ASYMMETRIC MAXIMAL IDEALS IN M(G)

ΒY

SADAHIRO SAEKI

ABSTRACT. Let G be a nondiscrete LCA group, M(G) the measure algebra of G, and $M_0(G)$ the closed ideal of those measures in M(G) whose Fourier transforms vanish at infinity. Let Δ_G , Σ_G and Δ_0 be the spectrum of M(G), the set of all symmetric elements of Δ_G , and the spectrum of $M_0(G)$, respectively. In this paper this is shown: Let Φ be a separable subset of M(G). Then there exist a probability measure τ in $M_0(G)$ and a compact subset X of $\Delta_0 \setminus \Sigma_G$ such that for each $|C| \le 1$ and each

$$\nu \in \Phi \operatorname{Card} \left\{ f \in X : \hat{\tau}(f) = c \text{ and } |\hat{\nu}(f)| = r(\nu) \right\} \ge 2^{c}.$$

Here $r(\nu)=\sup\{|\hat{\nu}(f)|:f\in\Delta_G\backslash\hat{G}\}$. As immediate consequences of this result, we have (a) every boundary for $M_0(G)$ is a boundary for M(G) (a result due to Brown and Moran), (b) $\Delta_G\backslash\Sigma_G$ is dense in $\Delta_G\backslash\hat{G}$, (c) the set of all peak points for M(G) is \hat{G} if G is σ -compact and is empty otherwise, and (d) for each $\mu\in M(G)$ the set $\hat{\mu}(\Delta_0\backslash\Sigma_G)$ contains the topological boundary of $\hat{\mu}(\Delta_G\backslash\hat{G})$ in the complex plane.

Throughout the paper, let G be a nondiscrete locally compact abelian group with dual \hat{G} , M(G) the convolution measure algebra of G, and $M_0(G)$ the ideal in M(G) which consists of all measures with Fourier transforms vanishing at infinity. As is well known, we then have $L^1(G) = M_a(G) \subset M_0(G) \subset M_c(G)$. Let Δ_G denote the spectrum of M(G), i.e., the space of all nonzero complex homomorphisms of M(G), and let $\hat{\mu}$ denote the Gelfand transform of $\mu \in M(G)$. We define

$$\Delta_0 = \{ f \in \Delta_G : \hat{\sigma}(f) \neq 0 \text{ for some } \sigma \in M_0(G) \},$$

 $\Sigma_G = \{ f \in \Delta_G : f(\sigma^*) = \overline{f(\sigma)} \text{ for all } \sigma \in M(G) \},$ where $\sigma^*(E) = \overline{\sigma(-E)}$ for all Borel sets E in G and $f(\sigma) = \hat{\sigma}(f)$. Then Δ_0 is open (in Δ) Σ is closed and $\hat{G} \subset \Delta$ Ω Σ . Moreover Δ may be identified

open (in Δ_G), Σ_G is closed, and $\hat{G} \subset \Delta_0 \cap \Sigma_G$. Moreover, Δ_0 may be identified with the spectrum of $M_0(G)$, since $M_0(G)$ is an ideal in M(G).

It is shown in [11] that given $\mu \in M_c(G)$, there exist fairly many elements $f \in \Delta_G$ such that $M_a(G) + L^1(\mu) \subset \operatorname{Ker}(f)$ but $M_0(G) \not\subset \operatorname{Ker}(f)$. In fact, it is not difficult to improve Theorem 2 of [11] as follows.

THEOREM A. Let $0 \neq \lambda \in M_0(G)$, $\mu \in M_c(G)$, and H a subgroup of G which is a G_{δ} -set. Then there exists a probability measure $\sigma = \tau * \tau^*$, with $\tau \in$

Received by the editors July 11, 1975.

AMS (MOS) subject classifications (1970). Primary 43A10.

Key words and phrases. LCA group, measure algebra, asymmetric maximal ideal, M_0 -boundary.

 M_0^+ (supp λ), having the following properties:

(i) Given $0 \le r \le 1$, the set of all $f \in \Sigma_C$ such that

$$\hat{\sigma}(f) = r$$
, $\operatorname{Ker}(f) \supset L^{1}(\mu)$, and $\hat{\nu}(f) = \hat{\nu}(1) \ \forall \ \nu \in M_{d}(G)$

has cardinality $\geq 2^{c}$. Here c denotes the cardinal number of the continuum.

(ii) Given a complex number c of modulus ≤ 1 and $g \in \Delta_G$ with $g(\delta_x) = 1$ for all $x \in H$, the set of all $f \in \Delta_G \setminus \Sigma_G$ such that

$$\hat{\sigma}(f) = c$$
, $\operatorname{Ker}(f) \supset L^{1}(\mu)$, and $\hat{\nu}(f) = \hat{\nu}(g) \quad \forall \nu \in M_{d}(G)$

has cardinality $\geq 2^{c}$.

For some related results, we refer the reader to Izuchi and Shimizu [8], Saka [12], Shimizu [13], and Williamson [15]. Now let $\mu \in M(G)$ be given, and define

$$r(\mu) = \sup \{ |\hat{\mu}(f)| : f \in \Delta_G \setminus \hat{G} \}.$$

Since $\Delta_G \setminus \hat{G}$ is compact, there exists at least one f in this set such that $|\hat{\mu}(f)| = r(\mu)$. It seems to be a natural problem to ask how many f as above there exist. Our answer is as follows.

THEOREM B. Let $\mu \in M(G)$, and Φ a separable subset of $L^1(\mu)$. Then there exist a probability measure τ in $M_0(G)$ and a compact set X in $\Delta_0 \setminus \Sigma_G$ such that

Card
$$\{f \in X : \hat{\tau}(f) = c \text{ and } |\hat{\nu}(f)| = r(\nu)\} \ge 2^{c}$$

for every complex number c of modulus ≤ 1 and every measure v in $[L^1(\mu) \cap M^+(G)] \cup \Phi$.

Notice that we can set $\Phi = L^1(\mu)$ if G is metrizable, since then $L^1(\mu)$ is separable. As easy consequences of the last theorem, we have the following results.

COROLLARY 1.

