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ONE-PARAMETER GROUPS OF ISOMETRIES ON

HARDY SPACES OF THE TORUS

BY

EARL BERKSON AND HORACIO PORTA(')

ABSTRACT.  The strongly continuous one-parameter groups of

isometries on Hp of the torus (1 < p < <», p # 2), as well as their genera-

tors, are classified and concretely described.

0. Introduction. The purpose of this paper is to investigate the strongly

continuous one-parameter groups of isometries of the Hp spaces of the torus,

for 1 < p < °°, p =£ 2. We shall characterize and classify all such groups, as well

as describe their infinitesimal generators.

The space Hp (1 < p < + °°) of the torus C2 is defined (see [5] ) as the

subspace of complex LP(C2) consisting of those functions / whose double

Fourier coefficients ck ■ vanish if (k, /) ^ P, where P is the "positive set" in the

character group of C2, P = {(m, n): n > 0} U {(m, 0): m > 0}.

The study of one-parameter groups of isometries of IF{C2) is more involved

than its counterpart for the circle C (see [1] and [2] for the latter), because of

the lack of symmetry in the roles of the independent variables in HP(C2).

The crucial fact for our purposes is the following result of Lai and Merrill

(throughout what follows, we shall use (z, w) (z = e'e, w = e1^) to denote the

general point of C2).

(0.1) Theorem [5].  // T is a linear isometry from HP(C2) onto /^(C2)

(1 < p < oo, p =£ 2), then there are a EC, a Möbius transformation of the disc

<p, and a measurable function o: C—+C such that for all fE HP(C2):

(0.2) (7y)(z, w) = aW(z)] (1">/0¿(z), a(z)w)

for almost all (z, w).

On the other hand, if\ < p < °° and a, <p and a are as above, the right-

hand side of (0.2) defines a linear isometry oflP(C2) onto //P(C2).

For 1 < p < »°, if Zp is the closure in LP(C2) of the polynomials in z, it
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is clear that an operator of the form (0.2) will leave the subspace Zp invariant.

Thus, when p =£ 2, strongly continuous one-parameter groups of isometries in

IPkX2) can be naturally classified into those whose restriction to Zp is continu-

ous in the uniform operator topology and those whose restriction is not.

In § 1 we consider the groups of the first kind. In particular, we show

there that for 1 < p < °°, p ¥= 2, the isometric groups on if(C2) continuous

in the uniform operator topology are the trivial ones, i.e., the groups of the form

{eiptI) where p is real and / is the identity operator.

The remainder of the paper is devoted to the groups {Tt} of the second

kind. In §2 we study their underlying structure. Each such group has associ-

ated with it a family {<¿>f} of conformai maps of the disc and a family {at} of

unimodular measurable functions on C. One has in particular, for s, t real,

*Pt+s(z) = ipjdpfi))   for zee,

and

at+s(z) = °t(<Pg(z))°s(z)   for almost all z G C.

The properties of the group [Tt} depend heavily on the nature of the set

S of common fixed points, in the extended plane, of the group {<¿>f}. S is known

to be:  (i) a doubleton set of symmetric points with respect to the circle C,

(ii) a singleton subset of C, or (iii) a doubleton subset of C (see [2] ), and cor-

respondingly we shall say that the group {pt} is of type (i), (ii) or (iii).

It turns out that there are a unimodular measurable function « on C and

a real constant 5 such that {af} can be taken in the form

a{ = e'6 tu(ip¿jü,   for t real.

If {<pt} is of type (ii) or (iii), then 5 can be taken to be zero.

We calculate the infinitesimal generator of {Tt} in §3 for the case 5=0

and in §4 for the case S + 0.

The following notation will be used throughout. The symbols Z, R, C and

Ce will denote, respectively, the set of integers, the real line, the complex plane

and the extended plane. We denote the open unit disc {z G C: \z\ < 1} by D

and the closure of D by D. For z G C, Re z and Im z will be the real and imag-

inary parts of z.    For m, n G Z, em n will be the function on C2 given by

em n(z, w) = zmw", and X will be normalized Lebesgue measure on C. We denote

composition of maps by °.  If /is a function defined on C2, and z0 (resp., wQ)

belongs to C, then the z0-section (resp., the w0 -section) of/is the function

fc0, • ) (resp.,/(% w0)).

The authors are indebted to Professor Robert P. Kaufman for valuable

comments and suggestions.
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1. Groups whose Zp-restriction has a bounded generator. Let {Tt} be a

strongly continuous group of isometries on /^(C2), 1 < p < °° (if p = 2, we

assume further that each Tt has the form (0.2)), such that {Tt\Zp} is continuous

in the uniform operator topology (the vertical bar denotes restriction).  Since

Zp can be identified with IP(C), it follows from [2, Theorem (2.4)] and The-

orem (0.1) above that for each t ER, there are a unimodular constant at and

a unimodular measurable function at on C such that:

(1.1) {T/fc, w) = atf(z, ot(z)w).

Taking/in (1.1) to be e0 0 we conclude that at is uniquely determined

for each t, and that t \-* at is a continuous character of R; hence there is a con-

stant p £ R such that at - e'pt for t E R. By taking / in (1.1) to be e01, we

see that for each t, at is uniquely determined up to equality almost everywhere,

and that:  (i) for s, t ER, ot+s(z) = ot(z)os(z) for almost all z £ C; (ii) the

map 11-> at is continuous from R to Lp(dX) (or, equivalently, since the at are

unimodular, from R to Lx(dX)).

