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SKX OF n LINES IN THE PLANE

BY

LESLIE G. ROBERTS(!)

ABSTRACT.  We calculate SKX(A) where A is the coordinate ring of the

reduced affine variety consisting of n straight lines in the plane.

1.  Introduction. In [9] I calculated SKX for curves whose irreducible com-

ponents were isomorphic to the affine line and such that at each intersection

point the components meet transversally. Here I would like to consider plane

curves whose irreducible components are all isomorphic to the affine line and

such that at each intersection point the components have distinct tangent direc-

tions.

First consider three straight lines through the origin. Let A be a commu-

tative regular ring.  Then Dennis and Krusemeyer [2] have calculated

K2A [X, Y] liXY). Using their result and the calculation sketched in §4 of [9]

it can be shown that KXA[X, Y]/AT(X - Y) = KxiA) © ttA. Here and through-

out the paper Q,A denotes the absolute differentials SlA¡z (Z = integers). On

the other hand it is proved in [1] that if A: is a field (char k - 0 or charfc >

n - 1) and Spec B is the reduced affine variety over k consisting of n straight

lines through one point, then Pic B = n_lC2k+ where k+ is the additive group

of the field. These results suggest that we ought to have SKxiB) = n_xC2Slk.

(Here as well as later if M is an abelian group then nM means the direct sum of n

copies of M.) For "large" characteristic I prove that this is "almost" true. Unlike

the case of Pic, the exact result depends on which Unes one has.

In [9] I tried to work with as general a ground ring as possible.  Here (ex-

cept for the above remarks concerning three lines through one point) I will work

over a field k of characteristic zero or characteristic > n - 1 where n is the

largest number of components passing through one point. The reason for this

restriction is that I use [4] which requires such a field. Using [5] or [10] some

results could perhaps be obtained for more general groundfields (or rings) but

would probably be more complicated.

In §2 I make some general remarks about SKX and the conductor.  In §3

I give generators and relations for SKX of n lines in the plane through the origin.
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354 L. G. ROBERTS

The next section uses these generators and relations to obtain more detailed re-

sults about SKX of n lines in the plane through the origin.  The final section

considers plane curves such that (a) all irreducible components are isomorphic to

the affine line, (ß) each intersection point is Ar-rational, (7) the tangent directions

of all components passing through a given intersection point are distinct. This

section is motivated by calculations of Pic in [7]. There it is shown that

for such curves Pic depends only on the number of intersection points and

the number of components passing through each.  My results on SKX, although

not complete, are sufficient to show that the situation is more complicated with

SKX than with Pic.

2. General remarks. Let X = Spec A be a reduced, connected (not neces-

sarily plane) affine curve over a field k, with each irreducible component isomor-

phic to the affine line.  Suppose there are n components and m crossing points

(all of which are rational over k).  Let Y = Spec B be the normalization of A.

Then B = tt1=xk[t¿\.  Let / be the conductor of A in B.  We have a cartesian

square
A ->   B

I I
A/I-► B/I

Since B is a product of polynomial rings we have KX(B) = U"=1k* (where k* de-

notes the units of k). The rings A/I and B/I ate each the product of local Artin-

ian fc-algebras (with residue class field k) supported at the crossing points.  For

a local ring SKX = 0.  Thus the Mayer-Vietoris sequence [3, p. 246] yields an

exact sequence K2(A/I) © K2(B) -4 K2(B/I) —> SKX(A) —» 0. For each local

Artinian fc-algebra R (with residue field k) take the direct sum decomposition

K2(R) = K2(k) © SK2(R) induced by the split surjection R —*■ k.  We have

K2(B) = U"=xK2(k), one copy for each component. The homomorphism/re-

spects these direct sum decompositions, so SKX(A) is the direct sum of two fac-

tors, one a "global" part involving the K2(k)\ and the other a "local" part in-

volving the SK2 's.  There are m copies of K2(k) from K2(A/I) one for each inter-

