k implies that n-2(k - I) > 5. Now the

construction yieldsp0, q0.pf_,, q¡_x. In particular, F"_2(/_1) = R3

and R3 C\S"~2 is a nondegenerate S2; ind S2 = 1.

By 2.2.4 Corollary 1, n(p) n S2 is a pair of lines through p for p ES2.

Since fef_,, q¡_x] <£S2, the line R1 = Trip,.,) H 7r(^t_ j) C\R3 does not.pass

through p¡_ j or £/,-_,. Thus, F' meets S2 at exactly two distinct points, say

pt and qr Then fe,, ?.] £ S2 and {pf, ?,} = R1 n S2 = 0£{, [(tr(p0) D tt^J)]

ns»-1.

Corollary. dim[p0,..., p¡, q0,..., q¡] = 2/ + 1.

Proof.  By 2.6.2 Corollary, we obtain

P" = [Rn~2, p0, <70] = [Rn-\ px, qx, p0, q0]

= [R"-2i,pi_x,qi_x.p0,q0).

If « = 2/ + 1, then F""2'' = R1 = [pt, q.].   If n > 2i + 1, then

ind S"-21-1 = 0 and F""2' = [tt^.) n tt^,-) n F""2', p/f 9|]. Since (ttQ^) n

ff(îi)) n b/. <7,-j = 0. the result follows.

2.6.4. Let r0, rx, . . . , rk be a sequence of points in P". We shall denote

by [r0,. . . , ra.rk], the flat of P" spanned by the points r0; o = 0, 1,

. . ., k and a =£ a.

Let / = {0, 1, ... , /'}.  From 2.6.3, we observe that

(1) P" = [p0.p¡, R*, q0.qt] where

(2) Rs = r.'o=0(7r(po) n 7r(c7a)); s = « - (2/ + 2) > - 1. Thus for a El,

(3) TTiFa) = [p0, . . . , p¡, Rs, qQ-, qa_, q.] and

(4) n(qa) = [q0.q¡, Rs, p0.pa.p¡].

We put

(5) ?'-fe* •••.#>/].
(6) Qf = [q0, ...,q,],

(7) Pi = bo.Pa.Pi- <7cJ » « GZ, and

(8) Qa = [q0.Q*.ai> Pj>aeI-
Thus, P" = [P'', Rs, Q'].

2.6.5. Lemma.   The i-flatsP, Ql, Pa and t^ lie inS"-1;aEl.

Proof. We prove that P' C S"'1.

By 2.1.5, P n Sn~x is a flat or a pair of (/ - l)-flats or an S'~x. By

2.6.4(3), pa E 7t(pß) and thus, [pa, pß] CS""1 for {a, ß} C / by 2.2.4. Then

P¡ =\p0.Pj] implies that either ?' C S"'1 or ?' n 5"_1 is an S'~l.

Suppose P'' n 5n"I is an Sl~1. Since [pa, pJ C 5""J for {a, /?} C /,
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pa must be a singular point of Sf~l for a G /. Thus, P' is the singular flat of

Sl~' ; a contradiction. Thus P' CS"'1.

By similar arguments, the other /-flats lie in S"~l.

Corollary.  Rs n S"~l - 0

Proof. i?J C fTa=:07:(pa) implies that P* C ir(p) n 5n_1 for any p G

Ä'nS"-1. But Rs OP1 = 0 and 2.3.3 Corollary 1 imply that this is not pos-

sible.  Thus Ä^nS"-1 = 0

Let « > 2/ + 2. Thus there is a point r G i?*.  By 2.6.4(1), p2k+2 =

b0.Pk> r'1o.Qk\ is a (2* + 2)-flat; 0 < Jfc < /.

2.6.6. Lemma.   p2k+2 nj""1 /sa nondegenerate S2k+l with the index

k,0<k<i.

Proof.  Obviously, P2 = \p0, q0, r] CP2k+2. Since [p0, q0] </LSn-1

and r G n(p0) n 7r(c70), r £ S"-1 implies that P2 n 5"-1 is an Sl by 2.1.5.

Hence, p2k+2 nS"~l isanS2k+1 with the tangent hyperplane n(p)nP2k+2 at

pES2k+l. Furthermore, \pa, qa] q.S2k+i implies that S2k+l is differentiable

at each of the points pa, qa ; a = 0,..., k.

By 2.6.4(3) and 2.6.4(4),

n(pa) n P2k + 2 = \p0,...,pk,r,q0,...,qa.qk]

and

*(qa) nP2k+2 = [q0.qk, r, p0,. . . , pa-, pj ;   a = 0, . . . , k.

Therefore, n*=0(7r(pa)n7r(c7a)nP2*+2) = {r}.  Since r $Sn-\ S2k+1 is

nondegenerate by 2.2.10 Corollary.

By 2.4.4, ind S2k+l <k. As \pQ.pk] C P2k+2 n P' Ç P2k+2 n

5«-i =52fc+iweobtainind52*+i=fc

The preceding lemma is readily extended to the case « = 2/ + 1 if we

assume that 0 < k < i - 1. Then by 2.6.3, Rl = ri'CT"l0(7r(po) n n(qa)) and

R1 n 5""1 ={pf, ç,}. We then choose r Gfl'YS"-1 and our result is valid for

P2k+2 = \po,...,pk,r,q0,...,qk];0<k<i-l.

In summary, we have

2.6.7. Theorem. Let Sn~l be nondegenerate; ind S"~l -i>\ and

n>4.  Let0<k<i- 1 [0<A:</-2] andletrER" [rER^S"'1]

when « > 2/ + 1 [« = 2/ + 1]. Then P" = [R"-a<*+1>, P2(fc+1>] wnere

(1) Rn-2(k+1) =C\k=0(Tr(po)nTr(qo)),

(2) p2(*+i) = rj,o.p^r.io,...,^],
(3) Rn-2(k+i)np2(k+i)={r}j

(4) /j»-2(*+0 n 5"_1 /s a nondegenerate s"-2k~3 of index i-(k+ 1),

and
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(5) P2(*+1> OS"'1 isa nondegenerate S2k+1 of index k.

3. Linearly connected sets. In this chapter, we shaU prove that a nondegen-

erate 5"_1 CP" with a positive index is the boundary of a certain type of Un-

early connected set as introduced in [3]. Marchaud's results then imply that

such an S"1-1 is a quadric.

3.1. Introduction.

3.1.1. A set M in P" is linearly connected if P1 n M is connected for

allP1 CP".

Thus M is connected and P"\M is linearly connected.

3.1.2. Let M0 be sets in Pk; k > 2; o = 1, 2. M] and M2 are a linearly

connected pair in Pk if Mi and M2 are nonvoid, open, disjoint, linearly connected

sets such that Pk\(M, U M2) = M, n M2.

Let « > 3. Let /I and F be a Unearly connected pair in P". Let F = A n

/J. ThenP" =/l U5U F, JnF = zJriyl = 0, B=BUF and I = ̂ UF.