The method on pp. 61 and 62 of [3] shows that in view of (ii) above, we

can assume without loss of generality that ot(z) is measurable in (t, z) on R x C.

It follows from (i) above that there is a negligible setNC Csuch that if z $LN,

11-» at(z) is measurable and

Sdsf\as+t(z)-os(z)ot(z)\dt = 0.

Thus, for each z $ N, there is a negligible set ^CR such that if s $ Nz, then

f\°s+t(z)-os(z)ot(z)\dt = 0.

Now, if z ^ N and s $NZ, there is a negligible set JVZJCR such that

(L2) °t+s(z) = ot(z)os(z)   for t$Nz>3.

From (1.2) we get

■ s+hJi+« -h
ot(z)dt = os(z)f at(z)dt

for z $N, s$Nz and any h ER.

Now fix z £ C\N and choose h such that fcOffldt & 0. Let

ru+h /rh

z(W) =iu      °t(^dt/i    °t&dt>       " G R

Then Fr is continuous on R and as(z) = Fz(s) for all s E R\N2. In particular

IFJHl.
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It follows from (1.2) that if s £ Nz, then Fz(t + s) = Fz(t)F2(s) for f G

Nz SU NZU (Nz - s). From continuity of Fz and Fubini's Theorem we con-

clude that Fz is a continuous character of R and so there is a constant ô(z) G R

such that

(13) as(z) = e/5(z)l   forsGRWz.

For z G C\N and s G R,

«l»«.=lùnlI rS+(1/"V5W«ííU=lim« r+il,n)au(z)du.
n      J s n      J s

But f^+^x^ou(z)du is measurable in (s, z). Thus, there is a negligible set Q C

R such that for s G R\ß, e'5 (z)s is a measurable function of z. Let sB —■+• 0

with s„ > 0 and sn ^ Q. Since

« (z)s
i5(z) = lim(e       " - l>-!,

n n

S(z) is a measurable function of z.

By (13) and Fubini's Theorem, we have that for almost all s G R, ei6<-z)s

= os(z) for almost all z G C. Hence, for almost all t G R,

(1.4) Ttf=éptf(z,éHz)tw),     fEHp(C2).

Since each side of (1.4) separately describes a strongly continuous one-parameter

group, we conclude:

(1.5) Theorem.   Let {Tt} be a group as in the first sentence of this sec-

tion.  Then there are a real constant p and a real-valued measurable function

S(-) on C such that (1.4) holds for all t ER.  Conversely if I <p<°°, then

for any such p and §(•), (1.4) defines such a group {Tt}, t E R.

(1.6) Corollary. Let p satisfy 1 < p < °°, p + 2. If{Tt}isa one-par-

ameter group ofisometries in HP(C2) continuous in the uniform operator topol-

ogy, then there is a real number p such that Tt ■ eiptI for all t G R.

Proof.  Let p and ô be as in Theorem (1.5). Put St = e~tptTt for t G R

and let A be the infinitesimal generator of {St}. For each positive integer n, the

sequence {k[(Sçï/k)e0 n) - e0n]}£_, converges in IP(C2) to Ae0n. It is easy

to see that this sequence converges pointwise to inbe0 n. It follows that Ae0 n =

inb~e0n almost everywhere. Hence HSllp < (1/«)IUII for all «, so that 5 = 0 as

claimed.

(1.7) Theorem.   Let p be a real constant and 5(-) a measurable real-valued

function on C.   For 1 <p<°°, let {Tt} be the group on W(C2) defined by

Ttf - éptf(z, éh <ZM,     /G Hp(C2).
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Then the domain of the infinitesimal generator A of{Tt) consists of those func-

tions fEHp(C2) for which there isagE If(C2) so that for almost all z the

following hold:

(1.8) Ô(z) = 0 implies g(z, w) = 0 for almost all w;

5(z) + 0 implies that there is a function Fz on C such that Fz(e'*)

is absolutely continuous for 0 < # < 27r, f(z, w) = Fz(w) for almost

.    .  all w and

g(z,ei^) = b(z)d(Fz(ei^))ld^

for almost all \¡j.

Iff and g are as above, then

(1.10) Af=ipf + g.

Proof. It is clear that without loss of generality we can assume that

p = 0.
Assume now that/belongs to the domain V(A) oí A. Then there is a

sequence {tk} of positive real numbers such that tk —*■ 0, and

(1.11) /<**(*)JV* l(Tt f-f)-Af\p d\(w) < 2~k.

Beppo Levi's theorem in conjunction with (1.11) now gives a negligible set N C

C such that for z$N,

/2n      i '(6 («)*«. + *)IÇ' Lffc e        k      ) - f(z, e'* )] - (Af)(z, ¿* )|p d* — 0.
o

Fix an arbitrary z G C\N. If 5(z) = 0, clearly from (1.12) (Af)(z, w) = 0 for

almost all w. If 5(z) ¥= 0, put hk = 8(z)tk, and notice that for a, b E [0, 27r]

we have from (1.12):

Let a be a fixed Lebesgue point of f(z, e'*) (as a function of \¡/). Since (1.13)

can be rewritten as

(1.13)    fbhkx[f(z, e(Hk+,p))-f(z, e«*)] dlp -* f Vr!C4flfc ¿*)<ty.
~ a J a

b+h. ,a+h.J"      k c k
f(z,e*)d*-h-kx[    f(z,ê*)di>

b a

-+\rbh(z)-x(AfXz,ë*)d),
J a

it follows that for almost all uV,
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(1.14) /(*> e**) = f   ¿(z)"x(Af)iz, eiv)dv +f(z, eia).
Ja

Let Gz(\¡j) be the absolutely continuous function (of i//) on [0, 2?r] defined by

the right-hand side of (1.14). Taking a = 0, b = 2n in (1.13) gives

f27,(Af)(z, e^)d^ = Q. It follows that Gz(0) = Gz(2tt). Put Fz{e^) = Gz($).

