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ABSTRACT.  Let ¡i be a signed measure on the unit circle A of the

complex plane satisfying IjuICA) < °°, where \n\(A) is the total variation of

u, and let ju be the conjugate function of p..  A theorem of Kolmogorov

states that for each real number p between 0 and 1 there is an absolute con-

stant Cp such that (Cít)~1 ¡\^\ß(el9)\p dB)llp < Cp\n\(A).     Here it is

shown that measures putting equal and opposite mass at points directly

opposite from each other on the unit circle, and no mass any place else,

are extremal for all of these inequalities, that is, if y is one of these mea-

sures the number (,(2ir)~l¡2),r\v(e'e)\P de)l^P/\v\(A) is the smallest possi-

ble value for Cp.   These constants are also the best possible in the analo-

gous Hilbert transform inequalities.  The proof is based on probability

theory.

1.  Introduction.  Let p be a signed measure on the unit circle A =

{e'e : 0 < 0 < 27r} of the complex plane satisfying \fi\(A) < °°, where \ß\(A) is

the total variation of p. Let p be the conjugate function of p, that is

»/•) = ton £' ta(£i£) 4*n   o < e < 2,,

and define

^p = \2hC ^et6^Pd6

A theorem of Kolmogorov [7, Vol. 1, p. 260] states that for each real number p be-

tween 0 and 1 there is an absolute constant Cp such that

(1.1) iip|ip<cp|pp).

Here it is shown that the smallest possible value for C  is IML, where v is

the measure given by KO - &, K~l) = _1¿> and |i>|{z G A: z ¥= ± 1} =0. That
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is, the measure v is extremal for all the inequalities (1.1).  The constant |MI   is

also smallest possible in the analogous Hilbert transform inequalities.  That it is

an upper bound can be shown by an easy modification of the proof in Zygmund

[7, Vol. 2, p. 256] of a similar result involving the M. Riesz inequalities, and

that it is a lower bound can be shown by examples similar to those of [2, §4].

Pichorides has shown [6] that the best possible value for C  in order that

(1.1) hold for all nonnegative measures is ||X|| , where X is a nonnegative measure

putting mass one on a single point and no mass anywhere else.

The approach used here is to solve an optimal stopping problem for two

dimensional Brownian motion and then apply this solution to the conjugate func-

tion inequalities, the same method used in [2], where the weak type inequality

for conjugate functions is considered. This is discussed more thoroughly in the

next section.

If an equation or inequality holds with probability one but not at all points

of the underlying probability space, which usually happens in the following be-

cause it involves a conditional expectation or distribution which is only defined

up to sets of measure 0, this will not always be explicitly mentioned.

2. Preliminaries. Denote by m the measure dô/2rt on A, and let p be a

totally finite signed measure on A.   Let D = {z: \z\ < 1}.  Define /  =/on D

VA by

w - L
' id \

e-ir^-)dß(eie),     zED,
y -z

and

fll(eW) = ^(eie) + ïï(eie)   a.e. (ni),

where by dp/dm is meant the Radon-Nikodym derivative of that part of p which

is absolutely continuous with respect to m. The following formulas hold (see

[7]).

(2.1) ¡J \Ref(rei9)\dm(ew) t \p\{A)    as r t 1.

(2.2) /(0) = plA).

Now let Zt, 0 < t < °°, be standard two dimensional complex Brownian

motion started at 0, and let td = inf{f > 0: \Zt\ = 1}.  It is a result of P. Levy

(see [5, p. 109]) that f(Zt), 0 < t < td, is a two dimensional Brownian motion

with a time change. More precisely, if y(s) is defined by

y(s)=j'0 \f\zt)\2dt,
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then 7 is almost surely strictly increasing on [0, td] and if B¡ = Bt is defined

by

By(t)= f(zt)<

then Bs, 0 < s < e = JÍtd), is a standard complex Brownian motion started at

/(0) = ßiA) up to the time e = e(p).  For convenience define Bs+e - Be =

ZS+TD - Z7D, s > e, so that now Bt, 0 < r < °°, is standard complex Brownian

motion.  If/is a univalent map of D to some region R of the complex plane

then e is the first time Bt leaves F and is thus a stopping time. In general, it is

not clear that e is a stopping time for Bs, but in view of the fact that it is the

stopping time td for the preimage process Zt, in manipulations involving the

Strong Markov Property e can be treated as if it is a stopping time.  For the rest

of this section times for which the Strong Markov Property holds will be called

quasi-stopping times.

