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CHARACTERIZATIONS OF CONTINUA

IN WHICH CONNECTED SUBSETS
ARE ARCWISE CONNECTED(!)

BY

E. D. TYMCHATYN

ABSTRACT.  The purpose of this paper is to give several character-

izations of the continua in which all connected subsets are arcwise connected.

The methods used are those developed by B. Knaster and K. Kuratowski,

G. T. Whyburn and the author.  These methods depend on Bernstein's de-

composition of a topologically complete metric space into totally imperfect

sets and on Whyburn's theory of local cutpoints.  Some properties of con-

nected sets in finitely Suslinian spaces are obtained.   Two questions raised

by the author are answered.  Several partial results of Whyburn are obtained

as corollaries of the main result.

The continua in which all connected subsets are arcwise connected and the

continua which contain no punctiform or totally imperfect connected set have a

long history. See for example Kuratowski and Knaster [4], Whyburn [10]—[14],

and Tymchatyn [8]. Whyburn characterized the continua which contain no

punctiform and no totally imperfect connected set in [11]. In this paper we

shall characterize the continua in which all connected subsets are arcwise con-

nected. We shall obtain several of Whyburn's partial results as corollaries. We

shall also give some relations among these three classes of continua.

1. Definitions and preliminaries. Our notation largely follows Whyburn's

Analytic topology [9]. We shall collect here some definitions for the convenience

of the reader. A continuum is a nondegenerate, compact, connected, metric

space. A continuum is said to be

(i) hereditarily locally connected if each subcontinuum is locally con-

nected;

(ii) finitely Suslinian if each sequence of pairwise disjoint subcontinua

forms a null sequence, i.e. the diameters of the subcontinua converge to zero;
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(iii) regular if the continuum has a basis of open sets with finite bounda-

ries;

(iv)  in class A if every connected subset is arcwise connected;

(v) a dendrite if it is locally connected and contains no simple closed

curve.

It is known (see [9, Chapter V], [7] and [8]) that (v) => (iv) => (iii) => (ii)

■* (i) and none of these implications can be reversed.

We shall use the following proposition.  Its proof is an easy exercise.

Proposition 1.1. Let (X, d) be a metric space and let A C B C X. If A

is closed and for each e > 0, {x EB$(x, A) > e} is closed, then B is closed.

Let C be a connected and locally connected space.  A point p G C is said

to be a cutpoint of C if C\{p} is not connected. The point p G C is said to be

a local cutpoint of C if p is a cutpoint of some connected neighbourhood of p.

We let L(C) denote the set of local cutpoints of C.

A set K is said to be a-compact if it is the union of a countable family of

compact sets.

The following theorem with the additional hypothesis that C be locally com-

pact appears as an exercise in [9, p. 63].

Theorem 1.2.  If C is a connected, locally connected, separable, metric

space then L(C) is a-compact.

Proof.   Let U be a countable base for C such that each member of U is

connected and open.  It is easy to check that p G L(C) if and only if p is a cut-

point of some member of U.  By [9, III.5.3] for each U E U the set of cutpoints

of U is a-compact. Hence, L(C) is a-compact since it is the union of a countable

family of a-compact sets.

The following theorem generalizes to local cutpoints a theorem of Whyburn

[9,111.1.54].

Theorem 13. If M is a connected and locally connected, separable, metric

space and C is a dense, connected and locally connected subset of M then

L(M)\L(C) is at most countable.

Proof. Just suppose that the theorem fails. Let U be a countable base

for M such that each member of U is connected and open.  As in the proof of

Theorem 1.2 there is a U E U such that uncountably many points of L(M)\L(C)

axe cutpoints of U.   By [9, III.3.1] there is an uncountable subset D of

L(M)\L(C) such that every point of D is of potential order at most two in U rel-

ative to D.   Since U is open in M every point of D is of potential order at most
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two in M relative to D.   In particular, there exist a, b ED such that M\{a, b} is

not connected. Since C is dense in M, C\{a, b} is not connected. Since C is

connected we may assume a EC.   If C\{b} is not connected then b is a cutpoint

and hence a local cutpoint of C.   If C\{b} is connected then a is a local cutpoint

of C since a disconnects the connected neighbourhood C\{b} of a in C. This is

a contradiction.