section point.  Suppose an intersection point P E X has p points in Y lying over

it.  Then from K2(B/I) we get (2p) copies of K2(k), one for each point of Y

that lies over an intersection point of X.   The mapping (m + ri)K2(k) —»■

(2 p)K2(k) is as follows: if Q E Spec B lies over an intersection point P E Spec A

the mapping between the corresponding copies of K2(k) is the identity; if line l¡

contains Q E Spec B the mapping between the corresponding copies of K2(k) is

the identity.  Otherwise the mappings are zero.  This is the same mapping as was

studied in [9] where we assumed that the p curves through each P crossed trans-

versally.  Let (A/I)p denote the component of A/I concentrated on P E Spec A,
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and simüarly for {B/Í)q, Q E Spec B.  Then the SK2 part of / splits up as the

direct sum of maps fP : SK2iA/I)P —* (&QSK2iB/I)Q iQ ranging over all points

in Y lying over the intersection point P E X).  Let K2iP) = cokerfp. Then we

have proved (using formula (1) of [9])

Theorem 1. Let A be the coordinate ring of a reduced connected curve

over a field k. Suppose there are n irreducible components each isomorphic to

the affine line and m intersection points all of which are k-rational. Let K2iP)

be as defined above.   Then

SKX{A) = © K2iP) ®iM-m-n + l)K2(k)
p

where,M - 2 p.

The same methods yield simüar results for Pic A.   For a local Artinian A-al-

gebra R with residue field k, write KxiR) = k* © SKxiR) for the direct sum de-

composition induced by the split surjection R —*■ k.  (Since R is local, KxiR) =

R*, the group of units of R.  Thus SKxiR) » 0, and SKxiR) represents the extra

units in R, over those contained in k.) Let A be as in Theorem 1, and

KxiP) = cokerlsK xiA/I)P — © SKX (5//)

{Q ranging over all points in Y lying over the intersection point PE X). Then

we have

Theorem 2. For A as in Theorem 1,

Pic4 = (BKJP) © (M - m - n + l)k*.
p

Thus our task is to find the conductor I, and then to calculate the groups

K2{P). Now suppose that Spec .4 C Spec k[X, Y] is a reduced connected plane

curve over a field k satisfying conditions (a), (ß), (7) given in the introduction.

Then it is proved in [7] that the conductor I of A in its normalization n^^r,]

is / = Ylpmp^~1 where mp = (X - a, Y - b)A is the maximal ideal of the point

P and p is the number of irreducible components through P.  The calculation of

K2{P) in various cases wiU be done in the rest of the paper.

3. SKX of n Unes through one point.  Let Spec A consist of n distinct

lines through the origin. Then by a suitable choice of coordinates we have

A=k[X, Y]IXYiY-X)iY-a4X)--'iY-anX)

where 0, 1, a4.an are distinct elements of k.  We write the lines in this

form (instead of, for example, Y = a¡X, 1 < i < n) so we can see more clearly

what is happening in the first new case, n = 4.

The homomorphism A —*■ B = Ufmlklt¡] can be defined by itx{Y) = tx,

irx{X) = 0, and itt{X) = t¡, ^¡{Y) = a¡t¡, i >2 (o2 = 0, a3 = 1 and n¡ denotes

projection onto the ith factor). We have seen in §2 that the conductor I of A

4
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in B is / - (X"-\ X"-2Y, ....  Yn~l)A.    Thus

A/I = k[X, Y]l(Xn-1,X"-2Y,...,XYn-2, r""1)

and „

1=1

By Theorem 1 SA^i/l) = coketf:SK2(A/I) -»© ?=1 «^[ifl/lf""1. For any

reduced variety consisting of straight lines in the plane, the K2(Pys will all be of

this type. Thus the calculations of this and the next section, together with Theo-

rem 1 yield a description of SKX for any reduced affine variety consisting of

straight lines in the plane.

The group SK2(k[t)ltn~l) has been calculated by Graham in [4, p. 485] if

char/: = 0 or if char k > n - 1. He shows that SK^k^/t"-1) = S2fc[/]/r"_2í2fc[í].

