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ABSTRACT. Let u be a signed measure on the unit circle 4 of the
complex plane satisfying (ul(4) < e, where |u|(4) is the total variation of
M, and let ; be the conjugate function of u. A theorem of Kolmogorov
states that for each real number p between 0 and 1 there is an absolute con-
stant C,, such that (2m) ' [3"1a (e*)1P 40)' /P < C,lul(4). Here it is
shown that measures putting equal and opposite mass at points directly
opposite from each other on the unit circle, and no mass any place else,
are extremal for all of these mequahtnes, that is, if v is one of these mea-
sures the number ((27) lf%"l v(e )|p dO)l/p/IvI(A) is the smallest possi-
ble value for Cp. These constants are also the best possible in the analo-
gous Hilbert transform inequalities. The proof is based on probability

theory.

1. Introduction. Let u be a signed measure on the unit circle 4 =
{e®: 0 <6 <2n} of the complex plane satisfying |ul(4) < oo, where |ul(4) is
the total variation of u. Let i be the conjugate function of y, that is

(') = lim I <—i'e—> du(e), 0<6 <2,

r—1

and define

~ 1 27 . 1/p
ull, = (-z-;fo Sl d0> .

A theorem of Kolmogorov [7, Vol. 1, p. 260] states that for each real number p be-
tween 0 and 1 there is an absolute constant C, such that

(1.1 IR, < C,lui(4).

Here it is shown that the smallest possible value for Cp is Il';llp, where v is
the measure given by v(1) = %, v(~1) =-%, and |{z €EA: z #+1} = 0. That
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is, the measure v is extremal for all the inequalities (1.1). The constant lIwll, is
also smallest possible in the analogous Hilbert transform inequalities. That it is
an upper bound can be shown by an easy modification of the proof in Zygmund
[7, Vol. 2, p. 256] of a similar result involving the M. Riesz inequalities, and
that it is a lower bound can be shown by examples similar to those of [2, §4].

Pichorides has shown [6] that the besi possible value for C, in order that
(1.1) hold for all nonnegative measures is I\, where A is a nonnegative measure
putting mass one on a single point and no mass anywhere else.

The approach used here is to solve an optimal stopping problem for two
dimensional Brownian motion and then apply this solution to the conjugate func-
tion inequalities, the same method used in [2], where the weak type inequality
for conjugate functions is considered. This is discussed more thoroughly in the
next section.

If an equation or inequality holds with probability one but not at all points
of the underlying probability space, which usually happens in the following be-
cause it involves a conditional expectation or distribution which is only defined
up to sets of measure 0, this will not always be explicitly mentioned.

2. Preliminaries. Denote by m the measure d6/2m on A4, and let u be a
totally finite signed measure on 4. Let D = {z: |z| < 1}. Define f, =fon D
U A4 by

el — 2

&=, <ew - z>du(e""), z€D,
and
fle®) = B ) + () ae. (m),

where by du/dm is meant the Radon-Nikodym derivative of that part of u which
is absolutely continuous with respect to m. The following formulas hold (see

[7n.
@.1) j:" Re f(re™®)| dm(e®®) # ul(4) asr 7 1.
(2.2) £(0) = p(A).

Now let Z,, 0 <t < o, be standard two dimensional complex Brownian
motion started at 0, and let 7, = inf{t > 0: |Z,| = 1}. It is a result of P. Lévy
(see [5, p. 109]) that f(Z,), 0 <t < 7p, is a two dimensional Brownian motion
with a time change. More precisely, if y(s) is defined by

19 = [ 11 @) ar,
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then 7 is almost surely strictly increasing on [0, 7] and if B} = B, is defined
by

B'y(t) = f(Zt)a

then B, 0 <s <e = y(7p), is a standard complex Brownian motion started at
f(0) = u(A) up to the time e = e(u). For convenience define B;,, — B, =
Zstrp ~Zrp» S > e, 50 that now B,, 0 <t <o, is standard complex Brownian
motion. If fis a univalent map of D to some region R of the complex plane
then e is the first time B, leaves R and is thus a stopping time. In general, it is
not clear that e is a stopping time for B, but in view of the fact that it is the
stopping time 7, for the preimage process Z,, in manipulations involving the
Strong Markov Property e can be treated as if it is a stopping time. For the rest
of this section times for which the Strong Markov Property holds will be called
quasi-stopping times.