Let C be a connected space and let A EC.  We say that A is a cutting of

C if CV4 is not connected.  It is known (see [6, p. 244] ) that each cutting of a

connected, locally connected, separable, metric space C between a and b where

a, b EC contains an irreducible cutting of C between a and b and each irreduci-

ble cutting of C between a and b is closed.

Lemma 1.4. Let C be a connected, locally connected, metric space, let a, b

E C and let A C C\L{C). If A is an irreducible cutting of C between a and b

then A has no isolated points.  In particular, if C is topologically complete then

A contains a Cantor set.

Proof.  Just suppose that p is an isolated point of A.  Then A\{p} is

closed in C since A is closed in C.   Since A is an irreducible cutting of C between

a and b, A\{p} is not a cutting of C between a and b.  Since C is locally con-

nected there is a component V of C\A\{p}) such that a, b E V.   Since p cuts

the open set V, p E ¿(C).

Lemma 1.5. Let X be a hereditarily locally connected continuum and let C

be a connected and nondegenerate set in X.   Then ¿(C) is dense in C.

Proof. Let xEC and let U be a neighbourhood of x in X such that C is

not contained in U. Let y E C\U. By [9, V.3.3] there is a neighbourhood Kof

x in X with countable boundary Bd(K) such that V U Bd(F) C U.

By [9, V.2.5] C is locally connected. Since Bd(V) n C disconnects C be-

tween x and y an irreducible subset D of Bd(K) n C disconnects C between x

and y.   Now, D contains an isolated point of D since otherwise Bd(P) would con-

tain a Cantor set. Since D is an irreducible cutting of C between x and y every

isolated point of D is in ¿(C). Hence, ¿(C) n Î7 is nonvoid and ¿(C) is dense in

C.

2.  Finitely Suslinian continua. In this section we shaU obtain several re-

sults concerning arcwise connectedness of sets in finitely Suslinian continua.

Let A' be a space and let C C X   If x EC the arc component ofx in C is

{y E C\y = JC or there is an arc in C with end points x and y}.

The set C is said to be arcwise connected if it has precisely one arc component.
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Lemma 2.1. Let X be a finitely Suslinian continuum and let C be an arc-

wise connected set in X.  If A is a compact subset of X such that C n A is dense

in A then there is a continuum B such that A C B C C U A.

Proof.  Let D = {d0, dx,... } be a countable dense set in An C. Let Ax

be an arc in C with endpoints d0 and dx. By induction there exists a sequence of

continua Ax CA2 C • • • in C such that for each i = 1,2,..., {d0,... ,d¡} C

A¡ and A¡+X\A¡ is either empty or homeomorphic to a half-open interval in the

real line.  Let B = Ax U A2 U • • • . Since D is dense in A and B is connected

and contains D, B U A is connected.

Since X is finitely Suslinian the sets Ai+ X\A¡, i — 1,2, ... , form a null

sequence. Hence, if d is a metric for X and e > 0 there exists a natural number

n such that

{xEA U B\d(x, A) > e} C An.

Thus, {x G A U 5|c?(x, ^4) > e} is compact and, hence, closed in X.  The set A

is also closed in X since it is compact. By Proposition 1.1, A U B is closed in X.

Thus, ̂  U B is a continuum such that ACAUBCCUA.

We have as a corollary to Lemma 2.1 the following result of Whyburn [10,

p. 334].

Corollary 2.2 (Whyburn [10]). If X is a finitely Suslinian continuum

and CE X then the arc components of Care closed in C.

Proof.  Let K be an arc component of C and let x1( x2, . . . be a sequence

in K which converges to x in C.  By Lemma 2.1 the compact set {x, xx, x2,... }

C B C K U {x} where B is a continuum. Since X is hereditarily locally con-

nected B is arcwise connected.

Lemma 23. Let X be a finitely Suslinian continuum and let C be a subset

ofX. Let ~ be an equivalence relation on C such that each equivalence class of

~ is an arcwise connected and closed set in C.   Then ~ is an upper semicontin-

uous relation on C.

Proof. Every sequence of equivalence classes of ~ is a null sequence.

Thus, ~ is upper semicontinuous (see [9, p. 122]).

The next result answers affirmatively a question raised by the author in [8].