If T is any subarc of A, PiZT£) EV) = miT), so that

(2.3) \\H\\P = F|Im/(ZTD)|p = E\lmBe\".

Furthermore,

(2.4) |p|(¿)=limF|ReZ?min(ef)|.

For let TrD = inf{r > 0: \Zt\ = /•}, and let er = yÍTrD). Then

E\ReBeJ =f2J \Refirei6)\dmieie).

Since/is bounded in [z: \z\ <r}, 0 <r < 1, Rcßmin(<?r(f), 0 < t < °°, is a

bounded martingale so that

(2.5) E\ReBmin(ert)\?E\ReBer\   as t t ~.

Also, for fixed t, Re Bmia^e s^, 0 < s < t, is an L2 bounded martingale so that

ert e a.s. as r / 1 implies

(2.6) F|Reßmin(v/)|/F|Re5min(e>f)|    asr/1.

Since E\ReBmin(e f)| is nondecreasing as t —»■ °°, (2.5), (2.6), and (2.1) imply

(2.4).

Let v be the measure described in the second paragraph of the introduc-

tion. Then

ft\     ! I~l +z . z - ll        2z
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is a one-to-one map of D onto the doubly slit plane {x + iy: x # 0 or x = 0,

-1 <y < 1} = SP.  Thus ev is the first time that Bvs leaves SP.   In general, let

TSP be the first time a Brownian motion leaves SP.  Then, by (2.4),

(2.7) lim E\ZmtDÍ     J = lim E\Bmin(s¡   ,| = |„|(¿) = 1.

The central result of this paper can be stated as follows.

Theorem 2.1. If p. is a signed measure on A satisfying \p\(A) = 1 then

\\7\\P>\\H\\p,0<p<l.

In view of the preceding discussion the following theorem implies Theo

rem 2.1. It is noted that \p\(A) = 1 implies -1 < p(A) < 1 and that /M(0) =

piA) is the starting point of Bf.

Theorem 22. Let Zt = Xt + iYt be standard two dimensional Brownian

motion and let Pa and Ea denote probability and expectation associated with Zt

given P(ZQ = a) = 1. Let r be a real number, -1 < r < 1. If e is any quasi-

stopping time such that limí-*ooFJ.|APmin(íc)| = 1 then

(2.8) Er\Ye\P<E0\YTs/,      0<p<l.

Since it is easy to show that Theorem 2.2 need only be proved for times e

satisfying Xe s 0, this will be done now.

Proposition.  Let e be a quasi-stopping time. Let e' = inf {t > e: Xt =

0}.   77le7l

Um Fr|^rmin(f  }|= lim Er\Xmin,t  ,}\,
r-*oo v    '      f-K» v

and Er\Ye,\p > Er\Ye\p ,0 <p <\.

Proof. Let y be the first time Brownian motion hits the imaginary axis /.

By a result of Kakutani (see [3]), if h(z) is defined by h(z) = E2\Yy\p, Rez >

0, then h(z) is the minimal positive harmonic function defined on Re z > 0 with

boundary values \y\p at iy, that is, the Poisson integral of these boundary values.

This function is easily calculated, since it is (1 + cosp7r)-1 times the sum of the

real part of the principal branch of \f!z and the real part of the branch of \/-à

for which -2rr < arg z < 0.