If T is any subarc of 4, AZ,, €T) = m(T), so that

(23) IKlly = Ellm f(Z, )P = E|ImB,|”.
Furthermore,
(24 lui(4) = lim EIRe Bryjp 1)

For let 7,, = inf{t > 0: |Z,| = r}, and let e, = 9(7,p). Then
2 . .
EIReB, |= [ " Re f(re”)l dm(e™).

Since f is bounded in {z: |z] <r}, 0 <r <1, ReBnin(e,r), 0 <t <o, is a
bounded martingale so that

(2.5) ElRe Byyjn(e o)l # EIReB, | ast 7 oo,

Also, for fixed #, Re B 105y, 0 S5 <, is an L? bounded martingale so that
e, 7eas.asr 7 1 implies

min(e,t)l asr 2 1.

(2.6) EIRe Byjn, | # EIRe B

Since E|Re By, in (e, 1)l is nondecreasing as t —> o, (2.5), (2.6), and (2.1) imply
(2.4).

Let v be the measure described in the second paragraph of the introduc-
tion. Then

1f1+z ,z-11_ 2z
f”(z)_2[1-2+z+l]—l—zz
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is a one-to-one map of D onto the doubly slit plane {x +iy: x #0orx =0,
-1 <y <1} = SP. Thuse, is the first time that By leaves SP. In general, let
Tgp be the first time a Brownian motion leaves SP. Then, by (2.4),
@D lm ElZningrgp! = I ElBpinge,| = W(4) = 1.

The central result of this paper can be stated as follows.

THEOREM 2.1. If u is a signed measure on A satisfying |ul(4) = 1 then
1715 > llulp, 0 <p <1.

In view of the preceding discussion the following theorem implies Theo-
rem 2.1. It is noted that |ul(4) = 1 implies —1 < p(4) <1 and that f,(0) =
u(A) is the starting point of BY.

THEOREM 22. Let Z, = X, + iY, be standard two dimensional Brownian
motion and let P, and E, denote probability and expectation associated with Z,
given (Z, =a) = 1. Let r be a real number, =1 <r < 1. If e is any quasi-
stopping time such that lim, o E | X ¢,y = 1 then

(28) E,|YIP <EY, P, 0<p<l.

Since it is easy to show that Theorem 2.2 need only be proved for times e
satisfying X, = 0, this will be done now.

PROPOSITION. Let e be a quasi-stopping time. Let ¢' = inf{t > e: X, =

0}. Then
lim ErIXmin(t,e)l = t]'_if:o Erlein(t,e')L

t—>oo

and E|Y,|P > E,|Y,IP,0<p<1.

PrROOF. Let v be the first time Brownian motion hits the imaginary axis /.
By a result of Kakutani (see [3]), if h(z) is defined by h(2) = E,|Y,|”, Rez >
0, then h(z) is the minimal positive harmonic function defined on Re z > 0 with
boundary values |y|? at iy, that is, the Poisson integral of these boundary values.
This function is easily calculated, since it is (1 + cos pm)™! times the sum of the
real part of the principal branch of &/iz and the real part of the branch of Y=z
for which —27 < argz < 0.

We have

h(z) = |zIP [cos pp + cos p(m — ¢)] /(1 + cos pm),

where ¢ is the angle between z and the negative imaginary axis, 0 < ¢ < m. Ex-
tend A to the entire plane by making it symmetric around L It is not difficult
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to show that A(z) = |z|P. It suffices to prove this only on {|z| =1, Rez > 0},
where

dh(9)/d¢ = p(sin p(m — ¢) — sin pg)/(1 + cos pm),

which is positive if 0 < ¢ < /2 and negative if /2 < ¢ <. Together with the
fact that k(1) = h(-1) = 1, this shows h(z) = 1 if |z| = 1. Thus, if e is as in
the statement of Theorem 2.2, and e’ = inf{t >e: Z, €1},

E,|Y,|P =EE(Y,IP|Z,,0 <t <e) =E[, |Y,I” = E,hZ,)
>E,ZP >E,IY,IP.

Also, lim,, . E, | Xpin(r,e)) = iMps oo, [ Xmin s,en| since a martingale increases
in L' norm only when it crosses 0, and X and X, do not have different signs if
e <s<e'. (More formally, E(Xpin(t,en Xmin(t,e)) = Xmin(r,e) 3- since
Xmin(s,e)y 0SSt isan L? bounded martingale. Since X5 s,y and
Xomin(z,e) are of the same sign, E(IX 50 (s,e)l Wminz,e) = | Xminz,e)l 259
Thus, Proposition 2.1 holds.