Theorem 2.4. Let X be a finitely Suslinian continuum and let C be a con-

nected set in X. If K is a connected set in L(C) then K is arcwise connected.

Proof. As in the proof of Theorem 1.3, K\L(K) is at most countable. By



CONNECTED SUBSETS 381

Theorem 1.2, ¿(A) is a-compact and hence K is a-compact.  By Theorem 3.2 in

[2], K is arcwise connected.

3.  Characterizations of class A.  If X is a space and A C C C X we let

Clc(4) denote the closure in C of A.

The next theorem contains the main results in this paper.

Theorem 3.1. If X is a finitely Suslinian continuum the following seven

conditions are equivalent:

(a) X is in class A.

(b) If C is a connected G6 in X then ¿(C) <£ Ax U A2 U • • • where the

A¡ are pairwise disjoint, closed, nonempty subsets of C.

(c) If C is a connected Gô in X and x, y EC then there is an arc A E C

such that x, y E A and A\LiC) is at most countable.

(d) IfCis a connected GB in X, Ax, A2, . . . is a sequence of pairwise

disjoint, closed subsets of C, and x E Ax and y EA2 then a countable subset of

C\iAx U A2 U • • • ) separates x and y in C.

(b'), (c') and (d') are obtained from (b), (c), and id), respectively, by replac-

ing the condition "C is a connected Gô " by "C is a connected set".

Proof.  It is clear that (b') ■* (b), (c') ■» (c) and (d') => (d).

(a) >* (b'). We suppose that (b') faüs and show that (a) also fails. Let C be

a connected set in X such that ¿(C) EAX U A2 U • • • where the A¡ are pairwise

disjoint, nonempty, closed sets in C.  We may suppose without loss of generality

that C is dense in X.   Let

^nwi^nci^.))).

Since Y is a Gs in X, Y is topologically complete. Since C is a dense, connected

subset of Y, Y is connected.

By a theorem of F. Bernstein (see [4] ) Y = P U Q where neither P nor Q

contains a Cantor set. Let

Z = P U ViYiAx) U Cly042) U • • • .

We shall prove that Z is a connected set that is not arcwise connected.

Let A C Y\{AX U A2 U • • • ) be a cutting of Y.  Since Y is completely

normal we may suppose that A is closed in Y.   Since C is dense in Y, we may

suppose that A n C is a cutting of C between two points a and b in C.   Since C

is locally connected (see [9, V.2.5]), A n C contains a set B that is an irreducible

cutting of C between a and b.  By Lemma 1.4 B has no isolated point. Thus,

Cly(Z?) C A is a perfect set in the topologically complete metric space Y.  It fol-
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lows that A contains a Cantor set and so A <f. Q.  Thus, Q does not separate Z in

Y and Z is connected.

Let x G A , and let y E A2. Let K be an arc in Y with endpoints x and y.

The sets ClY(Ax) D K, Cly(/12) n A', . . . are pairwise disjoint closed sets in K.

By Sierpiriski's Theorem

M = K\(ClY(Ax) U ClY(A2) U • ■ • )

is uncountable.  An uncountable Gs in a topologically complete, separable, metric

space contains a Cantor set. Thus, M <£ P and so K <£ Z.  Since A was an arbi-

trary arc in Y with endpoints x and y, Z is a connected set in AT which is not

arcwise connected. We have proved that (a) also fails.

(b) => (a). We suppose that (a) fails and prove that (b) also fails.  Let C be

a connected set in X that is not arcwise connected.  Let ~ be the equivalence

relation on C that decomposes C into its arc components. By Corollary 2.2 and

Lemma 2.3, ~ is upper semicontinuous. Let n: C —» C/~ be the natural projec-

tion of C onto the quotient space C/~.

By Theorem 1.2 L(C) = C, U C2 U • • • where the C¡ axe compact sets.

Let Axl = n~l(ir(Cx)) and let AXj. be empty for each/ > 1. Let n > 1 be a

natural number. Then tt(Cn) is a compact metric space. We wish to show that

7t(C„) is also totally disconnected.