Thus / and Af are related as / and g in (1.8) and (1.9).

It is obvious that the set of those f E IP(C2) such that there is a g E

IP(C2) so that (1.8) and (1.9) hold is a linear manifold, and that for such an /

the equation Bf = g well defines a linear operator B which extends A. Since A

generates a group of isometries, it follows by [4, VIII. 1.11] that the spectrum

of A is a subset of iR. Hence in order to establish that B = A, it suffices to

show that B - I is one-to-one (see [1, Proof of Theorem (3.2)] ). Suppose then

that Bf = f. Then for almost all z, we have:

(i) 6(z) = 0 implies /(z, w) = 0 for almost all w;

(ii) 8(z) + 0 implies that there is an absolutely continuous function of

\p, Fz(e^), such that for almost all \¡/, h{z)dFz{e^)¡d^ =g(z, e^)=f{z, e'*)

In case (Ü), Fz(e'*) = ¡$8(z)-xFz(eiu)dv + Fz(l), and so we get

dF(e!*)
5(z) —£-= F (e"" )   for all 4>.

d\p z

Hence there is a constant Kz such that Fz(eW) = £ze*/6(z>. Setting i// = 0 and

tf> = 2tt, we conclude that Kz = Kze2nl&^. Thus Kz = 0. It follows that /= 0

almost everywhere.

2. Groups whose Zp-restriction has an unbounded generator.  For 1 < p

< °°, let £2„ be the set of all strongly continuous one-parameter groups {Tt} of

isometries of HP(C2) such that {Tt\Zp} is not continuous in the uniform oper-

ator topology (if p = 2, we further require that each Tt have the form (0.2)).

For a group {Tt} E Í2p, let us write

(2.1)        (Tt/Xz, w) = atyt{z)\ « /'/(*>,(z), at{z)w)  for /£ IP{C2).

We observe that for each t E R, <pt = (T^e, ̂ /(T^o.o) ^^ ar = (^o.i)

(7feo o)_,(eo l)1- Thus tne M°bius transformation of the disc \pt in (2.1) is

uniquely determined, and at in (2.1) is determined up to equality almost every-

where on C. Application of [2, Theorem (2.4)] to {Tt\Zp} shows that {^} is

a one-parameter group of Möbius transformations of the disc (i.e., t >-*<pt is a

homomorphism of the additive group of R into the group, under composition,

of all Möbius transformations of the disc such that for each z ED, tr-> ipt(z)

is continuous on R, and some <pt is not the identity map). It follows from the
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first paragraph on p. 231 of [1], that <p't(z) has a continuous logarithm which

enables us to define Wt(z)]l,p for t E R, z G D so as to be continuous on R x

D and satisfy

K+^)]1/P = K(^))]1/PKW]1/P.

for all s, t E R, z G D. Henceforth we shall standardize [<p't(z)]1/p in this fash-

ion.

With this understanding, at in (2.1) is uniquely determined by t and, fur-

ther, the proof of [1, Theorem (2.1)] shows that t\-*at is a continuous char-

acter of R. The group property of {Tt} together with strong continuity shows

that the family {ot} has the following properties:

(2.2) for t, s E R, af+x(z) = of(ips(z))os(z) for almost all z G C;

t \—*■ af is continuous from R into Lp(dk) and

(2.3) |cf(z)| = 1 for t E R, z G C.

We mention here that, conversely, if 11~» at is a continuous character of R, {tpt}

is a one-parameter group of Möbius transformations of the disc (with [y't(z)] xlp

standardized as above), and {at}, t E R, is a family of functions on C satisfying

(2.2) and (2.3), then (2.1) defines a group {Tt} in Í2p.

We proceed now to characterize the families {ot} which satisfy (2.2) and

(2.3).

As a preliminary step, we take up the notion of orbit, defined as follows.

Definition.  Let {ipf} be a one-parameter group of Möbius transformations

of the disc. For each z G C, the orbit of z (under {ipt}) is {<pt(z): t E R}.

(2.4) Theorem.   // {<pt} is of type (i) then the orbit of each z0EC is C.

Proof. This follows readily from the fact (see [2, Theorem (1.10)]) that

there are a nonzero real constant c (called the angular velocity of {<pt}) and a

Möbius transformation of the disc p such that tpt(z) = p(e'ctp(z)) for all t E R,

zEC.

(2.5) Theorem.   // {<¿>f} is of type (ii) with common fixed point a, then

for each z0 G C\{a}, the orbit ofz0 is C\{a}. The map t (-> tpt(z0) " one-to-one,

and <pt(z0) traces out C\{ct] unidirectionally as t increases.

If{<Pt} is of type (iii) with common fixed points a, ß, then for each z0 G

C\{a, /?}, the orbit ofz0 is the component of C\{a, ß} containing z0.   The map

th*<pt(z0) is one-to-one, and <pt(zQ) traces out this component unidirectionally

as t increases.
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Proof.  We give the proof for {<£,} of type (iii); the proof for the type

(ii) case is analogous and will be omitted.