3. A discrete time stopping problem. The functions p and F, the random
variables X;, i > 1, and the o-fields F;, i > 1, will be defined in §4, but for now
some of their properties will be given which will enable them to be dealt with.
The function p(s), —o° < s < oo, is an even and nonvanishing probability density
function satisfying p(s) < p(#) if Is| > |¢|, and F{(s) is a continuous positive even
function on the reals satisfying lim,_, .F(f) = 0 and F(s) < F(¢) if |s| > [¢]. The
random variables X;, i > 1, are independent and identically distributed, each
with density p(s), and we put S5 = 0, S,, = T, X;. The sequence of o-fields.
Fi. i > 1, satisfies F; C F;yq, and (X;, ..., X,) is F,, measurable. Furthermore
(X, +x k >1) is independent of F,,. By stopping time in this section will be
meant any positive integer valued random variable N such that {N =k} € F
for each k. If N is a stopping time define

AN = 3 E[FSIV> ),

where I stands for the indicator function of the set displayed.
If 7 is a nonnegative real number define the stopping time N, by

N, = inf{k: |S| >7}.
Since P(N, = k + 1IN, > k) = P(1X,| > 2r) > 0, we have
PN, > k) < [1 - P(IX,| > 2n)]¥
which gives that EN, < oo for each r and also that EN, — 0 as r — 0

since P(|X,| > 2r) — 0 as r — 0. Furthermore, since each S, has a
continuous distribution, lim,, NV, = N; a.e., and since N, < N, if a <b, the
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dominated convergence theorem gives lim,_, EN, = EN;. (The dominating vari-
able can be taken to be N,;.) Clearly, lim,_, ., EN, = . Finally note that
PN, <N,) >0 if a <b since X, has a nonvanishing density. Thus EN, in-
creases continuously from O to o as ¢ increases from O to oo,

If X is any continuous random variable and B is a measurable set we
define the density of XI(B) to be a function f on the reals satisfying
P({a <X <b} NB)=f2f(t)dt. Thus, if T is a stopping time and if A, is the
density of S;I(T > i), an alternate formula for AT is

(3.1) AT = F(0) + f [~ Fom@a.
i=1

The following lemma is true under only the conditions on p and F given in the
first paragraph of this section but is much more easily proved for the application
we have in mind. Its proof will be given in §4.

LEMMA 3.0. Let a be a positive real number. There exists a real valued
function ¢ (n), n = 1, which decreases to 0 as n — o such that if N is any stop-
ping time satisfying EN = o and h(t) is the density of S;I(N > i) then

T [ Fom@dr < g, m.
i=n
The main result of this section is

THEOREM 3.1. Let M be a stopping time such that EM < o. Let r be that
number satisfying EN, = EM. Then AN, = AM.

The proof of Theorem 3.1 proceeds via a sequence of lemmas. If fand g
are any two positive functions write f < gif f is f@dt < ffag(t) dt for each §
>0and f < giff < g and there is strict inequality between the integrals for
some & > 0. The following two lemmas follow from a standard integration by
parts argument, using the fact that p(s) and F(s) are even functions which de-
crease on (0, «). The proofs are not given. The symbol % stands for convolution.

LEMMA 3.1. If f and g are nonnegative functions and f < gand [ _g(t)dt
< oo then
() SZfOF@) dt < [Z8()F() dt.
@) f+p<zgxp.
If in addition f < g then

(ii)) SZLFOF®)dt < [Z.g(OF(®)dr.
The proof of the next lemma is also omitted.

LEMMA 32. If f and g are nonnegative functions and f < g and if a satisfies
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J2 f(e)dt = [2 g(r) dt then
r<gll-a, a].

Now regard the time M of Theorem 2.1 as fixed. There is a sequence a,,
a,, . .. of real numbers in [0, ] such that if K = inf{k: |S;| > a,} then
P(K > n) = P(M > n). The a; are chosen recursively as follows. Let a, satisfy

(3.2) I:’ll p(s)ds = P(M > 1).

