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ABSTRACT. A hypersurface st -1 of order two in the real projective
n-space is met by every straight line in maximally two points; cf. [1, p. 391].
We develop a synthetic theory of these hypersurfaces inductively, basing it
upon a concept of differentiability. We define the index and the degree of
degeneracy of an S”* ! and classify the 8™ ~1in terms of these two quantities.
Our main results are (i) the reduction of the theory of the s -1 to the non-
degenerate case; (ii) the Theorem (A.5.11) that a nondegenerate st -1 of
positive index must be a quadric and (iii) a comparison of our theory with
Marchaud’s discussion of “linearly connected” sets; cf. [3].

Preface. The theory of plane curves is of major importance in our study of
the hypersurfaces of order two. This theory is the first step in our induction and
the means by which we define tangents. The introduction of these curves follows
the approach of P. Scherk in [5] and R. Park in [4].

A. Marchaud introduced in [2] the “surfaces of order two™ in the real pro-
jective three-space. Our theory is based on that paper.

We compare our hypersurfaces with the quadrics by direct construction (see
Appendix) and also by showing that these hypersurfaces are identical with the
common boundaries of certain pairs of linearly connected sets; cf. [3].

This paper has developed out my doctoral thesis of the same title, written at
the University of Toronto, under the supervision of Professor Peter Scherk. My
thanks are due to him for his continued help in the preparation of this paper. I
would also like to thank Professor O. Haupt for bringing to my attention the theory
of linearly connected sets.

1. Curvesin P2. The theory of hypersurfaces is based on that of curves in
the real projective plane. In this chapter, we give a precise definition of the curves
of order two and introduce tangents.

1.1 Introduction. Let P" be a real projective space of n dimensions; n > 1.
We define a topology of P in the usual manner. Thus, P" is compact and con-
nected.
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Let P, Q%, . .. denote kflatsin P*; — 1<k <n—1. The (n — 1)- and
O-flats in P" are the hyperplanes and the points of P" respectively. The unique
(- 1)Aflat is denoted by &.

For a collection of flats P¥, P™, . .., P", [P¥, P™, ..., P"] denotes the
flat in P" spanned by them.

1.2. Plane curves.

1.2.1. A parameter curve C is a continuous map from Pl={1t, ...}
into P2. A line T is the tangent of a parameter curve C at a point ¢ € P! if
T=1lim,_,...[C@), CE)].

1.2.2. The parameter curve C is differentiable if the tangent of C at every
t € P! exists. C is degenerate if C is injective and C(P') is a line. Finally, C is
totally degenerate if C(P') is a point.

If C is degenerate, then C(P!) is the tangent of C at ¢ for each t € P!,

1.2.3. A (plane) curve T is the union of a finite collection of sets C,(P')
where the C_’s are parameter curves.

A line T is a tangent of T at p if T is the tangent of some C, at ¢ where
p=C,(DEC,PHCT.

1.3. Order.

1.3.1. A differentiable parameter curye C is of order 2 if 2 is the maxi-
mum of the number of points of P! mapped into collinear points by C and if a
line meets C(P') at exactly one point if and only if it is the tangent of C at that
point.

As a parameter curve is a closed curve, this implies that a differentiable
parameter curve C of order 2 is injective and there is a unique tangent at each
point of C(P').

1.3.2. Let I be a plane curve. Then I is of order 1 if ' = C(P') where
C is a degenerate parameter curve. I is a nondegenerate curve of order 2 if
I' = C(P') where C is a differentiable parameter curve of order 2. Finally, I is
a degenerate curve of order 2 if either I' = C(P!) where C is a totally degenerate
parameter curve or I' = C, PHu Cz(P‘) where C, and C, are distinct degen-
erate parameter curves.

We refer to the plane curves in 1.3.2 as the curves of order < 2. We shall
denote a nondegenerate plane curve of order 2 by S!. We quote without proof:

1.3.3. LEMMA. Let S' C P? be a curve of order 2.
(1) A line T is the tangent of S at p if and only if T N S' = {p}.
(2) Thereisaline L C P? such that L NS = .

2. Hypersurfaces of order two. We shall study the (differentiable) hyper-
surfaces S" ! of order two by constructing their tangent hyperplanes and intro-
ducing two invariants: the index and the degree of degeneracy of an S"~!.
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2.1. Introduction.

2.1.1. A hypersurface of order two in P? is an S'. We wish to define
hypersurfaces S”~! of order two in P*; n > 3.

2.1.2. Aset S CP" (n>3)is a hypersurface in P" if it is compact and
if every point p € S has a neighbourhood in S which is the continuous image of
the union of a finite number of open (n — 1)-balls such that outside an (n — 2)-
dimensional subset of that union, the mapping is locally homeomorphic.

In view of 2.1.1, we may assume that $™ !, a hypersurface of order 2 in
P™ is already defined; 2<m<n — 1.

2.13. Letn>3. Let Mbeasetin P"; PX CP",2<k<n-1. The
k-section P* 0 M is

(1) nondegenerate if P*¥ N M is an S¥—1;

(2) degenerate if P¥ N M is either an m-flat or a pair of distinct (k — 1)-
flats; -1 <m<k-1.

2.14. A hypersurface S"~1 C P* (n > 3) is of order 2 if every inter-
section of $”~! with a hyperplane is either degenerate or nondegenerate and
there is a hyperplane P§ ! such that P§~! N §"~1 jsan S"~2.

Henceforth, $”~1 will be a hypersurface of order 2; n = 3.

2.1.5. LEMMA. Let P CP* 1<k<n-2. ThenP* nS"" ! isa flat
or a pair of (k — 1)-flats or an S*~1,

PrOOF. Let P"~! be a hyperplane through P¥. By 2.1.4,P"~! n§"-!
is either degenerate or nondegenerate.

If PP~ N S"~! js degenerate, then our assertion is trivial.

Suppose P*~! N §"~1 jsan §”~2. Let n=3. Then P2 N §? is an '
and the lemma follows from §1. Assume that the lemma is true for P¥ C P™;
3<sm<n-1.

Since P"~1 N §"~! is an S"~2, we have P¥ N §"~! =pk N "2 If
k =n — 2, then P"~2 N §"~2 is either degenerate or nondegenerate by 2.1.4.
If k <n — 2, the lemma follows by the induction hypothesis.

COROLLARY. (1) The plane section P N S"~! is either a flat or a curve
of order 2.
(2) Any line, not lying in "=, meets S~ at most twice.

2.1.6. Let H"~! be a hypersurface in P such that P*~! N H"~! js
either a flat or a pair of (n — 2)-flats for all P*~! C P". It is immediate that
H™~1 is either a hyperplane or a pair of distinct hyperplanes.

2.2. Differentiability. Letp € P¥ NS"~ 1 2<k<n—1. If there is
a P2 such that p € P2 C P¥, P? ¢ §"~! and P2 N §"~! # {p}, then P¥ N
S"=1 is proper at p.
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If P2 N §"~1 is proper at p, then there is a tangent of P2 N "~ ! at p
by 2.1.5, Corollary and 1.2.3.

2.2.1. Aline is a tangent of S"~! at p if it is a tangent of P2 N §"~1
at p for some P2 through p.

2.2.2. LEMMA. S"! has a tangent at p for all p.

ProOF. Let p and q be distinct points of $*~!. By 2.1.2, there is a
point r € P\S"~ 1. If [p, q, ] C P2, then P2 N S™~1 is proper at p.

2.23. A point p € S"~! is differentiable if there is a hyperplane = con-
taining all the tangents of S”~! at p. Otherwise, p is a singular point of S" 1.

224. LeMMA. Letp #q in S*~'. Then [p, q] is a tangent of S"~!
at p if and only if [p, q] C "~ 1.

PrROOF. Let [p, q] be a tangent of S”~! at p. Then [p, q] is a tangent
of P2 N "~ at p for some P? through [p, q]. If P2 N §"~! is a curve of
order 1, then [p, q] =P2 N S"~!. If P2 N S"! is a curve of order 2, then
P2 N §"~1 s degenerate by 1.3.3. Thus, P2 N S™"~! is a pair of lines, one
of which is [p, q].

Conversely, let [p, g] € S”~!. Choose a point € P"\S"~!. Then [p, q]
is a tangent of [p, ¢, 7] N S"~ ! at p.

2.2.5. THEOREM. Let p € S"~! be differentiable. Then every line
through p in  is a tangent of S™~! at p; ¢f. 2.2.3. In particular, the tangent
hyperplane n = n(p) of S™ ! at p is unique.

PrOOF. Let L be a line; p €L C m. Choose a point ¢ € S~ \n. By
224, [p,q] ¢S"!. Then [L, g] NS"~! is proper at p with a tangent T at
p. AsTCa,wehave T=nN[L, q] =L.

2.2.6. S"~! is differentiable if each point contained in any S' C §"~!
is differentiable.

We shall prove that the hypersurfaces of order 2 are in fact all differentiable;
cf. 2.29.

227. LeMMA. Let {p, q} CS"'; [p, q] ¢ S"~'. Let T be a line such
that TN\ S"~Y ={p}. Then T is a tangent of S"~! at p.

PrOOF. Let P2 = [T, q]. By 2.1.5,P2 N S"~! is a flat or a pair of
lines or an S!. Since TN S®~1 = {p}, the first two instances imply that [p, q]
C S$"!, Thus, P2 N S"~!isan S! and by 1.3.3, T is a tangent of S! at p.

228. LeMMA. Let {p, q}C S"~'; [p, q] ¢ S"~ L. Then 7(p)={r €
P"|r lies on a tangent of S"~! at p} is a flat.
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ProOF. By 2.2.2, 7(p) # . Let r; #r, be points in 7(p). We may as-
sume that p & [r, r,]. Thus, P?= [ry» r,, P] is a plane and T; = [p, r;] are
distinct tangents of S"~! atp;i=1, 2.