Let E be the component of C\{a, j3} containing z0. Clearly the orbit of

z0 is a connected subset of E. Let L be the analytic logarithm on the comple-

ment in C of {ra: r > 0} given by

L(z) = loglzl + / arg(z),      arg(a) < arg(z) < arg(a) + 2îr.

Denote by q the invariance polynomial of {</>f} (see [2, (1.6) and Theorem (1.7)]).

Then we have by [1, Theorem (1.5)],

i ¿argfe,<*0)) = ¿-¿«VM - ^oM^o» * °-

It follows that d arg(<pt(z0))/dt is of constant sign, and so arg(i/>f(z0)) is strictly

monotonie.  Let r¡ = sup{arg(^f(z0)): t ER}. If arg(<pf(z0)) is strictly increasing

(resp., strictly decreasing), then as t —► + °° (resp., t —► - °°), <¿>f(z0) —► ein.

Hence, for arbitrary « £ R, <¿>í+u(z0) —♦ Vu(ein). It follows that <pu(e,ri) = e'n.

The same reasoning applied to inf{arg(tpf(z0)): t E R} completes the proof for

this case.

(2.6)  Theorem.   Let {<pt} be of type (ii) or type (iii), and let {ot} be a

family satisfying (2.2) and (2.3).   Then there is a unimodular measurable function

u on C such that for each t ER,

at(z) = u(>pt(z))u(z),   for almost all z EC.

Proof. By the method of pp. 61 and 62 in [3] we can assume without

loss of generality that ot(z) is measurable in (r, z) on R x C.

Let S be the set of common fixed points of {ipt}, and let E be a compon-

ent of C\S. A standard application of Fubini's Theorem yields the fact that for

almost all z EC,

at+siz) - otQps(z))os(z)   for almost all (t, s) £ R x R.

Fix a z0 £ E so that at(z0) is a measurable function on R and also

(2.7) ot+s(zQ) = ot(<ps(z0))os(zQ) for almost all (t, s) £ R x R.

Note that the function y: t V-* <pt(z0) maps R bicontinuously onto E and

sends sets of measure zero in R onto sets of measure zero in E.  Define u: E —►

C as follows:

u(z) = ot(z0),   where z = <Pt(z0).

Clearly |«| = 1 on E and from the properties of y, it follows that u is measurable

on E. From (2.7), and Fubini's Theorem, there is a negligible set A C R such
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that for each t ^ A, there is a negligible set Nt C R with the property that (2.7)

holds for s ^ A^. Thus for such t, s:

u(*t(<Ps(z0)))u(<ps(z0)) = ot+s(z0)o~ßl) = ot(<ps(zQ)).

Since almost all z G E are of the form z = <ps(z0) with s $ Nt, we conclude that

for t $ A,

(2.8) u(yt(z))ü(z) = ot(z)   for almost all z G E.

Since the function of z described by each side of (2.8) varies with t continuously

in LP(E), (2.8) holds for each t G R. The proof is complete.

(2.9) Theorem. Let faf} be of type (i), and let {at} be a family satis-

fying (2.2) and (2.3). Then there are a real constant 5 and a unimodular mea-

surable function u on C such that for each t G R,

at(z) = <?'s 'udpfoyjiifz),   for almost all zEC.

Proof.  As in the proof of (2.6) we can take ot(z) to be measurable in

(t, z) on R x C. For fixed z G C, the function t h» ̂ (z) is no longer one-to-one,

but it does map negligible sets of R onto negligible sets of C, and moreover, the

inverse image of a negligible set is negligible. Let c be the angular velocity of

{<pt} and let co be the period of {<pt} (so that to = 2n\c\~x).

From (2.2), we observe that for each t E R, we have for almost all z EC,

°u+f(z) = ou(^t(z))ot(z)   and   fff+w(0 = ofoyj^z).

Hence, for almost all z G C,

(2-10) ojvfo)) = ojz).

Using Fubini's Theorem once again, we get that for almost aü z EC, (2.10) holds

for almost all t E R, and consequently there is a unimodular constant eiß,pE R,

such that ow(z) = eiß for almost all z EC.

It now follows from (2.2) and induction that for each integer k and t E R:

(2.11) at+kw^ = eikßat^   for almost aU z G C.

A further application of Fubini's Theorem allows us to conclude the exist-

ence of a negligible set B C C such that for z ^ B, (2.11) holds for all k and

almost all t E R.

It follows from (2.2) and the foregoing that there are a z0 G C and a neg-

ligible set A C R such that

(2.12) ot(zQ) is measurable on R;
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(2.13) aw(z) = oij(z0) = eifi   for almost all z £ C;

(2.14) for each t E R\A there is a negligible set N(CR with the property

ffí+/zo) = ffM(zb))a/zo) for each s ? Nf

(2.15) ot+ku(z0) = ei*'1af(z0) for each integer k and t £ R\A

Observe that for all s, v £ R, <Ps(z0) = <pv(z0) if and only if (s - v) is an

integral multiple of co.  Let y(t) - <pt(z0) for t ER. Then y(A) is negligible.

Define u: C\y(A) —*■ C by

U(z) = af(z0)e-'W">i   forz = ^(z0).