Now if p, is the density of S,/(S; <a,), define a, by ffgzpz(s) ds = P(M > 2),
and so on. Since [~ p,(s)ds = J24,p(s)ds = P(M > 1) = P(M > 2), such a
choice is possible, and this is the unique a, that gives A(M > 2) = (K > 2) given
that @, is chosen by (3.2), unless @, was 0, since p, is nonvanishing. The suc-
ceeding a; are chosen in the same manner, and are unique up to the first a; which
is 0, an event which happens only if P(M > n) = 0 for some integer n.

LemMa 33. If K is defined as above then EK = EM and AK > AM.

PROOF. Let v; be the density of S;/(M > i) and A; be the density of
S;I(K >1i). Theny, < A; by Lemma 3.2, where here p plays the role of g in
that lemma and v, the role of . Thus, by Lemma 3.1(ii), v, * p < A, *p,and
again by Lemma 3.2, v, < A,, here with A; * p playing the role of g in that
lemma and v, the role of f. (Note v, < Y, *P < A, * p, the first < since
{K>2} C {K>1}) Continuing in this manner we get v; < A, for each i, and
Lemma 3.3 follows from formula (3.1) and Lemma 3.1(i).

LEMMA 34. Let 0 = sup AT, where the supremum is taken over all stop-
ping times T satisfying ET = EM. Then there is a sequence of real numbers a,,
dy, ... such that if Q = inf{n: |S,| >a,} then EQ = EM and AQ = 0.

PrROOF. Let T; = inf{k: |S,| >a;},i=1,2,...,satisfy ET; = EM and
lim;_, ,AT; = 6. That such T; exist is a consequence of Lemma 3.3. We can and
do assume lim;_, ..a;, = a; exists (it may be +o9) since if this is not the case di-
agonalization can be used. Define Q as in the statement of the lemma. Then
clearly lim,_, JXT; > k) =P(Q > k), k= 1,2,...,since the distributions of
S, are continuous, so that EQ < lim_, . ET; = lim EM = EM. Also, if hy i is the
density of S, I(T; > k), and h,, is the distribution of S, /(Q > k), the bounded-
ness of F and the continuity of the distributions of S, give

tim [~ b F@dr =" n@F@ar.

Then, using Lemma 3.0, for fixed n,
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40> FO) + Y. [~ h@F@ ar
k=1

= F(0) + lim Z [ hpF@)ar

—book

= lim [AT, 2 j K, k(t)F(t)dt]

{=voo k=n+

>0 -tpEM(n + l),

implying AQ = 0 so that in fact AQ = 6 and thus EQ = EM, for if EQ < EM we
could make Q bigger in any manner whatsoever to get a Q' satisfying Q' = EM.
But then, since F is nonvanishing and Q' > Q, AQ' > AQ = 0, contradicting the
definition of 9.

The proof of Theorem 3.1 will now be completed by showing that N, = Q,
where @ is defined in Lemma 3.4. This will be done by showing that if any of
the a; which define Q are not r then there exists a time a satisfying Ea =EQ
and AQ' > AQ = 0, a contradiction to the definition of 8. Let 4 be the first in-
dex such that @, # r, and suppose first that a, <r. Let X be the first index
such that @y, >r. Such a A\ must exist since EQ = EN,. Let

p=Pa, <S5, <r,Q>7-1)

and pick 0 < e, <a, to satisfy 0 <P(r < S, <e,O@>N<p Ifk>0let
&x+x be the density of S, , . I(r < S\ <e,, @> A\ + k). Let Q be Q unless
Q >\ and r < S, <¢,, in which case let 0 =\. Then

B0=£0- % [~ &, and 40=40- z [~ a@r@ar

Define §,, to satisfy P(Dy) = JZ8), where Dy = {a, <SS, <8,,0>7~1}.
Noted, <r. Let8,4y,8y42,. .. satisfy P(Dy) = [Z.g) 4, Where

Dy=1{a,<8,<8,0>7- 1,18, 11 <841, .., 18,441 <8 44}

Note that if Q is replaced by @ in this definition D; remains the same. Let

fy+r be the density of SiI(Dy), so that [ f,,h = [Z.gr4x = k > 0.
Clearly g, < fo» and thus by arguments sumlar to those used in the proof of
Lemma 3.3, 8, ,x < Fy+x k> 1. Define 0 = 0 except on D,, and on Dy let

O=q+k 18,4, 1<8,41,.- 18y 4pe1l <8yrrots Syarl =8,4s



KOLMOGOROV’S INEQUALITIES 187

Then

EO=£0+% [ _f,=E0,

i=vy
and

aB=40+ % [_foF@d

i=y
S0+ 3 |~ sF@dr =40,
i=A

by Lemma 3.1(i) and (iii).