If T, UT, CS" !, then either 2 CS" "' or PP NS" 1 =T, UT,.
Ifsay T, C S"~! and T, ¢ $"~!, then either P2 N S"~! =T, or P2 N §"~!
is a pair of lines. But T, ¢ $”~! implies that T, N $"~! ={p} by 2.2.4. Thus
if P2 N S"! is a pair of lines, then both lines pass through p.

If T,nS""1 ={p};i=1,2, then T, # T, implies that P> N S"~1 s
not an S by 1.3.3. Hence P2 N S"~! is the point p or a line or a pair of lines,
all through p.

Let T be a line; p € T C P2, By the preceding, either TC "~ ! or TN
S"=! ={p}. Then T C 7(p) by 2.2.4 and 2.2.7 respectively. Hence, [r,, r,] C
P? C 7(p) and 7(p) is a flat.

2.29. THEOREM. S™~! is differentiable;n > 3.

PROOF. Let P? be a plane such that P2 N "~ ! jsan S'. Letp € S'.
Then [p, q] ¢ S™~! for each ¢ € S'\{p} and thus, q & 7(p) by 2.2.4. Hence,
dim 7(p) < n — 1 and there is a hyperplane 7 containing 7(p).

2.2.10. THEOREM. A point v € S"~! is singular if and only if [v, p] C
S"! forallp € S"1.

ProoF. From 2.14, it is inmediate that there is a plane P2 such that
P NS" !isan S'. By 1.3.3, there is a line L C P2 such that L N §! =
Lnst-l=g

Let v € S"~! be singular. By 2.2.6 and 2.2.9,v ¢ S'. Then by 2.1.5
Corollary, [L, v] N S"~1 ={v}.

Let p € "~ \{v}. Then clearly, P? = [L, v, p] is a 3-flat. Let P2 C P?
be a plane through [v, p]. By 2.2.6 and 2.2.9, P2 N §”~1 is either a line or
a pair of lines. As the line P2 N [L, v] meets "~ ! only at v, every line in
P2 N §"~1 passes through v. Thus, [v, p] C S"~ 1.

Since S” ! is not contained in any hyperplane, the converse follows by
224 and 2.2.3.

COROLLARY. The set V of all the singular points of S*~ is a flat; more-
over, V C n(p) for all p € S"~1\V.

22.11. 8" is d-(times) degenerate if dim V' =d — 1. Obviously, 0 <
d <n — 2. For brevity, S®~! is [non]degenerate if [d = 0] d > 0.

2.3. The index of S"~ 1.

2.3.1. 8"~ ! has the index i if i =ind $"~! is the maximum dimension
of any flat of P" contained in S"~!.
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23.2. ReMARK. dim V' <ind $"~! <n - 2.
Let M be a set in P". Then [M] is the flat spanned by the points of M.

23.3. LEMMA. Letind S"~! =i Then every point of S"~! lies in an
i-flat contained in S"~!.

ProOF. Since ind S”~! =i, there is an i-flat P! C "1,

Let v € V. By 2.2.10, [P?,v] is a flat in $”~! and thus, i < dim[P}, v] <
ind $"~! =i. Hence, [P!,v] =P'and V C P.

Let p € S"~!\P!, Then p is differentiable and p & n(p) N P!. By 2.24,
[p, m(p) N P!} C S"~1. Clearly, dim(n(p) N PY)=i- 1 and dim[p, n(p) N P¥] =i.

COROLLARY 1. Letind S* ! =i;p €S"~\V. Then
(1) PPcap)nsS*~Yifand only ifp EP' C S},
(2) V= npicsn—lpi‘

Proor. The proof of 2.3.3 implies (1) and ¥V C np’cs”—lpi =W.
Let g € Wand let p €S"~!. By 2.3.3, p lies in an i-flat P} C $"~ 1.
Thus, [p, q] C P4 C S"~! and by 2.2.10,q € V.

COROLLARY 2. Let n(p) N S"~! =8"~2 for some p € S"~\V. Then
ind S"~'<n-3.

PrROOF. By 2.1.4, there are no (n — 2)-flats in S”~2. Thus p does not
lie in an (n — 2)lat. By 2.3.3,ind S"~! <n - 3.

234. LEMMA. Let{p, q} CS"~Y; [p, q) ¢€S"~ ). Then
dim[r(p) N §”~!] = dim[n(q) N S"~1].

PROOF. Let k = dim[n(p) N S"~1]. By the symmetry in p and g, it is
sufficient to prove that k < dim[n(g) N $"~!]. Thus, we may assume k > 0.
Choose points p, € m(p) N S"~! such that [r(p) N S"~'] = [p, p,,
... Pg). By224,L,=[p,p,] CS"~!and q ¢ n(p). Thus, [L,, q] N
§"=1 contains the line [g, q,) for some g, € L,. Then g, € n(g) and
4.4y, ---.a;) Cln@@NS""']. Since [p, q] ¢ S"~ !, we have ¢ #q, #p
foro=1,...,k Thus, [s@)NS"" ' =[L,,L,,...,L,] =Ip, 4y
. q ) and PX-1=1[q,, ..., q,] isa (k — 1)flat. Obviously, q ¢ P*~!
and thus the k-flat [g, P¥~!] C n(g) N S"~1. Hence, dim[n(g) N S"~'] > k.
2.3.5. REMARK. Let p €S"~!\V. Then
(1) n(p) N S"~1! is a k-flat if and only if dim[z(p) N S"~!] =k, 0 <
k<n-2
() n(p) N S"~!isan S”2 if and only if dim[r(@) N " '] =n -1
and ind $"~! <n - 2.

2.3.6. THEOREM. Let ind S"~! =i;0<i<n — 2. Then we have



HYPERSURFACES OF ORDER TWO 211

precisely one of the following three cases:

1) n() N S"~! isan i-flat for all p € S*~\V;

() n() N S"~! is a pair of distinct (n — 2)-flats for all p € S"~\V,
i=n-2

B) m@e)NS" lisan S" 2 forallpe S \V,0<i<n - 2.

PrROOF. Let p € S"~I\V. By 2.3.3, there is a P! through p in S"~!. By
22.4, P! C n(p) and thus, k(p) = dim[n(p) N S"~'] >i. By 2.3.5, either
k(@) =ior k(p)=n — 1. It remains to be shown that k(p) is independent of p.

Let {p,, p,} CS"~\V;p, #p,. If [p,, p,] ¢ S™~!, then 2.3.4 implies
that k(p,) = k(p,). Let [p,, p,] CS"~1. Since S"""\V ¢ n(p,) U n(p,),
there is a p; € S"~!\V such that p; & n(p,) U n(p,). Therefore, k(p,) =
k(p3) = k(p,).

24. Nondegenerate S"~'. In this and the following section, we examine
the properties of the nondegenerate and the degenerate S”~! and we consider
a relationship between them.

24.1. LEMMA. Let S"~! be nondegenerate;ind S" ! =i. Then either
i=0orn@p)=[rp)NS"~'] forpesr-1.

PrOOF. Let {py, p;}CS"1; [py, py] ¢ S"1. By 233, there isa
Pl,p,€PL CS""1;0=0,1. Clearly, P} # Pi.

Suppose a ¢ € P) N Pi. Then P) U P Cn(g) N S"~! and by 2.36,
[#(@) NS"~!] = n(q). Assume that [n(p) N S"~!] # n(p) for some and hence
for all p €S"~! (2.3.6). Then by the preceding, P} N P} = &. By 2.3.6,
() N S"~! = Pl and thus, n(p,) N P} = @. Hence, P\ = {p,} and i = 0.

24.2. LemMma. Let {py, p,} C S" " "\V; P! = [p,, p,] CS"~'. Then
m(py) N n(p,) C n(p) for all p € P\V.

PrOOF. Let u € (n(p,) N m(p,)\P'.

Ifu €S"~1, then [P', u] N S"~! contains the lines P!, [p,, u] and
[p,, u] by 2.24. Thus, [P}, u] C S"~! by 2.1.5.

Ifu g S"1, then [p,, u] NS"~1={p, }by 2.24. Hence, 2.1.5 implies
that [P!, u] NS"~! =P, Thus, [p, u] NS"~! ={p} for all p € P! and the
lemma follows by 2.2.7.

24.3. LeMMA. Let S"~! be nondegenerate. Let P* = [p,, ..., p,] C
S"=1. Then M =E_in(p,) is an (n — k — 1)lat.

Proo¥r. Our statement is trivial for £ = 0.

Assume that the lemma is true for any P¥~! C §"~1. Since [p,, ...,
Pr_,] €S"" !, we have that P}~ % =n;‘=‘o‘1r(pi) is an (n — k)flat. Then
M=np)NP ¥ andn-k-1<dmM<n-k
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Letg € S”‘I\Ul’;oﬂ(pi). Then [p,, p,. q] is not in S”~! and there is
aline L, C [p;, P q] N §"~1 such that L, = [q, q,] for some q, € [p;, p,];
0=0,1,...,k-1. By 224,p, #q,#p, and q € n(q,).

By our construction, P¥ = 129 VI ) I I/ PO PR T M I
Thus, [qq, - - - » @x_;] €S" Visa (k — 1)flat and by the induction hypothesis,
ﬂ';;o‘ m(q,) = P3 ¥ is an (n — k)-flat.

By 24.2,q, € [py, p,] C 8" implies that n(p,) N 7(p,) C 7(q,);
0=0,1,...,k—1. Thus, M=n(p,) N P?"* CPI~* and g €PF WM.

Since P¥ C M in 2.4.3, we have

24.4. THEOREM. Let S"~! be nondegenerate. Then ind S"~! < %(n — 1).

COROLLARY 1. If n =3, then ind S2 = 0 or 1 and n(p) N §2 is the point
p or a pair of distinct lines through p respectively.