We coUect some definitions and results regarding such linearly connected

sets; cf. [3].

3.1.3. Let Pk C P" be a fc-flat. Pk is a secant if Pk n /I =A 0 * Pk O F.

PfcswppomJ4[5] ifPfc CZJ[I],P*nF*0andP* fiF#0[Pk C\A¥=0].

3.1.4. Let Pfc C P" be a secant. Then P* n A and Pfc O F are a Unearly

connected pair in Pk with the common boundary P* n F. In particular, a Une

is a secant if and only if it meets F in exactly two distinct points.

3.1.5. A point p in F is regular if there exists a secant Une through p.

Otherwise, p is an irregular point of F.

3.1.6. The index of .4[F] is the maximum dimension of any flat of P"

contained in A [B]. We shall denote the indices by imA and imB respectively.

3.1.7. A set O in P2 is an oval if O is an injective continuous image of

P1 into P2 and (9 is the common boundary of a linearly connected pair in P2.

3.1.8. A oval O has a paratingent at each point p; i.e. a line of accumu-

lation of Unes through two distinct points of O which tend simultaneously to p.

Let F be regular; that is, every p E F is regular.

3.1.9. Let F2 C P" be a secant. Then F2 n F is either a pair of Unes or

an oval. Thus, any Une which meets F in three distinct points is contained in F.

3.1.10. Let c E A [B].  Then there is a &-flat through c in A [B] where

k = imA Ml-
3.1.11. Let min{zm,4, imB] > 0. Then a line is a paratingent of an oval

if and only if it meets the oval at exactly one point.

3.1.12. Let F be regular. If taia[imA, imB}> 0, then F is a nondegen-

erate ruled quadric.

3.2. Linearly connected pairs.  Let A and F be a Unearly connected pair
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in P" such that

(1) F =P"\(A UB)=A~nB,   (2) F is regular,

(1)" (3) min{imA,imB}>l.

We shall show that F is a hypersurface of order 2 in P"; n > 3.

3.2.1. Lemma.   Let F satisfy (l)n.  Then F is a hypersurface in P".

Proof.  Clearly, F is closed.

Let p G F.  Since p is regular, there exists a secant L = [p, q] such that

L n F = {p, q}. Thus, there is a point a0EL C\A and a point b0EL HP.

Choose a hyperplane p"_1 through a0 such that £ OP"-1 = {a0}. Thus, there

is an open (n - l)-ball W0 about a0 in P"-1 n ,4.

If a G N0, the secant La = [b0, a] meets F in exactly two points. Let

{aa} be a sequence of points in W0 with the limit point a0, La   = [b0, aa].

Then lim ¿^ = [b0, a0] =\p,q\.

Let U be an open neighbourhood of p in F such that q^U. For ag suf-

ficiently close to a0, La   meets U in exactly one point. Thus, there exists an

(« - l)-ball W, about a0 in W0 such that La H Í/ is a point for all a G W,.

Let i/j = {u G U\ {u} =LaCiU where a G M,}.

Since a0 G Mx, p E Ux. Suppose that {«} = Lai n Í/ = ¿fl2 n U for

u G f/, and ax =£ a2 in Nx. Then {a,, a2} C M, C W0 C P"'1 implies that

60 G [u, ax] = [a,, a2] C P"-1; a contradiction. Hence, the correspondence

between a G W, and La C\ U EUX is a bijection. Obviously, it is a homeo-

morphism.

Since p is arbitrary, the lemma follows.

Corollary.  Let Pk C P" be a secant; 3 < At < « - 1. 77ie« Fk =

Pk n F /s a hypersurface in Pk.

Proof.  If Fk is regular, then the result follows by 3.2.1.

Let i>j ¥= v2 be points in V, the set of irregular points of Fk. The Une

[vx, v2] meets Fft at a third point by 3.1.4 and 3.1.5. Since Fk C F, 3.1.9

implies that [iTj, v2] C Fk. Hence V is a flat and clearly, dim V < k - 2.

From the proof of 3.2.1, Ffc\F is locally homeomorphic to the union of

a finite number of open (A: - l)-balls.

3.2.2. Lemma.   Let FCP3 satisfy (1)3.   Then every P2 C P3 is a secant.

Proof.  By (1)3, there is a line LA CA and a line LB C B. Hence,

P2 nLA*0*P2 C\LB for all P2 C P3.

3.2.3. Lemma.   Under the hypothesis of 3.2.2, let P2 n F be an oval 0.

Then O is an Sl.
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Proof.  Since F is regular, every line meets O in at most two distinct

points. Therefore, O is an S1 if O has a unique tangent at each point.

Let p G O. By 3.1.8 and 3.1.11, there is a paratingent T of O at p and

TnO = {p}.  Thus P is not a secant and by 3.1.3, T supports A or B. We may

assume T C B; thus, TC\A = 0.

Let q E 0\{p}. Since [p, q] C\ O = {p, q}, L = [p, q] is a secant and

L = [a, b] where a G Z, n ,4 and Z> G Z, n 5. By 3.1.10, there is a line La C A

through a. Since P n .4 = 0, we have [La, L] * [T, L] = P2.

Obviously, [La, L] is a secant. By 3.1.9, LaC\F = 0 implies that [£fl, /,]

n F is an oval 0'. Then {p, £/} C 0' and 0' has a paratingent T' at p.  Since

P' n c9' = {p} and r'fli^^j'cl by 3.1.3. As T C B, this impUes that

P\ = [T, T'] is a plane.

Again, Pq is a secant through p. It is immediate that im(P2 n ^4) =

i'm(P2 n F) = 0. Thus, P2, n F is a pair of Unes Lx and ¿2 through p by 3.1.9.

Since p G O is arbitrary, there are two distinct lines of F through each

point of 0. Since every plane is a secant, there are exactly two such Unes

through each point of 0 by 3.1.9.

Let F" C P2 be a paratingent of 0 at p. Since TCB.T" CB as weU.

From the preceding, [P", P'] n F is a pah of distinct lines through p. Since

these must be Lx and ¿2, we have

T"=P2 n [T", T'] =P2 n [ir ¿2] =p2 n [r, T'\ = P.

Therefore, 0 has a unique tangent at each point p.

3.2.4. Theorem.  Let F CP3 satisfy (1)3.   77ie« F is a nondegenerate

S2 with index 1.

Proof.  By 3.2.2, 3.2.3 and 3.1.9, P2 n F is either a pair of Unes or an

S1 for all P2 C P3.  As there is a line L C A, P2 C\ F is an S1 for aU P2 through

/,.  By 3.2.1 and 2.1.4, F is an S2.

Obviously, F is nondegenerate and from the proof of 3.2.3, F has the

index 1.

LetFCP" satisfy (1)„;«> 4.

3.2.5. Lemma. If Pk is not a secant, then Pk n F is a flat;-I <k<n-I.

Proof. We may assume that dim(Pfc n F) > 0. By 3.1.3, we may as-

sume that Pk n A = 0 say.