The ring k[i)ltn~l is local so K2(k[t]lt"~l) is generated by Steinberg symbols

{xm, yv} [3, p. 252]  (x, y Ek*;u,vE k[t]/t"~* with constant term one). The

projection ■n:K2(k[t]lt"-1) -^SK2(k[t\¡tn-1) = S2k[í]/í"-2í2fc[í] is given

explicitly by

,,N , ,        v'dx , u dy . u Do    v Du
(1) n{xu,yv}=-+ --*-+-

[4, pp. 486 and 481].  Here ' denotes differentiation with respect to t, and D

means that we apply d : k —► Slk to each coefficient of a power series in k[[t] ].

I will equate a symbol in SK2(k[t]¡tn~l) with its image under 7r.

I do not know what the group K2(A/I) is.  However A/I is local so K2(A/I)

is generated by symbols.  Every element in A/I can be written (uniquely) in the

form aexp(gx)exp(g2) ••• exp(gn_2) where exp denotes the exponential function

and g¡ is homogeneous of degree i. Thus SK2(A/I) is generated by the Steinberg

symbols {a, expaXpYq} and {exp aXp Y*, exp bX'Y*} where a,a,bE k*.  It is

easily checked that (exp at1)' = ait1-1 exp at1 and D exp at' = t'Xda) exp at1. There-

fore from (1) we get

. . {a, expat'} = - /ar'-1 dala,

{expar'", exp bt'} = i/+/_1 (iadb - jbda).

From this and the definition of the projections 7r(. (using the convention 0° = 1)

we have

f{a, expa^Py*} = - (p + q)a(0p, 0", a\ ,. . . , o^)tp+q-1 da/a,

0< p + q <n - I. Here as well as later we write t = (tx, t2, . . . , tn). Taking

sums of such expressions we see that the contribution to Image / from the sym-

bols {a, exp aXpYq} is generated (as an abelian group) by elements of the form

(3) e(0/+1-"', 0m, <#, <,..., O^

for 0 </' < n - 3, 0 < m </' + 1, c E Q,k arbitrary.
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SimUarly

f{e\r}aXpYq,e\r)bXrYs}

= (0p+r, 0q+s, 1, al+s.cfln+s) iip + q)adb - (r + s)bda)tp+"+r+s-x

+ (0, 0, 0, a***-1 da4.a*+s-x dan)isp - qr)abtp+"+''+s-1.

The first vector is of type (3) so we need only consider the second type.  If we

set a = r = 0, ps > 0, we see that Image / contains all elements of the form

(4) a(0, 0, 0, a™ da4.am da„) r>

for 1 </<«-3,0</n</-l,tt6fc arbitrary. We cannot increase the range

of/ and m for arbitrary p, q, r, s.  For we always have 0<p + q, OO + sso

/ = 0 is impossible. It is obvious that m </.  If m = / then p = r = 0, and the

term sp - qr vanishes. For fixed / the / + 2 rows (0'+1 ~m, 0m, 1, a™.off),

0 < m < / + 1, occuring in (3) are linearly independent over k.  Therefore from

é we are left with (n -/ - 2)Slk, and 2"¿¡,3(n -/ - 2) = Z"'2]' = n_,C2.

Therefore we have proved

Theorem 3. Let k be a field with char k = 0 or char k > n - 1. Let

A = k[X, Y] ¡XY{Y - X){Y - a4X) • • • iY - anX).

Then SKX iA) = („_ x C2Í2k)/ V where V is a finite-dimensional vector space over k.

If n = 3 we saw in the introduction that V = 0, and if all the dai are zero

V = 0 also. The next section wiU investigate dim V more carefully.

4. The dimension of V.  Let Spec A consist of n distinct lines through the

origin, with notation as in §3. Both the generators and the relations for 5A",(4)

are homogeneous in t.  Thus SKxiA) is graded by the power / of t, 0 </ < n - 3.

The degree/ part of SKxiA) is then n£lk factored out by the subgroup generated

by elements of types (3) and (4) (for / fixed and m as indicated above).  The

cases m = 0 and m = j + 1 of (3) merely eliminate the first two copies of Q,k.