The other possibility, a, >r, can be handled by a similar construction,
which will not be explicitly given. A new stopping time @ is constructed which
stops with positive probability on {@ >y -1, a, <|S,1< r}, but is otherwise
the same as Q, and then @' is constructed which is the same as O except that it
continues with positive probability on {Q = A, a, <S8, <r}. The details of the
construction are very similar to the preceding and as before we get AQ > AQ
and EQ = EQ.

4. Application of Theorem 3.1. In this and the next section the proof of
Theorem 2.2 will be completed. To avoid some notation this will be carried out
in full only for times e which are stopping times, and not for the slightly more
general quasi-stopping times. Since, as already noted, quasi-stopping times can be
manipulated as if they were stopping times, this approach does not entail an
essential loss of generality. The exponent p will always satisfy 0 <p <1. Other
notation will be the same as in the statement of Theorem 2.2. E, and Py will
be shortened to £ and P. The number § will satisfy 0 < § <1 and will be fixed
in this section, although later it will be allowed to vary. Class J will be the class
of those stopping times T for Z, which satisfy

(@ AT>0)=1.

(®) PXp=0)=1.

(c) There is an s < T such that P(|1X;| = & and |X,|#0,s<t<T)=1.

Another way to describe class J is the following.

Define v, = 0, and, if i > 1,

[li = inf{t > Vi—l: Ith = 8}’ V'- = inf{t >’1[: Xt = 0}'
Then T is in class J if and only if 2;;11’(1' = ;) = 1. For each real number s
> 0 let f(s) be that stopping time in class J given by f(s) = inf{y;: |Y; | > s}.

It will be shown that lim,_, . E1X 5 (s(s),n| is 2 continuous function of s which
is strictly increasing from O to oo. This will follow from Lemma 4.1 and the
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remarks made at the beginning of the last section. Let § stand for that f(s) for
which the value of this function is 1. The main result of this section is

THEOREM 4.1. Let e € J and suppose lim,_,,,Elein(e,,)l = 1. Then
E| Yel” < E| Yﬁlp.

Before stating the following lemma we remark that inequality (4.1), with a
different constant in place of 1.348, can be proved by noting that X,,0 <t <T,
and Y,, 0 <t < T, are both martingales which have square function /T under
P, and then using the continuous analog of Theorem 6 of [1].

LEMMA 4.1. Let T be a stopping time for Z, = X, +iY, Let Y%
= supg<s<r | Yyl There exist positive constants K, which do not depend on T,
such that E(Y$)? <K lim,, o E1X 00,7y |-

ProoOF. The arguments of [2] imply
“4.1) AP(Y$ > ) < 1.348 lim ElX minge )l =w.
t—oo ’

Thus EY3P = [GP(YS > 1)dt < wP + (2w~ P dt = wP + pwP[(1 - p), the
desired result.

Now abbreviate 4, and v, to u and v. Let p(s) be the density under P of
Y,. Then p(s) = a * b, where a is the density of Y, and b is the density under
Py of Y.,, where 7y remains inf{z > 0: X, = 0}. Both @ and b are the densities
of harmonic measures whose exact form is known, and it is easily proved that
the p of this section has all the properties claimed for p in §3.

Define F(f) = E;,|Y,IP — |t|P, —oo <t < oo, This F also has all the proper-
ties of the F of §3, which will now be verified. Let h(z) be defined as in §2,
and let 9A(it)/on be the derivative of 4 in the normal direction to I This value
will be the same as the derivative of & along a circle centered at 0 of radius ¢ and
we have

42 g—:(it) = t|P7 p sinpn/(1 + cos pr).

Since this is positive, & is subharmonic at all nonzero points of I and since 4(0)
=0, h(z) > 0 if z # 0, h is subharmonic at 0 also.

Let S be the vertical strip {x + iy: =8 <x <48}, and let u(z) be the smallest
positive function harmonic in the interior of S and continuous on S satisfying
h(z) = u(z) on the boundary of S. Then

Ey\Y,I? = E, (1Y, \PIZ,) = Ey By |Y, P = ELENZ,) = u(in).