COROLLARY 2. Ifn >4 and ind "~ >0, then n(p) N S"~ ! isan
s"-2,

It should be noted that our results concerning the surfaces of order 2 in
P3 coincide with the theory in [2]. Of particular importance is the following
result of Marchaud. While his proof is incomplete, it is easy to verify.

24.5. THEOREM (MARCHAUD [2]). A nondegenerate S* with the index
1 is a quadric.

2.5. Degenerate S"~1. Let S"~! be d-degenerate; ind S"~! =i. Thus,
dimV=d-1and 0<d<i<n-—2. Putm=n —dand let P]’ be an m-flat
such that PJ* NV =@, Then P" = [V, P]].

25.1. Lemma. S*-1=UI[V, pl,pepPm ns"-1,

PrOOF. Let ¢ €S"~!\V. Then [V, q] NP isa point p and [V, q] =
[v.p] cs"-1L.

2.5.3. Lemma. P70 S"~! is a nondegenerate S™ 1.

PrOOF. Let p €P™ N S"~1 (2.5.1). By 2.2.10, p ¢ V implies that there
isap' €8" ! such that [p, p'] ¢ S"~1. Hence p' ¢ V. By 2.5.1,p" € [v, q]
where v € Vand g EP' N S"~1. Thus, [v, p, p'] is a plane and by 2.1.5 and
22.10,[v,p, Pl NS" ' =[v,p] U v, q,p']. Thus, [p,q] NPP NS"~1=
{p, g} and P™ N S"~! is not a flat.

Let P¥ C P™ N S"~!. Then 2.2.10 and P¥ N ¥ = & imply that the
(k + d)flat [V, P¥] liesin "~ !, Thus,k +d<i<n-2andk<i-d<
n-d-2=m-2.

By 2.1.5,P" nS"~!isan S™~'. By 2.2.10 and the preceding, S™ "
is nondegenerate.
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253. LEMMA. ind "1 =i-d.

PrROOF. Since ind $”~! =, there isa P! C S"~1. Then V C P! and
P" = [P', P"]. Thus, P’ N P! is an (i — d)lat contained in S™~!.

From the proof of 2.5.2,ind ™! <i-d.

In summary, we have

2.54. THEOREM. Let S"~! be d-degenerate; ind "' =i Let P*~ 9N
V=g. Then P"~% N S"~! is a nondegenerate S® =9~ with the index i — d
and "~ =U gV, p].

This theorem reduces the study of a degenerate S”~! to that of a suitable
nondegenerate "¢~ 1, But in 2.4, we have already classified the latter accord-
ing to the index.

2.5.5. THEOREM. Let S"~! be d-degenerate;ind S"~! =i Letp €
S""WVandlet P"~9 NV =g;p €P* 9 Then there are exactly the follow-
ing three cases:

(1) ne)NS" 91 ={p}). Then a(p)NS"~ ' =[V, p] and i =d.

(2 n)NS"~9-1'=pPLUPL, Pl #Pl;n—d=3. Then n(p) N S"~!
=P}~2U P}~ whereP"~2 = [P), V];0=1,2.

(3) np)yNsn—9-1=g"-9-2.n _d>4, Then n(p) N S" 'isan
S"2andd<i<%@n+d-1).

PROOF. Let m'(p) be the tangent hyperplane of S”~9~1! at p. Then
@) =1@E) NP and ') NS" 9 =q(p) N §*~9-1, Assn-9-1js
nondegenerate, we obtain the intersections #'(p) N S"~! by 2.4.1 and 2.44.

(1) If ap) N S" 91 ={p}, then ind S"~9~' =i —d=0. Since
dim V=d -1, [V, p] Cn(p)NS"!isadflat. Clearly,ind $*~! =d im-
plies that n(p) N S"~! = [V, p].

(@ Ifap)ns"9-1=plyPpl, thenind S"9-!=i_d=1and
n —d=3. Thus,i=n — 2 and the result follows by 2.3.6.

(3) Ifnp)NS"~9-1 =§7=9-2 then S"~9-2 Capp)NS* ', n-d
>4and 0<i-d<%@n-d—-1)by 244. Obviously, m(p) N S"~! is
an §"~2,

2.6. Decomposition. To facilitate the study of nondegenerate S”~1’s,
we shall decompose them, whenever possible, into nondegenerate hypersurfaces
of smaller dimension.

Let $”~! be nondegenerate; ind $”~! =i >1and n > 4.

2.6.1. LEMMA. Forany p €S"~ ! a(p) N S"~ ' is a 1-degenerate S"—2
with ind 8" =2 =i and the singular point p.

PrOOF. By 2.5.5, m(p) N S" ! is an §”~2. Since ind $”~! =i, there is
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a P! Cap)NS" ! and thus,ind "% =i

Let g €S"~2. By 224, [p, q] Cn(p) NS"~! =§"~2 and by 2.2.10,
p is a singular point of S”~2,

If p # q, then n(p) # n(q) by 2.4.3. Hence by 24.1,

[n(q) N §"~'] =n(q) # 7)) = [n(p) N §" '] = [$"?].
Thus, there is a point u € "2 such that [u, q] ¢ S"~!. In particular, [u, q]
¢ 8"~2 and $"~2 is differentiable at g by 2.2.10. Hence, p is the only singular
point of §"~2.

2.62. LEMMA. Let{p, q}C S"'; [p, q] ¢ S"~'. Then n(p) N n(q) N
8"~ is a nondegenerate S"~3 with ind S"~3 =i — 1.

ProOF. Since [p, g] ¢ S"~1, P"~2 = n(p) N n(q) is an (n — 2)-flat. Note
that -2 n s~ Cap)nS*~1 c s,

By 2.6.1, n(p) N S"~! is 1-degenerate with ind S” ! =i and with the
singular point p. Since m(p) = [P"~2, p], 2.5.4 yields that P"~2 N (n(p) N
s"=1) = pr=2 N §"-2 js a nondegenerate §"~3;ind S" "3 =i — 1.

COROLLARY. P" =[P"~2, p, q].

2.6.3. THEOREM. There is a sequence of points p,, qq, . - - » Pp q; in
8"~ such that, for 0 <k <i,

) Nézl@p,) N n,) = R"** is an (n — 2k)Sflat,

Q) {pp a}= [Pk’ qk] n (Rn—2k N Sn_l), and

(3) if n — 2k > 1, then R~ 2k N §"~1 is g nondegenerate S"~2*~1;
ind §7-2k-1 = _ k.

PrOOF. Let p, € S"~!. Since $”~! is differentiable, there is a ¢, €
S"=1 such that [py, go] ¢ S" ! by 2.2.10. Then R"~2 = n(py) N 7(p,) is
an (n — 2)lat and by 2.6.2, R*~2 N §"~1 is a nondegenerate s"=3;ind "3
=i — 1. We now choose points {p,, q;} C S~ such that [p,, q,] & S"~3.
The tangent hyperplane of $"~3 is the (n — 3)lat n(p) N R"~2; thus

1
R4 = "(Pl) N ﬂ(ql) NR""2 = n (ﬂ(po) n ﬂ(qo))

0=0
is an (n — 4)flat.

If n > 6 and i = 2, we can repeat this construction. By 2.6.2, R*~% N
S§"=3 = R"=4 N §"~1 is a nondegenerate S”~5;ind S"~5 =i — 2. Obviously,
we can choose {p,, g,} C $"~5 such that [p,, g,] ¢Sm-S,

Thus, as long as n — 2(k — 1) = 4 and i 2 k, we can repeat our construc-
tion obtaining a sequence of points py, gy, - - - , Py, q; Which satisfy the condi-
tions (1)—(3).

By 244,n>2i+ 1. If n > 2i + 1, then i > k implies that n — 2(k — 1)
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= 4. Thus, the construction yields py, 4, - - - , Pp 4;-

If n=2i+1,theni — 1 >k implies that n — 2(k — 1) = 5. Now the
construction yields py, qq, - - - » P;_y» 4;_,- In particular, R*=2U=1) = R3
and R3 N §"~2 js a nondegenerate S?; ind §? = 1.

By 2.2.4 Corollary 1, n(p) N S? is a pair of lines through p for p € §2.
Since [p;_,, q;_;] ¢ 82, the line R! = n(p;_,) N n(g;_,) N R does not. pass
through p;_, or q;_,. Thus, R! meets S? at exactly two distinct points, say
p; and q;. Then [p, q;] ¢ 52 and oy aq;}= R'Nn§?= ni—o[(“(Po) Nn(q,))]
nsn- 1 .

CorOLLARY. dim[py,...,puqq, ..., q] =2i+ 1.
ProoF. By 2.6.2 Corollary, we obtain

P'=[R""%,p,, q,] =[R""%,p,,4,, Py 4]
=R Py Gy Py ]

Ifn =2 +1, then R""¥ = R! = [p, q)]. Ifn> 2 + 1, then
ind §"~2~1 = 0 and R"~% = [n(p;) N n(g;) "R*~¥, p,, q;]. Since (n(p)) N
n(q;)) N [p;, q;] = 2, the result follows.

264. Letry, ry,...,r, beasequence of points in P*. We shall denote
by [rg, ...y Fo . .., 1], the flat of P" spanned by the points r,;0=0,1,

.,kand 0 # a.

Let 7={0,1,...,i}. From 2.6.3, we observe that

M) P'=py,....,PH R qq, ..., q;] where

@) R =N _y(np,) N (q,));s=n— (2i +2)>— 1. Thus fora €1,

3) ") =Ipgs---+Pp R qgp -+, Gy - - - » q;] and

@ ma)=14¢---+ 95 R Pgs .., B --» 14

We put

© P=py....p]

© =M. ql,

©) Pfx= [Pos- -+ Pos--- 2Py 4], @ €1, 2nd

® ¢ = [90: -+ -+ Gar - - - G4 Po), @ €L
Thus, P" = [P, RS, 0F].