Thus we are left with (n - 2)Slk factored out by the subgroup consisting of linear

combinations of the rows of the matrix M,

1 a. ac n

M = da4

a4da4

da-

asdas

da„

a dan"   n

v/'-l da. J-i daK v/-i da„
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where as usual the first /' rows can be multiplied by arbitrary c E £lk and the

last / rows can be multiplied by arbitrary aE k.   Let W¡ be the subgroup spanned

by the first / rows. These rows are linearly independent over k, so (n -2)nk/W¡

= (n - j - 2)Slk.  Let V¡ be the image in (n - 2)Q.k/Wj of the fc-subspace of

(n - 2)Q.k spanned by the last /' rows of M.  Then (&"=q V¡ was denoted V in

§3,and5Ä'1U) = („_1C2S2k)/K

Clearly dimfc Vj < /'.   By row reducing the top and bottom half of M sepa-

rately and using the first row to eliminate another copy of Í2fc we end up with

(n - 3)i2fc factored out by the subgroup consisting of linear combinations of the

rows of Mx, where the first /' - 1 rows can be multiplied by c E Slk and the last

/' rows can be multiplied by A G k.

Mx =

'/-i

daA

daK

da
/+2

D,

da
7+3

D,

B

Here I¡_x is the (/ — 1) x (j - 1) identity matrix, Dx is a column vector over k

of length /' - 1, and D2 is a (/' — 1) * (n ~J ~ 3) matrix over k. B is a / x

(n - j - 3) matrix over Slk of the form

da/+4 n

B = B,
da,V+s

da„

where Bx is a /' x (n -j - 3) matrix over k.   (If / = « - 3 then D2 and B are

absent.)

Every /' x / minor of the first / rows of M is nonzero, hence so is every

0'-l)x(/-l) minor of the first / - 1 rows of Mx. Thus all the entries of Dx

and D2 are nonzero.  Similarly all the entries of Bx axe nonzero.

Let d = dimk(da4.dan), and suppose the a¡ are ordered so that the

first d of the da¡ are linearly independent over k.   Let the last /' rows of Mx be

ex, . . . , e¡. We wish to know for which \ Ek (1 < i </) \ex + ••• + A;e;-

is a linear combination of the first / - 1 rows of Mx. If it is such a linear com-

bination the first row of Mx must be multiplied by \xda4, the second by
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X2cfas, ... the (/ - l)st by A/_i<fa/+2.  Let D*x =idx,d2, . . . , d¡_x). Then

\xdxda4 + \2d2das + ••• + ^¡.xdj_xda¡+2 = \jdaj+3. The d¡s are all non-

zero, so if d > j there are no nontrivial solutions, i.e. dim V¡ = /.   lfd<j the

vector space of solutions (X,, . . . , X;) of the above equation will have dimension

/ - d.  Unless / = n - 3 there are other conditions on the X's coming from D2

and B that must be satisfied simultaneously, so the vector space of solutions

(X,, . . . , X.-) has dimension < / — d.   Therefore if d <j, dimfc V.- > d.   Altogether

we have dimfc V¡ > inf (/, d). We have already observed that dimfc V¡ < /.   If cf =

number of nonzero da¡ we have furthermore dimfc V¡ < inf(/, d'). I wUl try to

give a sharper upper bound on dimfc V¡.  If d > j we have already seen that

dim Vj = /.   Therefore assume that d < /.   Row reduce Mx to clear out the lower

left-hand block. This leaves us with

M2 =

'/-l Dl D2

0

where D is a / x (n - / - 2) matrix.  Clearly no linear combination of the first

/ - 1 rows of Mx can lie in the fc-vector space spanned by the rows of D.   There-

fore dim Vj = dimension of the fc-vector space spanned by the rows of D.  We

have assumed that dimfc(da4.dan) = d and that the first d of the da¡ are

linearly independent. Express the rest of the da¡ as fc-linear combinations of

da4.dad+3 (recaU that d<j). Then D = Axda4 + A2das + ••• +

Addad+3 where each A¡ is a/ x (n -/ - 2) matrix with coefficients in k.   There

are surjections row space of D —*■ row space of A¡, and the intersection of the

kernels of these surjections is zero. Thus dim V¡ < £fslranki4¿ < d'vnfij, n-j-2).