- (a) Every boundary of $M_0(G)$ is a boundary of M(G).
- (b) The set $\Sigma_G \setminus \hat{G}$ is the topological boundary of $\Delta_G \setminus \Sigma_G$ in Δ_G . In other words, $\Delta_G \setminus \Sigma_G$ is dense in $\Delta_G \setminus \hat{G}$.
- (c) If G is σ -compact, then the set P_G of all peak points for M(G) is precisely \hat{G} . If not, then $P_G = \emptyset$.

COROLLARY 2. For each $\mu \in M(G)$, the set $\hat{\mu}(\Delta_0 \setminus \Sigma_G)$ contains the topological boundary of $\hat{\mu}(\Delta_G \setminus \hat{G})$ in the complex plane C. In particular, we have

- (a) If $\operatorname{Card} \left[\hat{\mu}(\Delta_0 \setminus \Sigma_G) \right] < c$, then $\hat{\mu}(\Delta_G \setminus \hat{G})$ is (at most) countable and coincides with $\hat{\mu}(\Delta_0 \setminus \Sigma_G)$.
 - (b) If $\hat{\mu}$ is real on $\Delta_0 \setminus \Sigma_G$, then $\hat{\mu}(\Delta_G \setminus \hat{G}) = \hat{\mu}(\Delta_0 \setminus \Sigma_G)$.

Notice that Theorem B implies the result of Brown and Moran [2] and Graham [5]: If $\mu \in M(G)$ and $\hat{\mu} = 0$ off Σ_G , then $r(\mu) = 0$. Part (a) of Corollary 1 is due to Brown and Moran [3]. We also refer to Brown's result in [1]: $\Delta_0 \cap \Sigma_G$ is not entirely contained in the Shilov boundary of $M_0(G)$. It may be an interesting problem to ask whether or not we have $\hat{\mu}(\Delta_0 \setminus \Sigma_G) = \hat{\mu}(\Delta_G \setminus \hat{G})$ for all $\mu \in M(G)$.

To prove Theorem B, we shall first construct a measure of a certain type (assuming that G is metrizable). The construction of such a measure is almost the same as the corresponding one in [11], and Körner's method [9] plays an important role in our construction.

We now introduce some notation. Let m_G denote the Haar measure of G, and Z the group of all integers. For a set K in G and $p \in Z^+$, we define

$$pK = \{x_1 + \cdots + x_p : x_i \in K \text{ for all } 1 \le j \le p\}$$

if $p \ge 1$, $pK = \{0\}$ if p = 0, and (-p)K = -(pK). The subgroup of G which the set K generates is denoted by Gp(K). We say that a Borel set K is of type M_0 if $M_0(K) = M_0(G) \cap M(K)$ is nonzero. Let q(G) denote the supremum of all natural numbers p such that every neighborhood of the identity 0 of G contains an element of order $\ge p$. Then it is easy to see that if $q(G) = \infty$, then G is an I-group, and that if q(G) is finite, then G contains an open-and-compact subgroup H such that $ord(x) \le q(G)$ for all x in H. A set K in G is called strongly independent if it is independent in the usual sense [10, p. 97] and if all of its elements have order q(G). Finally, we denote by Gp'(K) the set of all points x of the form $x = k_1x_1 + \cdots + k_ux_u$, where $u = u_x$ is a natural number, x_1, \ldots, x_u are distinct elements of K, $k_j \in \mathbb{Z}$ for all $1 \le j \le u$, and $|k_j| = 1$ for at least one index j.

Lemma 1. Let $\mu_0 \in M^+(G)$, D a compact subset of G with Haar measure zero, and N a natural number. Let also V_1, V_2, \ldots, V_u be nonempty open sets in G. Then we can find nonempty open sets $U_j \subset V_j$ $(1 \le j \le u)$ subject to the following conditions:

(i) If $p_j \in \mathbb{Z}$, $|p_j| < q(G)$, and $1 \le \sum_{j=1}^u |p_j| \le N$, then the set $\sum_{j=1}^u p_j U_j$ does not contain $0 \in G$, and

$$m_G \left[D + \sum_{j=1}^u p_j U_j \right] < 1/N.$$

(ii) If $q_j \in \mathbb{Z}$, $\Sigma_{j=1}^u |q_j| \le N$, and $|q_j| = 1$ for at least one index j, then

$$\mu_0 \left[D + \sum_{j=1}^u q_j U_j \right] < 1/N.$$

PROOF. Let P be the set of all $p = (p_1, \ldots, p_u) \in \mathbb{Z}^u$ as in (i). Similarly, let Q be the set of all $q = (q_1, \ldots, q_u) \in \mathbb{Z}^u$ as in (ii).

The standard Baire category argument [10, 5.2.3] shows that there are points $x_j \in V_j$ $(1 \le j \le u)$ of order $\ge q(G)$ such that $\{x_j: 1 \le j \le u\}$ is independent. Since P is finite and D is a compact set with Haar measure zero, we can find a neighborhood W of $0 \in G$ so that

(1)
$$0 \notin \sum_{1}^{u} p_{j}(x_{j} + W) \text{ and } m_{G} \left[D + \sum_{1}^{u} p_{j}(x_{j} + W) \right] < 1/N$$

for all $p \in P$. We may assume that $x_i + W \subset V_i$ $(1 \le i \le u)$.

Put $E = \{x_j \colon 1 \le j \le u\}$, and take a compact neighborhood X of $0 \in G$ such that $X + X \subset W$. Since $M_a(G)$ is an ideal of M(G), it follows from the Fubini theorem and the definition of Q that

(2)
$$\int_{X^{u}} \sum_{q \in Q} \mu_{0} \left[D + Gp(E) + \sum_{1}^{u} q_{j} t_{j} \right] dt_{1} \cdot \cdot \cdot dt_{u} = 0.$$

Therefore there are u points t_1, t_2, \ldots, t_u in X for which the integrand in (2) is zero. Hence, in particular, we have

(3)
$$\mu_0 \left[D + \sum_{i=1}^{u} q_i y_i \right] = 0 \quad (q \in Q),$$

where $y_j = x_j + t_j$. Upon comparing (1) and (3), we see that if $U \subset X$ is a sufficiently small neighborhood of $0 \in G$, then the sets $U_j = y_j + U$ have the required properties.