For each x G C„, 7r_1(7r(x)) n C„ is a compact set. By Lemma 2.1 there

is a continuum K(x) in 7r_1(7r(x)) which contains 7r_1(7r(x)) H C„. We may sup-

pose without loss of generality that if x, y E Cn such that it(x) = tt(y) then K(x)

= K(y). It follows that if x, v G C„ then the continua K(x) and K(y) axe either

equal or disjoint.  Since X is finitely Suslinian it follows by Proposition 1.1 that

Gn = [J{K(x)\x E Cn} is compact. The components of Gn axe precisely the

sets Ä^x) where x G C„. Thus, 7tIg„: Gn —* ̂ (^n) = ^(^n) *s a monotone map

which acts on Gn by collapsing the components of Gn to points.  It follows that

ti(Gn) = ir(Cn) is totally disconnected.

The set 7t(C„)\^(C! U • • • U C„_,) is open in the compact metric totally

disconnected space ti(Cn). Hence,

n(Cn)\n(Cx U • • • U C„_.) = CnA U C„>2 U • • •

where the Cni are pairwise disjoint closed sets in n(Cn). For each i = 1,2,...

let An i = -n~l(Cn ¿). Then L(C) is contained in the union of the pairwise dis-

joint sets {A¡j\i, j > 1}. These sets are closed in C since n is continuous.  By

Lemma 1.5 L(C) is dense in C so it is easy to ensure that infinitely many of the

sets (A¡ •) are nonvoid.

Let

Y=       H      (Clx(Q\(Clx(Au)nClx(Amin))).
(I,/)#(m,n)
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Then Y is a G6 in X.   Since C is a dense connected set in Y, Y is connected.  By

Theorem 1.3 L{Y)\LiC) is at most countable. Hence, L{Y) is contained in the

union of the pairwise disjoint closed sets C\Y{A¡j), i, j = 1, 2,. . . , together

with a countable set. Thus, (b) also faüs.

(c) =» (b). We suppose that (b) fails and prove that (c) also fails.  Let C be

a connected GB in X such that ¿(C) C Ax U A2 U • • • where the A¡ are pair-

wise disjoint, closed, nonempty subsets of C.   Let x EAX and let y E A2. If A

is any arc in C such that x, y E A then A\AX U A2 U • • • ) is uncountable by

Sierpiriski's Theorem.  Thus, (c) also fails.

(b') ■* (c'). We suppose that (c') fails and prove that (b') also fails.  Let C

be a connected set in X such that there exist x, y EC with the property that

each arc in C with endpoints x and y contains uncountably many points of

C\LiC).

Let ~ be the equivalence relation on C obtained by setting a ~ b if and

only if a = b or there is an arc A in C with endpoints a and b such that /!\¿(C)

is at most countable. As in the proof of CoroUary 2.2 the equivalence classes of

~ are closed in C.   By Lemma 2.3 ~ is upper semicontinuous since the equiva-

lence classes of ~ are also arcwise connected.

We can now argue exactly as in the proof that (b) "* (a) to show that (b')

also faUs.

(d) => (b). We suppose that (b) fails and prove that (d) also fails.  Let C be

a connected Gs in X such that ¿(C) EAXUA2U--- where the A¡ are non-

empty, pairwise disjoint closed sets in C.   By Lemma 1.4 every cutting of the

topologically complete space C which misses ¿(C) is uncountable. Thus, (d) also

faUs.

(b') => (d'). We suppose that (df) fails and prove that (b') also fails.  Let C

be a connected subset of X such that there exist pairwise disjoint sets Ax, A2,...

which are closed in C and x E Ax ,y E A2 such that no countable subset of

C\AX U A2 U • • • ) separates x and y in C.   Let

Y = C1X(C)\ \J<ßx{A,) n C\x{Aj)).

For each i let B¡ = dYiAt). Then Y is a connected G5 in X since C is a dense

connected set in Y.  The sets Bi are pairwise disjoint closed sets in Y and no

countable subset of Y\BX U B2 U • • • ) separates x and y. Let B = Bx U B2

U • • • . We shall prove that there is a connected subset E of Y such that x, y

E E and L{E)\B is at most countable. Thus, (b') also fails.

We define by transfinite induction a nest of connected subsets (¿a) of Y as

follows:   Let ¿0 = Y.   Let a be a countable ordinal number.  Suppose that for

each ordinal number n < a, En has been defined to be a connected subset of Y

such that x, y E En and no countable subset of En\B separates x and y in En.