26.5. LEMMA. The iflats P, 0%, P and Q! lie in S"~';a €1

PrOOF. We prove that P{ C §"—1,

By 2.1.5,P* n S~ 1 is a flat or a pair of (i — 1)lats or an §*~!, By
2 64(3) Py € m(pg) and thus, [p,, pﬁ] C §"! for {a, B} C I by 2.2.4. Then

=[pg---» , ;] implies that either Picsr=1orPinsn-1isan §-1.

Suppose P! N §"=1 is an S'=1. Since [p,, pgl C 8"~ ! for {a, B} C 1,
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P, must be a singular point of S*~! for « €1. Thus, P! is the singular flat of
$=1; a contradiction. Thus P! C §"—1,
By similar arguments, the other i-flats lie in $7~!.

COROLLARY. RENS§t-1=g

PrROOF. R C nf,zon(po) implies that ¥ C () N S"~! for any p €
R* N S"!. But R®* N P"= g and 2.3.3 Corollary 1 imply that this is not pos-
sible. Thus R* N §"~! =g,

Let n > 2i + 2. Thus there is a point r € R*. By 2.6.4(1), P2¥+2 =
oy - - P qgs - . .5 ;] isa 2k + 2)flat; 0 < k <.

2.6.6. LemMA. P?>*¥%2 N §7-1 js g nondegenerate S2** ! with the index
k;0<k<i.

PrOOF. Obviously, P2 = [p,, qo, r] C P?**2. Since [p,, q,] ¢ 5"~
and r € n(p,) N m(q,), r ¢ S"! implies that P2 N §”~1 js an S! by 2.1.5.
Hence, P2¥*2 N "1 jsan §2¥*! with the tangent hyperplane n(p) N P2%*2 at
p €S?¥*1, Furthermore, [p,, g,] ¢ S2**! implies that S2¥*1 is differentiable
at each of the points p,, q,;a=0,...,k.

By 2.6.4(3) and 2.6.4(4),

M) NP * 2 =[p, ... D gy, - o q;]
and
ma ) NP** 2 =[q, ..., q. 1Py s By 0l @a=0,...,k

Therefore, NE_,(n(p,) N 7(g,) N P***2) = {r}. Since r & S"—1, §2k+1 jg
_ nondegenerate by 2.2.10 Corollary.

By 2.4.4,ind S>**! <k. As|[p,, ..., p,] CP**2 nPic pkt2n
§n—1 = §2k+1 'we obtain ind S2¥+! =k,

The preceding lemma is readily extended to the case n = 2i + 1 if we
assume that 0 <k <i — 1. Then by 2.6.3, R' = NiZin(p,) N n(g,)) and
R' ns"~1 ={p, q,}. We then choose r € R'\S"~! and our result is valid for
PPR*2 = [po, o D h g -, Q) s 0<K<i-—1.

In summary, we have

2.6.7. THEOREM. Let S"~! be nondegenerate;ind "~ =i>1 and
n>4 Let0<k<i-—1[0<k<i-—2]andletr€RS[reRI\S"!]
whenn>2i+ 1 [n=2i+ 1]. Then P" = [R*~2(k+1) p2(k+1)] ypere

(1) R*2E*FD =NE_(n(p,) N 7(q,)),

Q) PPED=[po ..., p. 1, dor - - » i)

(3) Rn—-2(k+l) n P2(k+l) __.{r}’

@ R*-2(+1) N §n=1 s g nondegenerate S"~2%=3 of index i — (k + 1),
and
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(5) P2*1) n §n=1 s g nondegenerate S2**1 of index k.

3. Linearly connected sets. In this chapter, we shall prove that a nondegen-
erate S"~! C P" with a positive index is the boundary of a certain type of lin-
early connected set as introduced in [3]. Marchaud’s results then imply that
such an §”! is a quadric.

3.1. Introduction.

3.1.1. A set M in P" is linearly connected if P! N M is connected for
all P! C P,

Thus M is connected and P"\M is linearly connected.

3.1.2. Let M, be sets in P5k>2,0=1,2. M, and M, are a linearly
connected pair in P* if M ; and M, are nonvoid, open, disjoint, linearly connected
sets such that P*\(M, U M,) = M, N M,.

Let n > 3. Let A and B be a linearly connected pair in P®. Let F=4 N
B. ThenP"=AUBUF,ANB=BNA=¢,B=BUFandA=AUF.

We collect some definitions and results regarding such linearly connected
sets; cf. [3].

3.13. Let P¥ C P" be a k-flat. P* is a secant if P* N A + g+ P*¥ N B.
P* supports A[B] if P* CB[A),P*NF+ gand PX NB# g [P N4 # g].

3.14. Let P* C P" be a secant. Then P*¥ N 4 and P* N B are a linearly
connected pair in P¥ with the common boundary P¥ N F. In particular, a line
is a secant if and only if it meets F in exactly two distinct points.

3.1.5. A point p in F is regular if there exists a secant line through p.
Otherwise, p is an irregular point of F.

3.1.6. The index of A[B] is the maximum dimension of any flat of P"
contained in A[B]. We shall denote the indices by i,,4 and i,, B respectively.

3.1.7. Aset O in P? is an oval if O is an injective continuous image of
P! into P? and O is the common boundary of a linearly connected pair in P2.

3.1.8. A oval O has a paratingent at each point p; i.e. a line of accumu-
lation of lines through two distinct points of O which tend simultaneously to p.

Let F be regular; that is, every p € F is regular.

3.19. Let P2 C P" be a secant. Then P2 N F is either a pair of lines or
an oval. Thus, any line which meets F in three distinct points is contained in F.

3.1.10. Let c €A [B]. Then there is a k-flat through c in 4 [B] where
k=i,A [i,B].

3.1.11. Let min{i, A, i, B} > 0. Then a line is a paratingent of an oval
if and only if it meets the oval at exactly one point.

3.1.12. Let F be regular. If min{i, A, i, B}> 0, then F is a nondegen-
erate ruled quadric.

3.2. Linearly connected pairs. Let A and B be a linearly connected pair
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in P" such that
(1) F=P"\AUB)=4A NB, (2) Fisregular,
ON (3) min{i, 4, i B} > 1.

We shall show that F is a hypersurface of order 2 in P";n > 3.
32.1. LemMA. Let F satisfy (1),. Then F is a hypersurface in P".

ProoF. Clearly, F is closed.

Let p € F. Since p is regular, there exists a secant L = [p, q] such that
L N F={p, q}. Thus, there is a point a, €L N A and a point b, € L N B.
Choose a hyperplane P*~! through a,, such that L N P"~! ={a,}. Thus, there
is an open (n — 1)-ball N, about a, in P"~! N 4.

If a € N,, the secant L, = [b,, a] meets F in exactly two points. Let
{a,} be a sequence of points in N, with the limit point a,, Lao = [bg, a,].
Then lim Lao = [by, a0] =[P, q]. _

Let U be an open neighbourhood of p in F such that ¢ ¢ U. For a, suf-
ficiently close to a,, L ag Meets U in exactly one point. Thus, there exists an
(n — 1)ball N, about a, in N, such that L, N U'is a point for all € N, .

Let U, ={u €Ul {u} =L, N U where a € N, }.

Since ay € Ny, p € U;. Suppose that {u}=L‘zl NU=L,, N U for
u €U, and a, #a, in N,. Then {a;, a,} C N; C Ny CP"~! implies that
by € [u, a,] = [a,, a,] CP"~ 1. a contradiction. Hence, the correspondence
between a € N; and L, N U € U, is a bijection. Obviously, it is a homeo-
morphism.

Since p is arbitrary, the lemma follows.

COROLLARY. Let P¥ C P" be a secant; 3<k<n—1. Then F, =
P* N F is a hypersurface in P*.

ProoF. If F, is regular, then the result follows by 3.2.1.

Let v, # v, be points in V, the set of irregular points of Fy.. The line
[v, v,] meets F, at a third point by 3.1.4 and 3.1.5. Since Fy C F, 3.19
implies that [v,,v,] C F,. Hence V is a flat and clearly, dim V' <k — 2.

From the proof of 3.2.1, F,\V is locally homeomorphic to the union of
a finite number of open (k — 1)-balls.

3.22. LEMMA. Let F C P satisfy (1);. Then every P> C P? is a secant.

ProoOF. By (1);, there is a line L, C A and a line Ly C B. Hence,
PPNL,#@+P*NLgforal P2 CP.

3.2.3. LEMMA. Under the hypothesis of 3.2.2, let P% N\ F be an oval O.
Then O isan S'.
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ProoF. Since F is regular, every line meets O in at most two distinct
points. Therefore, O is an S! if O has a unique tangent at each point.

Let p € 0. By 3.1.8 and 3.1.11, there is a paratingent T of O at p and
T N O ={p}. Thus T is not a secant and by 3.1.3, T supports 4 or B. We may
assume T C B; thus, TN A4 =¢&.

Let ¢ € O\{p}. Since [p, q] N 0 ={p, q}, L = [p, q] is a secant and
L=1[a b] wherea€LNAandbELNB. By 3.1.10, there isa line L, C A4
through a. Since TN A = &, we have [L,, L] # [T, L] = P%.

Obviously, [L,, L] is a secant. By 3.1.9, L, N F = & implies that [L,, L]
N Fis an oval 0'. Then {p, q} C O' and O’ has a paratingent T’ at p. Since
T'NO ={p}and T'NL, €A, T' CA by 3.1.3. As T C B, this implies that
P =T, T']is a plane.

Again, P is a secant through p. It is immediate that i,,(P> N 4) =
i,,(P* N B)=0. Thus, P2 N F is a pair of lines L, and L, through p by 3.19.

