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PRINCIPAL CO-FIBER BUNDLES
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ABSTRACT.   Principal co-fiber bundles are defined in the category of

topological groups.   They are Eckmann-Hilton duals of principal fiber bundles.

A classification theorem is provided as well as an example which almost repre-

sents the most general case.

1.   Introduction.   The Eckmann-Hilton duality [4] works well as long as

we are in the homotopy category. However in the category of topological spaces

there are no duals to principal fiber bundles (p.f.b.), since any set with a co-

multiplication with a strict co-unit reduces to a point. This situation is avoided

in [9] by turning to the category of simplicial groups.  In this paper we define

principal co-fiber bundles (p.c.b.) in the category of topological groups. We

face very few surprises in the algebraic part of the problem since this part is

similar to the study in [9]. The difficulties are in the topology.

The main result is the existence of two adjoint functors S and e which

correspond p.f.b.'s to p.c.b.'s and under certain conditions are inverses to each

other.  These functors are applied to classify the p.c.b.'s. The proof of the

classification theorem relies heavily on Milnor's work in [7]. We also present a

typical example which in fact almost represents the most general case.  This

class of examples, up to homotopy equivalence, is the loops of a principal co-

fibration.

In §3 we point out a category of p.f.b.'s. §4 contains the definition of a

category of p.c.b.'s. In §§5, 6, and 7, we define the two functors and describe

the relations between them. The classification of p.c.b.'s is in §8. The example

is in §9. Some proofs are in §10.

All spaces are pointed with base point e, which denotes also the identity

of the groups. The disjoint union identifying base points is denoted by V.

I would like to thank Professor I. Berstein for suggesting the problem and

for many discussions with regard to this problem.
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2. Preliminaries.

Definition A. [1] F(X) is a free topological group with basis (X, e), a

pointed topological space, if F(X) has the following properties:  (i) F(X) is a

topological group with subspace X  (ii) X - e generates F(X) freely as a group,

(iii) For any continuous map <j>: X —* G, where G is a topological group, and

0(e) equals the identity element of G, then 0 extends to a continuous homomor-

phism 4>: F(X) -+ G.

Definition B. (a) A kw space is a topological space X with compact sub-

sets X„, such that:  (i) X = U~=i*„- 00 Xn+X D Xn for all «. (in) A subset

A of X is closed if and only if A nin is compact for all «. (b) By a kw de-

composition, X = \JXn, we mean that Xn have properties (i), (ii) and (iii). (c)

A kw group is a topological group which is also a kw space.

Theorem A (a) [1] For any completely regular space X, the group F(X)

exists,  (b) [6] Let X = U"=iX„ be a kw decomposition of X.  Then F(X)

exists and has the weak topology of Fn(X). (c) [6] F(X) also has a kw decomp-

osition F(X) = \J"=lF„(X„).  The sets Fn(X) and Fn(Xn) are defined as fol-

lows: LetX~l be a copy of X and let us denote X = X V X-1 the disjoint

union of X and X-1, identifying the base points.  Fn(X) is the image of the

projection of (X)n into F(X), where the projection sends a word to its reduced

form in F(X). Fn(X) is also given the induced topology of the projection de-

scribed above. Fn(Xn) is defined similarly.

Definition C. [2] Let Gx and G2 be two topological groups. Then, the

topological group Gx * G2 is said to be a free topological product of Gx and

G2, if it has the following properties:  (i) Gx and G2 are subgroups of Gx * G2,

with the subspace topology, (ii) The underlying group of Gx * G2 is their free

product as groups, (iii) If yx and y2 are continuous homomorphisms of Gx

and G2 into a topological group H, then there exists a continuous homomorphism

r: Gx * G2 —* H such that T = y¡ on Gf, i = 1, 2.

Theorem B. (a) [2] Let Gx, G2 be topological groups, then Gx * G2

exists, (b) [8] Let G¡ = U/GÍ be kw decompositions for the topological groups

Gv G2.   Then, Gx * G2 = \Jjh((G[ V Gty) is a kw decomposition where A sends

a word to its reduced form in Gx * G2.