Let p + q in Pfc n F. Since [p, <?] n ^4 = 0, [p, q] is not a secant. By

3.1.4 and 3.1.9, [p, q] CF.

3.2.6. Lemma. Let P2 C P". Then P2 C\F is a flat or a pair of lines

or an S1.



220 TIBOR BISZTRICZKY

Proof.   By 3.2.5 and 3.1.9, we may assume that P2 n F is an oval O.

Obviously, there is a line L contained in either P2 n A or P2 n B. LetLC

P2 nB. Since P2 is a secant, there is a point aG^n/l. As imA > 1, 3.1.10

implies that there is a line L' CA through a. Since A D B = 0, P3 = [L, L'] is

a 3-flat. Clearly, P3 is a secant and P2 C P3.

By 3.1.4, A3 =P3 C\A and B3=P3 n ß are a linearly connected pair in

P3 with F3 = P3 n F = A3 n P3.   As ¿ C B3 and ¿' C A3, we have

min{/m/l3, /mP3} > 0. Then every plane in P3 is a secant and it is immediate

that F3 is regular. Thus, F3 is a nondegenerate S2 with the index 1 by 3.2.4.

In particular, P2 n S2 =P2 n F = O is an S1 by 2.1.5.

3.2.7. Lemma (Marchaud [3]). 1er Pk CPn be a secant such that

im(Pk r\A) = im(Pk fiP) = 0; 1 <k<n - 1. Then Pk n F is a pair of

(k - lyflats.

3.2.8. Lemma.  Let Pk C P" ; 2 < k < «. 77¡e« Pk n F is a flat or a

pair of (k - l)-flats or an Sk~l.

Proof.  By 3.2.6, the assertion is true for k = 2. Suppose it has been

proven up to k — 1. By 3.2.5 and 3.2.7, we may assume that Pk is a secant

with im(P* n B) > 0. Thus, there is a line L C Pk n B and a point a G Pfc nl

Clearly, we wish to show that Pk C\F satisfies 2.1.4.

By the induction hypothesis, p*-1 n F is a flat or a pair of (k — 2)-flats

or an Sk~2 for all Pk~' C Pk. As L C Pk n 5 and ¿ n F = 0, this implies

that every (A; - l)-section of P* OF is either degenerate or nondegenerate;

cf. 2.1.3.

Obviously, the plane P2 = [L, a) is a secant and P2 n F is an S1 by

3.1.9 and 3.2.6. Let P*_1 CPfc contain P2. Then S1 CP*-1 n F implies

thatP*-1 PiFisanS*"2. By 3.2.1 Corollary and 2.1.4, Pk n Fis an Sk~l.

3.2.9. Theorem. Let n>3. If F satisfies (l)n, then F is a nondegenerate

S"-1 with ind S"-1 > 1.

Proof. As min{/m/i, /m5} > 1, F is an 5"" ' by 3.2.8. As in 3.2.6, we

construct a P2 such that P2 fï F is an S1 and P3 through P2 such that P3 C\F

is a nondegenerate S2 with ind S2 = 1. Then ind F > ind S2 = 1. As F is reg-

ular, Fis nondegenerate by 2.2.10.

3.3. Nondegenerate Sn~l. Let S"~1 be nondegenerate with ind S""1 =

/>0;«>3. We shall prove that F = 5"" ' satisfies (1)„; cf. 3.2.

3.3.1. Let {c, c'} C P^S"'1. We define c ~ c if [c, c'] n 5"_ l is void

or a point or a pair of distinct points px and p2 such that c and c' lie on the

same line segment bounded by p, and p2.
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3.3.2. Clearly, ~ is both reflexive and symmetric. It is easy to verify that

it is, in fact, an equivalence relation on P"\5'1_1.

Let A be an equivalence class [~-class] of P"\5"-1. Since there is a line

meeting 5"_1 in exactly two distinct points, there exists a second ~-class of

Pn\Sn~\ say B, by 3.3.1. For anyP2 CP",it is immediate that

P2 = (P2 n A) u (F2 n s"-1) u (P2 n b)

and thus, A and F are the only two such classes. Hence, A U F = P"\Sn~*

and A C\B = 0.

333. Let P1 C P". By 3.3.1, P1 HA [P1 <~) B] is a flat or an open

segment. Hence, A and F are linearly connected sets by 3.1.1.

Obviously, A= A US""1 =Pn\B andB=B U S""1 =P"V4. Thus

/I n 5 = 0 implies that S"~' = A~ n F. By 2.2.10,5""! is regular.

In conclusion, we have

3.3.4. Theorem. Let 5"-1 be nondegenerate with ind 5"-1 > 0; « > 3.

77ie« S" ~! = P"\(/l U F) = A C\ B where A and B are a linearly connected pair

in P". Moreover, 5"_1 is regular.

It remains to show that min{imA, imB} > 1. This is true when « = 3, as

a nondegenerate S2 with ind S2 = 1 is a quadric by 2.4.5.

3.3.5. Lemma.   Under the hypothesis of 33.4, there is a 3-flat P3 such

that P3 OS"'1 is a nondegenerate S2 with ind S2 = 1.

Proof. We may assume that « > 4. Since Sn~x is nondegenerate, there

is a P2 such that F2 n S""1 is an S1.  Let {p0, pj CS^p,, #pj. LetP*

be the tangent of S1 at pk, k = 0, 1.  By 1.3.3,PjnS^ {pfc} and P¿ n P| is

a point r^S"-1.

By 2.6.2, R"-2 = n(p0) n 7r(p,) is an (« - 2)-flat and Rn~2 n S"-1 is

a nondegenerate S"-3 with ind S""3 = i - 1 > 0.  Obviously, r G F""2\5"-3.

LetpG5"-3.

Since 5"-3 is differentiate at p, there is a point p' ES"'1 such that

fe, p'] <£ 5"~3. Whether [r, p, p] is a plane or a line, there is a P1 through r

intersecting S"~3 at distinct points ux and «2. Then P1 = [r, «,, «2] c/j5"_1

andP1 CF"-2.

By 2.2.4, ua G S"~3 implies that [u0, p0] C 5""1, o = 1, 2. Thus P1 n

P2 = {r} andP3 = [P2, P1 ] is a 3-flat. Since S1 CP3 n5"_!; by 2.1.5,P3 n

5""1 is an 52. Hence, [ua, p0] C S2 and ind S2 = 1.

Since p0 G 51 C S2, p0 is a differentiable point of S2 with the tangent

plane ?(p0) = ir(p0) np3. Since P1 = [«,, «2] Í S2, [p0, «J # fe0, «2] and

thus, ?(p0) fiS2 = |p0, uj u [pQ, u2] by 2.3.6. Hence, 52 is nondegenerate by

2.3.3 Corollary 1.
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3.3.6. Lemma.   Under the hypothesis of 3.3.4, min{imA, imB) > 1.