Of course dim V¡ < / so altogether we have

dim Vj < infO; dinfij, n - j - 2)) = inf'(/, d{n -j- 2)),

so

(5) inf(/", d) < dim* V¡ < infij, din - / - 2)).

I expect that "in general" we will have dimfc V¡ = inf (j, din -j - 2)). However

if d' < n - 3 we can try to improve the upper estimate on dimfc V.-. If d' < /

then, in Mx, daJ+3 and B are both zero. Thus the only nonzero entries in D

come from the final row reduction. A¡ can have nonzero entries only in row i,

and in rows d + 1 through d'. Therefore rank A¡ < inf id' - d + 1, « -/ - 2), so

d = inf(J, d)<dimkVj

< inf {d', d inf id' -d+I,n-j-2))     id<d'<j).

In particular if d = ¿ < / then dim Vj = d.   If / < d1 < n - 3 then A¡ can have
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(7)

nonzero entries in the first ct -j + 1 columns or in rows i* and d + 1 through/'.

That is, in d' -j + 1 columns or / - d + 1 rows.  Thus

rank.4,- < infQ, n - j - 2, d' - d + 2),

and

inf(j, d) < dimfc V¡

< inf(/, d inf (n -j-2,ct-d + 2))    (j<d' <n-3)

If d' = n - 4 this is the same as (5), but if d' < n - 4 (7) is an improvement

over (5).

Note that if /' = n - 3 then (5) says that dim Vj = d, as is easy to see direct-

ly. Perhaps my upper bounds are not the best possible, but they are sufficient

to indicate the flavor of what is going on. Any particular case is a problem of

linear algebra, assuming that one can work effectively with the da¡. I will con-

clude this section by giving some explicit examples.

If charfc = 0, then f2fc is a vector space over k of dimension trd(k/Q).  If

the latter is infinite, then dimkVj is of little interest if one's goal is the computa-

tion of SKX(A). To get interesting examples let k = Q(XX, . . . , XN) where the

X¡ are independent indeterminants. Let n <N + 3, and a4 = Xx,as = X2,

. .. , an = Xn_3. Then dimkVj =j for all/, and
n-3

dimfcK = ¿2 j - (n - 2)(n - 3)/2.

But £lk is a vector space over k of dimension N  Hence SKX(A) is a fc-vector

space of dimension N(n - l)(n - 2)/2 - (n - 2)(n - 3)/2.

Now suppose N = 1, X = Xx, and let o4 = X, as = X2,. . . , an = Xn~3.

Hete d=\, and the matrix M is as indicated.

M =

X

X2

1 X¡

0 dX

0       XdX

X2¡

2XdX

2X3dX

xn-3

x(n-3)2

j("-3);

(n - 3)Xn~4dX

(n-3)X<n-V2-ldX

0     X¡-xdX      2X2'~idX  •••    (n-3)X(n-3)i~1dX

However Slk = k and dX is a basis of Slk/k so the /'th component of SKX (A) is

(n - 2)k factored out by the subspace generated by the rows of M'. To obtain

M' the last /' - 1 rows have been divided by a suitable power of X.
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x"-3

j<"-3)2

... Jf(n-3)/

in - 3)Xn~4

•••      (n-3)(AT2)"-4

•••      (n-3)(A-Ó"~4

M' is of rank its smallest dimension, i. e. inf(2/, n - 2). To show this it is suf-

ficient to prove that a square matrix (2/ x 2/) of this type is nonsingular. One

way to do this is to consider the functions exp(at Y), exp(a2 Y).expfa- Y),

Yexp{ax Y), . . . , Yexp{a.Y), (exp denoting the exponential function).  For dis-

tinct real a¡ these functions are a basis for the solutions of a differential equation

with constant coefficients of order 2/.   Let rx exp(at Y) + • • • + r2j Y exp(a;- Y)

be a linear combination of the functions. If we successively differentiate and

evaluate at zero we get (with a¡ = X') (the transpose of) the above as coefficient

matrix. However no solution of a constant coefficient differential equation of

order 2/ can vanish together with its first 2/ - 1 derivatives, at zero. Therefore

there can be no nontrivial solution for the r¡. Hence the coefficient matrix must

be nonsingular, as required. The idea of a purely algebraic proof can be found in [8].

