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ASYMMETRIC MAXIMAL IDEALS IN M(G)
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ABSTRACT.   Let G be a nondiscrete LCA group, M(G) the measure

algebra of G, and AfQ(G) the closed ideal of those measures in Af(G) whose

Fourier transforms vanish at infinity.   Let AG, Eg and Aq be the spectrum

of M{G), the set of all symmetric elements of AG, and the spectrum of M¡,(G),

respectively.   In this paper this is shown:   Let * be a separable subset of

M(G).  Then there exist a probability measure t in MQ(G) and a compact subset

X of Aq\ Eç such that for each I cl < 1 and each

»e*Card{/e X: î(/) = c and |?(/)l = r(i>)}>2c.

Here r(y) = sup{|?(/)|: /£ AG\G}.   As immediate consequences of this result,

we have (a) every boundary for AfQ(G) is a boundary for M(G) (a result due to

Brown and Moran), (b) AG\ ~Zq is dense in Aq\ G, (c) the set of all peak points

for Af(G) is G if G is a-compact and is empty otherwise, and (d) for each p e

Ai(G) the set Í(Aq\ Zg) contains the topological boundary of ¡ù(AG\ G) in the

complex plane.

Throughout the paper, let G be a nondiscrete locally compact abelian group

with dual G,M(G) the convolution measure algebra of G, and M0(G) the ideal in

M(G) which consists of all measures with Fourier transforms vanishing at infinity.

As is well known, we then have Ll(G) - Ma(G) C M0(G) C MC(G). Let AG de-

note the spectrum of M(G), i.e., the space of all nonzero complex homomor-

phisms of M(G), and let ¡x denote the Gelfand transform of m £ M(G). We define

A0 = {/£ AG: a(f) * 0 for some a EM0(G)},

2G = {/£AG:/(o*) =7(aTfor all a EM(G)},

where o*(£) = o(- £) for all Borel sets £ in G and f(a) = ô(/). Then A0 is

open (in AG), SG is closed, and G C A0 n SG. Moreover, A0 may be identified

with the spectrum of M0(G), since M0(G) is an ideal in M(G).

It is shown in [11] that given u EMC(G), there exist fairly many elements

/£ AG such that Ma(G) + L\n) C Ker(/) but M0(G) tKei(f). In fact, it is

not difficult to improve Theorem 2 of [11] as follows.

Theorem A LetO^ XEM0(G), iiEMc(G), and H a subgroup of G which

isaG6-set. Then there exists a probability measure a = t * t*, with r E
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Mq (supp X), having the following properties:

(i) Given 0 < r < 1, the set of all f E 2G sue« that

0(f) = r,   Ker(/) D Lx(p),   and   0(f) = 0(1)   \¡vEMd(G)

has cardinality > 2C. Here c denotes the cardinal number of the continuum.

(ii) Given a complex number c of modulus < 1 and g G AG with g(ox) = 1

/or all xEH, the set of all f E AG\ ZG sue« that

5(f) = c,   Ker( /) D Ll(p),   and   ¿(f) = 0(g)   \/v E Md(G)

has cardinality > 2C.

For some related results, we refer the reader to Izuchi and Shimizu [8],

Saka [12], Shimizu [13], and Williamson [15]. Now let p G M(G) be given, and

define

r(M) = sup{|/2(/)|:/GAG\G}.

Since AC\G is compact, there exists at least one /in this set such that \p(f)\ =

r(p). It seems to be a natural problem to ask how many/as above there exist.

Our answer is as follows.

Theorem B. Let u G M(G), and $ a separable subset of Ll(p). Then

there exist a probability measure r in M0(G) and a compact set X in AQ\ 2G

such that

Card {/G X: f (/) = c and \0(f)\ = r(v)} > 2°

for every complex number c of modulus < 1 and every measure v in [Lx (p.) n

M+(G)] U $.

Notice that we can set 4> = Lx(p) if G is metrizable, since then Lx(p) is

separable. As easy consequences of the last theorem, we have the following re-

sults.

Corollary 1.

(a) Every boundary ofM0(G) is a boundary ofM(G).

(b) The set 2G\G is the topological boundary of AG\ SG in AG. In

other words, AG\2G is dense in AG\G.

(c) // G is a-compact, then the set PG of all peak points for M(G) is pre-

cisely G. If not, then PG = 0.