LEMMA 2. Suppose that G is metrizable. Let $\mu_0 \in M^+(G)$, and let C_0 be a o-compact subset of G with Haar measure zero. Then there exists a strongly independent compact set K in G of type M_0 such that

$$m_G[C_0 + Gp(K)] = \mu_0[C_0 + Gp'(K)] = 0.$$

PROOF. If q(G) is finite, we fix an open-and-compact subgroup H of G such that $\operatorname{ord}(x) \leq q(G)$ for all x in H. In the other case, we set H = G.

Let $\{D_n\}_1^\infty$ be an increasing sequence of compact subsets of G with $C_0 = \bigcup_{1}^{\infty} D_n$, and $\{\hat{E}_n\}_1^\infty$ a sequence of compact subsets of \hat{G} with $\hat{G} = \bigcup_{1}^{\infty} \hat{E}_n$. We shall construct a sequence $\{\sigma_n\}_1^\infty$ of probability measures in $M_0(H)$, a sequence $\{I_n\}_1^\infty$ of finite collections of disjoint compact sets in H, a sequence $\{\hat{F}_n\}_1^\infty$ of compact sets in \hat{G} , and also a sequence $\{n_p\}_1^\infty$ of natural numbers. They will satisfy the following conditions (and some other conditions):

(1)
$$\operatorname{supp} \sigma_n \subset \bigcup \{\operatorname{int}(I): I \in \mathcal{I}_n\}.$$

(2)
$$\sup \{ \widehat{|\sigma_n|_I}(\chi) | : \chi \in \widehat{G} \setminus \widehat{F}_n \} < 2^{-n} \sigma_n(I) \quad \forall I \in \mathcal{I}_n.$$

It is also assumed that each set in I_{n+1} is a subset of some set in I_n .

We first take any probability measure $\sigma_1 \in M_0(H)$ with compact support of diameter < 1/2. Let I be any compact neighborhood of supp σ_1 such that diam I < 1, $I_1 = \{I\}$, and $n_1 = 1$. Since $\sigma_1 \in M_0(G)$, we can take a compact set \hat{F}_1 in \hat{G} subject to (2) with n = 1.

Suppose that p is a natural number, and that n_j $(1 \le j \le p)$, σ_n , \mathcal{I}_n , \hat{F}_n $(1 \le n \le m = n_p)$ have been defined. Let M_p be the largest natural number such that

(3)
$$\max \{\sigma_m(I): I \in \mathcal{I}_m\} \leqslant M_p^{-2},$$

and write

$$\{A \subset \mathcal{I}_m : 1 \leq \text{Card } A \leq M_p\} = \{A_r : 1 \leq r \leq s_p\}.$$

Setting $n_{p+1} = n_p + s_p$, we shall construct σ_n , \mathcal{I}_n , and \hat{F}_n for all $m < n \le n_{p+1}$ as follows.

Suppose that these objects have been defined for some n=m+r-1 with $1 \le r \le s_p$, and put

(5)
$$K_n = \{I \in I_n : I \subset J \text{ for some } J \in A_r\}.$$

Then, for each set K in K_n , there are a finite collection $\{L_j^K\}_j$ of disjoint compact sets in K and a collection $\{\nu_j^K\}_j$ of measures in $M_0^+(K)$, with supp $\nu_j^K \subset \operatorname{int}(L_i^K)$, such that

(6)
$$0 < ||v_j^K|| < n^{-1}\sigma_n(K);$$

(7)
$$\sum_{i} \|\nu_{j}^{K}\| = \sigma_{n}(K);$$

(8)
$$\left|\sum_{j} (\nu_{j}^{K})^{\hat{}}(\chi) - (\sigma_{n}|K)^{\hat{}}(\chi)\right| < 2^{-n}\sigma_{n}(K) \quad \forall \chi \in \hat{F}_{n}.$$

To see this, it suffices to apply Lemma 3 of [11] and its obvious modification. By virtue of Lemma 1, we can demand that the sets L_j^K satisfy the following additional conditions:

(9)
$$\operatorname{diam} L_i^K < 1/n;$$

(10)
$$0 \notin \sum_{K \in \mathbb{K}_n} \sum_j p_j^K L_j^K \quad \forall (p_j^K) \in P_n;$$

(11)
$$m_G \left[D_n + \sum_{K \in K_n} \sum_j p_j^K L_j^K \right] < 2^{-n} / \operatorname{Card} P_n \quad \forall (p_j^K) \in P_n;$$

(12)
$$\mu_0 \left[D_n + \sum_{K \in \mathcal{K}_n} \sum_j q_j^K L_j^K \right] < 2^{-n} / \text{Card } Q_n \quad \forall (q_j^K) \in Q_n.$$

Here P_n is the set of all tuples (p_j^K) of integers such that $|p_j^K| < q(G)$ for all j and K and $1 \le \sum_{K,j} |p_j^K| \le n$. Similarly Q_n is the set of all tuples (q_j^K) of integers such that $|q_i^K| = 1$ for some (K, j) and $\sum_{K,j} |q_i^K| \le n$. Define

(13)
$$\sigma_{n+1} = \sum_{I \in K_n} \sigma_n | I + \sum_{K \in K_n} \sum_{\bar{I}} \nu_{\bar{I}}^K,$$

(14)
$$I_{n+1} = (I_n \setminus K_n) \cup \bigcup_{K \in \mathcal{K}_n} \{L_j^K\}_j.$$

Then (1), with n replaced by n+1, is satisfied. Finally we choose a compact set \hat{F}_{n+1} in \hat{G} , with $\hat{F}_{n+1} \supset \hat{F}_n \cup \hat{E}_n$, so that (2) holds for n+1.

This completes our induction. It is a routine matter to prove that the sequence $\{\sigma_n\}_1^{\infty}$ converges to some probability measure $\sigma \in M_0(H)$ in the weak-topology of M(G), that

(15)
$$K = \operatorname{supp} \sigma \subset \bigcap_{n=1}^{\infty} \bigcup \{I : I \in \mathcal{I}_n\},$$

and that K is strongly independent. (See the proof of Lemma 4 of [11], and notice that every element of H has order $\leq q(G)$.)