Thus, if g(z) = u(z) — h(z), z € S, we have F(t) = g(it). It is easily checked that
g is a pure potential since it is superharmonic in S, vanishes at the boundary of
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S, and does not grow too fast at infinity. Since g is harmonic inside S except on
I, the Riesz mass associated with g is concentrated on /, and it is known that it
is proportional to dk/dn (see [4]). Thus, if G(z, z,) is the Green function for
S, we have that there are positive constants B, such that

(4.3) ¢@) =B,[ _1tP7GG, ind.

Now G(it, iy) is a continuous function of |¢ — y| which decreases strictly
and exponentially to O as |¢ — y| approaches infinity. Thus, considered as a func-
tion of y, G(it, ) < G(s, + ) if || > Isl, and thus (4.3) and the analogue of
Lemma 3.1(iii) where F is replaced by ||~} imply that F is strictly decreasing
on (0, =). It is easily verified that F has the rest of the properties listed in the
first paragraph of §3. Define S; = Y,;,i>1,S, =0, and F; = o(Z,, t <v;).
Then under P the random variables S; — S;_,, i 2 1, are independent and iden-
tically distributed with density p(s) and furthermore (S; — S;_,, i > n) is inde-
pendent of F,,.

There is a one-to-one correspondence in the obvious way between stopping
times in class J and stopping times for (S;, F;, i > 1). If T is in class J, N(T)
will stand for the associated stopping time for S;.

LEMMA 42. If T is in class J then lim,_, o E1X ;0 ¢, | = SEN(T).
ProOF. Ifn=0,1,2,... and ¢t 2 0 define
Qn(t) = 'Xmin(t,vn_,_l)"(vn < t)I(T > Vn).

Then Q,,(¢) is the absolute value of a martingale. Since X0 (s, ., ,) and
X y do not have different sign,

min(t,vpy 41
EQ,() = EXmingrs, , )\ @n <DIT >,) # ESI(T >v,)
=6PAT>v,) ast—> o,

For any ¢ > 0, at most one of Q(f), Q,(¢#), . . . is different than O since
X, =0 forall k. Also, [X 0,1yl = Z,20Q,(0), and thus E1X i1, 1yl in-
creases to Z.°_(8P(T >v,) = 8EN(T) as t increases to .

LemMMA 4.3. If T is in class J and EN(T) < o then AN(T) = E|Yr|P.

ProoF. We have, for n =0,
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EIYmin(T,v”_'_l)lp —ElYmin(T,vn)lp =E(Y,

n+1 lp - IYmiﬂ(T,Dn)lp)I(T> vn)

= EE(Y, P =Y, IPIZ,s <v)I(T >v,)
= EEz, (1Y, = 1Y, [P)(T>v,)

= EF(Y, )I(T >v,) = EF (S,)IQNT) > n).

Thus E1Y 0 7,0,)|” = ZE=6EFS,)IN(T) > k). Since min(T, »,,) increases to
T as n — oo, the dominated convergence theorem and Lemma 4.1 give E| YTIP
= AN(T).

PrROOF OF LEMMA 3.0. As in the proof just made it can be shown that, in
the notation of Lemma 3.0 with N = N(T),

i f :,, F@Oh(r)dt = i E(1Y;yy P = 1YP)(T > v)

i=n i=n
= E(Y7l? - 1Y, )T >v,) <EYp - Y, PI(T>v,).

Let |Y7 - Y, (T >v,) = W. Note that, on {T>,},|Yr - Y, | <
2 supg ;< 7! Yyl s0 that (4.1) gives

NPW >N <3 lim ElXpu0 0.l = 3 ENJS = 3a/5.
t—>oo ’
Also, since P(N > k) is decreasing in k,

AW >0)<PAT>v,)=PN>n)<EN/1+n)=0a(l+n).
Thus, -
E\Y7 =Y, IPI(T>v,) = EW’ = fo P(WP >N dA

© a 3a0"1/P
<Io mln<n+l ’ ) >d)‘

This last expression may be taken to be g, (n).