We have

h(z) = \Z\P  [COSP0 + COSp(7T - 0)]/(l  + COSpff),

where <p is the angle between z and the negative imaginary axis, 0 < 0 < it. Ex-

tend h to the entire plane by making it symmetric around /.  It is not difficult
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to show that A(z) > \z\p. It suffices to prove this only on {|z| = 1, Re z > 0},

where

a/z(0)/9<2> = p(sin p(ir - 0) - sin p0)/(l + cospîr),

which is positive if 0 < <j> < ir/2 and negative if tt/2 < 0 < 7r. Together with the

fact that hi\) = A(-l) = 1, this shows /i(z) > 1 if |z| = 1. Thus, if e is as in

the statement of Theorem 2.2, and e' = inf{r > e: Zt E1},

Er\Ye,\p = Eft\Ye.\p\Zv 0 < t < e) = EJEZ\Y,\* = Erh{Ze)

>Er\Ze\p>Er\Ye\p.

Also, ümt_+xEr\Xminlte)\ = limf_>00Fr|JTinin(ffe,)| since a martingale increases

in Lx norm only when it crosses 0, and Xs and Xe do not have different signs if

e < s < e'. (More formally, EiXmin(tel)\Xmin(tte)) = ^min(f,e) a.s. since

-^min(s,e)> 0 < s < f, is an L2 bounded martingale. Since Xmin(te^ and

^min(r,e) are of the same sign, E(\Xmlm(fttl)\ \Xmin,t>e)) = l*min(f,e)l a.s.)

Thus, Proposition 2.1 holds.

3. A discrete time stopping problem. The functions p and F, the random

variables X¡, Í" > 1, and the a-fields Ff, i > 1, will be defined in §4, but for now

some of their properties will be given which will enable them to be dealt with.

The function pis), -°° < s < °°, is an even and nonvanishing probability density

function satisfying pis) <p(f) if |s| > |/|, and Fis) is a continuous positive even

function on the reals satisfying lim^^F^) = 0 and Fis) < Fit) if |s| > |f|. The

random variables Xt, i > 1, are independent and identically distributed, each

with density pis), and we put S0 = 0, Sn = 2"-^,.. The sequence of o-fields

¥¡, i>\, satisfies Ff C F/+1, and iXx, . . . , Xn) is F„ measurable.  Furthermore

iXn+k, k > 1) is independent of F„. By stopping time in this section will be

meant any positive integer valued random variable N such that [N = k} E Ffc

for each k.  If N is a stopping time define
M

AN= ZE[FiSk)IiN>k)],
fc=0

where / stands for the indicator function of the set displayed.

If r is a nonnegative real number define the stopping time Nr by

Nr = ini{k: |Sfc|>r}.

Since PiNr = k + \\Nr>k)> F(\XX I > 2r) > 0, we have

PiNr>k)< [1 -PQXi\>2r)]k

which gives that ENr < «o for each r and also that ENr —»■ 0 as r —* 0

since PQXX\ > 2r) —> 0 as r —>• 0.   Furthermore, since each Sn has a

continuous distribution, lim^^f = Ns a.e., and since Na <Nb if a < b, the
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dominated convergence theorem gives limf_>i£7Vf = ENS.  (The dominating vari-

able can be taken to be N2s.) Clearly, lim^^E/V, = °°.  Finally note that

P{Na < Nb) > 0 if a < b since Xl has a nonvanishing density. Thus ENt in-

creases continuously from 0 to °° as t increases from 0 to °°.

If X is any continuous random variable and B is a measurable set we

define the density of XI(B) to be a function / on the reals satisfying

P({a<X <b} nB) = /£/(/)dt.  Thus, if T is a stopping time and if h¡ is the

density of S¡I(T > i), an alternate formula for AT is

(3.1) AT = F(0) + ¿ $~   F(t)«,•(/) dt.
i=i     °°

The following lemma is true under only the conditions on p and F given in the

first paragraph of this section but is much more easily proved for the application

we have in mind.  Its proof will be given in §4.