From (2.15) it follows that u is well defined, and from (2.12) and the

properties of y, it follows that u is measurable. Now let A = y~ x(y(A)). Then

A is negligible. For t &A, and s $ A U (A - t) U Nt we have

«(#,»)s»(Ui0))

= CTr+/zo)e_/(M/W)(í+S)

uf+/ o^ e

= a/(0j(zo))a/zo)e-'W")íe-''('í/")í

= aí(0s(zo))M(0i(zo))e-'Ww)í.

Since almost all z are of the form z = ^s(z0) with s ^ 4 U (4 - t) U Af,,

we conclude that

e*(*«/«)'a (^(z))«^) = of(z)   for almost all z.

By ¿p-continuity, we get the desired expression for at with S = p/co.

(2.16) Remark. Conversely, for 1 < p < °°, it is easy to see that if u

is a unimodular measurable function on C and 5 is any real constant, then for

each {«/?,}, the family {e'6'«(</>,)"} satisfies (2.2) and (2.3).

We omit the straightforward proofs of the next two theorems.

(2.17) Theorem.  Under the hypotheses of (2.6), //«, and u2 satisfy

the conclusion of (2.6), then on each component ofC\S, «,«2 /s a^most every-

where equal to a constant (depending on the component).

(2.18) Theorem .   Under the hypotheses of Theorem (2.9), // (5 j, u l )

and (52, u2) satisfy the conclusion of (2.9), then there are a z0EC,a unimodular

constant v, and an integer k such that, denoting the angular velocity of{<f>t} by

c, we have:
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(2.19) for almost all z EC,   u2(z) = ui(z)veikct

where t is any real number such that z = <Pt(z0), and

(2.20) di=Si-icc.

(2.21) Remark.  The measure-theoretic character of (2.2) and (2.3) ne-

cessitated the detailed analysis in the proofs of Theorems (2.6) and (2.9). How-

ever, the conclusions reached in these theorems can be phrased in the language

of homological algebra by saying that if F is the topological (in the ¿p-norm)

abelian group of measurable functions h: C —*■ C modulo equality almost every-

where made into a topological R-module by th = h o <pv then in the topological

group cohomology Hx (R, F) = 0 in the case of types (ii) and (iii), and Hx (R, F)

= C in the case of type (i) (see Theorem (3.1) below for the latter).

We summarize the results of this section in the following two theorems.

(2.22) Theorem.  Let {Tt} E Í2p, 1 < p < <*>, and let the unique group

{tpt} in (2.1) be of type (i).   Then there are a unimodular measurable function

u on C and real constants p and 8, with p unique, such that for t G R and /G

IP(C2)

(2 23)    (Ttf)iZ' W) = ̂ "'K^l1/PJWZ)' ¿*f»to0¡&>)

for almost all (z, w)EC2.

Conversely, for any such {<pt},p, 8 and u, (2.23) defines a group {Tt} in Í2p.

(2.24) Theorem. Let {Tt} G Í2p, 1 < p < <», and let the unique group

{tpt} in (2.1) be of type (ii) or (iii).   Then there are a unimodular measurable

function u on C and a unique real constant p such that for t G R and f G

H"(C2),

(Ttf)(z, w) = ¿o'Wp)] x">f(*.(z), u(* (z))lïÇ)w)
(2.25)

for almost all (z, w)EC2.

Conversely, for each such {<pt}, p and u, (2.25) defines a group {Tt} in Í2 .

(2.26) Definition. For a group {Tt} E Í2p, 1 <p < <»,

(TtfKz, w) = éptyf(z)] x'pf(<pt(z), at(z)w)

we shall call the constant p, the group {^} and the family {at}, respectively,

the logarithmic index, the conformai group, and the cocycle of {Tt}. Also, we

shall say that {Tt} is of type (i), (ii) or (iii) according as its conformai group is.

In the spirit of Remark (2.21) we also introduce the following definition.
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(2.27)   Definition.   Let { Tt} E Í2p, 1 < p < °°, have conformai group

{yt}. We shall say that the cocycle {ot} of {Tt} is trivial if there is a unimodular

measurable function u on C such that for each t ER, ot(z) = u(<pt(z))u(z) for

almost all z EC.

According to Theorem (2.24), if {Tt} is of type (ii) or (iii), then {Tt} has

trivial cocycle. On the other hand, it is clear from (2.20) that not all groups of

type (i) have trivial cocycle.

3. The infinitesimal generator of a group with trivial cocycle.  In this sec-

tion we are concerned with groups having trivial cocycle. This includes all groups

of type (ii) and (iii). The type (i) groups with trivial cocycle can be character-

ized as follows.

(3.1)  Theorem.   Let {Tt} £ S2p, 1 < p < °°, be of type (i). Let K be

the set of all 5 £ R such that for an appropriate unimodular measurable func-

tion u, (2.23) holds.   Then K is an element of R/cZ, where c is the angular ve-

locity of the conformai group of{Tt}- In particular, the cocycle of {Tt} is trivial

if and only if K = cZ.

Proof. The theorem follows from Theorem (2.18) and its obvious con-

verse.

Throughout the remainder of this section, {Tt} will be a fixed element of

Í2p, 1 < p < °°, with generator A, conformai group {<pt}, and trivial cocycle

{at}. We pick a unimodular measurable function u on C such that at(z) =

u(4>t{z))tfz).

Since a change in the logarithmic index of {Tt} only translates the gener-

ator by a scalar multiple of /, we shall obtain a description of A under the ad-

ditional assumption that the logarithmic index is zero.

Let U be the isometry of IP(C2) onto itself given by

(3-2) (Uf)(z,w)=f(z,u(z)w).