Corollary 2.  For each p E M(G), the set ¿t(A0\2G) contains the topo-

logical boundary of p(AG\G) in the complex plane C In particular, we have

(a) //Card [¿(A0\SG)] < c, then p(AG\G) is (at most) countable and

coincides with jû(A0\2G).

(b) Ifß is real on A0\ 2G, then ¡1(AG\G) ■ m(A„\ 2g).
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Notice that Theorem B implies the result of Brown and Moran [2] and

Graham [5] :  If /! £ Af(G) and jû = 0 off 2G, then r(u) = 0. Part (a) of Corol-

lary 1 is due to Brown and Moran [3]. We also refer to Brown's result in [1] :

AQ n SG is not entirely contained in the Shilov boundary of M0(G). It may be

an interesting problem to ask whether or not we have ¿t(A0\2G) = jû(AG\G)

foralljuEM(G).

To prove Theorem B, we shall first construct a measure of a certain type

(assuming that G is metrizable). The construction of such a measure is almost

the same as the corresponding one in [11], and Körner's method [9] plays an

important role in our construction.

We now introduce some notation. Let mG denote the Haar measure of G, and

Z the group of all integers.  For a set K in G and p E Z+, we define

pK - {x, + • * * + V Xj EK for all 1 </<p)

if p > 1, pK = {0} if p = 0, and (- p)K = - (pK). The subgroup of G which

the set K generates is denoted by Gp(K). We say that a Borel set K is of type

M0 if M0(K) = M0(G) n M(K) is nonzero. Let c7(G) denote the supremum of

all natural numbers p such that every neighborhood of the identity 0 of G con-

tains an element of order > p. Then it is easy to see that if q(G) = °°, then G

is an /-group, and that if q(G) is finite, then G contains an open-and-compact

subgroup H such that ord(x) < q(G) for all x in H.  A set K in G is called

strongly independent if it is independent in the usual sense [10, p. 97] and if all

of its elements have order q(G). Finally, we denote by Gp'(K) the set of all

points x of the form jc = kxxx + • • • + kuxu, where u = ux is a natural num-

ber, jCj, . . ., xu are distinct elements of K, k¡ £ Z for all 1 < / < u, and I kA =

1 for at least one index /.

Lemma 1.  Let pQ EM+(G), D a compact subset of G with Haar measure

zero, and N a natural number.  Let also V1, V2, . . . , Vu be nonempty open sets

in G.  Then we can find nonempty open sets U, C V- (1 < / < u) subject to the

following conditions:

(i) IfPj E Z, \p,\ < q(G),and 1 < SjLilP/l <N, then the set Vf^pft
does not contain 0 £ G, and

mG\D + Í,Piv\ <VN.

(ii) //q¡EZ, XV= j | qj\ < N, and I fy| = 1 for at least one index j, then
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Proof.   Let P be the set of all p = (pl, . . . , pu) E Z" as in (i).  Similarly,

let Q be the set of all q = (qx, . . . , qu) E Z" as in (ii).

The standard Baire category argument [10, 5.2.3] shows that there are

points x- EVj (1 </' < u) of order > q(G) such that {x¡: 1 </ < »} is inde-

pendent.  Since P is finite and D is a compact set with Haar measure zero, we can

find a neighborhood W of 0 G G so that

(1) 0 £ ¿ Pj(xj + W)   and    mG \D + ¿?,(*,. + W)l < \/N

dt„ = 0.
u

for all p EP. We may assume that x¡ + W C Vj (1 </ < u).

Put £ = {xy: 1 </<«}, and take a compact neighborhood X of 0 G G

such that J + JfCIC.   Since Ma(G ) is an ideal of M(G), it follows from the

Fubini theorem and the definition of Q that

(2)       r  r /j0+G¡p(£)+¿v/ldíi

Therefore there are u points ix, t2, . . . , tu in X for which the integrand in (2) is

zero.  Hence, in particular, we have

& MoP+Z^V/] =0      (<7 6 ß),

where y¿ = x;- + /;-.  Upon comparing (1) and (3), we see that if U C X is a suf-

ficiently small neighborhood of 0 EG, then the sets U- = y, + U have the re-

quired properties.

Lemma 2.   Suppose that G is metrizable.  Let p0 EM+(G), and let C0 be

a o-compact subset of G with Haar measure zero.   Then there exists a strongly in-

dependent compact set K in G of type M0 such that

mG[C0 + Gp(K)) = pQ[C0 + Gp'(K)] = 0.