Since p € O is arbitrary, there are two distinct lines of F through each
point of O. Since every plane is a secant, there are exactly two such lines
through each point of O by 3.1.9.

Let 7" C P? be a paratingent of O at p. Since T C B, T" C B as well.
From the preceding, [T”, T'] N F is a pair of distinct lines through p. Since
these must be L, and L,, we have

T"=P2N[T", T'|=P>n Z,,L,] =P’N[T,T=T
Therefore, O has a unique tangent at each point p.

3.24. THEOREM. Let F C P3 satisfy (1);. Then F is a nondegenerate
5% with index 1.

ProoF. By 3.2.2,3.2.3 and 3.19, P2 N F is either a pair of lines or an
S! for all P2 C P3. As there is aline L C A, P> N Fisan S* for all P? through
L. By 32.1 and 2.14, Fis an §2.

Obviously, F is nondegenerate and from the proof of 3.2.3, F has the
index 1.

Let F C P" satisfy (1),;n > 4.

32.5. LeMMA. If P* isnot a secant, then P* N Fisa flat, -1 <k <n-1.

ProoF. We may assume that dim(P*¥ N F) > 0. By 3.1.3, we may as-
sume that P* N 4 = & say.

Let p#qin P N F. Since [p, q] N4 =&, [p, q] is not a secant. By
314and 3.19, [p,q] CF.

3.2.6. LemMA. Let P2 C P". Then P> N F is a flat or a pair of lines
oranS'.
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PrOOF. By 3.2.5 and 3.1.9, we may assume that P2 N F is an oval O.
Obviously, there is a line L contained in either P2 N4 or PP NB. Let L C
P2 N B. Since P? is a secant, there is a point 2 € P2 N 4. As i,A>1,3.1.10
implies that there is a line L' C 4 through a. SinceANB=g, P3=[L, L']is
a 3-flat. Clearly, P is a secant and P2 C P3.

By 3.14,45=P3 N A and B, = P> N B are a linearly connected pair in
P3 with F3 = PP NF=4; NB;. AsL CByand L' C Ay, we have
min{i, A3, i,,B;} > 0. Then every plane in P3 is a secant and it is immediate
that F5 is regular. Thus, F; is a nondegenerate S? with the index 1 by 3.2.4.
In particular, P> NS =P2 NF= 0 isan S! by 2.1.5.

3.2.7. LemMAa (MARCHAUD [3]). Let P*¥ C P be a secant such that
i,P*NAy=i (P*NB)=0;1<k<n—1. Then P* N F is a pair of
(k — 1)flats.

328. Lemma. Let P CP*;2<k<n. ThenP* N Fisaflat ora
pair of (k — 1)flats or an S*~1.

ProOF. By 3.2.6, the assertion is true for kK = 2. Suppose it has been
proven up to k — 1. By 3.2.5 and 3.2.7, we may assume that P* is a secant
with #,,(P¥ N B) > 0. Thus, there is a line L C P¥ N B and a point 2 € P¥ N 4.
Clearly, we wish to show that P¥ N F satisfies 2.1.4.

By the induction hypothesis, P~ N F is a flat or a pair of (k — 2)-flats
or an §¥=2 for all P*~! C P¥. AsL C P*¥ N Band L N F = g, this implies
that every (k — 1)-section of P*¥ N F is either degenerate or nondegenerate;
cf. 2.1.3.

Obviously, the plane P2 = [L, 4] is a secant and P2 N Fis an S! by
3.19 and 3.2.6. Let P¥—! C P¥ contain P2. Then S! C P*¥~! N F implies
that P¥~1 N Fis an §¥~2. By 3.2.1 Corollary and 2.1.4, P¥ N Fis an S¥~1.

329. THEOREM. Let n = 3. If F satisfies (1), then F is a nondegenerate
S"~1 with ind S"~' > 1.

PROOF. Asmin{i, 4, i,,B}>1,Fisan S"~! by 3.2.8. Asin 3.2.6, we
construct a P? such that P N Fis an S! and P3 through P? such that P> N F
is a nondegenerate S? with ind $2 = 1. Then ind F > ind §2 = 1. As F is reg-
ular, F is nondegenerate by 2.2.10.

3.3. Nondegenerate S”~!. Let S"~! be nondegenerate with ind S"~! =
i>0;n>3. We shall prove that F=8"""! satisfies (1), cf. 3.2

33.1. Let {c, ¢} C P"\S"~1. We define c ~ ¢" if [c, ¢'] N S"~! is void
or a point or a pair of distinct points p, and p, such that ¢ and ¢ lie on the
same line segment bounded by p, and p,.
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3.3.2. Clearly, ~ is both reflexive and symmetric. It is easy to verify that
it is, in fact, an equivalence relation on P"\S"~1,

Let A be an equivalence class [~<class] of P"\S"~!. Since there is a line
meeting S” ! in exactly two distinct points, there exists a second ~-class of
P™\S"~1 say B, by 3.3.1. For any P? C P", it is immediate that

PP=P>NnA)U@P*NS"" 1)U @P*NB)
and thus, 4 and B are the only two such classes. Hence, 4 U B = P"\S"~1
andANB=g.

3.33. Let P! C P®. By 3.3.1,P! N4 [P' N B] is a flat or an open
segment. Hence, 4 and B are linearly connected sets by 3.1.1.

Obviously, A =4 U S"~! =P"™\Band B =B U S"~! =P™\4. Thus
A N B =g implies that S"~! =4 N B. By 2.2.10, 8"~ is regular.

In conclusion, we have

3.34. THEOREM. Let S"~! be nondegenerate with ind S*~! > 0;n > 3.
Then S"~' = P"\(4 U B) =4 N B where A and B are a linearly connected pair
in P®. Moreover, S* ! is regular.

It remains to show that min{i, A4, i,,B} > 1. This is true when n =3, as
a nondegenerate S with ind §2 = 1 is a quadric by 2.4.5.

3.3.5. LeMMA. Under the hypothesis of 3.3.4, there is a 3-flat P* such
that P® N ™! is a nondegenerate S with ind §? = 1.

PrOOF. We may assume that n > 4. Since S”~! is nondegenerate, there
is a P2 such that P2 N S"~ 1 isan S'. Let {p,, p,} CS';p, #p,. Let P!
be the tangent of S* at p,, k=0, 1. By 1.3.3,PL NS' ={p,}and P} N P! is
a point r ¢ "1,

By 2.6.2, R"~2? = n(py) N m(p,) is an (n — 2)-flat and R*~2 N §"~ 1 is
a nondegenerate "3 with ind §"~3 =i — 1 > 0. Obviously, r € R*~2\§"~3,
Let p € S™—3.

Since $”~3 is differentiable at p, there is a point p’ € S* ! such that
[p, p'] ¢ S"~3. Whether [r, p, p'] is a plane or a line, there is a P! through r
intersecting §”~3 at distinct points u; and u,. Then P! =[r, u,, u,] ¢ §"~!
and P! C R"-2,

By 2.2.4,u, € S"~3 implies that [u,, p,] € S"~!,0=1,2. Thus P! N
P? ={r}and P? = [P?, P'] is a 3lat. Since S' CPPNS"~1;by2.15,P3 N
S"=1is an S2. Hence, [u,, py] C S? and ind §? = 1.

Since p, € S! C 82, p,, is a differentiable point of S? with the tangent
plane T(p,) = m(py) N P3. Since P! = [u, u,]1 ¢ 52, [Py, u,]1 # [Py, u,] and
thus, T(pg) N S2 = [py, u;] U [py, u,] by 2.3.6. Hence, $? is nondegenerate by
2.3.3 Corollary 1.
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3.3.6. LeMMA. Under the hypothesis of 3.3.4, min{i_ 4, i, B} > 1.

PROOF. By 3.3.5, there is a P3 such that P3 N §"~1! is a nondegenerate
$? with ind $2 = 1. By 3.34,

) §*=P\(,UB,)=4,NE,,

where A, and By are a linearly connected pair in P3. As 8% is a quadric, this
yields that i, A; =i, B, = 1.
By 3.34,P" =4 U S"~! U B and hence,

Q?) PP=@P3 nA)U @3 ns*Hu @3 nB),

where P> N 4 and P3 N B are open, disjoint, linearly connected and thus, con-
nected. Since S is a quadric, P3\S? is the union of precisely two nonvoid con-
nected sets. Thus, P> N A # & # P> N B and (1) and (2) imply, for example,
PPNA=A,and P NB=B,. Since A; CA and B; C B, we have i,, 4 >
i Ajandi B>i B,.

Thus we obtain by 3.1.12,

3.3.7. THEOREM. Let n > 3. An S"~! C P" is nondegenerate with
ind S"~! > 1 if and only if F = S"~1 satisfies (1), in 3.2; moreover, such an
S is a quadric.

Appendix: Quadrics. We shall now prove, independently of the concept
of linear connectedness, that a nondegenerate S"~! C P" with a positive index
is a quadric.

Letuy, = (8,050,415 - - - » 8,5) be the base points of a (homogeneous)
coordinate system of P*; 0 =0,1,...,n. Let R be the set of real numbers.

A quadric Q*~! P is given by an equation

n
1) o#z:oao“xox“ =0
where P = (x,, ..., x,) EP"anda,, =a,,;0,u=0,1,...,n

A Q*~! is nondegenerate if det(a,,) # 0 where (a,,) is the matrix of
coefficients in (1). Finally, if Q*~! is nondegenerate, then the tangent hyper-
plane w(p) of Q*~! exists at each point p in Q" !,

A.l. Preparatory lemmas.

A.l.l. LEMMA. Let S"~! be nondegenerate;n > 4,ind S"~! =i > 1.
Let P¥ N S"—! = §*=1 paye the index 0; 2 < k < min{n — 2, n — i + 1}.
Then there is a P¥* 1 through P* such that P¥*' N S"~! is a nondegenerate
S* with the index 1.