Now we want to confirm

$$m_G[C_0 + Gp(K)] = \mu_0[C_0 + Gp'(K)] = 0.$$

Let $0 \neq x \in Gp(K)$ be given. We have $x = \sum_{i=1}^{u} k_i x_i$ for some $(k_1, \ldots, k_u) \in \mathbb{Z}^u$ and some distinct elements x_1, \ldots, x_u of K. By (9), (14), and (15), there exists a natural number N_x such that the points x_i belong to distinct sets in \mathcal{I}_n whenever $n > N_x$. Choose any natural number p so that

$$n_p > N_x + \sum_{i=1}^{u} |k_i|$$
 and $M_p > u$,

and let A be the collection of all I in I_{n_p} which contain some x_i $(1 \le i \le u)$. Then $1 \le \text{Card } A = u < M_p$, and so $A = A_r$ for some $1 \le r \le s_p$ by (4). Setting $n = n_p + r - 1$, we therefore infer from (5), (14) and (15) that x belongs to the set

$$\bigcup_{P_n} \left(\sum_{K \in \mathcal{K}_n} \sum_j p_j^K L_j^K \right).$$

Since p can be chosen as large as one pleases, we conclude that

(16)
$$Gp(K)\setminus\{0\}\subset \bigcup_{n=N}^{\infty}\bigcup_{P_n}\sum_{K_n}\sum_{j}p_j^KL_j^K \qquad (N=1,2,\ldots).$$

Similarly we have

(17)
$$Gp'(K) \subset \bigcup_{n=N}^{\infty} \bigcup_{Q_n} \sum_{K_n} \sum_{j} q_j^K L_j^K \qquad (N=1, 2, \ldots).$$

It follows from (11) and (16) that

(18)
$$m_G[D_N + Gp(K)] \leq \sum_{n=N}^{\infty} \sum_{P_n} m_G \left[D_N + \sum_{K_n} \sum_{j} p_j^K L_j^K \right]$$

$$\leq \sum_{n=N}^{\infty} \sum_{P_n} m_G \left[D_n + \sum_{K_n} \sum_{j} p_j^K L_j^K \right] < 2^{-N+1}$$

for all $N \ge 1$. (Notice that $m_G(D_N) = 0$.) Letting $N \to \infty$ in (18), we have $m_G[C_0 + Gp(K)] = 0$. Similarly we have $\mu_0[C_0 + Gp'(K)] = 0$ by (12) and (17). This completes the proof.

LEMMA 3. Let $\mu_0 \in M^+(G)$, C_0 a σ -compact subset of G which carries μ_0 , and K a compact subset of G such that

(*)
$$\mu_0[C_0 + Gp'(K)] = 0.$$

Suppose that K_1, K_2, \ldots, K_p are disjoint compact subsets of K and that $\sigma_j \in M_c(K_i \cup (-K_i))$ for all $1 \le j \le p$.

(a) If $m = (m_j)_1^p$ and $n = (n_j)_1^p$ are different tuples of nonnegative integers, then

$$\mu_0 * \sigma_1^{m_1} * \cdots * \sigma_p^{m_p} \perp \mu_0 * \sigma_1^{n_1} * \cdots * \sigma_p^{n_p}.$$

(b) If
$$\sigma_j \in M_c(K_j)$$
 for all $1 \le j \le p$ and $v \in L^1(\mu_0)$, then
$$\|v * \sigma_1^{n_1} * \cdots * \sigma_p^{n_p}\| = \|v\| \cdot \|\sigma_1\|^{n_1} \cdots \|\sigma_p\|^{n_p}.$$

PROOF. To prove (a), we use the well-known method of Hewitt and Kakutani [6] (see also [10, 5.4.2]). Without loss of generality, assume that $\sigma_j \ge 0$ for all $1 \le j \le p$ and that $m_1 < n_1$. Write $\tau_m = \sigma_1^{m_1} * \cdots * \sigma_p^{m_p}$, and similarly for τ_n . Putting $E_j = K_j \cup (-K_j)$ for $1 \le j \le p$, we then see that $\mu_0 * \tau_m$ is carried by the set $A_m = C_0 + m_1 E_1 + \cdots + m_p E_p$. Therefore it suffices to show $(\mu_0 * \tau_n)(A_m) = 0$. Let $\lambda_j \in M(E_j^{n_j})$ be the n_j -fold product of σ_j , and let B_j be the set of all points $x_j = (x_{j1}, \ldots, x_{jn_j})$ of $E_j^{n_j}$ such that $x_{ji} \ne \pm x_{jk}$ whenever $1 \le i < k \le n_j$. Since σ_j is a continuous measure, we then have

 $\lambda_j(G^{n_j}\setminus B_j)=0$ by the Fubini theorem. On the other hand, $(x_{ji})\in B_1\times\cdots\times B_p$ implies

(1)
$$\mu_0 \left[A_m - \sum_{j=1}^p \sum_{i=1}^{n_i} x_{ji} \right] \le \mu_0 \left[C_0 + m_1 E_1 - \sum_{i=1}^{n_1} x_{1i} + \sum_{j=2}^p Gp(K_j) \right]$$
$$\le \mu_0 \left[C_0 + Gp'(K) \right] = 0$$

by (*) and the definition of Gp'(K). Evidently these two facts imply $(\mu_0 * \tau_n)(A_m) = 0$, as was required.

To prove (b), we need the following fact: Given $\mu \in M(G)$ and $\epsilon > 0$, there is a neighborhood V of $0 \in G$ such that

(2)
$$\sigma \in M^+(G)$$
, supp $\sigma - \text{supp } \sigma \subset V \Rightarrow ||\mu * \sigma|| \ge (||\mu|| - \epsilon)||\sigma||$.