Therefore dim V¡ — inf (2/, n - 2) - / = inf (/, n-j-2) which is the upper limit

allowed by (5) in the case d = 1.

On the other hand let a4 = X, as = asX, . . . , an = anX with the a¡ dis-

tinct rational numbers.  In this case simUar reduction of the matrix M shows that

dim Vj = 1, which is the lower limit allowed by (5).

5. Further calculations of K2iP). Here we consider reduced connected

plane curves over a field k such that (a) aU irreducible components are isomor-

phic to the affine line, iß) each intersection point is ^-rational, (7) the tangent

directions of all the components through a given intersection point are distinct.

According to Theorem 1 it suffices to calculate K2{P) for each intersection point

P.  If we translate P to the origin and use the description of the conductor given

in §2 we see that

K2iP) = coker(SK2k[X, Y]I(X, Yf~x X © SK2k[tt]ltp-x\.

Assume that the slopes of the p components through P are °°, 0, 1, a4, . . . , a„

M' =

X     X2

X2     X4

1 X' X2'

0 1 2X

0 1 2X2

0 1 2X>
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so that the components through P can be written in parametric form X = fx (t),

Y = tx + gx(t) for the first component, and X = t¡ + f¡(t), Y = attt + g¡(t),

2 < i < p (a2 = 0, a3 = 1).  The f¡, g¡ contain only terms of degree > 2. We

know that SK2k[X, Y]/(X, Y)p~l is generated by symbols. The map fis in-

duced by the above parametric equations.  Thus using Graham's calculation of

SK2k[t)ltp~l and formulas (2) we can obtain generators and relations for K2(P),

as was done in §§3, 4 for straight lines.

The case p = 3 is the simplest. Because of the truncation t2 = 0 the f¡, g¡

are all zero, and K2(P) is the same as for three straight lines through the origin.

Thus we have

Theorem 4. Let X = Spec A be a plane curve satisfying conditions a, ß,

7 at the beginning of §5, with at most three irreducible components passing

through any point and chat k > 2.  77ie«

SKX(A) = NQ.k @(M-m-n + \)K2(k)

where M, m, n are as defined in Theorem I, and N is the number of points that

have three components passing through them.

I will not write out the case p = 4, as the method is illustrated adequately

by my example for p = 5.  This case differs from that of four straight lines

through a point in that the generators of image / need not be homogeneous.

However the conclusion is the same as in the straight line case, i.e. that K2(P) =

3Slk/V where F is a one-dimensional fc-subspace if da4 ¥= 0 and V = 0 if da4 = 0.

Now let p = 5.  Rather than trying to do the general case I will consider a

simplified example to show that phenomena of a different nature indeed can

occur. Consider the homomorphism k[X, Y]I(X, Yf —* flf=1 k[t¡]l(tf) defined

by X —> 0, Y —*■ f, in the first coordinate, X —* r2, Y —► 0 in the second, and

X-* t, + V?, Y -*■ atti for 3 < í < 5, a3 = 1.

As in §3, SK2k[X, Y]I(X, Yf is generated by elements of the form

{a, exp aXpYq} and {expaXpYq, expbXrYs} with a, a, b G k*. The image of

{exp aXpr>, exp b^Y*} in K2k[t¡) /(if) is of the form {expatP+q, exp ßt{+s}

+ symbols involving higher powers of t¡.  By (2) under the isomorphism

SK2k[t,]l(tf) at nk[tt]ltjnk[tt] the element {exp atf+q, expßtrf+s} is identi-

fied with tf+q+r+s~1((p + q)adß-(r + s)ßda). Thus we need only consider

p + </ + r + s<3.