Although & has been assumed to be fixed in this section to reduce notation,
it will soon be necessary to let § — 0, so the class J of stopping times will be
called J(5) to signify its dependence on §, and v; will be called v;(§). Given &>
8, n(e, 8) will be the stopping time inf{,(5): 1Zyy 5yl > f (e, 8)}, where f(a, 5)
is that unique nonnegative number satisfying EN(n(e, §)) = /8, which implies
lim,, ElX 00 (,’n(a's))l = a by Lemma 4.2. Also, Lemma 4.3 guarantees that,
if 8 is fixed, E| Yn(a,s)l" increases as & increases. Together with Theorem 3.1
and Lemmas 4.2 and 4.3 this gives

THEOREM 4.1. Let 0 <& <1 and a > & be real numbers. If T € J(6) and
imy, Bl X mince, 1)) < & then E| YrIP <ElY(e,5)°-
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5. Proof of Theorem 2.2. Theorem 2.2 will first be proved for the special
case 7 = 0 in (2.8), which amounts to proving Theorem 2.1 for the special case
u(A4) = 0. For 0 <§ < oo define the stopping time 85 by 85 = inf{v;(8):
[Yy5)l =1 + 8}, and if a > 0 define 7,5p = inf{t > 0: X; = 0 and |Y,| > a}.

Note 7y gp = 7gp. Then linearity gives lim,_, .. E1X =a. Since 05 >

iﬂ(t,fasp)l
T(1+6)SP?

G.1) lim ElXpingo,,n > 1+ 8.

t—>oo

Arguments of §3 together with Lemma 4.2 imply lim,_, . ElXmin(e 4,0l <.
Since P(Z, ever hits +i) = 0, P(limg, 405 = 7gp) = 1, and thus using the domi-
nated convergence theorem via Lemma 4.1 we get

i - 4
(52) m E| Yesl E| Y“’spl .

Now let e be any stopping time for Z, satisfying | Y,| = 0 and
limy, E|X 1 incr,eyl = 1. Define a(8) = inf{t > e: | X,| = 8} and b(5)
= inf{t > a(8): X, = 0}. Then b(5) is in class J(5) and an argument similar to
that used to prove Lemma 4.2 gives

(53) lim B i ge,p (5] = lim ElX i (r,epl +8=1+3.
Also, since clearly Y, ) — Y, in probability,
.49 lim E|Y,)|? S E|Y,IP.

540

Theorem 4.1 with & = lim,_, . E| X 140(r,04)| together with (5.1) and (5.3)
imply

EIY%I” ZEY, 5P, 0<8<ee
This together with (5.2) and (5.4) gives
EIY, P > EIY,I°,

completing the proof of Theorem 2.2 in the case r = 0.
The following proposition can be proved by essentially minor modifications

in the proof of the above result, including both § §3 and 4, and its proof is not
given.

PROPOSITION 5.1. Let =1 <r <1 be a real number and let e be a stopping
time satisfying lim,_, E | X yin(1,e)| = 1. Then

EY P <ELY, P
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where m(r) satisfies
tli—?:o Er Xmine, ol = 1
The proof of Theorem 2.2 will be completed by showing that

(5.5 E,|Y, P <ElY,_|P, -1<r<1.

m(r)SP SP

Note m(0) = 1. It is not hard to show that m(z1) = 0. Inequality (5.5) will be
shown by constructing a stopping time ¥ = ¥, satisfying lim,, o E1X ;04 4 )| =
1 and

P — p
(5.6) ElYy P =EIY, ool

Since Theorem 2.2 is already proved for » = 0O this and Proposition 5.1 establish
(5.5). Let a=inf{t >0: |X,| =7/2} and let ¢ = inf{t > a: X; =0 and |Y,]
=m(r)}. Note that if Z, starts at r then ¥ and 7,,,(,)sp are the same. Also note
that the distributions of Z, under P, and P are the same, and thus the distribu-
tions of Y, under P and under P, are the same, which gives (5.6). Forafixed t >
0, the distributions of | X0, y)/(f = o)l under P and P, are the same, as are
the distributions of | X1, ¢y — 7/211( <a). Thus

IE N X mince,w)l ~ ElXmingeo)l | ST <) =0 ast— <,
implying
lim E‘Xmin(t,\ll)l = th—l:l’ Erlein(t,\P)l

t—>o0

= lim E,|X,,

t—>oo

in(t,‘l’m(,')sp)l =1

Albert Baernstein II has observed that the proof here almost unchanged
gives that Ilvllp is also the best constant in the inequality || f + I?IIP <KPII fllys

0<p<1.
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