Proof.   If q(G) is finite, we fix an open-and-compact subgroup H of G

such that ord(x) < q(G) for all x in H.   In the other case, we set H = G.

Let {/}„}" be an increasing sequence of compact subsets of G with C0 =

JJ" Dn, and {£„}" a sequence of compact subsets of G with G = UT^n- ^e

shall construct a sequence {a„}~ of probability measures in M0(H), a sequence

{I„}~ of finite collections of disjoint compact sets in H, a sequence {£„}J° of

compact sets in G, and also a sequence {«p}¡° of natural numbers. They will

satisfy the following conditions (and some other conditions):

(0 suppa„C Uiint(/):/Gl„}.
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(2) sup{|aJ/(x)l:xeG\Fn}<2-"(7„(/)   V/£l„.

It is also assumed that each set in I„ + 1 is a subset of some set in ln.

We first take any probability measure a1 EM0(H) with compact support of

diameter < 1/2. Let / be any compact neighborhood of supp a1 such that diam / <

1, Ij = {/}, and «j = 1.  Since ol EM0(G), we can take a compact set Fl in

G subject to (2) with « = 1.

Suppose that p is a natural number, and that n¡ (1 </ <p), an, I„, Fn

(1 < « < m = n ) have been defined.  Let M  be the largest natural number such

that

(3) max{(7m(/):/E7m}<Mp-2,

and write

(4) {Aclm: 1 < Card A <Mp} = {Ar: Kr<sp}.

Setting np + l = np + sp, we shall construct an, I„,and Fn for all m < n < n +1

as follows.

Suppose that these objects have been defined for some n = m + r — 1 with

1 < r < s , and put

(5) K„ = {I £ In: / C J for some / E Ar}.

Then, for each set AT in K„, there are a finite collection {¿^ } • of disjoint com-

pact sets in K and a collection {vf}¡ of measures in Mq(K), with supp v* C

int(Lf), such that

(6) 0<||If||</j-1o„(i:);

(7) Eiifll = o„(K);

(8) E(fr(x)-(a„iA:r(x)
/

<2""a„(^)   Vxe£„.

To see this, it suffices to apply Lemma 3 of [11] and its obvious modification.

By virtue of Lemma 1, we can demand that the sets Lf satisfy the following

additional conditions:

(9) diam Lf < 1/n;

(10) 0É    Z   ZpfLf    V(pf)€/>„;
«6K„   i
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(11)        «ck+   Z   T,pfLf]<2-"ICvdPn   \/(pf)EPn,
L K<¿&n   i J

<12> »ofa+    Z   Z^fl<2-"/Cardö„    V(fl/r)eßB.
L ^Kw   / J

t
Here Pn is the set of all tuples (pf) of integers such that \pf\ < q(G) for all /

and K and 1 < 2^- \p^ | < «. Similarly Qn is the set of all tuples (qf ) of integers

such that |fl^l = 1 for some (K, /) and ^Kt¡\qf\ < «•  Define

03) a„+1 = Z %l/+ Z Z f,

(14) in+l = an\Kn)v u af}/.
JCeX,,

Then (1), with « replaced by n + 1, is satisfied. Finally we choose a compact set

Fn+l in G, with £w + 1 D £„ U £„, so that (2) holds for « + 1.

This completes our induction. It is a routine matter to prove that the se-

quence { 0„}~ converges to some probability measure a EMQ(H) in the weak-*

topology of M(G ), that

(15) f? = suppoC Ó  U{7:/el„},

and that K is strongly independent. (See the proof of Lemma 4 of [11], and

notice that every element of H has order < q(G).)

Now we want to confirm

mG[C0 + Gp(K)\ = p0[C0 + Gp'(K)] - 0.

Let 0 ¥= x G Gp(K) be given. We have x = 2" Jtf x¿ for some (kl, . . . , fcu) G

Z" and some distinct elementsxx,.. . ,xu of K. By (9), (14), and (15), there

exists a natural number Nx such that the points x¡ belong to distinct sets in Tn

whenever n~> Nx. Choose any natural number p so that

"P>^+Zl*,l    and   Mp>u,
i

and let A be the collection of all / in Jn   which contain some xf (1 < i < m).