Proof.  By 3.3.5, there is a P3 such that P3 n S"~l is a nondegenerate

S2 with ind 52 = 1. By 3.3.4,

0) S2=P3\(A3UB3) = l3nB3,

where A3 and P3 are a linearly connected pair in P3. As 52 is a quadric, this

yields that imA3 =imB3 = l.

By 3.3.4, P" = A U S"'' U B and hence,

(2) P3 = (P3 fi/l)U(P3 n5"_I)U(P3 OP),

where P3 fi .4 and P3 C\B are open, disjoint, linearly connected and thus, con-

nected. Since S2 is a quadric, P3\S2 is the union of precisely two nonvoid con-

nected sets. Thus, P3 O A ¥= 0=£P3 O 5 and (1) and (2) imply, for example,

P3 n A = A3 and P3 O P, = P3. Since ¿3 C ,4 and P3 C B, we have imA >

imAi™áimB>imBl-
Thus we obtain by 3.1.12,

3.3.7. Theorem. Let « > 3. ,4« 5"_1 C P" /s nondegenerate with

ind 5"_1 > 1 if and only if F = Sn~1 satisfies (l)n in 3.2; moreover, such an

5n_1 is a quadric.

Appendix:  Quadrics. We shall now prove, independently of the concept

of linear connectedness, that a nondegenerate Sn~i C P" with a positive index

is a quadric.

Let u0 = (8qQ, 8aX, . . . , 80n) be the base points of a (homogeneous)

coordinate system of P"; o = 0,1.«. Let R be the set of real numbers.

A quadric Q"_1 P" is given by an equation

0) ë     an,X    X     =0
o,u=0

where P° =(x0.xn)EP" and aa/x = aß0; o, p = 0, 1,. . . , n.op.       po'

A Q"   'is nondegenerate if det(a   ) # 0 where (a   ) is the matrix of

coefficients in (1). Finally, if Q"   ' is nondegenerate, then the tangent hyper-

plane (x>(p) of Q"_1 exists at each point p in Q"_1.

A.l. Preparatory lemmas.

A.1.1.   Lemma   Let S"-1 be nondegenerate; n > 4, ind S"~l =i> 1.

Let Pk n S""1 = Sk~ ' have the index 0; 2 < A: < min{« - 2, « - / + 1}.

77ie« there is aPk+1 through Pk such that Pk+l nS"~l isa nondegenerate

Sk with the index 1.

Proof.  Since ind Sk~l =0 and k > 2, there is a P2 C Pk such that
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P2 n Sk~1 is an S1. Then there is a P3 through P2 such that P3 n S"- ' is a

nondegenerate S2 with the index 1; cf. the proof of 3.3.5.

Clearly, P3 O Pk = P2 and Pk+ í = [Pfc, P3] is a (* + l)-flat. By 2.1.5,

pk+i nc«-i js necessarily an S*. As ind S2 = 1 [ind 5fc_I = 0], we have

ind 5fc > 1 [ind 5fc < 1]. Henee, ind Sk = 1. Now 5k is clearly nondegenerate.

The foUowing assertions are obvious.

A.l .2. Lemma.  Let ind S"~' =0;n>3. Choose PgES"'1 such that

P" = feo.p„]. Z/5""1 is a quadric, then f)"o=0*(pa) = 0.

Corollary. C\o=0.o^kn(po) = P(k) £ fe0.pfc-, p„] ; fc = 0,

1,. ..,«.

A.2. Nondegenerate 5"_1 with index 1. In order to prove our theorem,

we shall construct a set in S"_1 and coordinates in P" for every i. Then we

show that there is a unique nondegenerate quadric containing this set and that

this quadric is identical with Sn~l.

In the following sections, we deal with special values of i.

A.2.1.  By 2.4.5, a nondegenerate S2 C P3 with the index 1 is a quadric.

Assume that every Sk~1 C Pk with ind 5fc_1 = 1 is a quadric; 3 < k < « - 1.

Let S"~t CP" be nondegenerate with ind S"~1 = 1 ; « > 4.

By 2.6.3, there are points p0, q0 in S"-1; fe0, q0] (f. S"'1. ThenF"-2

= ir(p0) n n(q0) is an (n - 2)-flat and R"~2 C\ S"'1 is an S"~3 of index 0.

Choose « - 2 points rff G S"~3 such that F""3 = [r0,. . . , rn_3] C

R"'2 is an (« - 3)-flat.  We assume {p,, qx}C [rQ, . . . , r„_3}; cf. 2.6.3.  By

A.l.l  and the induction hypothesis, S"'3  is a quadric.     Thus

C)lZ3(ir(r0) n F"-2) is a point r„_2 G F"-3, by A.l.2 Corollary.  Clearly,

Rn-2 m [Rn-*t rn2] andr„_2 GF^cf. 2.6.4. Hencer„_2 G S*-1.

From 2.6.7 with r = rn_2 and k = 0, we obtain P" = [F"~2, P2] where

Z*2 = feo' ?0' r«-2] - Ä"~2 n p2 = {rr,-2} and ̂ 2 n 5""1 is an s' • Thus>

P" ~ Vo.rn-2> rn-V r«l where rn-\ = Po- rn = <?0-   By AL1 and

2.4.5, S1 is a conic.

Finally, we observe

A.2.2.  Lemma.   (1) F2 C n(r0); o = 0, 1,...,«- 3; cf. 2.2.4.

(2) F"" 3 C Trfe) /or each pES1.

A.2.3. Let ra be the base points (of a coordinate system) of P"; o = 0,

...,«. Let Q"-1 C P" be given by

- "-3
(1)     x2      +2aM       x„   ,x„ +      V      a^x^x   =0;   det(a   ) # 0.
v ' m —2 n — i,n   n—i   n *—* op.   o   ß v ou7

o,m=0;o^m

Then rn_2 s (0, . . . , 0, 1, 0, 0) % Q"-1 and the tangent hyperplanes
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<¿(rn_x) and co(rn) are given by xn = 0 and xn_x = 0 respectively. Thus

(2) ^-i) n *('„) = ['"o.'.-al = Ä""2 = "(r«-i)n »<-0>

7i(rg) = [R"-2, rj = w(rç);      a = « - 1, «.

Since S"~3 and S1 are a quadric and conic, respectively, we choose a0(1

satisfying (1 ) so that

(3) S"-3=R"-2 riQ""1    and   Sl=P2nÇf1-1.

Then Q"_1 is uniquely determined.

As n(p) DR"'2 = co(p) n P"-2 is the tangent hyperplane in Rn~2 at

a point p, (2) implies that

(4) n(p) = [tt(p) n P»-2, rn_r rj = co(p)   for p G S"'3.

Similarly, n(p) C\ P2 = u(p) n P2 for pÊj1 and thus

(5) irr» = [P"-3, tt(p) 0 5"-']= cj(p)   for all p G S1.

Therefore

P""3= fll7r(p).
(6)

By (2) and (3), 7r(r0) n 5"_1 and co(ra) n Q"-1 are cones with the same

vertex r0 and the same (« — 2)-section S"-3. Thus,

(7) ir(ro) nj"-'= w(ro) nf/"1;      a = n - 1, «.