Suppose by way of contradiction that this is false for some μ and ϵ . Then, to each neighborhood V of 0 there corresponds a probability measure $\sigma_V \in M(G)$ such that $\|\mu * \sigma_V\| < \|\mu\| - \epsilon$ and supp $\sigma_V \subset V - x_V$ for some $x_V \in G$. Upon replacing σ_V by $\sigma_V * \delta_{x_V}$, we may assume that $x_V = 0$. But then the net $\{\mu * \sigma_V\}$ converges to μ in the weak-* topology of M(G). Hence

$$\|\mu\| \leq \lim_{V} \inf \|\mu * \sigma_{V}\| \leq \|\mu\| - \epsilon,$$

a contradiction.

We now prove (b) as follows. By the continuity of convolution, we can retain generality in assuming that each σ_j has the form $\sigma_j = \sum_{k=1}^q c_{jk} \tau_{jk}$, where the c_{jk} are complex numbers of absolute modulus one and the τ_{jk} are mutually singular measures in $M_c^+(K_j)$. Expanding $\sigma_j^{nj} = (\sum_{k=1}^q c_{jk} \tau_{jk})^{nj}$ for all $1 \le j \le p$ and applying part (a), we reduce (b) to the case where $\sigma_j \ge 0$ ($1 \le j \le p$), and hence to the case where $c_{jk} = 1$ for all j and k. Since we can demand that every τ_{jk} has support of sufficiently small diameter, part (b) follows from (2). This completes the proof.

PROOF OF THEOREM B. Let $\mu \in M(G)$, and Φ a separable subset of $L^1(\mu)$. Given $\sigma \in M(G)$, we let σ_s denote the singular part of σ with respect to m_G . Notice that

(*)
$$r(\sigma) = \lim_{n \to \infty} \| \sigma^n + M_a(G) \|^{1/n} = \lim_{n \to \infty} \| (\sigma^n)_s \|^{1/n},$$

since $M_a(G)$ is an ideal in M(G) with spectrum \hat{G} . Now define μ_0 to be the singular part of $\exp(|\mu|)$, and choose a σ -compact subset C_0 of G so that $m_G(C_0) = \mu_0(G \setminus C_0) = 0$. Then $\nu \in L^1(\mu)$ implies $(\nu^n)_s \in L^1(\mu_0)$ for all $n \in \mathbb{Z}^+$.

We first assume that G is metrizable, and take a compact subset K of G as

where $H=H_{\Gamma}$ is the annihilator of Γ in G and m_H denotes the Haar measure of H of norm one. This can be proved by considering the Fourier transform of ν and by applying Theorem 1.9.1 of [10]. Since $\Phi \subset L^1(\mu)$ is separable, there is a σ -compact open subgroup Γ of G such that

(9)
$$\|(v^n)_s\| = \|(v^n)_s * m_H\| \quad \forall v \in \Phi \text{ and } \forall n \in \mathbb{Z}^+.$$

By Lemma 6 of [11], we may assume that $G_0 = G/H$ is metrizable and $m_G(C_0 + H) = 0$. Let $\pi: G \longrightarrow G_0$ be the natural quotient map, and let

$$\nu \longrightarrow \pi^*(\nu) = \nu \circ \pi^{-1} \colon M(G) \longrightarrow M(G_0)$$

be the measure algebra homomorphism induced by π . Then it is easy to check that π^* maps $M_a^+(G)$ onto $M_a^+(G_0)$, $M_0^+(G)$ onto $M_0^+(G_0)$, and $L^1(\mu_0)$ onto $L^1(\pi^*(\mu_0))$ (cf. [14, 2.2.4]). Moreover, we have $\|\pi^*(\nu)\| = \|\nu * m_H\|$ for all $\nu \in M(G)$, as is easily seen. It follows from (9) that

(10)
$$\|\pi^*[(v^n)_s]\| = \|(v^n)_s\| \quad \forall n \in \mathbb{Z}^+$$

for all $\nu \in \Phi$. Obviously (10) is satisfied for every $\nu \in M^+(G)$ as well.

Since $m_{G_0}[\pi(C_0)]=m_G(C_0+H)=0$ and $\pi^*(\mu_0)$ is carried by the set $\pi(C_0)$, we have $L^1(\pi^*(\mu_0))\subset M_s(G_0)$. In particular $\pi^*[(\nu^n)_s]$ is the singular part of $(\pi^*(\nu))^n=\pi^*(\nu^n)$ for every $\nu\in L^1(\mu)$ and every $n\in \mathbb{Z}^+$. Hence $r[\pi^*(\nu)]=r(\nu)$ for all $\nu\in [L^1(\mu)\cap M^+(G)]\cup \Phi$, by (10). To complete the proof, it therefore suffices to note that $\pi^*[M_0^+(G)]=M_0^+(G_0)$, that $\pi^*[M(G)]=M(G_0)$, and that the adjoint map of π^* sends $\Delta_{G_0}\setminus \Sigma_{G_0}$ into $\Delta_{G_0}\setminus \Sigma_{G_0}$ in a one-to-one way. This establishes Theorem B for all nondiscrete groups.

PROOF OF COROLLARY 1. Let $Y \subset \Delta_0$ be a boundary of $M_0(G)$, and $\mu \in M(G)$. Choose any $f \in \Delta_G$ such that $|\hat{\mu}(f)| = \|\hat{\mu}\|_{\Delta_G}$. If $f \in \hat{G}$, we take $\lambda \in M_a(G)$ so that $0 \le \hat{\lambda} \le 1$ on \hat{G} and $\hat{\lambda}(f) = 1$. Then we have $\lambda * \mu \in M_0(G)$ and $\|\hat{\lambda} * \mu\|_{\Delta_G} = |\hat{\mu}(f)|$; hence $|\hat{\mu}(g)| = |\hat{\lambda} * \mu(g)| = |\hat{\mu}(f)|$ for some $g \in Y$. If $f \notin \hat{G}$, then $r(\mu) = |\hat{\mu}(f)|$. By Theorem B, we can find a probability measure $\tau \in M_0(G)$ such that $r(\tau * \mu) = r(\mu)$. Then $|\hat{\mu}(g)| = |\tau * \mu(g)| = r(\mu) = |\hat{\mu}(f)|$ for some $g \in Y$, which establishes part (a).