For each t E R, let St = UTtU~x. Then St has the form:

(S,/Xz, w) = [*£)] xlpf(<Pt(z), w) for /£ IP(C2).

Clearly {St} E Í2 . Denote the generator of {Sf} by A- Thus the trivial cocycle

case reduces to the case ot = 1 for t E R, and we proceed now to obtain an ex-

pression for A.

Let / £ V(A). Without loss of generality we assume that / and A/ are

Borel measurable and all their sections are integrable. Let q denote the invariance

polynomial of {<pt}, and S the set of common fixed points in Ce of {<j>t}. Then

by [2, (1.6) and (1.7)] for each z £ C, o(z) = (d/dt^^z), and S n C con-

sists of the zeros of q.
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With differentiation at t = 0 in the ¿p(C2)-sense, we have

d_
dt t=o

f(f>t(z), w) = ¿¡
f=0

{Wt(z)]-X'pstf}

= Af-Qq'M
hence

d_
dt

(3.3)
r=o

{\*>'tw(<pt(?),">yi
= A/- P~Xq'(z)f + [q'(z) - z"xq(z)] f

= kf+(\-p-x)q'(z)f-z-xq(z)f.

Denote by h the Borel measurable function on the right-hand side of (3.3).

Note that h E LP(C2) and has all its sections integrable. For any two points

£0, £j G C, let [i-0, J-j] denote the closed counterclockwise arc of C from £0 to

£i (if £0 = ii»we take [?o> Eil t0 be ßo»- T*10 symbol /^ wiU stand for

h So.?11 • ^y virtue of (3.3) we have for z0, zv w0 E C,

Z W

Urn f 1d\(z)(  °t-x{\¿(z)\f(*.(z),w)-f(z,w)}d\(w)
t-*oJz J\ ' r

Zl wo

= f    d\(z)f    h(z, w)dX(w).

Thus, as t ■

*-i

(3.4)

-0,

r*r<zi> fwo
J dX(z)J      f(z, w)d\(w)
3 */zo> »

-rxf ldKz)f °f(z,w)dMw)
21\ *

approaches ¡zxdK(z)f^°h(z, w)d\(w).

Enumerate the rational numbers in [0, 2rr] in a sequence {rk}. Then there

is a set N of measure 0 in [0, 2tt) such that for each 0 G [0, 2tt)\N

(3-5)      âfe0dvCfieiv' ̂)d4/ = J?/(e'9, ̂ )rf*

for all k.

Fix permanently a number 0O G [0, 2ii)\N. In (3.4) take z0 = el0o and

z, = e'e ' where 6l G [0, 27r)\A^ 6l^60. Also take w0 in (3.4) to be of the

form e"k. Clearly, there is an analytic logarithm L defined on the complement

of a ray from the origin such that for all sufficiently small values of \t\, [vr(z0),

¥>f(z,)] is contained in the domain of L. Let a0(t) = Im[Z,(<¿>f(z0))], ax(t) =

Im[Z,((¿>f(zj))]. It now follows by (3.4) and obvious manipulation that
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rzl rrk
j    d\(z)j    h(z,et^)di¡i

zo

(3.6) =lj™AV«0-i        ._d»[    /(¿".e"*)^(2nt)-xf        duf
J Jj(0)     Jo

, «0(0      rrk )
-(2irt)~xf        dv\    A^v.^)dA

J fl0(o)      ° }

For j = 0,1 we have an integer n- such that

(3.7)

By the chain rule,

a.(O) = 0. + 2«/.7T.

limr'f '    dvC  f(eiv,ei^)d4i
-0        Ja.<0)     JO

(3.8)

= [lim \rx(tti      'cfof'*/(*'", e'*)d4 K(0).
j_f-o|   •'^.(o)    ->o y '

By virtue of (3.7), (3.5) and the fact that

we see that the right-hand side of (3.8) equals (/z;)_1 <7(z)/Jfc/(z-, e'^)d\rl.

Now (3.6) can be written:

rz\ rrk

2tt      d\(z)\    h(z,e^)d\¡J
Jz0        Jo

(3-9) rrk

= Qzirlq(zl)fo f(zv e**W - &orlq(z0)fQf(z0, «*)**.

After interchanging the order of integration on the left of (3.9) and making use

of the density of {rk} in [0, 27t], we see that for almost all f £ C, the follow-

ing equation holds for almost all w £ C

(3.10) 27rff h(z, w)d\(z) = M)-Xq($)m, w) - {b0)-lq(z)f(z0. w).
Jzo

From (3.3) we have:

lim |t|- XSI J" [101(2)1/(^(2), w) - fix, w)] d\(z) I d\(w)
(3.11) ^° '

=jí\jh(z, w)d\(z)\ d\(w).

The inner integral on the left of (3.11) vanishes identically. Hence there is a

negligible subset M of C such that Jh(z, w) d\(z) - 0 for w E C\M. It follows
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that if w G C\M, then for all %, f, tj G C:

Ç*h(z, w)d\(z) = Ch(z, w)d\(z) + Ç*h(z, w)d\(z).

Next, let g be a Borel measurable function on C2 such that for all f G C\S, w

EC

&, w) = 2^(1/?(£)))/* h(z, w)d\(z) + (2mz0)-xq(z0)f(z0, w)l.

By (3.10)/ = g almost everywhere on C2 (hence, in particular, g E V(A)).