Similarly,

(8) [p, P"-3] nS"-'=  [p, P"-3] riQ"-1    foreachpGS1.

A.2.4.  Lemma.   Rn~3 = n(p) n v(q) n -n(r) for any three mutually dis-

tinct points p, q and r in S*.

Proof.  Since Sl is of order 2, we have P2 = \p, q, r] and n(p) n 7r(í¡f) n

tr(r) fi 51 = 0. Thus, dim(7r(p) n 7r(<¡r) n 7r(r)) < « - 3 and the result follows

by A.2.3(6).

A.2.5.  Lemma.   Let p ES1.  Then n(p)ns"-1 = n(p) n Q"_1.

Proof.   By 2.6.1, ir(p) n 5"_1 is a 1-degenerate S"-2 with the singular

point p; ind S"~2 = 1. Thus any line L C S"~2 passes through p. By A.2.3(7),

we may assume P^Tn_x,rn. Then p ^ 7r(r0) and thus, 7r(r0) n Z, is a point

u0; o = n - 1, «. By A.2.3Í7), wa G Q
i-i

n-l

If «„ _ i ^ «„. then L meets Q"   ' at three mutually distinct points and

thus, L C Q"" ' ; cf. A.2.3(3). If un_x=un=u, then by A.2.4, m G tr(rn_ j) n
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n(rn)nTt(p) = R"-3. Hence, L = fe,«] C [p, R"~3] HS"-1 CQ""1 by

A.2.3(8). Thus, jrfe) n S""1 Ç ir(p) n Q""1.

The preceding argument is symmetric in S" ~! and Q" ~ '.

A.2.6.   Lemma.   Letp ES"-3\R"-3.  Then n(p)n Sn~l =7r(p)nQ"-1.

Proof. As in A.2.5, we apply 2.6.1 and obtain n(p) n 5"_1 = S"~2.

Let/C5""2 be a line. ThuspG/. Since S"~3 = Rn~2 n 5"_1 has the

index 0, this yields L n R"~2 ={p}. As p £ F"-3, we obtain / n F"-3 = 0.

If / meets P2 at a point g, then c/ G S1 and by A.2.5, / C 7r(c/) n 5n_1

CQ"-'. Let/nP2=0. Then for q ES1, u(q) = ti(q) C\ L is a point in

Q"_1.  But A.2.4 and / n F"-3 =0imply that u = u(q) has at most two solu-

tions in S1 for any u.   Hence, / meets Q"~ ' in three mutually distinct points

and thus, / C Q"-1. The lemma now follows; cf. the proof of A.2.5.

A.2.7. Theorem.   Under the hypotheses of A.2.1 and A.2.3, S"~ ' =

Q""1.

Proof.  We first prove Q""1 C S"'1.

Let L C Q"_1 be a line.  By A.2.5, we assume that LOP2 = 0. Thus,

"(<7) = *(q) H / is a point in S"~1 for each q ES1. Let ¿V = {«(c/)|<? G51}.

If \U\>3, then/C5"_1 by 2.1.5. If U = {ux, u2), then say ux ERn~3

by

A.2.4.  Let u2 = u(q). Then / = [«,, u2] C [Rn~3, ir(q) n /] C Ttfa)

by A.2.3(5); a contradiction by assumption.

Let U = {u}. Then « 6/?""3 D S"'1 C S"-3 by A.2.4. Observe that

u G £ C Q"- ' implies that / C co(«) = tr(u) by A.2.3(4).

Choose a point p G Sn~3\Rn~3. By A.2.6, it(p) n / C S"-1. Since

ind 5"~3 = 0 and {«, p} C S"'3, u G ?r(p) and thus, / = [u, n(p) D /].  By

2.2.4,/ C tt(u) implies that / C S"'1. Thus Q"-1 Ç S"'1.

The preceding argument is symmetric in 5"-1 and Q"_1.

A.3. Nondegenerate 5""1 with ind S"'1 = [lâ(n - 1)] ; « even.

A.3.1. In this section, we prove that a nondegenerate 52,+ 1 C F2,+2 of

index i is a quadric for i > 0.  By A.2, this assertion is true for i = 1. We as-

sume that it has been proven up to i — 1.

Put « = 2/ + 2.  Let {p0, q0\ o G / = {0, 1, . . . , i}}C S"~1 satisfy 2.6.3.

From 2.6.4(2), Rs = flUo^feo) n ^a)) is an s-flat; s = « - 2(i + 1) = 0.

By 2.6.5 Corollary, Rs is a point r^S"'1.

We introduce the i-fíats ?', Q, Pa and Qa as in 2.6.4; a El. By 2.6.5,

aU of these i-flats are contained in 5"_1 ; moreover,

(1) P" = fe0, . . . , pf, r, q0.qt\ = [P, r, Q],
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(2) ir(Pa) = [P. r,q0-, qa.q¡], a El, and

(3) ir(qa) = &, r,p0.pa.p.],aEI.

We apply 2.6.7 in the case k = 0 and Rs = {r}. Then P" = [Rn~2, P2]

where P""2 = n(p0) n ir(q0), P2 = \p0, q0, r],Rn-2np2= {r}> ¿,2 n 5„-i

is an Sl and Rn~2 n S"~l is a nondegenerate Sn~3; ind S"-3 = / - 1. By

the preceding,

R"-2 = n(p0) n ir(í¡í0) = [pj-, p., r, ÍJ.?.].

A.3.2. Choose the following base points uk of P":

Ípk,       k = 0, 1,. . . ,/,
r,         k = i+l,

qn_k,   k = i + 2,i + 3.n.

Let Q"-1 CP" be given by

0) xli+lt%,n-oXoXn-o=0>    det(%> * °'
o=0

Clearly, Q""1 contains P1, Q\ P'a and ßL- <* G ̂  and

r = «/+1 = (0, . . . , 0,x.+ 1, 0, . . . , 0) £ Q""1       (xi+x = 1).

For o = 0,...,«, a =£ i + 1, (1) implies that co(«a) is given by x„_a = 0.

Thus

(2) co(u-a) = [«0.Û„_0, ••.."„]= *("0) = *„_„ - 0.

By the induction hypothesis, Sn~3 = R"~~2 n 5"_I is a quadric. Obvi-

ously, Sl = P2 n S"_1 is a conic. Thus, we determine Q"-1 uniquely by

choosing a0M in (1) so that

(3) S"-3=Rn-2 nQ»"1    and   S1 =/* n (p"1.

A.3.3. Lemma.  ir(p„) n tt(<70) r\Sn~l = tt(p0) n *(?„) n Q""1; o G7.

Proof.  By A.3.2(3), we may assume o # 0; e.g. o = /.  Let / = / - 1.

Clearly, P"-2 = ir(p,) O ti^.) is an (« - 2)-flat and by 2.6.2, S"'3 =

P"-2 OS"-1 is a nondegenerate hypersurface of order 2; ind Sn~3 -/ — 1.