384 E. D. TYMCHATYN

If n + 1 < a then there exist an + x, bn+x EEn such that En+X is the compo-

nent of En\{an+X, bn + x} that containsx.   If n is a limit ordinal then En =

C\m<„Em. We suppose that for each n < a, L(En)\B is uncountable.

Case 1. cu is the successor of the ordinal number m.   By assumption

L(Em)\B is uncountable. As in the proof of Theorem 1.3 there exist aa, ba E

Em\B such that Em\{aa, ba} is not connected. Let Ea be the component of

Em\{aa, ba} that contains x and y.  Then no countable subset of Ea\B separates

x and y in E.

Case 2. a is a limit ordinal. Let Ea be the component of r\„<aEn which

contains x.  We shall show that y E Ea and no countable subset of Ea\B sepa-

rates x and y in Ea.

Let D be a countable subset of Ea. Let D' =JU \Jn<a^an+i' ^n + 0-

Since D' is countable, x and y lie in the same component F of Y\D'. Now, F is

a connected, locally connected, topologically complete, metric space. Hence,

there is an arc G in F with endpoints x and y.   By induction G C En for each n

< a. Hence, x and y lie in the same component of Ea\D.

Since X does not contain uncountably many pairwise disjoint arcs it follows

that for some countable ordinal a, L(Ea)\B is at most countable. This completes

the proof of the theorem.

We list a variety of conditions that may be satisfied by a finitely Suslinian

continuum X.

(i) X is in class A.

(ii)  C a connected Gs in X => L(C) has finitely many components.

(hi)  C a subcontinuum in X => L(C) is connected.

(iv) C a connected Gs in AT => ¿(C) is connected.

(v)  C a connected G6 in Z => L(C) meets every cutting of C.

(vi) C a connected G5 in A" => ¿(C) is arcwise connected.

(vii) C a connected subset of X => ¿(C) is connected.

(viii)  For each a, b E X every irreducible cutting of A" between a and £> is

at most countable.

(ix)  Every pair of separated connected sets in X can be separated by a

countable set.

(x) a, b EX => there exist at most countably many arcs in X with end-

points a and b.

(xi)  C a true cyclic element in X => C\¿(C) is countable.

(xii)  Every irreducible cutting of X is finite.

(xiii)  Every sequence of distinct simple closed curves in X is a null sequence.

(xiv) X is a dendrite.

In the following result we have listed some relations among the fourteen

properties listed above. Neither the list of properties nor the set of relations
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among them is exhaustive. Whyburn proved that properties (xi) and (xiii) imply

(i) in [12] and [14] respectively. The impUcation (viii) => (i) answers a question

that arose in connection with [8].

Theorem 3.2. Let X be a finitely Suslinian continuum.  The following re-

lations exist among the conditions (i)-(xiv) listed above.

(x) => (viii) (iv)

I !
(xiv) ■* (xiii) => (xii) •* (ix) => (vii) => (v) ■* (ii) <•*■ (i)

/       J
(xi) (vi) * (iii)

Proof,  (ii) •* (i). Let C be a connected G6 in X. By Lemma 1.5 ¿(C) is

dense in C. By Theorem 2.4 the components of ¿(C) are arcwise connected.  By

CoroUary 2.2 the arc components of C are closed in C.  Since ¿(C) has only fi-

nitely many components C has only finitely many arc components.  Since C is

connected C has only one arc component.

(iv) => (vi) by Theorem 2.4.

(viii) >* (vii) by Lemma 1.4.

(xi) ■> (viü) foUows easüy from [9, III .9.3].

(xüi) •» (xii).  It is quite straightforward to prove that if AT satisfies (xiii)

then every true cyclic element of X is a finite graph.

AU of the other implications are quite easy to see.

Question.  Does (iii) => (viii)?  In particular does (iii) "* (i)?

It is known (see [6, p. 237]) that if A and B are regular continua and A D

B is totally disconnected then A U B is regular. The next example shows that

class A does not have this property. This answers a question of A. Lelek.

Example. There exists a plane regular continuum X such that X C D U E

where D is a dendrite, E is in class A, D n E is a Cantor set and X is not in class

A.