Suppose now that {<¡>t} is of type (ii) or (iii).  Let a E S-  For all w G C\AÍ,

g($, w) = 2ir/r(lA7(0)

(3.12) • \Çji(z, w)dXz) + J*" h(z, w)d\(z) + (2mz0)-xq(z0)f(z0, w)I

for? GtAS.

For z G C, let 6 = arg z, arg a < 0 < arg a + 2jt. Let E be a component of

C\S, and let a (resp., Z>) equal inf{0: zEE) (resp., sup{0: z G £"}).

If w G C\Af, then by (3.12) g(e'9, w) is an absolutely continuous function

of 0 on each closed subinterval of (a, b), and we have for almost all 0 G (a, b)

lie'6)dg{e!' W)+ iei6q(eieWe, w) = ie'eh(ew, w) + iq(eie)g(eie, w).
do

If we combine this last equation with the definition of h and the fact that

f=g almost everywhere on C2, we get after some simplification that for almost

all w EC: g(e'e, w) is an absolutely continuous function of 0 on each closed

subinterval of (a, b), and for almost all 0 G (a, b)

(3.13) (-ly-ieq{eio)<MÊ!l^ + p-xqXeieWe) w)a(M(fi»t wy

If {0f} is of type (i), then for w G C\Af, the equation (3.12) (with a in

(3.12) replaced by 1) holds for all ? G C. Thus for w G C\M, we get

g(eie, w) = 2meie(Uq(ew))

■ \(2n)-xfeh(eiv, w)dv +J*1 h(z, w)d\(z)

(3.14) )
+ (2mz0)-xq(z0)f(z0,w)\

for 0 < 0 < 27T.
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By reasoning similar to the type (ii) and type (iii) cases, we now get that

for almost all w E C: g(e,e, w) is an absolutely continuous function of 0 on

[0, 27t] , and (3.13) holds for almost all 0 £ [0, 27r].

(3.15) Definition. We define the linear transformation B as follows.

If {<t>t} is of type (i) (resp., of type (ii) or (iii)), the domain of B, V(B), con-

sists of all Borel measurable FEIP(C2) for which there is a Borel measurable

G £ IP(C2) such that for almost all w E C: F{z, w) is an absolutely continuous

function of z on C (resp., on each closed subinterval of each component of

C\S), and, on C (resp., on each component of C\S),

(-i)e-íeq(eie)dF(eÍ°' W) + p-xq'(ei9)F(eie, w)
(3.16) dd

= G(eie, w)   for almost all 0.

For F, G as above, we define BF = G.

It is easy to see that B in Definition (3.15) is a well-defined linear oper-

ator which extends A. In fact we have

(3.17) Theorem.   B = A.

Proof.  Since the spectrum of A is a subset of /R, while B extends A, it

suffices to show that for some nonzero real number r, (B - rl) is one-to-one.

Suppose [<pt} is of type (i), and BF = p~xF, where for all w outside some

negligible subset N of C, F(e'e, w) is an absolutely continuous function of 0 on

[0, 2tt] , and for w E C\N

(-0e-»q(e">) *"*"' W) + p-xq'(eie)F(e">, w)
(3.18) dd

= p-xF(eie, w),   for almost all 0 £ [0, 2tt] .

It follows from absolute continuity that (3.18) holds for all 0 £ [0, 2tt] , and

so, by elementary means we get that for each w £ C\N, there is a complex con-

stant Kw such that for 0 £ [0, 2jt]

(3.19) F(e'e,w) = Kexp\-p
J°L    q(el»)     J ('

where "exp" stands for "exponential of. If Kw # 0, then equating the values

at 0 = 0 and 0 = 2ît of the right-hand side of (3.19) gives the existence of an

integer k such that:

(3.20) (2m)-x¡c(q'(z) - miq(z))dz = kp,

the integral in (3.20) being a contour integral. By the argument principle,
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(2m)~xfc(q'(z)lq(z))dz = 1. The expression for q in [1, Theorem (1.6)-(i)]

allows us to conclude by the residue theorem that (2m)~xfc(l/q(z))dz =- ic~x,

where c is the angular velocity of {4>t}. Substitution in (3.20) gives the absurd

conclusion that 1 + ic~x = kp. Hence Kw = 0, and so F = 0 almost everywhere

on C2. This concludes the proof of the type (i) case.

Now let [<pt} be of type (ii) with common fixed point a and the represen-

tation [1, (1.8)], and suppose that for the nonzero real constant c in that repre-

sentation we have BF= cF, where, in a fashion similar to the foregoing, there is

a negligible subset M of C such that for w E C\M, F(; w) E Lp(d\) and

i(eW) dF{?if>> w> + fc'Wfc") - c)F(eie, w) = 0
(3.21) dd

for arg a < 0 < arg a + 2n.

Define/on C\{a} by the equation

f(z) = (z- a)2*""1-1* exp{(-za)/(z - a)}.

If w E C\M, it is straightforward to verify that for arg a < 0 < arg a + 2n the

product off(eie) and the left-hand side of (3.21) is df(ew)q(eie)F(eie, w)/dd.

So we conclude that for w G C\AÍ, there is a constant Kw such that

F(ew, w) = KJ[f(ei6)q(eie)]    for arg a < 0 < arg a + 2n.

It is easy to see that (fq)~x $.Lp(d\). This establishes the desired conclusion

in the type (ii) case.