Using the coordinate system of A.3.2,Pn~2 is given by Xj = xi+2 = 0

by A.3.2(2). Observe that P"~2 n Pf, P""2 n g1', P""2 O P¿ and P"~2 n

2^ are /-flats in S'"- 3; a E J = A{/}.  Finally, by the induction hypothesis,

¡¡n-3 c pn-1 ¡s a qUa(Jric> say

(1)   S»-3 = Qr-3=x2+x+2Ícon_oxoxn_a = 0,     xrx.+ 2=0.
o=0
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Let p EJ and consider the plane P2 = [pß, qß, r]. Clearly, P2 n S"'1 =

5¿ is a nondegenerate curve of order 2 by 2.1.5. By A.l .2 and 2.4.5,5¿ is a

conic.

Observe that P2 = P2 (A.3.1) and thus, 5¿ = S1 C S""3.  For p. * 0,

5¿C5"-3 HS"'3. As S1 US"-3 CO""1 and S"-3 = Q"-3, this impUes

that 5¿ C Q"-1 n Q"-3 and in particular,

(2) Slß -/J n Q""1 =Pj n Q»"3;      p. G/.

Then A.3.2(l), (1) and (2) imply that cM „_M = aM „_M for pEj. Thus, Q"-3

CQn-1andPn-2nS',-1=5"-3 = Q"L3=P"-2nQ"-1.

Corollary.  n(u0) n 5""1 = tt(u0) n Q""1; a = 0,.. ., «, o ^ i + 1.

Proof.  Both 7r(«a) n S"_1 and ir(u0) n Q"_1 are cones with the vertex

«0 and the (« - 2)-section 7t(h0) n 7r(«n_a) n J""1.

A.3.4. Theorem,   i/rnier r«e hypotheses of A.3.1 ancf A.3.2,5n_1 =

Q"-1.

Proof. We first show Q"-1 ÇS"'1. Let Qj C Q""1 be an i-flat. By

A.3.3 Corollary, we may assume 7r(«a) n Q is an (i — l)-flat in Sn~x; a = 0,

..., n, a # / + 1. Then dim Q} = i > 2 and A.3.2(2) imply that there are at

least three mutually distinct 7r(«0) n f^'s. By 2.1.5, o'cS"-1 and thus

Q""1 ÇS"-1.

The preceding argument is symmetric in Q" ~x and S" ~1.

A.4. Nondegenerate S"-1 with ind S"_1 = i; « = 2/ + 1 > 5.

A.4.1. Put « = 2i + 1. We wish to prove that a nondegenerate S2/ C

P2i+l of index i is a quadric. By 2.4.5, this assertion is true for i = 1. We as-

sume that it has been proven up to i — 1.

Let {p0, q0\oEI)C Sn~! satisfy 2.6.3. Then Rs = 0 (2.6.4(2)) and by

2.6.5, the /-flats P'', Q, P'a, and Qa are contained in S"_1 ; a El. Finally, 2.6.4

and Fs = 0 yield

(1) Pn = [p0,^..,Pi,q0.*,]=[?'. 2?],

(2) *(pa) = [P, q0.qa.q^aE I, and

(3) J(q J = [ff, p0.pa.p¡], a E I.
As P n Ql = 0, this implies that for a ± ß in I

(4) PoPla = [p0,...,pa.p.] is an (/ - l)-flat, and

(5) Pa n P'ß = [p0.pa.pß,..., p,] is an (/ - 2)-flat.

Similarly, dimiß' n Q'a) = i - 1 and dirnG^ n öjj) = / - 2.

A.4.2.  UtqoßE[qo,qß]\{qo,qß};ßEA{0}.  Thenqoß$P.  AsPla =

feo.ßa>- • • , P¡, qa], this implies that for {a, ß} C I, qoß E [q0, qß] C
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H'a=i ;gi=ßn(pa). Thus by 2.2.4, Pi0nPiß = [px.ßß.p.] c n(qQß) n

5"-1and[Í0/3,P0nP¿]C5'1-1.^

By 2.1.5, the (/ + l)-section [P'', qoß] n Sn~l is a pair of /-flats, P1' and

say P^. Clearly <70/3 G P0(î and thus, [qoß, P0 n P¿] C P0/J. Since

dim(Pf n P^) = / - 1 and [p0, p^] n (P0 n P¿) = 0, we obtain that Poß n

[p0, Pß] consists of a point, say poß. Thus, P0(3 = [qoß, poß, P0 n P¿].

Since [<?„, fy] n tt^) = {?„}, we have qoß $ rr(pß). Then Poß (f. ir(pß)

and equivalently, pß ^ P0(?.  Since p0(3 G P0(3, we have p0j3 ¥= pß.  By a symmetric

argument, poß ¥= p0 as well.

In summary, P^ = [qoß, poß, P0 nP'ß] where g0|3 E[q0, qß] \ {q0, qß}

and poß E \p0, pß]\{p0, pß}; ß G A{0}. Clearly, n(poß) = [P1, qoß, qx,...,qß,

... ,q¡].

A.4.3.  Lemma.   There is a unique nondegenerate Q"_1 C P" containing

the i-flats P\ Ql, P'a and Poß, {a, 0} C /, ß # 0; » - 2/ + 1 > 5.

Proof. Choose the base points wk of P" as follows:

Ípfc, A: = 0, 1,. .. ,/,
?„_*>     * = /+l,...,«.

Let 0 G A{0}. Since qoß G [<70, <fy]\{<70, fy), let qoß = (0, .... 0, *„_„,

0, . . . , 0, 1), xn_ß =dßi-0. Then p0/J G [p0, p0] \{po,p0} is determined and

hence, poß = (1, 0, . . . , 0, xß, 0, . . . , 0), xß = cß* 0. Thus,

P'oß=-{(x0, . . . ,x.,0, . . . ,0,xn_ß,0, . . . ,0,xj

xß=x0cßandxn_ß=xndß}.

It is easy to verify that the quadric Q"_1 given by

(1) Y(c d )-'jc x       -xnx   =0
v ' t—i^oo'o  n-o 0   n

0=1

satisfies A.4.3.

Corollary. w(m0) = Ti(ua); a = 0, 1,. . ., n.

Proof.  By A.4.3(l), co(«a) = xn_a = 0; o = 0, 1, . . . , «.  From A.4.1,

ir(ua)=[u0,...,uno,...,un] =xn_g = 0;      o = 0,l,...,n.

A.4.4.   Lemma.   ti(p0) n Tt(qa) n 5""1 = 7t(pa) n ,rfoa) n Q""1;

a G A{0}.

Proof.  We may assume e.g. o = i.   From A.4.1 ,Pn~2 = Ti(pt) n ir(qt) =
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feo_, Pi-v ?o.<7f-J is an (« - 2>flat and by 2.6.2,P"-2 n S"~x
is a nondegenerate S"1"3; ind S"-3 = i - 1 = xÁ(n - 3). As n - 2 > 3, S"-3

CP"~2 is a quadric by the induction hypothesis.