Lemma 3.0. Let abe a positive real number.   There exists a real valued

function ipa(«), n > 1, which decreases to 0 as n —* °° such that if N is any stop-

ping time satisfying EN = a and h¡{t) is the density of S¡I(N > i) then

¿  f~   F(t)hi(t)dt<va(n).
J   —CO

t=n

The main result of this section is

Theorem 3.1.  Let M be a stopping time such that EM < °°.  Let r be that

number satisfying ENf = EM.   Then ANr > AM.

The proof of Theorem 3.1 proceeds via a sequence of lemmas. If /and g

are any two positive functions write / < g if jl6/(f) dt < fLhg(i) dt for each 5

> 0 and f <g if /< g and there is strict inequality between the integrals for

some S > 0. The following two lemmas follow from a standard integration by

parts argument, using the fact that p{s) and F(s) are even functions which de-

crease on (0, °°). The proofs are not given. The symbol * stands for convolution.

Lemma 3.1. If f and g are nonnegative functions and / < g and f_„g(t) dt

< <» then

(o sz.f(mo dt < CMP® dt.
(ii) f * p <g * p.
If in addition f<g then

ou) c~nm) dt < /r^(0F(f) dt.

The proof of the next lemma is also omitted.

Lemma 3.2. If fand g are nonnegative functions and / < g and if a satisfies
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C~f(t)dt = fljfàdt then

fZgI[-a,a].

Now regard the time M of Theorem 2.1 as fixed. There is a sequence ax,

a2, . . . of real numbers in [0, °°] such that if K — inf{k: \Sk\ >ak] then

PiK > n) = PiM > n). The a¡ are chosen recursively as follows.  Let a, satisfy

(3.2) f"1   pis)ds = PiM>\).

Now if p2 is the density of S2I(S1 <a1), define a2 by /f|2p2(s)ds = PiM> 2),

and so on. Since f^p^ds = ¡l^^ds = PiM> 1)>I\M>2), such a

choice is possible, and this is the unique a2 that gives PiM > 2) = PiK > 2) given

that a, is chosen by (3.2), unless ax was 0, since p2 is nonvanishing. The suc-

ceeding a¡ are chosen in the same manner, and are unique up to the first a¡ which

is 0, an event which happens only if PiM > n) = 0 for some integer n.

Lemma 33. If K is defined as above then EK = EM and AK > AM.

Proof.  Let 7,- be the density of S¡IiM > i) and \¡ be the density of

SjliK > i). Then 7, < X, by Lemma 3.2, where here p plays the role of g in

that lemma and yx the role of/.  Thus, by Lemma 3.1(ii), 7, * p < Xt * p, and

again by Lemma 3.2, 72 < X2, here with A, * p playing the role of g in that

lemma and 72 the role of/   (Note 72 < 7j * p < \x * p, the first < since

{K > 2} C {K > 1}.)  Continuing in this manner we get y¡ < \ for each /", and

Lemma 3.3 follows from formula (3.1) and Lemma 3.1(f).

Lemma 3.4. Let 6 = sup^r, where the supremum is taken over all stop-

ping times T satisfying ET = EM. Then there is a sequence of real numbers ax,

a2, . . . such that ifQ = inf{«: |5„| > an) then EQ = EM and AQ = B.

Proof.   Let T¡ = inf {k: \Sk\ > aik), 1 = 1,2,..., satisfy ET¡ = EM and

^^i-*ooAT¡ = 6. That such T¡ exist is a consequence of Lemma 3.3. We can and

do assume lim^^a^ = ak exists (it may be +°°) since if this is not the case di-

agonalization can be used. Define Q as in the statement of the lemma. Then

clearly lim(._>00P(7'/ > k) — KQ > k),k = 1,2,..., since the distributions of

Sn are continuous, so that EQ < limí_>0„Frí = Um EM = EM.   Also, if hik is the

density of SkIiT¡ > k), and hk is the distribution of SkIiQ > k), the bounded-

ness of F and the continuity of the distributions of Sk give

lim f"   hikit)Fit)dt=r   hkit)Fit)dt.