Then 1 < Card A = « < M , and so A = Ar for some 1 < r < s   by (4). Setting

p
set

n = nD + r — 1, we therefore infer from (5), (14) and (15) that x belongs to the

U( Z ZpfLf).
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Since p can be chosen as large as one pleases, we conclude that

(16) Gp(K)\{0} C (j   U Z LpfLf      (N=l,2,...).
«-* Pn  *« i

Similarly we have

(17) Gp'(K) C  0   U E E «W      G* - L 2... . )•

It follows from (11) and (16) that

mG[DN+Gp(K)]<  ¿   Z^cK + ZZpWI
n=N Pn L K"    /

(18)
< 1 z^k + zz^fl<2-JV+1

»=^'h     L       k„ /        J

for all N > 1. (Notice that mG(DN) = 0.) Letting N —► °° in (18), we have

W2G[C0 + Gp(K)] = 0. Similarly we have ju0[C0 + Gp'(A:)] = 0 by (12) and

(17). This completes the proof.

Lemma 3.   Let (i0 £ M+(G), C0 a a-compact subset of G which carries

M0, and K a compact subset of G such that

(*) p0[C0+Gp\K)]=Q.

Suppose that Kv K2, . . . , K   are disjoint compact subsets of K and that a, E

Mc(Kj U (- K/j) for all 1 < / <p.

(a) Ifm = (m/)p and n = (ra.-)f are different tuples of nonnegative in-

tegers, then

Mo *al      * * * * * °p      ■*■ ^0 * al " ' * OpP .

(b) // of £ Mc (K¡) for all 1 < / < p and v £ L \li0), then

\\p*o"1.a"pP\\ = IM|-Ilff1 II"1 ~'\\(¡XP'

Proof.  To prove (a), we use the well-known method of Hewitt and

Kakutani [6] (see also [10, 5.4.2]). Without loss of generality, assume that o=

> 0 for all 1 </ <p and that mt <n1. Write rm = a™x * • • • * o^p, and

similarly for rn. Putting E. = Kf U ( - Kj) for 1 < / < p, we then see that u0 *

Tm is carried by the set Am = C0 + miEi + • • • + m E . Therefore it suf-

fices to show (ju0 * r„) (Am) = 0. Let X, EM(E"i) be the n;-fold product of

Oj, and let B¡ be the set of all points xf = (jc;1 , . . . , xjn ) of E?i such that x„ #

±x]k whenever 1 < /' < fc< «y. Since a- is a continuous measure, we then have
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\j(G i\Bj) = Oby the Fubini theorem.  On the other hand, (x7) G Bx x • • • x

B   implies

(1) i"o k-ZZ xjt \< n0 \C0 + mxE, - Z xu + Z <W,.)]
L /=! '=1        J L «=1 /=2 J

<ii0[C0 + Gp'(A')] =0

by (*) and the definition of Gp'(K).    Evidently these two facts imply

(Po * rn)(^m) = °> as was required.

To prove (b), we need the following fact:  Given p EM(G) and e > 0,

there is a neighborhood V of 0 G G such that

(2) oEM+(G),   supp0-supp0C F=»||u* oil >(Hull-f)||a||.

Suppose by way of contradiction that this is false for some p and e. Then, to

each neighborhood V of 0 there corresponds a probability measure ov E M(G)

such that || ju * av\\ < ||u|| - e and supp av C V -xv for somexK G G.  Upon

replacing av by av * 8X   , we may assume that xv = 0. But then the net

{ M * ov } converges to p in the weak-   topology of M(G ). Hence

|lMll<liminf||/i*ffK||<||MU-e>
v

a contradiction.

We now prove (b) as follows. By the continuity of convolution, we can re-

tain generality in assuming that each a;- has the form a- = 2£=1 ckrk, where

the Cjk are complex numbers of absolute modulus one and the r-fc are mutually

singular measures in M*(Kj). Expanding op = (2£=1 cjk T]kfi for all 1 </ <

p and applying part (a), we reduce (b) to the case where a- > 0 (1 </ < p), and

hence to the case where cjk = 1 for all / and k. Since we can demand that every

T,k has support of sufficiently small diameter, part (b) follows from (2). This

completes the proof.

Proof of Theorem B. Let ßEM(G), and * a separable subset of Lx(p).

Given a G M(G), we let as denote the singular part of a with respect to «iG.

Notice that

(*) r(o)= lim Ho" +Ma(G)||1/" = lim  „(o"),!!17",

since Ma(G) is an ideal in M(G) with spectrum G. Now define p0 to be the sing-

ular part of exp(lMl ), and choose a o-compact subset C0 of G so that mG(C0) =

P0(G\C0) = 0. Then v ELx(p) implies (p")s ELx(p0) for all n G Z+ .