Take X = ([0, 1] x {0}) U Ax U A2 U • • • where the A^s are defined

inductively as follows:  A x is the semicircle in the upper half-plane with center

(té, 0) and radius té. For each i > 2 Ax, A2, . . . , A¡ are pairwise disjoint sets

and A¡ is the union of 2-3'-2 semicircles each of radius l/(2-3'~2-4').  If K is a

semicircle in A¡ then the endpoints of K are in [0, 1] x {0} and the center of

K is an endpoint of some semicircle ¿ such that ¿ C A, for some j E {1, . . . ,

*-l}.

Let C = Cl^! U A2 U • • • ) n ([0, 1] x {0}). Then C is clearly a

Cantor set.   Let Bx, B2, . . .   be the closures of the components of

([0, 1] x {0})\C.   By construction A¡ n Bj is empty for all positive integers i*
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and /.   It is easy to see that if x E L(X)\(A x U A2 U • • • ) then x G B¡ for some

i.  Hence,

L(X) CAX\JA2U---KJBXVB2U---.

By Theorem 3.1, X is not in class A.

Let E be the intersection of X with the closed lower half-plane. It is easy

to see that for each connected set F in E, L(F) is connected. Hence, E is in class

A.  Let D' = Clx(X\E). It is easy to construct a dendrite D such that D' CD

and D is contained in the union of C and the open upper half-plane.

4. Punctiform and totally imperfect connected sets.  A set is said to be

punctiform if it contains no nondegenerate continuum.  In [11] Whyburn gave

several characterizations of the locally connected continua which contain a puncti-

form connected set.

Theorem 4.1 (Whyburn [11]). A locally connected continuum Y contains

a punctiform connected set if and only if it contains a subcontinuum D such that

L(D) is punctiform.

The following theorem relates class A to the continua which contain punc-

tiform connected subsets.

Theorem 4.2. A finitely Suslinian continuum X admits a monotone map-

ping onto a continuum Y such that Y contains a punctiform connected set if and

only if there is a subcontinuum C of X such that L(C) C Ax U A2 U • • • where

the A i are pairwise disjoint, nonempty compact sets.

Proof.  (<=)  Suppose C is a subcontinuum of X such that ¿(C) C Ax U

A2 U • • • where the A¡ axe pairwise disjoint nonempty compact sets. Let x ~y

in X if and only if x = y or x and y lie in some component of some A¡. By

Lemma 2.3 ~ is an upper semicontinuous relation on X.  Letir.X—* X/~ be

the natural projection of X onto the quotient space Xl~. It is easy to see that

v G 7r(C) is a local cutpoint of ti(C) only if 7r_1(j>) is nondegenerate or meets

¿(C). Since n is a monotone map which identifies the components of the com-

pact space A¡ to points, n(A¡) is a totally disconnected compact metric space for

each i.   By the Sum Theorem for dimension zero tr(Ax U A2 U • • • ) is zero

dimensional. Since L(ii(C)) C n(Ax U A2 U • • ■ ) U K where Kisa countable

set, ¿(7r(C)) is zero dimensional.  By Theorem 4.1 n(X) contains a punctiform

connected set.

(=>)  Suppose it: X —► Y is a monotone mapping of a finitely Suslinian

continuum onto a continuum Y such that Y contains a connected, nondegenerate

punctiform set. By Theorem 4.1 there is a continuum D in Y such that L(D) is
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punctiform. As in the proof that (b) ■* (a) in Theorem 3.1, ¿(¿>) = Bx U52

U • • • where the B¡ are pairwise disjoint compact sets. Since ¿(¿)) is dense in D

by Lemma 1.5, we may suppose that each B¡ is nonvoid.

Since TT is monotone and D is a continuum in Y, 7r-1(¿>) is a continuum in

X.  lfxE ii~xiD) such that tT1«*)) = {x} and x E ¿(Tr_1(¿))) then n{x) E

¿(D).  For let V be a neighbourhood of* in n~~x{D) such that V\{x} =PUQ

where P is separated from Q.   If (x,) and (y¡) are sequences in P and Q respec-

tively which converge to x then we have eventuaUy 7r(jcf) =£ Tiiy¡) since it is mono-

tone and 7t-1(7t(x)) = {x}. Thus there is a closed neighbourhood Í/ of x in

7r_1(¿>) such that U E V and ir{U n P) Ci ti{U <~\ Q) = {tt(x)}.  Since Jr_1(7r(x))

= {*} it foUows that 7r(£/) is a neighbourhood of -nix) in ¿).  Now, 7r(i7)\7r(x) =

7r(f/ n P) U rr(f7 n 0.  Since iUnP)U {x} and (f/ n 0 U {x} are compact

sets it foUows that rr(i/ n ¿) and 7r(i/ n 0 are separated sets. Hence, tt(x) G

L{D).