Then, using Lemma 3.0, for fixed w,



186 BURGESS DAVIS

AQ>F(0)+ ¿Zf_hk(t)F{t)dt
k=l

= F(0)+ lim   ¿ C   hik(t)F(f)dt
i-~ k=l J —

/-~ [_       fc=„+iJ J

> Ö - <%m(" + O,

implying AQ> 6 so that in fact AQ = 6 and thus Eß = EM, for if Eß < EM we

could make ß bigger in any manner whatsoever to get a Q' satisfying EQ' = EM.

But then, since F is nonvanishing and ß' > ß, ylß' > ^ß = 9, contradicting the

definition of 9.

The proof of Theorem 3.1 will now be completed by showing that Nr = Q,

where ß is defined in Lemma 3.4. This will be done by showing that if any of

the a¡ which define ß are not r then there exists a time ß satisfying EQ = EQ

and AQ > AQ = 9, a contradiction to the definition of 9. Let 7 be the first in-

dex such that ay =£ r, and suppose first that ay <r.   Let X be the first index

such that ax > r.  Such a X must exist since EQ = ENr. Let

p = P(a7<57<r, ß>7"l)

and pick 0 < ex <ax to satisfy 0 <P(r <SX < ex, Q > X) <p.   If k > 0 let

g\+k be the density of Sx+kI(r <SK<ex,Q>\ + k). Let ß be ß unless

Q> X and r<Sx<ex, in which case let Q = X. Then

EQ = EQ-i\r  g„   and   AQ^AQ-j^T  gi(t)F(t)dt.
J=X l=A

Define S7 to satisfy P(£>0) = jZj\, where D0 = {a7 < Sy < 8y, Q > 7 - 1}.

Note dy < r.  Let 67+1, 67+2,. . . satisfy P(Dk) = i1„gK+k, where

Dk = {ay <Sy <67>ß>7- 1, |S7+1|<S7+1.ISy+*l< «■,+*}•

Note that if ß is replaced by ß in this definition Dk remains the same.  Let

fy+k be the density of SkI(Dk), so that JZ.fy+k = C-ix+k = k > 0.

Clearly g0 < /0, and thus by arguments similar to those used in the proof of

Lemma 3.3, gx+k < fy+k, k>\. Define ß = ß except on D0, and on D0 let

ß = 7 + k   if |57+11 < 67+1, . . . , |57+ft_! I < 57+fc_1, |57+fc| > 8y+k.
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Then

EQ=EQ+ Í¡~_Ji = EQ,

and
00

AQ = AU+ZS_Jt(t)F{t)dt
i=y

>AQ+Zr  Siit)Fit)dt = AQ,
i=x     °°

by Lemma 3.1(f) and (iii).

The other possibility, ay > r, can be handled by a similar construction,

which will not be explicitly given. A new stopping time Q is constructed which

stops with positive probability on {Q > y - 1, ay < \Sy\ < r}, but is otherwise

the same as Q, and then Q is constructed which is the same as Q except that it

continues with positive probability on {Q = \,a-K<S-K<f). The details of the

construction are very similar to the preceding and as before we get AQ > AQ

and EQ = EQ.

4. Application of Theorem 3.1. In this and the next section the proof of

Theorem 2.2 will be completed. To avoid some notation this will be carried out

in full only for times e which are stopping times, and not for the slightly more

general quasi-stopping times. Since, as already noted, quasi-stopping times can be

manipulated as if they were stopping times, this approach does not entail an

essential loss of generality. The exponent p will always satisfy 0 <p < 1. Other

notation will be the same as in the statement of Theorem 2.2. E0 and P0 will

be shortened to E and P.  The number S will satisfy 0 < 5 < 1 and will be fixed

in this section, although later it will be allowed to vary. Class / will be the class

of those stopping times T for Zt which satisfy

(a) PiT>0)= 1.

(b) PiXT = 0) = 1.