To conclude the proof, suppose {<¡>t} is of type (iii), with the representation

[1, (1.9)] (in particular, S = {a, ß}), and suppose that for the positive constant

c of that representation we have BF = cF, where, for all unimodular w outside

some negligible subset M of C, F( •, w) E Lp(d\), and, on each component of

CAS, (3.21) holds for all 0. Define the function/on C\S by the equation

f(z) = (z - a)(,/p)_2(z - ß)xlp. Then, just as in the type (ii) case,/(e/e) is an

integrating factor for (3.21).   It follows that for each w E C\M, and each com-

ponent E of C\S, there is a constant KwE, such that F(z, w) = Kw El[f(z)q(z)]

for zEE. It is easy to see that in this case (fq)~~x £ LP(E). The proof of the

theorem is complete.

We summarize the results of this section in the following theorem.

(3.22) Theorem.   Let {Tt} E Slp, 1 < p < ~ have conformai group

{<¡>t}, logarithmic index p, and trivial cocycle {of}.  Ifu is any unimodular mea-

surable function on C such that for all tER,ot = «(0,^7, let U be the isometry

oflP(C2) onto itself in (3.2). Then {UTtU~x} E Slp and has generator (B +

ipl), where B is the operator defined in (3.15).
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4. The infinitesimal generator of a group with nontrivial cocycle.  Let

{Tt} £ Í2 , 1 < p < °°, be a group of type (i) of the form

(Ttf)(z, w) = yt(z)] x'pf^pt(z), eí6í«(^(z)MT)iv).

Let c be the angular velocity and r the common fixed point in D of the group

The case of trivial cocycle (that is, (S/c) £ Z) is already covered by §3,

but the method that we shall employ here, based on multipliers on the Fourier

coefficients, applies to the type (i) case without additional assumptions. For

fELp(C2), we denote by {/*,/}£ .=-o» the double sequence of Fourier coef-

ficients off.

Let p be the Möbius transformation of D defined by p(z) = (z - t)/

(jz - 1). Then (see [2, Theorem (1.10)] ) <¿>,(z) = p(eictp(z)), and p is its own

inverse map. On D a continuous logarithm for p' is given by:

L(z) = - 2{log|7z - 1| + i arg(Tz - 1)} + log(l - |t|2) + 3m,

where 0 < arg(fz - 1) < 27T. We define [p'(z)]xlp to be exp{i(z)/p>. With this

standardization of (p')'/p, we define the isometry V of IP(C2) onto itself as

follows:

(vm. w) - [p\z)\ x'pmz), w).

It is easy to see that V~x = e~2l"lpV. Further, let £/be the isometry of

IP(C2) onto itself given by (Uf)(z, w) =f(z, u(z)w), and put

(4.1) W=V~XU.

For each t E R, let 5f = e~ict/p WTtW~x. It is straightforward to check that

(S/Xz, w) =f(eictz, eiStw)   for/£HP(C2).

Clearly, {St} ESl . Let A be the generator of {5f}, and let X be normalized

Lebesgue measure on C2. If /£ P(A),then for all m, « £ Z,

r 1/[/(efciz, é?'6'm0 -/(z, w)]z-mvv-nc?X(z, w)

(4'2) = '-1 [e-cie'»8' - l]//(z, w*-mWmd\(z, w).

Letting r —» 0 in (4.2), we get for all m £ Z, « £ Z, (Á7)m,„ = Kmc + nh)fmn.

(4.3) Definition. We define the operator G as follows. P(G) consists

of all fElPiC2) such that for some g E LP(C2), gmn = i(mc + n8)fmn for

all m £ Z, n E Z (such a £ is necessarily a uniquely determined element of

IP(C2)). WethensetG/ = £.
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Clearly, G is a linear operator which extends A. It is easy to see that if

Gf = f, then/= 0. Thus G = A.

We summarize the foregoing in the following theorem.

(4.4) Theorem. Let {Tt} G fip, 1 < p < °°, be a group of type (i)

having the form

(Ttf)(z, w) = eiptyt(z)] x">f(<pt(z), eiS '«(^(z)j5^V) for f E HP(C2).

Let W be the isometry in (4.1).   Then {rVrtrV~ '} isa type (i) group with gen-

erator G + i(p + (c/p))I where G is the operator defined in (4.3).

We close by showing that if 8/c is an irrational number, then the domain

of the infinitesimal generator G of the group {St} in this section contains a func-

tion/which has neither a weak partial derivative with respect to 0 nor a weak

partial derivative with respect to ty in the sense that for no G ELX(C2) does

either of the following equations hold identically for all Cx-functions h(e,e, e1^1)

of 0,i//:

(4.5) /MÄ-//S*

(4.6) /AOK-J/gA.
In fact, {mc + n8: m E Z, n G Z, « > 0} is dense in R, since 8/c is ir-

rational. It is easy to see from this that there are two sequences of integers

{mk}k=l, {nk}k=l, each with distinct terms, such that (mkc + nk8) —► 0, and,

for all k, \mk\ > k4, nk>k4. Thus the series 2~=1*-V V* (resp.,

lf^_xi(mkc + nk8yk~2zmkwnk) converges uniformly on C2 to a continuous

function / (resp., g) in HP(C2). Clearly Gf = g. However, if we take h =

z-»>kw-nk in (4 5) (resp., (4.6)), we get ÔMjt>IIJt = ¿m*/«*.«* ('esP- Gmk,nk

= inkfm   „ ). This gives \G \ > k2 for all k, in contradiction to the
ft '    ft K*    /t

Riemann-Lebesgue lemma.
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