PrROOF. Since ind S¥—! = 0 and k = 2, there is a P2 C P* such that
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P2 N S¥=1jsan S'. Then there is a P> through P? such that P> N §"~ 1 isa
nondegenerate S with the index 1; cf. the proof of 3.3.5.
Clearly, P> N P¥ = P? and P¥*! = [P, P3] is a (k + 1)lat. By 2.1.5,
Pk+1 A gn=1 i necessarily an S¥. Asind 2 =1 [ind S¥~! = 0], we have
ind S¥ > 1 [ind S¥ < 1]. Hence, ind §¥ = 1. Now S* is clearly nondegenerate.
The following assertions are obvious.

A12. LemMmA. Letind $"~' =0;n > 3. Choose p, € S"~! such that
P"=p,y,...,p,). If "~V is a quadric, then (\"_yn(p,) = 2.

COROLLARY. Mg i®(P,)=PK) L [Pgs - - - s By - - - » P)3 k=0,
I,...,n

A.2. Nondegenerate S”~! with index 1. In order to prove our theorem,
we shall construct a set in $” ! and coordinates in P for every i. Then we
show that there is a unique nondegenerate quadric containing this set and that
this quadric is identical with §7~1.

In the following sections, we deal with special values of i.

A2.1. By 2.4.5, a nondegenerate S2 C P3 with the index 1 is a quadric.
Assume that every S¥~! C P¥ with ind S¥~! =1 is a quadric; 3<k <n - 1.
Let S”"~! C P be nondegenerate with ind S”"~! =1;n > 4.

By 2.6.3, there are points p,, g, in S"~'; [Py, o] € S”~!. Then R"~2
=n(py) N m(q,) is an (n — 2)flat and R"~2 N S"~! is an §”~3 of index 0.

Choose n — 2 points r, € §"~3 such that R* 3 =[r,,...,r,_5]1C
R"~2 s an (n — 3)flat. We assume Py, q,}C{rg, ..., 1y_3}cf. 2.63. By
A.l.l and the induction hypothesis, "3 is a quadric. Thus
N2z @(r,) NR*"?)isapointr, _, & R"—3, by A.1.2 Corollary. Clearly,
R*=%=[R""3,r, ,]landr,_, ERS;cf.2.64. Hencer,_, & S"~'.

From 2.6.7 with r =r,_, and k = 0, we obtain P" = [R"~2, P?] where
P> =1[py qg 1y_51,R"2NP*={r, ,}and P2 NS" !isan S'. Thus,
P =[ro,...,Ty_p.Ty_1, I,) wWherer, _, =pg,. r,=q,. By A.l.l and
24.5,S! is a conic.

Finally, we observe

A22. Lemma. (1) P2 Ca(r,);0=0,1,...,n - 3;cf. 224.
(2) R"3 C n(p) for each p € S*.

A.2.3. Let r, be the base points (of a coordinate system) of P"; 0 =0,
.,n. Let Q"~1 C P" be given by
n-3
(6)) .x’_2 + 22 x _x + Y a xx =0, det(a, ) # 0.

n n—-1,n"n—1"n ogu o
o,u=0;0+u B #

Thenr,_,=(©,...,0,1,0,0)¢ Q" ! and the tangent hyperplanes
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w(r,_,) and w(r,) are given by x,, = 0 and x,,_,; = O respectively. Thus

,_)Na@)=1Irg....7,_ ] =R""2=0(,_))Nw,)
0)=R""%r]=wr);, o=n-1n

@

Since $”~3 and S! are a quadric and conic, respectively, we choose a,
satisfying (1) so that

€)) s'-3=R"-2nQ"! and S'=P2NnQL.

u

Then Q! is uniquely determined.

As n(p) N R*~2 = w(p) N R"~2 is the tangent hyperplane in R"~2 at
a point p, (2) implies that
@ @)= [1) "R"%r _,,r]1=wp) forpesr3.
Similarly, m(p) N P? = w(p) N P? for p €S! and thus

o) a() = [R"~3, n(p) N S"~!] = w(p) for all p €S.
Therefore

R*73 =N ap).
©) peslﬂ(p)

By (2) and (3), m(r,) N S"~! and w(r,) N Q"' are cones with the same
vertex r, and the same (2 — 2)-section "~ 3. Thus,

) )N =wr)NQ"!; o=n-1,n
Similarly,
®) [p, R”*31 ns" 1= [p, R" 3] N Q*~! foreachp €S'.

A24. LEMMA. R"™3 = n(p) N n(q) N n(r) for any three mutually dis-
tinct points p, q and r in S!.

PRrOOF. Since S! is of order 2, we have P2 = [p, q, r] and n(p) N n(g) N
a(r) N §' = &. Thus, dim(n(p) N m(g) N n(r)) < n — 3 and the result follows
by A.2.3(6).

A25. LemMA. Let pES'. Then a(p) N S"~ ! =a(p) N Q*~1.

PROOF. By 2.6.1, m(p) N S"~ ! is a 1-degenerate S”~2 with the singular
point p; ind $”~2 = 1. Thus any line L C $”~2 passes through p. By A.2.3(7),
we may assume p #7,_,, r,. Then p & n(r,) and thus, n(r,) N L is a point
ug;0=n—1,n. By A23(7),u, €Q* 1.

Ifu,_, #u,, then L meets Q"1 at three mutually distinct points and
thus, L C Q*~1; cf. A23(3). Ifu,_, =u, =u, then by A24,u €n(r,_,) N
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(r,) N () = R"~3. Hence,L = [p, u] C [p, R*“3] NS~ c Q" ! by
A.2.3(8). Thus, n(p) N S"~! Cap) N Q*~ 1.
The preceding argument is symmetric in "~ ! and Q*~!.

A26. LEMMA. Let p € S"~3\R"™3. Then n(p) N S"~! =a(p) N Q" 1.

PROOF. Asin A.2.5, we apply 2.6.1 and obtain n(p) N §”~! =§"~2,
Let L C "2 be a line. Thusp € L. Since $"~3 =R"~2 N §"~! has the
index 0, this yields L N R*~2 ={p}. Asp € R"~3, we obtain L NR"~3 =¢.

If L meets P? at a point q, then ¢ € S' and by A.2.5,L C n(g) N S"~!
C Q" . Let L N P? =g. Then for g €S, u(g) = n(g) N L is a point in
Q*~!. But A2.4 and L N R*~3 =gimply that u = u(g) has at most two solu-
tions in S! for any u. Hence, L meets Q*~! in three mutually distinct points
and thus, L C Q"~!. The lemma now follows; cf. the proof of A.2.5.

A.2.7. THEOREM. Under the hypotheses of A2.1 and A.2.3,8" ! =
QL

ProoFr. We first prove Q*~! ¢ "1,

Let L C Q*~! be aline. By A.2.5, we assume that L N P2 = &. Thus,
u(g) = n(q) N L is a point in S*~! for each ¢ €S'. Let U ={u(g)lq €S'}.

If |U| > 3, then L C S"~! by 2.1.5. If U={u,, u,}, then say u, € R*~3
by

A24. Letu, =u(g). Then L = [u,, u,] C [R*-3,m(@) N L] C n(q)
by A.2.3(5); a contradiction by assumption.

Let U={u}. Thenu €R""3NS" 1 CS" 3 by A24. Observe that
u €L C Q! implies that L C w(u) = n(u) by A.2.3(4).

Choose a point p € S"3\R"~3. By A.2.6, n(p) "L C S*~!. Since
ind S"~3=0and {u, p} CS"~3, u & n(p) and thus, L = [u, n(p) N L]. By
2.24, L C n(u) implies that L C S"~!. Thus Q*~! C §"~1,

The preceding argument is symmetric in $"~! and Q*~1.

A3. Nondegenerate " ! with ind "~ ! = [%(n — 1)]; n even.

A3.1. In this section, we prove that a nondegenerate S2+! C p2i*2 of
index i is a quadric for i > 0. By A.2, this assertion is true for i = 1. We as-
sume that it has been proven up to i — 1.

Putn=2i +2. Let{p,, q,l 0 €EI=10, 1,...,i}C S"~! satisfy 2.6.3.
From 2.6.4(2), R* = N _y(n(p,) N m(q,)) is an sflat; s =n — 2 + 1) = 0.

By 2.6.5 Corollary, RS is a point r ¢ S"~ 1,

We introduce the iflats P¥, 0%, P% and @/, as in 2.64; « €1. By 2.6.5,

all of these i-flats are contained in $”~!; moreover,

(l) Pn:[por---9pi’r’q09°'°!qi]=[Fi)r'a]9
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@ ) =P 140 .-, 4a---.q], €l and

(3) mq)=10 rpPg---+Pg--- 0], aEL

We apply 2.6.7 in the case k = 0 and R® = {r}. Then P" = [R"~2, P?]
where R"~2 = n(py) N m(q,), P2 = [Py, 49, 11, R*"2 NP2 = {r}, PP N S"!
isan S* and R”~2 N §”~! is a nondegenerate "~ 3;ind S”"~3 =i — 1. By
the preceding,

R =a(p)Nn@g)=[py--- Pptdy---»q)
A.3.2. Choose the following base points u; of P":
Py k=0,1,...,i
u =(r k=i+1,
Qp_j k=i+2,i+3,...,n
Let Q*—! C P" be given by

i
2 =0-
1) x .+ 2oz=:oao’n_oxoxn_o =0; det(a, )#0.
Clearly, Q" ! contains P, ¢, P and Q',, « €1, and
'=“x+1‘='(0" ,0,%,,,,0,. .,0¢qQ! (xi+l=1).
Foro=0,...,n 0#i+1,(l) implies that w(u,) is given by x,_, = 0.