(c) There is an s < T such that P(\XS\ = 5 and \Xt| ^ 0, s < t < T) = 1.

Another way to describe class / is the following.

Define v0 = 0, and, if / > 1,

p,. = inf{r>vi: l*,l = 5}.   ^^infi^p,-:^ = 0}.

Then T is in class J if and only if Zjlj.fXr = v¡) = 1.  For each real number s

> 0 let ßis) be that stopping time in class J given by j3(s) = m{{v¡: \ Yv.\ > s).

It will be shown that limf_>g0F|jrmin^(ijifj| is a continuous function of s which

is strictly increasing from 0 to °°. This will follow from Lemma 4.1 and the
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remarks made at the beginning of the last section. Let ß stand for that ß(s) for

which the value of this function is 1. The main result of this section is

Theorem 4.1. Let e EJ and suppose limf_>0„E|.JTmin((f(f)| = 1. Then

E\Ye\p<E\Yß\p.

Before stating the following lemma we remark that inequality (4.1), with a

different constant in place of 1.348, can be proved by noting that Xt, 0 < t < T,

and Yt, 0 < t < T, are both martingales which have square function Vf under

P, and then using the continuous analog of Theorem 6 of [1].

Lemma 4.1. Let T be a stopping time for Zt = Xt + iYr  Let Ylf

= sup0<r<r| Yt \. There exist positive constants Kp, which do not depend on T,

such that E(Y*)P <Kp lim^EIX^^I.

Proof. The arguments of [2] imply

(4.1) \P(Y$ > X) < 1.348 lim E\Xmin,f r)| = w.
f-KX>

Thus EY*P = fiP(Yp >t)dt<wp + ¡Zpwr1 lpdt = wp + pu^l - p), the

desired result.

Now abbreviate ¿i, and v1 to p and v.  Let p(s) be the density under P of

Yv. Then p(s) = a * b, where a is the density of Yß and b is the density under

P6 of Yy, where 7 remains inf{r > 0: Xt = 0}.  Both a and b are the densities

of harmonic measures whose exact form is known, and it is easily proved that

the p of this section has all the properties claimed for p in §3.

Define F(t) = Eit\ Yv\p - \t\p, -<*><t<°°. This F also has all the proper-

ties of the F of §3, which will now be verified.  Let h(z) be defined as in §2,

and let 3«(#)/9« be the derivative of h in the normal direction to /.  This value

will be the same as the derivative of h along a circle centered at 0 of radius t and

we have

(4.2) ^-(it) = \t\p~l p sinp7r/(l + cospTr).
on

Since this is positive, h is subharmonic at all nonzero points of / and since «(0)

= 0, h(z) > 0 if z ^ 0, h is subharmonic at 0 also.

Let S be the vertical strip {x + iy: -8 <x < 5}, and let u(z) be the smallest

positive function harmonic in the interior of 5 and continuous on S satisfying

«(z) = u(z) on the boundary of S.  Then

Eit\Yv\p = Eit(\Yv\p\Zß) = EitEZi\Yy\p = E^hiZJ = u(it).

Thus, if g(z) = u(z) - h{z), z E S, we have F(t) = g(it).  It is easily checked that

g is a pure potential since it is superharmonic in S, vanishes at the boundary of
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S, and does not grow too fast at infinity.  Since g is harmonic inside S except on

/, the Riesz mass associated with g is concentrated on /, and it is known that it

is proportional to bh/dn (see [4] ). Thus, if Giz, z0) is the Green function for

S, we have that there are positive constants Bp such that

(4.3) giz) = FpJ"M Ur1 Giz, it) dt.

Now Giit, iy) is a continuous function of |r -y\ which decreases strictly

and exponentially to 0 as \t -y\ approaches infinity. Thus, considered as a func-

tion of y, Giit, ■ ) < G(is, • ) if |r| > |s|, and thus (4.3) and the analogue of

Lemma 3.1 (iii) where F is replaced by |r|p-1 imply that F is strictly decreasing

on (0, °°).  It is easily verified that F has the rest of the properties listed in the

first paragraph of §3.  Define S¡ = Yv¡, i > 1, S0 = 0, and F, = a(Zt, t < v¡).