To prove (b), first notice that $\overline{\Delta_G \setminus \Sigma_G} \subset \Delta_G \setminus \hat{G}$ since \hat{G} is open and is contained in Σ_G . If the above two sets were different, there would exist a nonempty open set U in Δ_G such that $U \cap \overline{\Delta_G \setminus \Sigma_G} = \emptyset \neq U \setminus \hat{G}$. Since the space of all Gelfand transforms of measures is closed under the complex conjugation on Σ_G , it would follow from the Stone-Weierstrass theorem that there would exist a $\hat{\mu} \in M(G)$ such that $0 \leq \hat{\mu} \leq 1$ on Σ_G , $\hat{\mu}(f) = 1$ for some $f \in U \setminus \hat{G}$, and $\hat{\mu} < 1/2$ on $\Sigma_G \setminus U$. Then the set $U \cap \hat{\mu}^{-1}(1)$ would be a local peak set for M(G), and therefore would be a peak set for M(G) by Rossi's theorem [4]. Consequently

in Lemma 2. Let $\sigma_1, \sigma_2, \ldots, \sigma_p$ be mutually singular measures in $M_c(K)$, and let z_1, z_2, \ldots, z_p be complex numbers satisfying $|z_j| \leq ||\sigma_j|| \ (1 \leq j \leq p)$. We then claim that given $\nu \in L^1(\mu)$ there exists an element f in $\Delta_G \setminus \hat{G}$ such that

(1)
$$|f(v)| = r(v) \text{ and } f(\sigma_i) = z_i \quad (1 \le i \le p).$$

There is no loss of generality in assuming $\|\sigma_j\|=1$ for all j. Let τ_{2j-1} and τ_{2j} be mutually singular measures in $L^1(\sigma_j)$ such that $\sigma_j=(\tau_{2j-1}+\tau_{2j})/2$ and $\|\tau_{2j-1}\|=\|\tau_{2j}\|=1$, and write $z_j=(w_{2j-1}+w_{2j})/2$ with $|w_{2j-1}|=|w_{2j}|=1$. Since $m_G[C_0+Gp(K)]=0$, it follows from Lemma 3 that

$$\left\| \left[v * \left(\delta_0 + \sum_{k=1}^{2p} \overline{w}_k \tau_k \right) \right]^n + M_a(G) \right\| \\
= \left\| (v^n)_s * \left(\delta_0 + \sum_{k=1}^{2p} \overline{w}_k \tau_k \right)^n \right\| \\
= \left\| (v^n)_s \right\| \left(1 + \sum_{k=1}^{2p} \| \tau_k \| \right)^n = \left\| (v^n)_s \right\| (1 + 2p)^n,$$

which yields

(3)
$$r \left[\nu * \left(\delta_0 + \sum_{k=1}^{2p} \overline{w}_k \tau_k \right) \right] = r(\nu) \cdot (1 + 2p).$$

We can therefore find an element $f \in \Delta_G \backslash \hat{G}$ such that

$$(1)' |f(\nu)| = r(\nu) and f(\tau_k) = w_k (1 \le k \le 2p).$$

By the choices of τ_k and w_k , (1)' implies (1), which establishes our claim.

We next assert that, given $\nu \in L^1(\mu)$, every linear functional on $M_c(K)$, of norm ≤ 1 , extends to an element $f \in \Delta_G \setminus \hat{G}$ such that $|f(\nu)| = r(\nu)$. In fact, this is an easy consequence of (1) and the arguments of Hewitt and Kakutani in [6]. We leave the details to the reader.

Now choose three disjoint compact sets K_j in K (j=1,2,3), each of type M_0 , and fix two probability measures $\lambda \in M_0(K_1)$ and $\tau \in M_0(K_2)$. We now prove that τ and the set

$$X = \{ f \in \Delta_G : f(\lambda) = 1, |f(\lambda^*)| \le 1/2 \} \cup \{ f \in \Delta_G : |1 - f(\lambda * \lambda^*)| \ge 3/2 \}$$

have the required property. It is obvious that X is a compact subset of $\Delta_0 \setminus \Sigma_G$. Let c be a complex number of modulus ≤ 1 , and $v \in L^1(\mu)$. Let also φ be an arbitrary (linear) functional on $M_c(K_3)$, of norm ≤ 1 . By the Hahn-Banach theorem, φ extends to a functional ψ on $M_c(K)$, of norm one, such that $\psi(\lambda) = 1$ and $\psi(\tau) = c$. It follows from the result asserted in the last paragraph that there

is an f in $\Delta_G \setminus \hat{G}$ such that |f(v)| = r(v), $f(\lambda) = 1$, $f(\tau) = c$ and $f = \varphi$ on $M_c(K_3)$. We want to show that such an f can be chosen from the set X. If $|f(\lambda^*)|$ is less than 1/2, then there is nothing to prove; so assume $|f(\lambda^*)| \ge 1/2$. Setting $\tau_1 = \lambda * \lambda^*$, we then have

$$\|(v^m)_s * \tau_1^n\| \ge |f(v^m * \tau_1^n)| \ge r(v)^m (1/2)^n$$

for all m and $n \in \mathbb{Z}^+$, so that

(4)
$$r[v^m * (\delta_0 - \tau_1)] \ge r(v)^m (3/2) \quad (m \in \mathbb{Z}^+)$$

by (*) and Lemma 3. Putting $\mu_1 = \mu_0 * \exp(\tau_1)$, we also see that μ_1 is carried by the σ -compact set $C_1 = C_0 + Gp(K_1)$ and that

$$\mu_1[C_1 + Gp'(K_2 \cup K_3)] = \int \mu_0[C_1 + Gp'(K_2 \cup K_3) - y] \ d\theta(y)$$

$$\leq \mu_0[C_0 + Gp'(K)] \cdot e = 0,$$

where $\theta = \exp(\tau_1)$. Therefore, if τ_2, \ldots, τ_p are mutually singular probability measures in $M_c(K_2 \cup K_3)$ and if $m, n, n_2, \ldots, n_p \in \mathbb{Z}^+$, then

(5)
$$\|[\nu^m * (\delta_0 - \tau_1)]^n * \tau_2^{n_2} * \cdots * \tau_p^{n_p} + M_a(G)\| \ge r [\nu^m * (\delta_0 - \tau_1)]^n$$

by Lemma 3 (applied to μ_1 and C_1). Consequently, one more application of Lemma 3, combined with (5), yields