Since A" is finitely Suslinian there are at most countably many y ED such

that n~x(y) is a nondegenerate set.  It follows that

¿(Tr_1(¿>)) C n~xiK) U tT1^) U 7r_1(52) U • • •

where K is a countable set in ¿>.

Corollary 4.3. If X is a finitely Suslinian continuum that is not regular

then X admits a monotone mapping onto a continuum which contains a puncti-

form connected set.

Proof.  It was proved in [8] that X is not in class A by proving that X

contains a subcontinuum C such that ¿(C) C Ax U A2 U • ■ ■ where the A¡ are

pairwise disjoint, nonempty, compact sets.  The coroUary now follows by Theo-

rem 4.2.

A set is said to be totally imperfect if it contains no Cantor set. The fol-

lowing result (although it does not appear in the literature in precisely this form)

is due to Whyburn [11].

Theorem 4.4 (Whyburn [11]). A continuum X contains a nondegenerate

connected totally imperfect set if and only if it contains a subcontinuum C such

that LiC) is at most countable.

Theorem 4.5. A finitely Suslinian continuum X admits a monotone map-

ping onto a continuum Y such that Y contains a totally imperfect connected set

if and only if there is a subcontinuum C of X such that LiC) E A x U A 2 U • • •

where the A¡ are pairwise disjoint nonempty subcontinua of X.

Proof.  The proof is parallel to that of Theorem 4.2.



388 E. D. TYMCHATYN

REFERENCES

1. J. Dugundji, Topology, Allyn and Bacon, Boston, Mass., 1966.   MR 33 #1824.

2. J. Grispolakis, A. Lelek and E. D. Tymchatyn, Connected subsets of finitely

Suslinian continua, Colloq. Math, (to appear).

3. W. Hurewicz and H. Wallman, Dimension theory, Princeton Math. Ser., vol. 4,

Princeton Univ. Press, Princeton, N. J., 1941.    MR 3, 312.

4. B. Knaster and C. Kuratowski, A connected and connected im kleinen point set

which contains no perfect subset. Bull. Amer. Math. Soc. 33 (1927), 106-109.

5. B. Knaster, A. Lelek and J. Mycielski, Sur les décompositions d'ensembles connexes,

Colloq. Math. 6 (1958), 227-246.    MR 21 #6572.

6. K. Kuratowski, Topology, Vol. II, new ed., rev. and augmented, Academic Press,

New York; PWN, Warsaw, 1968.    MR 41 #4467.

7. A. Lelek, On the topology of curves.   II, Fund. Math. 70 (1971), 131-138.

MR 44 #995.

8. E. D. Tymchatyn, Continua in which all connected subsets are arcwise connected.

Trans. Amer. Math. Soc. 205 (1975), 317-331.

9. G. T. Whyburn, Analytic topology, Amer. Math. Soc. Colloq. Publ., vol. 28, Amer.

Math. Soc, Providence, R. I., 1942.    MR 4, 86.

10.  -, Concerning points of continuous curves defined by certain im kleinen

properties. Math. Ann. 102 (1930), 313-336.

11.  -, On the existence of totally imperfect and punctiform connected subsets

in a given continuum. Amer. J. Math. 55 (1933), 146—152.

12. -, Sets of local separating points of a continuum, Bull. Amer. Math. Soc.

39 (1933), 97-100.

13. -, Local separating points of continua, Monatsh. Math. Phys. 36 (1929),

305-314.

14.  -, On a problem of W. L. Ayres, Fund. Math. 11 (1928), 296-301.

DEPARTMENT OF MATHEMATICS, WAYNE STATE UNIVERSITY, DETROIT,

MICHIGAN 48202

Current address:   Department of Mathematics, University of Saskatchewan, Saskatoon,

Saskatchewan, Canada