Then under P the random variables S¡ - St_lt i > 1, are independent and iden-

tically distributed with density p(s) and furthermore (S¡ - S¡_t, i > n) is inde-

pendent of F„.

There is a one-to-one correspondence in the obvious way between stopping

times in class / and stopping times for (S¡, Ff, i > 1). If T is in class/, N(T)

will stand for the associated stopping time for S¡.

Lemma 4.2. // T is in class J then limí_>qoF|Arm¡n(ftr)| = 8EN(T).

Proof.  If n = 0,1, 2,. .. and t > 0 define

Qn(t)=\Xmia(tiVn + i)\«vn<t)I(T>vn).

Then Qn(t) is the absolute value of a martingale. Since ^min(fM      ) and

Xmin(t v      j do not have different sign,

EQn(t) = E\Xmia(t¡iln + i)\I(vn < t)I(T> vn) t E8I(T > vn)

= 8P(T > vn)   as t —► ».

For any t > 0, at most one of Q0(t), 0,(0, ... is different than 0 since

XVk = 0 for all k.   Also, \Xmin(tT)\ = 2£=0o„(f), and thus F|Xmin(ir)| in-

creases to ^=Q8P(T > vn) = 8EN(T) as t increases to °°.

Lemma 4.3. If T is in class J and EN(T) < °° then AN(T) = E\ YT\P.

Proof.  We have, for n > 0,
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£'^min(^,,„ + 1)lP-^|l'mi„(^,V|P=JE'(|r''n + l|P-|r«>in(^.^'n)lP)/(7'>,'«)

= EE(|r„n+i \p - \Y„/\ZS, s <Pn)I(T>vn)

= EEZvn(\Yv\p-\YVn\p)I(T>vn)

= EF(YV )I(T > vn) = EF(S„)I(N(T) > «).
n

Thus E\ Ymin(Tl>n)\p = 2lZl0EFXSn)I(N(T) > k). Since min(r, vn) increases to

T'as n —► » the dominated convergence theorem and Lemma 4.1 give E\YT\P

= AN(T).

Proof of Lemma 3.0. As in the proof just made it can be shown that, in

the notation of Lemma 3.0 with N = N(T),

t Jl nt)h,(t) dt=Z E(\ Y¡+ , \p - | Yt\')I(T > V¡)
i=n       °° i=n

= E(|YT\P - | YVn\P)I(T> v„) <E\YT- Y„h\PI(T> un).

Let \YT - Y„n\I(T>vn) = W.  Note that, on {T> i>„), \YT - YVft\ <

2 suPo<f<rlyrl so that (4.1) gives

\P(W > X) < 3 lim E|jrmin(fir)| = 3 EN/8 - 3a/ô.

Also, since P(N > k) is decreasing in k,

P(W>0)<P(T>vn)=P(N>n)<ENl(l + n) = a/(l + «).

Thus,

E| YT - Y„n \pI(T >vn) = EWp=H P{Wp >X)d\

This last expression may be taken to be yjn).

Although S has been assumed to be fixed in this section to reduce notation,

it will soon be necessary to let 5 —*• 0, so the class / of stopping times will be

called J(8) to signify its dependence on 5, and v. will be called v¡(8). Given a >

8,7?(a, 5) will be the stopping time inf{i>k(5): |Z„fc(6)| >/(o¡, S)}, where /(a, 5)

is that unique nonnegative number satisfying EN(rj(a, 8)) = a/5, which implies

limf-*coE|Jrmln(fir,(ai5))| = a by Lemma 4.2. Also, Lemma 4.3 guarantees that,

if S is fixed, E|yT)(a5)|p increases as a increases. Together with Theorem 3.1

and Lemmas 4.2 and 4.3 this gives

Theorem 4.1. Let 0 < 6 < 1 and a > 8 be real numbers. If TE 7(5) and

m^JS\XmlB(tiT)\<a, thenE\YT\p <Eiy„(a)6)|".
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5. Proof of Theorem 2.2. Theorem 2.2 will first be proved for the special

case r = 0 in (2.8), which amounts to proving Theorem 2.1 for the special case

pLA) = 0.  For 0 < S < » define the stopping time 06 by 06 = inf {^(5):

1^(6)1 > 1 + Ô}, and if a > 0 define TaSP = inf{i > 0: Xt = 0 and |rf| > a}.