(6)
$$r \left[\nu^m * (\delta_0 - \tau_1) * \left(\delta_0 + \sum_{j=2}^p \overline{z_j} \tau_j \right) \right] = r \left[\nu^m * (\delta_0 - \tau_1) \right] \cdot p$$

for all complex numbers z_2,\ldots,z_p of absolute modulus one. (Notice that the left-hand side of (6) cannot be larger than the right-hand one.) Therefore there is a $g_m \in \Delta_G \setminus \hat{G}$ such that

(7)
$$|g_m[v^m * (\delta_0 - \tau_1)]| = r[v^m * (\delta_0 - \tau_1)], g_m(\tau_i) = z_i$$
 $(2 \le i \le p).$

It follows from (4) and the first equality of (7) that $|1 - g_m(\tau_1)| \ge 3/2$, and so $g_m \in X$; moreover $|g_m(v)| = |g_m(v^m)|^{1/m} \ge r(v) (3/4)^{1/m}$ by (7) and (4). Recalling that X is compact and letting $m \to \infty$, we find an element $h \in X$ such that

(8)
$$|h(v)| = r(v) \quad \text{and} \quad h(\tau_j) = z_j \quad (2 \le j \le p).$$

We repeat almost the same argument as before to obtain an $f \in X$ with the required property. Since it is easy to prove that the conjugate space of $M_c(K_3)$ has cardinality equal to 2^c , this establishes Theorem B for metrizable groups.

The proof for the nonmetrizable case is now easy. We first note that given $\nu \in M(G)$ there is a σ -compact open subgroup Γ of \hat{G} such that $\|\nu * m_H\| = \|\nu\|$,

there would exist a $\nu \in M(G)$ such that $\hat{\nu}(f) = 1$, $|\hat{\nu}| \le 1$ on Δ_G , and $|\hat{\nu}| < 1/2$ on $\Delta_G \setminus \Sigma_G$. But then $r(\nu) = 1$, which contradicts Theorem B. This establishes part (b).

By Theorem B, no element of $\Delta_G \setminus \hat{G}$ can be a peak point for M(G); hence $P_G \subset \hat{G}$. Therefore part (c) is an easy consequence of the fact that G is σ -compact if and only if \hat{G} is metrizable [7]. This completes the proof.

PROOF OF COROLLARY 2. Let $\mu \in M(G)$ be given. Notice that $\Delta_G \setminus \hat{G}$ is the spectrum of the quotient algebra $M(G)/M_a(G)$. Choose a countable dense subset D of $\mathbb{C} \setminus \hat{\mu}(\Delta_G \setminus \hat{G})$. For each $c \in D$, there is a $v_c \in M(G)$ such that $\hat{v}_c = (c - \hat{\mu})^{-1}$ on $\Delta_G \setminus \hat{G}$. Setting $\Phi = \{v_c : c \in D\}$, we apply Theorem B to find a compact set X in $\Delta_0 \setminus \Sigma_G$ such that

$$\sup\{|c - \hat{\mu}(f)|^{-1} \colon f \in X\} = \sup\{|c - \hat{\mu}(g)|^{-1} \colon g \in \Delta_G \setminus \hat{G}\}$$

for all $c \in D$. Since $\hat{\mu}(X)$ is compact, this implies that $\hat{\mu}(X)$ contains all the boundary points of $\hat{\mu}(\Delta_G \setminus \hat{G})$ in C.

If Card $[\hat{\mu}(\Delta_0 \backslash \Sigma_G)] < c$, then $\hat{\mu}(\Delta_G \backslash \hat{G})$ has a countable boundary since it is compact. Therefore $\hat{\mu}(\Delta_G \backslash \hat{G})$ itself is countable, so that $\hat{\mu}(\Delta_G \backslash \hat{G}) = \hat{\mu}(\Delta_0 \backslash \Sigma_G)$ by the result already established. If $\hat{\mu}$ is real on $\Delta_0 \backslash \Sigma_G$, then $\hat{\mu}$ must be real on $\Delta_G \backslash \hat{G}$, hence $\hat{\mu}(\Delta_G \backslash \hat{G})$ has no interior point, and hence $\hat{\mu}(\Delta_G \backslash \hat{G}) = \hat{\mu}(\Delta_0 \backslash \Sigma_G)$. This establishes Corollary 2.

REMARKS. (a) Theorem A implies $\hat{\mu}_d(\Delta_G) \subset \hat{\mu}(\Delta_0 \setminus \Sigma_G)$ for all $\mu \in M(G)$. Moreover , we can prove that $\hat{\mu}_d(\Delta_G) \subset \hat{\mu}(\Delta_0 \cap \Sigma_G \setminus \hat{G})$ by applying the methods in [11].

- (b) Notice that $\delta_0(C_1+C_2)=0$ if and only if $C_1\cap (-C_2)$ is empty. If we only require that $C_0\cap Gp'(K)=\varnothing$ in Lemma 2 instead of that $m_G[C_0+Gp(K)]=\mu_0[C_0+Gp'(K)]=0$, then the assumption that C_0 is a σ -compact set with $m_G(C_0)=0$ can be weakened to be that C_0 is a set of the first category in G (cf. [5, 2.1]).
- (c) In some special cases, the proof of Theorem B can be somewhat simplified and we have a result slightly stronger than Theorem B.

Let H_0 be an open subgroup of G of the form $H_0 = \mathbb{R}^n \times H_1$, where n is a nonnegative integer and H_1 is a compact subgroup of G (cf. [10, 2.4.1]). Let P be the set of all $p \in \mathbb{Z}$ such that $1 \le p < q(H_1)$ and $\operatorname{Card}\{\chi \in \hat{H}_1 \colon \chi^p = 1\} < \infty$. Then the last condition in Lemma 2 can be strengthened to be that $m_G[C_0 + Gp(K)] = \mu_0[C_0 + K(P)] = 0$. Here K(P) denotes the set of all points x of the form $x = \sum_{i=1}^{n} k_i x_j$, where $u = u_x$ is a natural number, x_1, x_2, \ldots, x_u are distinct elements of K, and k_1, k_2, \ldots, k_u are integers such that $|k_j| \in P$ for some $1 \le j \le u$. The case where $2 \in P$ is particularly interesting.