We first assume that G is metrizable, and take a compact subset AT of G as
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where H = Hr is the annihilator of T in G and mH denotes the Haar measure of

H of norm one. This can be proved by considering the Fourier transform of v

and by applying Theorem 1.9.1 of [10]. Since $ C Lx(\£) is separable, there is a

a-compact open subgroup T of G such that

(9) 11(0,11 = II (yn)s*mu\\   V J>e<*> and V«eZ+.

By Lemma 6 of [11], we may assume that G0 = G/H is metrizable and

mG(C0 + ff) = 0. Let m: G —*G0 be the natural quotient map, and let

v —► tt \v) = vom-1: M(G) -* M(G0)

be the measure algebra homomorphism induced by n. Then it is easy to check

that tt* maps Ma+(G) onto M¿(G0),M+(G) onto M¿(G0), and Ll(p0) onto

^(■n*(p.0)) (cf. [14, 2.2.4]). Moreover, we have ||7r*(iOI| = IIJ> * mH\\ for all

v EM(G), as is easily seen. It follows from (9) that

(10) II ir* [(O,] II = 11(0,11    V«EZ+

for all v E $. Obviously (10) is satisfied for every v E M+(G) as well.

Since mG  [n(C0)] = mG(C0 + H) = 0 and m*(ii0) is carried by the set

7t(C0), we have Ll(m*(p0)) CMS(G0). In particular n*[(vn)s] is the singular

part of (m*(v))n = m*(vn) for every v E Ll(p) and every n E Z+. Hence

r[n*(v)] = r(v) for all v E [L1(p.) n M+(G)] U $, by (10). To complete the

proof, it therefore suffices to note that it*[M+(G)] = M+(G0), that 7r*[Af(G)]

= M(G0 ), and that the adjoint map of it* sends AG \ SG   into AG\ 2G in a

one-to-one way. This establishes Theorem B for all nondiscrete groups.

Proof of Corollary 1.   Let Y C A0 be a boundary of M0(G), and

p EM(G). Choose any /£ AG such that |£(/)l = IIAIIA   . If/£ G, we take

X £Ma(G) so that 0 < a < 1 on G and X(/) = 1. Then we have X* pE

M0(G) and lÎX^/ïll*    = \ß(f)\; hence \p(g)\ - |xTm(^)| = Im(/)| for some

^ E F.  If/£ G, then r(/u) = |/î(/)|. By Theorem B, we can find a probability

measure r E M0(G) such that r(r * p) = r(p). Then 1^(^)1 = | t * ju(¿?)l =

r(u) = |/i(/)| for some gEY, which establishes part (a).

To prove (b), first notice that AG\2G C AG\G since G is open and is con-

tained in SG. If the above two sets were different, there would exist a nonempty

open set U in AG such that U n AG\ 2G=0# U\G. Since the space of all

Gelfand transforms of measures is closed under the complex conjugation on SG,

it would follow from the Stone-Weierstrass theorem that there would exist a fi E

M(G) such that 0 < jQ < 1 on SG, p(f) = 1 for some /£ U\G, and p < 1/2

on 2G\i/.  Then the set U n m_1(1) would be a local peak set for M(G), and

therefore would be a peak set for M(G) by Rossi's theorem [4]. Consequently
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, 0   be mutually singular measures in MC(K), andin Lemma 2.  Let al,a2,

let Zj, z2, . . . ,z   be complex numbers satisfying Iz^l < ||o..|| (1 </ <p). We

then claim that given vELx(ß) there exists an element/in AG\G such that

(1) \f(v)\ = r(v)   and   f(aj) = zj   (Kj<p).

There is no loss of generality in assuming || a-|| = 1 for all /.   Let t2 ■_ x and t2 .■

be mutually singular measures in L1(aj) such that a, = (t2._, + t2/)/2 and

Ikjy.jll = ||t2/|| = 1, and write z¡ = (w2j_l + w2/)/2 with |vv2/_,! = |w2/| =

1. Since mG [C0 + Gp(K)] = 0, it follows from Lemma 3 that

v * o0 +

2P

Z   **'*
fc=l

+ Ma(G)

(2) (""), 5n +

2p v'

Z   *kTk)
k=l I

IP

= 11(0,11(1+ Z II rk
k = l

- II(^)J(1 + 2p)n,

which yields

(3) ["*(8o+fcÇis>*T*)j =rx>y(l+2p')-

We can therefore find an element/G AG\G such that

(1)' I/Ml = r(v)   and  f(rk) = wk      (1<* < 2p).