Note txsp = tsp. Then linearity gives limr_«,F|Jfm¡n(f>TaSJp)| = a.  Since 06 >

T(1+S)5P'

(5.1) limF|Xm¡n(9   f)|>l+5.
f-^oo °

Arguments of §3 together with Lemma 4.2 imply limi_vooF|.X'in:n(05)/)| < °°.

Since P(Zt ever hits ±i) = O,.P(lini6;O06 = rSP) = 1, and thus using the domi-

nated convergence theorem via Lemma 4.1 we get

(5.2) limF|re  \P=E\Y     \p.
SiO ° SF

Now let e be any stopping time for Zt satisfying \Ye\ = 0 and

Iim^J?|^mIll(rte)| = 1.   Define a(5) = inf{i > e: \Xt\ = 5}  and 0(6)

= inf{i > a(5): Xt = 0}. Then ¿(5) is in class/(S) and an argument similar to

that used to prove Lemma 4.2 gives

(5.3) lim E\XmiD(tMS))\ = Urn E\Xain(t>e)\ + 0 = 1+5.

Also, since clearly 76(6) —»■ Ye in probability,

(5.4) ljm E\YHS)\p>E\Ye\p.
6;o v '

Theorem 4.1 with a = Iimf^.00F|Jirin,Ilifi9 j| together with (5.1) and (5.3)

imply

E\YH\p>E\YHb)\p,       0<5<~.

This together with (5.2) and (5.4) gives

E\YTs/>E\Ye\p,

completing the proof of Theorem 2.2 in the case r = 0.

The following proposition can be proved by essentially minor modifications

in the proof of the above result, including both §§3 and 4, and its proof is not

given.

Proposition 5.1. Let -1 < /■ < 1 be a real number and let e be a stopping

time satisfying \vmt^xEr\Xmin(te)\ = 1. Then

\pE.\YJP <Er\Y. |'
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where m(r) satisfies

MlEr\Xmin(ttTm(r)sp)\=l.

The proof of Theorem 2.2 will be completed by showing that

Note m(0) = 1. It is not hard to show that m{± 1) = 0. Inequality (5.5) will be

shown by constructing a stopping time i// = \¡/r satisfying lim^^El^jn,-,^! =

1 and

(5.6) E^P=Er\yrm(r)s/-

Since Theorem 2.2 is already proved for r = 0 this and Proposition 5.1 establish

(5.5). Let a = inf{t > 0: \Xt\ = r/2} and let \¡j = inf{r > a: Xt = 0 and | Yt\

> m(r)}. Note that if Zt starts at r then ^ and rm^SP are the same. Also note

that the distributions of Za under Pr and P are the same, and thus the distribu-

tions of Y y under P and under Pr are the same, which gives (5.6). For a fixed t >

0, the distributions of \Xmin,t ^ )I(t > cc)\ under P and Pr are the same, as are

the distributions of l^mln(ff^) - r\2\l(t < a). Thus

\Er\XminM)\-E\XminM)\ | <rP(t <«) -> 0    as í — -,

implying

lim E\XminM)\= lim Er|Xmin(f ^jl

=  Hm  ^l^min(r.r|f|(r)SJ,)l=i-

Albert Baernstein II has observed that the proof here almost unchanged

gives that ||j>||   is also the best constant in the inequality ||/+ if\\   <KJ\f\\l,

0<p<l.
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