Thus

Q) W)= [ug - -+ » i, _g--ort,]=n)=x,  =0.
By the induction hypothesis, $”~3 = R"~2 N §"~! js a quadric. Obvi-
ously, ' = P2 N S"—1 is a conic. Thus, we determine Q" uniquely by

choosing a,, in (1) so that

3) s-3=Rr-2n Q! and S'=PPNQL.
A33. LEMMA. 1(p,) N7(@,) NS"~ ! =a(p,) Nn(g,) N Q" ~!;0EL
ProoF. By A.3.2(3), we may assume ¢ ¥ 0;e.g.0 =1 Let]-z— 1.
Clearly, P"~2 = n(p,) N m(q;) is an (n — 2)-lat and by 2.6.2, §n-3=

P"-2  $7—1 is a nondegenerate hypersurface of order 2;ind §7~3 =i — 1.
Using the coordinate system of A.3.2, P"~2 is given by x; =x;,, =0

by A3.2(2). Observe that P*=2 NPL P"=2 N, PP=2 N PLand P"~2 N

0., are jflats in $"~3; « €J = I\{i}. Finally, by the induction hypothesis,
§n-3 c P"-2 is a quadric, say

Sn-3 - qn-3 = 42 = -
o s"=¢ l+l+2zcon o¥oXn_o =0 X=X, =0.
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Let 4 €J and consider the plane P2 = [p,,, q,,, r]. Clearly, P2 ns"~! =
S“‘ is a nondegenerate curve of order 2 by 2.1.5. By A.1.2 and 24.5, S“‘ isa
conic.

Observe that P2 = P2 (A.3.1) and thus, S} =S' C §7~3. For u#0,
Stcsn=3nEm-3 Asst US*3 @' and §7~3 = Q"3 this implies
that S,“ C Q" ! N Q"3 and in particular,

1 _ p2 -1 _ p2 -3.
) Sl=PnQ'=PPnQ%  uel

Then A.3.2(1), (1) and (2) imply thate, ,_, =a, ,_, for p €J. Thus, Q"~3

CQ*landPP-2nsr-l=Sn-3=Q-3=pr-2nQr-1,
COROLLARY. n(uo)nS"'l=1r(uo)ﬁQ"";a=0,...,n,o=#i+1.

ProoF. Both n(u,) N S"~! and m(u,) N Q" ! are cones with the vertex
u, and the (n — 2)-section m(u,) N n(u,_,) NS~ 1.

A.34. THEOREM. Under the hypotheses of A3.1 and A.32, 8"~ ! =
Qn -1 .

ProoF. We first show Q"~! ¢ §7~1. Let ¢ C Q" ! be an i-flat. By
A.3.3 Corollary, we may assume () N Q'isan (i — 1)flatin S"~';0=0,
.,n,0#i+ 1. Then dim Q' =i > 2 and A.3.2(2) imply that there are at
least three mutually distinct m(u,) N @”s. By 2.1.5, ¢ C S"~! and thus
Qn—l C sn- 1 .
The preceding argument is symmetric in Q"~! and $*~1,

A4. Nondegenerate S”~! withind S”"~ ! =i;n=2i+1>5.

A4.1. Put n=2i+ 1. We wish to prove that a nondegenerate 3/ C
of index i is a quadric. By 2.4.5, this assertion is true for i = 1. We as-

sume that it has been proven up to i — 1.

Let {p,, q,l0 €I} C S"~! satisfy 2.6.3. Then R® = & (2.6.4(2)) and by
2.6.5, the iflats PY, ¢, P!, and Q! are contained in $"~'; a € I. Finally, 2.6.4
and R’ = & yield

M) P"=[py,....Pp 40 - q) = [P, O],

2 np,)= [{', Qo+ s Qg -..,q;), @€, and

(3) "(qa)= [Qi:po’° .. 'ﬁa" .. vp[]:ael'

As P10 Q' = &, this implies that for & # fin [

@ P'nPl=Ipy...,Pg-..,p] isan (i — 1)lat,and

) P nP’ Por -+ s Bar v+ 1 Bgp v -+ » 1)) 1san(1 2)flat.
Similarly, dlm(Q’ N Ql)=i—1and dim(@, N o) =i-

A42. Let 4o € [44, 95Ma0, 4} B € MO} Then q(,,3 ¢Pl. AsPl =
[Pos - -+ » Pay - - - » Pp 4], this implies that for {a, f} C 1, dop € [90, qﬂ] C

P2l+l
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no_, 10#5T(P,)- Thus by 2.2.4, P’ nPﬁ 1 2 f)ﬁ, o P11 C TG N
$"=! and [qq, P§ N PEI C S"1.

By 2.1.5, the (i + 1)-section [P o] NS~ ! is a pair of i-flats, P?and
say Poa Clearly o5 € P} 5 and thus, [90p P§ N Pf] CPfg. Since
dlm(P‘ ﬂme) =i—1and [p,, pp] N (P‘ N P') &, we obtain that me N
[po p‘,] consists of a point, say pyg. Thus, PO‘3 [0 Pogr P n Pé]

Since [q4, 4g] N 7(pg) = {q,}, we have qo5 & n(pg). Then Pop ¢ n(pg)
and equivalently, pg & Pgg. Since pyg € Phg, we have po, # pg. By a symmetric
argument, pog ¥ p, as well.

In summary, P, OB = [0 Pogp P‘ nPﬁ] where g, € [qo, 4] \ {q, qﬁ}
and pog € [pg, PgIMPy. Pgk B E 1\{0} Clearly, n(pyg) = (7, dop d1s - - - » A

. q,']

A43. LEMMA. There is a unique nondegenerate Q" —! C P" containing

the i-flats P', (", P! and P, {0, Y C I, B# 0;n=2i + 1 >5.

ProoF. Choose the base points u, of P" as follows:

Py k=0,1,...,i
Uy = .
dy_i> k=i+1,...,n

Let 8 € \{0}. Since dop € [20, 93] Mg, qp); let 403=0,...,0,x,_g
0,...,0,1),x,_g=dz #0. Then py; € [py, pgl \{ Po:Pg}is determined and
hence,poﬁ =(,0,..., O,xﬁ, 0,..., 0),xﬁ =cg # 0. Thus,

s{(xo, cees Xp o,... ,O,xn_ﬁ, o,... ,O,xn)l
X5 =XoCq and Xp_pg= xndB}.
It is easy to verify that the quadric Q" ! given by
i

) o>=:1 € d,) 'x x,  —xx, =0
satisfies A.4.3.

COROLLARY. w(u,)=1n(u,);0=0,1,...,n.

ProoF. By A4.3(1), wuy)=x,_,=0,0=0,1,...,n From A4.,

muy) = [u,, . . . ,ﬁn_o,. sl =x, =0, 0=0,1,...,n

A44. LEmMA. n(p,) N m(g,) NS"~! =n(p,) N n(g,) N Q" 1;
o € N[0}

ProOF. We may assume e.g. 0 =i. From A4.1,P"~2 =n(p;) N n(g,) =
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Po: .- -+ Pi_1+Ags - - - » ;) is an (n — 2)flat and by 2.6.2, P"~2 N §"~1
is a nondegenerate "~ 3;ind S""3=i—-1=%@n—3). Asn—2>3,5"3
C P"~2 is a quadric by the induction hypothesis.

The following (i — 1)-flats are contained in §*~3: P"~2 N P!, pn-2 N
0!, P2 NP, € Ni}and P"~2 N Pig =[qop Pog» P"~2 NP{) N (P2
N P“,)] , B €N, i}.

Using the coordinate system in A.4.3, P"~2 is given by x; = x;, , = 0.
But then (cf. A.4.3) $”~3 is defined by

=0.

i-1

-1 = =
El(codo) XoXy_g = Xo¥p =0, X1 =%
o:

By A4.3(1),8" 3 =P"-2 N Q" ! and the lemma follows.
A45. LemMA. m(u,)NS" ! =n@,)Nn Q" Y 0=0,1,...,n
ProOF. Recall that

) 1r(ua)=w(uo)Ex"_o=0; 0=0,1,...,n.

For 0+ 0 #n, A4.4 and (1) imply that n(u,) N S"~! and m(u,) N
Q" ! are cones with the vertex u, and the (n — 2)-section n(u,) N 7(u,_,) N
§"—1 and thus equal.

Let 0 =0. We first prove that n(ug) N Q"= C m(uy) N S"~!. Let ¢ C
muy) N Q" ! be an iflat. By the preceding, we may assume that m(u,) N 0!
isan (i — )flatinS""';0=1,...,n—1. By2.1.5, Q' cs"1if

@ Hn@ )N Qlo=1,...,n—-1}>3.

Since Q' C m(u,) is an iflat and since m(u,) is given by x, =0, (1) im-
plies that there are at least i + 1 mutually distinct m(uy) N Qs foro=1,2,
., n. But then u, & Q" and i > 2 imply (2). Therefore, m(uy) N Q"1 C
muy) NS,
The preceding argument is symmetric in Q?~! and §”~!. Similarly,
m(u,) N Q"1 =mu,) N s"~1,

A4.6. THEOREM. Under the hypotheses of A4.1 and A4.3,8"~ ! =
Qn—l .
ProoF. Cf. the proof of A.34.

A.5. Nondegenerate S"~1; 1 <ind $"~! < [%(n — 1)].

A5.1. Let $"~! C P" be nondegenerate; 1 <i =ind $"~! < [¥(n — D];
thusn > 7. Let {p,, q,l0 €1} C S"~! satisfy 2.6.3. Letm =n — 2i. Then
R™ = nf,‘:},(n(po) N m(q,)) is an m-flat and R™ N $"~?! is a nondegenerate
s™=1,ind S™~1 =0. By A.1.1, there is a P™*! through R™ such that
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Pmt1l N §n-1 s a nondegenerate S™; ind S™ = 1. From A2, S™ and thus
™! are quadrics.