By the choices of Tk and wk, (1)' imphes (1), which establishes our claim.

We next assert that, given v ELx(ß), every linear functional on MC(K), of

norm < 1, extends to an element / G AG\G such that  |/(i>)| = r(v). In fact,

this is an easy consequence of (1) and the arguments of Hewitt and Kakutani in

[6]. We leave the details to the reader.

Now choose three disjoint compact sets K- in K (/ = 1, 2, 3), each of type

M0, and fix two probability measures X EMQ(KX) and t EM0(K2). We now

prove that t and the set

X= {/GAG:/(X)=l,|/(X*)|<l/2} U {/GAG: 11 - f(X * X*)| > 3/2}

have the required property. It is obvious that X is a compact subset of A0\2G.

Let c be a complex number of modulus < 1, and v E Lx(p). Let also <p be an

arbitrary (linear) functional on MC(K3), of norm < 1. By the Hahn-Banach theo-

rem, <p extends to a functional i// on MC(K), of norm one, such that $(X) = 1

and 4>(t) = c. It follows from the result asserted in the last paragraph that there
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is an / in AG\G such that l/(t>)| = r (v), /( X) = 1, f(j) = c and / = <p on

MC(K3). We want to show that such an /can be chosen from the set X.  If

|/(X*)| is less than 1/2, then there is nothing to prove; so assume |/(X*)| >

1/2. Setting Tj = X * X*, we then have

\\(Pm)s * t1\\ > \f(vm * t?)\ > r(v)m(M2)n

for all m and « G Z +, so that

(4) r [vm * (50 -t1)}> r(v)m(3/2)      (m G Z+ )

by (*) and Lemma 3. Putting «j = «0 * exp(r,), we also see that ¡jl1 is carried

by the o-compact set C1 = C0 + Gp(Kl ) and that

U, [C, + Gp'(K2 UK3)] = JmoÍCj + Gp'(K2 U £3) -y] d6(y)

<p0[C0+Gp'(K)] -e = 0,

where 9 = expij^. Therefore, if t2, . . . , 7  are mutually singular probability

measures in MC(K2 U K3) and if m, n, n2,.. ., n   G Z+, then

(5) \\[vm * (S0 - r,)]" * r22 * • • • * tJ" + Ma(G)|| >r[vm * (50 - t,)}"

by Lemma 3 (applied to pl and C,). Consequently, one more application of

Lemma 3, combined with (5), yields

(6) r^'"*(60-r1)* L + Z z,rX\ = r [vm * (50 - r,)] -p

for all complex numbers z2.zp of absolute modulus one. (Notice that the

left-hand side of (6) cannot be larger than the right-hand one.) Therefore there

is a gm G AG\ G such that

(7) \gm [vm * (50 - rx)] I = r [vm * (50 - r,)],   gw(ry) = z,-      (2 </ < p).

It follows from (4) and the first equality of (7) that 11 - gm(T1)\> 3/2, and so

gm EX; moreover \gm(v)\ = \gm(vm)\llm > r(v) (3/4)'/m by (7) and (4). Re-

calling that X is compact and letting m —» <» we find an element h EX such that

(8) \h(v)\ = r(v)   and   n(T/) » zy      (2</<p).

We repeat almost the same argument as before to obtain an / G X with the re-

quired property.  Since it is easy to prove that the conjugate space of MC(K3) has

cardinality equal to 2C, this establishes Theorem B for metrizable groups.

The proof for the nonmetrizable case is now easy. We first note that given

v EM(G) there is a 0-compact open subgroup f of G such that \\v * mH\\ = ||i>||,
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there would exist a v EM(G) such that ?(/) = 1,1 P| < 1 on AG, and I v\<

1/2 on AG\2G. But then r(v) = 1, which contradicts Theorem B.   This estab-

lishes part (b).

By Theorem B, no element of AG\G can be a peak point for M(G); hence

PG C G. Therefore part (c) is an easy consequence of the fact that G is a-com-

pact if and only if G is metrizable [7]. This completes the proof.