The following (/ - l)-flats are contained in Sn~3: Pn~2 O P, P"~2 n

ô', P""2 n P¿, a g A{/} and P""2 n P0/? = [qoß, Poß, (P""2 n P0) n (P"~2

np<)],0 g A{0,/}.

Using the coordinate system in A.4.3, P"~2 is given by x¡ = x¡+ x = 0.

But then (cf. A.4.3) Sn~3 is defined by

f-i
Z(c„<0~ lxxri  „ - x.x,, = 0,    x. = x., , = 0.

v o  o'       o  n—o        On t       i+l
0=1

By A.43(l),Sn~3 =Pn~2 n Q""1 and the lemma follows.

A.4.5.  Lemma.   ir(u0) n 5n_1 = 7r(u0) n Q"-1 ; o = 0, 1,. . . , «.

Proof.  Recall that

0) <"„) = co(«o)=-xn_ o = 0;      a = 0,l,...,n.

For 0 ¥= o ï «, A.4.4 and (1) imply that 7r(«a) ns"-1 and n(uQ) n

Q"-1 are cones with the vertex ug and the (n - 2)-section ir(u0) n ?:(«„_ a) D

■S"1-1 and thus equal.

Let o = 0. We first prove that n(u0) H Q""1 Ç n(u0) n S"'1. Let Qj C

7r(«0) Pi Q"_i be an /-flat.  By the preceding, we may assume that n(ua) n ß'

isan(i- l)-flatin5"-1;o=l,...,M- 1. By 2.1.5, Q* CS"'1 if

(2) |{7r(«a)nc2,'|a=l,...,«-l}|>3.

Since Qf C 7t(m0) is an /-flat and since 7r(«0) is given by xn = 0, (1) im-

plies that there are at least / + 1 mutually distinct n(ug) n ß"s for o = 1, 2,

...,«. But then u„ £ ß1' and / > 2 imply (2). Therefore, n(u0) n Q""1 C.

«(i^ns"-1.

The preceding argument is symmetric in Qn_I and 5n_1.  Similarly,

n(u„) n Q»-1 = n(un) C) S"-1.

A.4.6. Theorem.   i/iicfe/- i7ze hypotheses of A.4.1 a«<i A.4.3,S"-1 =

Q""1.

Proof. Cf. the proof of A.3.4.

A.5. Nondegenerate S"'1; K ind 5"-1 < [J4(n - 1)].

A.5.1. Let S"'1 C Pn he nondegenerate; 1< / = ind 5"_1 < [Vi(n - 1)] ;

thus « > 7. Let {pCT, £/a|o G Z) C S"_1 satisfy 2.6.3. Let «i = « - 2i. Then

Rm = D'o-0(7r(pa) n 7r(c70)) is an m-flat and Rm n S"'1 is a nondegenerate

5m -l ; ind 5m ~ * = 0. By A.l .1, there is a Pm +1 through Rm such that
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Pm + ' n S"'1 is a nondegenerate Sm ; ind Sm = 1.  From A.2, Sm and thus

Sm_1 are quadrics.

Choose mí points ryESm~l such that Rm~l =[rx.rm]CRm is

an (m - l)-flat.   As 5m_1 is a quadric, A.1.2 Corollary implies that

0%Lii*iry) n Rm) is a point r0 $Rm~l. We assume {pf, </,} C{r,.rm}

and thus, r0 £S"-1 as

m /

fr0> = O (*(V H Pm) ç D (ir(Pc) n 1<90)) ■ **!   cf. 2.6.5.
7=1 o=0

We apply 2.6.7 in the case k = i - 1 and r = rQ. Then P" = [Rm, P2i]

where Pm = [r0.rm], P2i = \p0.pf_,, r0, <?0.?,._,],Pm n

P2/ = {r0} and P2i ns""1 is a nondegenerate 52/_1 with ind S2i~l = i - 1.

We introduce the /-flats P', g', P¿ and g¿ in Sn~l as in 2.6.4; a El.

Let / = i - 1 and / = A{/}. Then the /-flats P' = P2i n P'', g' = P2/ n g'', P¿ =

P2i nP¿ and Q'a = P2i n g¿ are contained in 52/_';<(£/.   Finally, {p¡, q¡}C

{r,,. . ., rm} implies Pm = [Rs, p¡, q¡] ; (cf. the proof of 2.6.3 Corollary). Then

"fea) = IPo.Pi' RS> V • • • » «* • ' ' ' Í/1

(1) - (?/*",«„.5a.Í;],

»fa«) ■ [Q'\ Rm, p0,.-.,pa.pf], a E I;   cf. 2.6.4.

A.5.2.   Lemma.   (1) P2i C n(ry); y - 1,2.m.

(2) Rm -' C tt(p) for each pES2i~l.

A.53. Let uk be the base points of P" where

uk=Pk>     k = 0,l,... ,i-l,

ui+k=rk>     k = 0,l,...,n-2i,

Un-k=1k'     k = 0,l,...,i-l.

Let Q"_1 CP" be given by
1-1 n-l

m      x2+2Ta        xx       +2      Y        a   xx=0;a a*0.
yl) i *•*   o,n-o   o  n-o *-• ou   o  m oß

o=0 o,ß=i+1 ;o=tp

Then r0 ^ Q"-' and Q"~' contains P', g', P'a and g¿; a G/.

We have observed that Sm_1 is a quadric. As ind S2i~l = [M(2i - 1)],

S2'-1 is a quadric from A.3. Thus we can choose uaß in (1) so that Sm_1 =

Rm n QH-i and 52/-i =p2i n qn-i   This determines Q""1 uniquely.

Letb = (b0,..., bn) E S2i~ '. Then f>/+, = • • • = bn_i = 0 and

u(b) s biX¡ + ^~Joao.n-o(boxn-o + 6„-c*o) = °- Also for o - 1,. . . , m,

«fr«) = w(Wi+0) = ¡Ç*., .^a^x^ = 0.

Clearly, P2i C ui(r0) for a = 1, . . . , m and Rm ~' C u>(p) for each
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p G S2i~1. Finally, co(pa) is the hyperplane given by xn_0 = 0. Thus,

"fec) = ¡Po.h-V ro"-"rm'%.?„»•••« *|_|] " *<PJ'

Similarly, u(q0) = 7r(c70) is given by xg = 0; o E J.  Hence, {u¡} = {r0}Ç

n^0;o#íw(«0).
A.5.4. We have shown that a nondegenerate S"'1 CP" with ind S"'1 = 1

or [&(« - 1)] is a quadric; n>3. In particular, every nondegenerate S"'1

with ind 5"~ ' > 0 is a quadric when « = 3,4, 5 or 6. Since « > 7, we assume

every nondegenerate Sk_1 C Pk, with ind Sk~1 > 0 and k < « is a quadric.

A.5.5.   Lemma.   7r(p0) n ir(<70) ni""1 = 7r(pa) n rr(c7a) n Q""1; ae/.