If only Y occurs or if p + q = 3 in the first case orp + <7+r + s = 3

in the second then the image is the same as in the straight line case because the

X,- disappear due to the truncation. Thus the only new cases where we have to
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calculate the image are {a, expaX}, {a, expaX2},{a, expaXY}, {expaX, exp bX}

and {exp aX, exp bY}. In each case the calculation is straightforward using (2), so I

wül give only the result. (As before t = itx, . . . , ts).)

(a)   f{a, expaX} = [(0, -1, -1, -1, -1) + (0, 0, -2X3, -2X4, -2Xs)r] a dala,

f{a, expaX2} = [(0, -2, -2, -2, -2)f

W + (0, 0, - 6X3, - 6X4, - 6X5 ) t2 ] a da/a,

fia, expaXY} = [(0, 0, -2, -2a4, -2a5)r

^C) + (0, 0, -3X3, -3X4a4, -3Xsas)r2]aifa/a,

f{expaX, expbX) = [(0, 1, 1, 1, l)r

(d) 4- (0, 0, 3X3, 3X4, 3X5)r2] iadb - bda),

f{expaX, exp bY} = (0, 0, 1, a4, as)iadb - bda)t + (0,0,0, da4, das)abt

(e) + (0, 0, X3, a4X4, asXs){2adb - bda)t2

+ (0, 0, -dX3, 2X4da4 -a4d\4, 2Xsdas - asd\s)abt2.

Note that (d) is a sum of expressions of type (b) so we need not consider (d)

any further.  However

/{exp aX, expbY} = (0, 0, 1, a4, as)iadb - bda)t

+ 1.5(0, 0, X3, 0:4X4, asXs)iadb - bda)t2

+ 0.5(0, 0, X3, a4\4, as\5)d{ab)t2

+ (0, 0, 0,.da4, das)abt

+ (0,0,-£/X3,2X4<J*a4 -a4ííX4,2\sdas -asd\s)abt2.

The first two terms are the sum of expressions of type (c), so we are left with

elements of the form:

(0, 0, 0, da4, das)abt

(f) + (0, 0, -ÍÍX3, 2X4<fa4 - a4d\4, 2\sdas - asd\s)abt2

+ 0.5(0, 0, X3, 0:4X4, as\s)t2 diab).

In addition to the generators (0 we have obtained as generators linear combina-

tions of the rows of the matrix M2, where all rows except the last two can be

multiplied by c E £2fe, c arbitrary, and the last two rows can be multiplied by

\Ek,\ arbitrary.
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Ai,

Olli    1 0 0 2X3 2X4 2XS 0 0

101a4a500   0    0     0   00
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1   1    1

ai   os

00

00

00

01

00

00

1 o

00

00

o
o

3X3

1.5X3

o
1

1

1

1

o
o

o

o
3X4

1.5a.X,4'v4

O

1

aA

da.

aAdaA

O

O

3X5

1.5ttsXs

O

1

«s

a2

das

asdas

(The first five columns are of degree 0 in t, the second five are of degree 1, and

the last five are of degree 2. Within each block of five, the components are in

order.) Omitted entries are zero. The first row is (a), the second comes from

{a, exp aY}. The next two are (b) and (c), and the fifth is /{a, exp aY2}. The

last six come from {a, exp^T*} (p + q = 3) and {expXpYq, expXrY*} (as

in §4 for five straight lines through one point).

Now consider a particular case. Suppose that X3, X4, Xs, a4, as axe all

rational (i.e. d\¡ = 0, da¡ = 0). Then (f) consists of all elements of the form

(0, 0, O.5X3, 0.5a4X4, 0.5as\s)t2d(ab). If the matrix

ûu

a4X4 «5*5

is nonsingular, then K2(P) ^ 3fifc © 2£2fc © Sljdk.   Here K2(P) is not even a

fc-vector space, as it was in all previously considered examples. If the matrix is

singular we get 6i2fc.
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