Choose m points , € §™~! such that R" ' =[r,,...,r, ]CR™ is
an (m — 1)flat. As S™~! is a quadric, A.1.2 Corollary implies that
nm y=1 () NR™) is a pomt ro € R™~!. We assume {p, q;,} C{ry,..., 1}
and thus, 7, € S"~! a

m i
o= N @ )NR™C N (p,) N 7(@,)) =R*; cf.26.5.
7=1 0=0

We apply 2.6.7 in the case k =i — 1 and r =r,. Then P" = [R™, P?)
where R™ =[ro, ..., 1, PP =[pg, . .., Di_1s T dgr - - - » dj—1], R™ N
PH={r }and P2iNnS"!isa nondegenerate $2-1 with ind §%-! =i - 1.

We introduce the i-flats P?, 0%, P! and Q! in $"~! asin 2.64;a €L
Letj=i—1andJ=I\{i}. Then the jflats P/ =P¥ N P!, §/ =P n @', P| =
P¥ N P and Q) = P! N Q! are contained in S~!;a €J. Finally, {p,, q;} C
{ry, ..., r,}implies R™ = [R®, p, q,]; (cf. the proof of 2.6.3 Corollary). Then

ﬂ’(pa)=[po,...,pi,Rs,qo,...,aa,...,q‘]
m =[ﬁ’,R’",qo,...,&a,....ql.],
n(q,) = 127, R™, py.... b

A52. Lemma. (1) PPCa()v=1,2,...,m
(2) R™~! C n(p) for each p € §**~ 1.
A.5.3. Let u; be the base points of P"” where

u =p; k=0,1,...,i-1,

. p,.] ,a €L cf.2.64.

PO

Uprr =T k=0,1,...,n- 2i,
U, =4, k=0,1,...,i-1.
Let Q"‘l CP" be given by
n-i

) +2Z:aml oXo¥n_o T2 Z awxox“-Oa #0.
o,u=i+1;0#u

Then r, ¢ Q"~! and Q"' contains Pi, g/, Pl and Ql; a €J.

We have observed that $™ —! is a quadric. Asind $?/~! = [4(2i — 1)],
§%~1 is a quadric from A.3. Thus we can choose u in (1) so that S™~! =
R™ N Q™! and §%*-! = P2 n Q"~!. This determines Q" ! uniquely.

Let b = (by, ..., b,) €ES¥~!. Thenb, ,=---=b,_,=0and
w(b) = bx; + E"_o on— o(ba o T bp_oX,)=0. Alsoforo—1,...,m,
w(’o) = w(ui'i'o) zn-ii+l MFEQ op.xu 0.

Clearly, P C w(r,) fora=1,...,mand R™~! C w(p) for each
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p €S-, Finally, w(p,) is the hyperplane given by x,_, =0. Thus,

WP =[Py e o s By Tgre e s Ty dgp v s8gs e+ s @11 =7(D,)-
Similarly, w(q,) = m(q,) is given by x, =0; 0 €J. Hence, {u;} ={ry} C
n:;:o;oaei“’(“o)'

A.5.4. We have shown that a nondegenerate S”~! C P" with ind "~ ! =1
or [%(n — 1)] is a quadric; n > 3. In particular, every nondegenerate S"~!
with ind $”~! >0isa quadric when n=3,4,5 or 6. Since n = 7, we assume
every nondegenerate S¥~! C P¥, with ind ¥~ > 0 and k < n is a quadric.

AS55. Lemma. 7(p,) N m(g,) N sh-1= n(p,) N m(q,) N Q-Loel

PrROOF. By the symmetry in 0 € J, we may assume ¢ =i — 1. Now
P"—z = ﬂ@l_l) n "(qi_l) = [po’ AR pi_z’ Rm’ qo’ A qi_z]

is an (n — 2)flat. By 2.6.2, P*~2 N S"~! is a nondegenerate S”~3; ind S"~3
=i—1. By A54,5" 3 is a quadric Q" 3.

Clearly, S™~1 C §7~3 and $"~3 contains the (i — 2)-lats P"~2 N P/,
P2 Pr2npPland PPN Qlia=0,1,. .. ,0i-2.

Using the base points in A.5.3, P"~2 is given by x;_; =x,_;,, =0. Let
Q"3 be given by

2 i-2 n-1i
xp+23d, XX, o +t2 X d
0=0 o,u=it+1;0#n

Then S™~! = R™ N Q"~!=R™ N Q"3 implies thata,, =d, ;o#u,0,u=
i+1,...,n—i. Similardly (cf. the proof of A.3.3),5} =P, N Q"~! =P2 N
Q"3 implies that a dyp_y3u=0,1,...,i-2. Thus Q"3 c Q!

N2 ~ qn—1 L one3 _ on-3 - pn—2 -1
and P ns S =Q =P nQ*-1t,

uxaxu =0, xI—l = xn—i+l =0.

COROLLARY. m(uy) NS" ! =nu )N Q" Y;0=0,...,i-1,
n-i+1,...,n

A56. LEMMA. Let p € S2-1 U ™=, Then n(p) = w(p).

PrOOF. Let 7'(p)[#(p)] be the tangent hyperplane of §2/~1[s™~1] at
a point p. Then dim n'(p) = 2i — 1 and dim T(p) =m — 1.

If p € $%=1, then clearly n(p) = [#'(p), R™®~!]. Since $2I-1 = p2i N
Q" 1, we have 7'(p) C w(p) and thus, w() = [7'(p), R™~1].

IfpeS™—! =R™ N Q"' then 7(p) C n(p) N w(p). From the con-
struction, [P*~1, g~} C n(p) N w(p) and thus, [7(p), PI-1, §'-] C n(p)
N w(p). But T(p) C R™ and R™ N [Pi~!, 0i~1] = & imply

dim[7(p), P*-', 0"l =n - 1.

A5.7. LeMMA. Letp € SP=1 U S™-1. Then n(p) N S"~! =a@p) N

Qn—l .
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PROOF. By A.5.6, it is sufficient to find a P*~2 C n(p) such that n(p) =
[P"-2,p] and PP~2 N S"~! =P"=2 N Q"~1; for then, n(p) N "~ ! and
7(p) N Q"1 are cones with the vertex p and the same (n — 2)-section.

Let p € S¥~1. Since P2 N R™ = {r,} ¢ S"~ 1, we have p & R™ and
thus, p & n(p,) say. Take P"~2 = n(p) N n(p,). Then by A.5.5 Corollary,

P2 0§t =p=2 0 (a(p,) N S"~')=P"2 N (a(py) N Q")
=P”-2 N Qn—l.

Let p €S™~1 and let P = [p,, q4, o] . Obviously, P2 N §"~! isan
S' € $2=1, Now ry € n(py) N m(q,,) implies that 7y & n(q) for each q €
S"\{py, qo}. By A52,R™~1 =n(q) N R™ for each q € S'\{p,, q,}-

If p€S™\R™~! then p & n(q) for some q €S' C §2i~1. By the
preceding, 7(p) N (n(q) N $"~1) = a(p) N (n(g) N Q"~1).

IfpER™! N§™=1 then ind S™~! =0 implies that p ¢ n(p) for any
p' €S™~I\R™-!, The lemma now follows as above.

AS8. LetM={ug, ..., u_1,Uy_ypqs...,Uu,}). From AS.3,m(u,)=
w(u,) is glven by x,,_, = 0 for each u, € M. Thus for {uol. cees uOk} C M,
Pk =K nu, )1s an (n — k)lat.

Let M' be an z-ﬂat M NR™ = & Assume that M1 = m(u,) N M is an
@ — 1)lat for each u, € M. Let U={M"|u, € M}.

AS59. Lemma. M= = M!~! has at most i solutions u,, in M.

PROOF. Let {ug ..., %, } C M be the set of solutions of Mi—1 =
MY, Then M'~! —n" Mot = (N, ) OM =P~k O M. As
R™ = n,, e,n(ua),thls implies that [R"' M= c Pk ButR" NnMi =g
implies that dim([R™, M*~']) =n — i and thus, k <.

COROLLARY 1. Let M*=! =Mi-1 [M'~! = MI~1] have k [h] solutions
in ;M= £M-!. Thenk +h<i+ 1.

PROOF. Let {uol, cees uak} [{uo“_l, . }] be the two sets

of solutions in M. Then

k _ k+h
Mi-1 =(n n(uai)) NM and M-! =< N ﬂ(uol)> N M.

i=1 =k+1

°k+h

Since M! = [MI~Y, M—1],M*~2 =M'~! N M~ is an (i — 2)lat, and
M2 = (N PG, ))nM' Pr=C*B) A Ml Asin A59, [R™, MI-2]C
pr-k- "andk+h<1+l

COoROLLARY 2. U= 3
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PrOOF. As IM| = 2i, A.5.9 implies that |[U] = 2. Since i > 2, we have
IMI =2i>i+ 1 and by Corollary 1, [U] = 3.

A.5.10. THEOREM. Under the hypotheses of A.5.1 and A.5.3,8"~ ! =
Qn -1 .

PrOOF. We first prove Q"~! € §”~1. Let the iflat M’ C Q"~!. By
A.5.6 and A.5.7, we may assume that M’ " R™ =M N P* = &, Since M C
P*;u, ¢ M' and thus, M\~ = n(u,) " M' C S"~! is an (i — 1)lat for each
u, €M. By A.5.9 Corollary 2, [U| > 3 and thus, M' C S"~! by 2.1.5.

The preceding argument is symmetric in $”~! and Q" 1.

We collect our results.

A.5.11. THEOREM. A nondegenerate S*~! with ind S"~' > 0isa
quadric; n = 3.
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