Proof.  By the symmetry in a G /, we may assume o = / - 1. Now

P"-2 = ttO^j) n jrC^,) = fe0.p,_2, Fm, t70.q._2)

is an (« - 2>flat. By 2.6.2, P"~2 n Sn_1 is a nondegenerate S"-3; ind S"1-3

= / - 1. By A.5.4, Sn~3 is a quadric Q"-3.

Clearly, Sm_1 C S""3 and 5"-3 contains the (/ - 2)-flats P"~2 n P',

P"-2 n ß', P"-2 n P> and P""2 n ß'; a = 0, 1,.... / - 2.

Using the base points in A.5.3, P"~2 is given by x¡_, = xn_í+ j = 0. Let

Q"~3 be given by
i-2 n-i

xJ+2Yd        xx       +2       Y       d   xx=0,   x.     =x„  ,..=0.
/ C^   o,n—o  o  n-o t-^ op  o  n i—1        n-i+l

o=0 o,u=i+ 1 ;o*ß

Then S"1-1 =Fm n Q""1=Fm n Q"~3 implies thataaM = £faM;o^p,o,p =

/ + 1,...,«- i. Simüarly (cf. the proof of A.3.3),5¿ = F2 n Q"~ ' = P2 O

Q"-3 implies that aßn_ß =dtin_ß;p = 0,1,...,/- 2. Thus Q""3 C Q""1
andP""2 nS""1 ='Sn-3 = Qn-3=pn-2 n Qn-1

Corollary. 7r(«a) n 5"_1 = tt(ii0) n Q""1 ; a » 0,...,/- 1,

« - / + 1,..., «.

A.5.6. Lemma,   /e/p G52/_1 U 5m_1.   Then ir(p) = oj(p).

Proof. Let ff'(p)[7Î1(p)] be the tangent hyperplane of S2'-1 [5m_1] at

a point p. Then dim 7r'fe) = 2/ - 1 and dim irife) = m - 1.

If p G S2'"', then clearly it(p) = [n'(p), Rm ~' ]. Since S2i~{ =P2tn

Q"-', we have ir'(p) ç wfe) and thus, cofe) = [it'(p), Rm ~1 ].

If p G 5m -x = Rm n Q"" », then iffe) ç ?r(p) n co(p). From the con-

struction, [F'"1, ß'"1] c *(P) n cofe) and thus, [iTfe),?'"1, ß'"1] C jrfe)
n co(p).  But tTí» C Fm and Fm n [P'"1, ß/_1] = 0 imply

dim[rT(p), Pi-1,ß,-']=«-l.

A.5.7. Lemma, /e/p ES2i~' USm_1. 77jé?« it(p) n S"1-' = 7r(p) n

Q"_1.
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Proof.  By A.5.6, it is sufficient to find a Pn~2 C ir(p) such that n(p) =

[P"~2,p] andP"-2 r\Sn~l =P"~2 n Q"-1; for then, Trions"-1 and

i(p) n Q" ~ * are cones with the vertex p and the same (n — 2)-section.

Let p G S2'-1. Since P2i O Rm = {r0} ̂ 5n_1, we have p £ Rm and

thus, p $ 7r(p0) say. Take P"-2 = n(p) n 7r(p0). Then by A.5.5 Corollary,

pn-2 nSn-i =pn-2 n ^^ n ¡¡n-ly = pn-2 n (jr(p0) O Q"_1)

=P"-2 riQ"-1.

Let p G Sm - • and let P2 = [p0, <?„, r0]. Obviously, P2 n 5""! is an

Sl C S2'-1. Now r0 G 7t(p0) n Tt(q0) implies that r„ ^ 7r(<7) for each q E

S^fro, q0}. By A.5.2, P"1"1 = ir(q) n Pm for each ? G S1^, ?0}.

IfpG5m_1\P'"-1,thenp^7r(ç)forsomei ES1 C52,_1. By the

preceding, 7r(p) D (jrfa) O S""1) = tri» n (*(<?) n Q""1).

If p G Pm-' n 5m_I, then ind 5m_1 = 0 implies that p £ tr(p') for any

p' e sm -1 \flm -1. xhe lemma now follows as above.

A.5.8. Let M = {«o.u¡_x, un_i+x.un}. From A.5.3, ii(ua) =

gt(w0) is given by xn_a = 0 for each ua E M. Thus for {u0 ...., ufffc} C M,

pn-k= fl^jirCu  ) is an (« - fc)-flat.

Let Mf be an /-flat; M* C\ Rm = 0. Assume that Ai£"* = ir(u0) n M' is an

(/ - l)-flat for each u0 E M.  Let U = {M*- ' |«a G M}.

A.5.9.  Lemma. M*~l =Mia~l has at most i solutions ug in M-

Proof.  Let {«   .ua } C M be the set of solutions of Ml~x =

Ma~l. ThenM'"1 = Ok=xMi-1 - (O/Li«*" ff/)) H M* - P"-* CMf. As

Pm = nUoe3l,7r(«0), this implies that [Pm, M'"1] C F"~*. But Pm n M* =0

implies that dim([Pm, Ml~l ] ) = n - i and thus, A: < ¿

Corollary 1.  Let M¡~1 =Mi~l \Ml~l =Mia~i] have k [h] solutions

infaM'-1 *¥-*.  Thenk + h<i+l.

Proof. Let {uai,

of solutions in M- Then

Proof. Let {uai.uafe} [{«ffJt+1,-uok+h^ be the tw0 sets

f'-^in^jn.
fc+/i

M'"1 =[ f| ?:(«„)] DM'   and   Mi_1=(   f|   *("„)) nW
i/=*+i       /

Since Ml = [Ml~', W~' ], M1'2 = Ml~1 n ¿F" ' is an (/ - 2)-flat, and

M1'2 = (OjteiVO) H A/' = j*-<*+*> nM1. As in A.5.9, [Pm, M'"2] Q

P"-*-" and A: + h ki + 1.

Corollary 2.   \U]>3.
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Proof.   As IMI = 2/, A.5.9 impUes that \U\ > 2. Since / > 2, we have

IMI = 2/ > / + 1 and by CoroUary 1, \U\ > 3.

A.5.10. Theorem.   Under the hypotheses of A.S.I and A.S.3, S"'1 =

Proof. We first prove Q"-1 ç S"'1. Let the /-flat M1 C Q"_1. By

A.5.6 and A.5.7, we may assume that M1 n Rm = M1 n P2i = 0. Since M C

P2i; ua $ M1 and thus, Ma~' = 7r(ua) n M' C S"- ' is an (/ - l)-flat for each

u0 E M. By A.5.9 Corollary 2, |i/| > 3 and thus, Zlf' C S"'1 by 2.1.5.

The preceding argument is symmetric in 5n_1 and Q""1.

We coUect our results.

A.5.11. Theorem.  A nondegenerate S"'1 with ind 5"-1 > 0 is a

quadric; « > 3.
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