Suppose in Lemma 3 that μ_0 , C_0 and K are such that $\mu_0[C_0 + K(\{1, 2\})] = 0$. Then we can prove that

$$\| \nu * \sigma_1^{n_1} * \cdots * \sigma_p^{n_p} \| = \| \nu \| \cdot \| \sigma_1 \|^{n_1} \cdots \| \sigma_p \|^{n_p}$$

for all $v \in L^1(\mu_0)$ and all $\sigma_j \in M_c(K_j \cup (-K_j))$. Therefore a moment's glance at the proof of Theorem B yields this result: If either q(G) = 2, or G contains an open subgroup H_0 as above with $2 \in P$, then the measure τ in Theorem B can be taken so that $\tau = \lambda * \lambda^*$ for some $\lambda \in M_0^+(G)$. We omit the details.

(d) If $\mu \in M^+(G)$, then the number $r(\mu)$ is in $\hat{\mu}(\Delta_0 \setminus \Sigma_G)$. To see this, choose a complex number z of absolute modulus one so that $zr(\mu) \in \hat{\mu}(\Delta_G \setminus \hat{G})$. Then we have

$$r(\delta_0 + \mu) = \lim_{n \to \infty} \| [(\delta_0 + \mu)^n]_s \|^{1/n}$$

$$\ge \lim_{n \to \infty} \| [(\delta_0 + \overline{z}\mu)^n]_s \|^{1/n} = 1 + r(\mu),$$

and so $r(\delta_0 + \mu) = 1 + r(\mu)$. Thus our assertion follows from Theorem B with $\Phi = {\delta_0 + \mu}$.

- (e) Let $M_0^\infty(G)$ denote the *L*-ideal in M(G) generated by all measures μ of the form $\mu = \mu_1 * \mu_2 * \cdots$, where the μ_j are probability measures in $M_0(G)$ and the infinite convolution product is assumed to converge in the weak-* topology of M(G). Let also Δ_0^∞ denote the spectrum of $M_0(G)$ identified with an open subset of Δ_G . Then it is not difficult to prove that $\operatorname{Card}(\Delta_0 \setminus \Delta_0^\infty) \geq 2^c$. Moreover, in Theorem B, we can replace $M_0(G)$ and Δ_0 by $M_0^\infty(G)$ and Δ_0^∞ , respectively. Using this result, we can prove that if Y is a boundary of $M_0^\infty(G)$, then $(Y \setminus \Sigma_G) \cup (Y \cap \hat{G})$ is a boundary of M(G), which of course improves part (a) of Corollary 1. Similarly the set Δ_0 in Corollary 2 can be replaced by Δ_0^∞ .
- (f) Finally we list three problems which the author has been unable to solve.
 - (i) Is it true that $\hat{\mu}(\Delta_G \setminus \hat{G}) = \hat{\mu}(\Delta_0 \setminus \Sigma_G)$ for all $\mu \in M(G)$?
 - (ii) Does $\hat{\mu}(\Sigma_G \setminus \hat{G}) = \{0\}$ imply $r(\mu) = 0$?
 - (iii) Does $\Sigma_G \setminus \hat{G}$ contain any strong boundary point for M(G)?

REFERENCES

- 1. G. Brown, $M_0(G)$ has a symmetric maximal ideal off the Silov boundary, Proc. London Math. Soc. (3) 27 (1973), 484–504. MR 48 #2666.
- 2. G. Brown and W. Moran, $L^{1/2}(G)$ is the kernel of the asymmetric maximal ideals of M(G), Bull. London Math. Soc. 5 (1973), 179–186. MR 49 #3450.
- 3. ——, $M_0(G)$ -boundaries are M(G)-boundaries, J. Functional Analysis 18 (1975), 350-368. MR 50 #14060.
 - 4. T. W. Gamelin, Uniform algebras, Prentice-Hall, New York, 1969.
- 5. C. C. Graham, Measures vanishing off the symmetric maximal ideals of M(G), Proc. Cambridge Philos. Soc. 75 (1974), 51-61. MR 49 #9539.
 - 6. E. Hewitt and S. Kakutani, A class of multiplicative linear functionals on the

measure algebra of a locally compact Abelian group, Illinois J. Math. 4 (1960), 553-574. MR 23 #A527.

- 7. E. Hewitt and K. R. Stromberg, A remark on Fourier-Stieltjes transforms, An. Acad. Brasil. Ci. 34 (1962), 175-180. MR 27 #533.
- 8. K. Izuchi and T. Shimizu, Topologies on groups and a certain L-ideal of measure algebras, Tôhoku Math. J. 25 (1973), 53-60.
- 9. L.-A. Lindahl and F. Poulsen, Thin sets in harmonic analysis, Dekker, New York, 1971.
- 10. W. Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Appl. Math., no. 12, Interscience, New York and London, 1962. MR 27 #2808.
 - 11. S. Saeki, Symmetric maximal ideals in M(G), Pacific J. Math. 53 (1974), 229-243.
- 12. K. Saka, A note on subalgebras of a measure algebra vanishing on non-symmetric homomorphisms, Tôhoku Math. J. (2) 25 (1973), 333-338. MR 50 #10686.
- 13. T. Shimizu, *L-ideals of measure algebras*, Proc. Japan Acad. 48 (1972), 172-176. MR 47 #7326.
- 14. J. L. Taylor, *Measure algebras*, CBMS Regional Conf. Ser. in Math., no. 16, Amer. Math. Soc., Providence, R. I., 1973.
- 15. J. H. Williamson, Banach algebra elements with independent powers and theorems of Wiener-Pitt type, Function Algebras (Proc. Internat. Sympos. on Function Algebras, Tulane Univ., 1965), Scott, Foresman, Chicago, Ill., 1966, pp. 186-197. MR 33 #6302.

DEPARTMENT OF MATHEMATICS, TOKYO METROPOLITAN UNIVERSITY, SETAGAYA, TOKYO, JAPAN