Proof of Corollary 2.   Let pEM(G) be given. Notice that AG\ G is

the spectrum of the quotient algebra M(G)/Ma(G).  Choose a countable dense

subset D of C\jQ(AG\G). For each c ED, there is a vc EM(G) such that vc =

(c - p)~x on AG\G.  Setting $ = { vc : c £ £»}, we apply Theorem B to find a

compact set X in A0\ SG such that

sup {|c - p(fTl:fE X} = sup{|c - faT1: g £ AG\G}

for all c ED. Since ß(X) is compact, this implies that p(X) contains all the

boundary points of jû(AG\G) in C.

If Card [£(A0\2G)] < c, then ¿t(AG\G) has a countable boundary since

it is compact. Therefore ¿¡(AG\G) itself is countable, so that j3(AG\G) =

jQ(A0\2G) by the result already established. If £ is real on A0\SG, then ¡1 must

be real on AG\G, hence ¿(AG\G) has no interior point, and hence £(AG\G) =

jû(A0\2G). This establishes Corollary 2.

Remarks, (a) Theorem A implies Md(AG) C ¿t(A0\2G) for all p £M(G).

Moreover , we can prove that id(AG) C j2(A0 n 2G\G) by applying the methods

in [11].

(b) Notice that b^C^ + C2) = 0 if and only if C1 n (- C2) is empty. If

we only require that C0 n Gp'(K) = 0  in Lemma 2 instead of that

mG [C0 + Gp(K)] = p0 [C0 + Gp'(K)] = 0, then the assumption that C0 is a a-

compact set with mG(C0) = 0 can be weakened to be that C0 is a set of the

first category in G (cf. [5, 2.1]).

(c) In some special cases, the proof of Theorem B can be somewhat simpli-

fied and we have a result slightly stronger than Theorem B.

Let H0 be an open subgroup of G of the form H0 = R" x Hy, where n is

a nonnegative integer and Hx is a compact subgroup of G (cf. [10, 2.4.1]). Let

P be the set of all p E Z such that 1 <p < q(Hx) and Card{x £ Hl : x" = 1}<

°°. Then the last condition in Lemma 2 can be strengthened to be that

mG [CQ + Gp(K)] - u0 [C0 +K(P)] = 0. Here K(P) denotes the set of all points x

of the formx = 2 " fc.*., where u = ux is a natural number, xl,x2,... ,xu are dis-

tinct elements of K, and kv k2, .... ku are integers such that \k¡\ EP for some

1 < / < u.  The case where 2 £ P is particularly interesting.

Suppose in Lemma 3 that p0, C0 and K are such that M0[co + ^(0, 2})]

= 0. Then we can prove that
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\\v * o"1.op"'|| = NI • IKH"1 • • • Il0pll"p

for all v ELx(ß0) and all o;. GMC(K¡ U (-K¡)). Therefore a moment's glance at

the proof of Theorem B yields this result:   If either q(G) = 2, or G contains an

open subgroup H0 as above with 2 G P, then the measure r in Theorem B can be

taken so that r = X * X* for some XEM£(G). We omit the details.

(d) If p G M+(G), then the number r(p) is in £(A0\2G). To see this,

choose a complex number z of absolute modulus one so that zr(p) E p(AG\G).

Then we have

r(80+p)= lim \\[(80+ßf]s\\xln
rt-t-oo

> lim H [(5» +z¿0"U1/" = l +r(p),
r-»so

and so r(50 + u) = 1 + r(p). Thus our assertion follows from Theorem B with

* = {50+M}.

(e) Let M%(G) denote the ¿-ideal in M(G) generated by all measures u of

the form p = Uj * u2 * • • • , where the p. are probability measures in M0(G)

and the infinite convolution product is assumed to converge in the weak-* topol-

ogy of M(G). Let also A^ denote the spectrum of M0(G) identified with an

open subset of AG. Then it is not difficult to prove that Card(A0\ A„ ) > 2C.

Moreover, in Theorem B, we can replace M0(G) and A0 by M^(G) and A£, re-

spectively. Using this result, we can prove that if y is a boundary of Mq(G),

then (y\2G) U ( iTi G)isa boundary of M(G), which of course improves

part (a) of Corollary 1. Similary the set A0 in Corollary 2 can be replaced by

(f )  Finally we list three problems which the author has been unable to

solve.

(i)  Is it true that £(AG\G) = p(AQ\ 2G) for all p GM (G)?

(ii) Does i(2G\G) = {0} imply r(p) = 0?

(iii) Does 2G\G contain any strong boundary point for Af(G)?
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