Definition D. The pair <G, \p) where G is a topological group and ty a

homomorphism \p: G —* G * G is a co-group if the co-multiplication \p satisfies

the following:

(i) (1G * m - (* * lc)*.
(Ü) (C * 1CW = 1G and (1G * Qii = \G,
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where C: G —► Q is the homomorphism into the group of one element, and G

is identified with G * Q.

Theorem C. [5] ¿ei X1 be a copy of X, and x' E X' will correspond to

xEX.   Then the homomorphism #: F(A) —> F(AQ * FiX') such that tyix) =

x • x E FiX) * F'iX') is a co-multiplication for F\X).  This homomorphism is

called the associated co-multiplication with X.

Let AT be a subset of the group H.  Then GniX) denotes all reduced words

in X whose length is not larger than n.

3. A category of p.f.b's.   In this section we consider pi.b.'s with their

standard terminology [3], but not in the usual approach. In our study we do

not keep the fiber fixed, but rather the base.  Consequently the morphisms have

to be changed. To keep our notation straight, for a given fixed topological space

X, we define the objects and morphisms in the category.

Definition 1.   [3]  Let A be a topological group acting effectively with

continuous translation functions on the right of a topological space S.   If the

space of orbits of 5 with the identification topology is homeomorphic to X,

then the triple <S, p, A) is a p.f.b., where p is the map sending s E S to pis) E

X, which corresponds under the homeomorphism to the orbit of s.

Definition 2. Let at = <S¡, p¡, A¡), i = 1, 2, be pi.b.'s. A morphism

from ax to a2 is a pair <f, fs) where fs: Sx —► S2 is a map, and /: Ax —> A2

is a homomorphism such that:  (i) fsisa) = /s(s) • fia), (ii) p2/s(s) = Piis).

Definition 3.  Let ax = <SV pv Ax) be a locally trivial fiber bundle with

a system of transition functions {g^} relative to the open cover { £/,}, and let /:

A j —*■ A2 be a homomorphism into a topological group A2. Then the p.f.b.

/*(a2) = ^2> Pi> A2> constructed by the system of transition functions {/ g¡j]

relative to {£/,} is called the co-induced bundle of ax by /  lffs:Si —► S2 is

the map induced by /, we get a morphism (/, fs): at —♦ a2.

Proposition 1. Let ax and a2 be as in Definition 3. If X, Sv Av A2

are kw spaces so is S2. iProofin §10.)

We denote the category of locally trivial p.f.b.'s with morphisms as in

Definition 2 by F.

4. The category of px.b.'s.  We start this section with the definition of

a p.c.b. Later on we will restrict our interest to a special kind of p.c.b.

Definition 4. The tuple {T, <p, A, F, \¡/) is called a p.c.b. with T the

total space, <p the co-operation, A the co-base, F the co-fiber if the following

axioms hold:  (i) <F, \p) is a co-group, (ii) The continuous homomorphism <p

makes the following diagram commutative:
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-> F * T

* 1   * 0

0 *   1
F* T->F* F * T

(iii)  If rx and r2 are the projections of F * T on F and T respectively then

r20 = \T and r,0 is an epimorphism.  (iv)  The group A is imbedded by an iso-

morphism i: A —*• T onto the subgroup, I = {t E T\ 0(f) G T C F * T} of the

invariant elements of T relative to 0.

A morphism between the p.c.b.'s with the same co-group is defined next:

Definition 5.   Let ßt = {T¡, 0,., A¡, F, 0), í = 1, 2, be p.c.b.'s. Then

(f fr*'- ßi —* ßi 1S a morphism if the following diagram of groups and homomor-

phisms commutes:

/

* F*T,

Proposition 2.   Let ßx = <TX, <px, Ax, F, 0> be a p.c.b., and let f: Ax —*

A2 be a homomorphism into the topological group A2.  Then there exists a

p.c.b. ß2 = <r2, 02, A2, F, 0>, and a morphism </, fT): ßx —* ß2.   The p.c.b.

ß2 is called the p.c.b. induced from ßx by fand will be denoted by /*(/?,).

Proof. Let  T2 be the quotient group with the quotient topology of

Tx * A2 relative to the relations a'1 • f(a) = e for all a EAX. We denote the

quotient homomorphism by q.  The homomorphism i'2 is the restriction of q

to A2, and the homomorphism fT is the restriction of q to Tx. The co-opera-

tion 02 is the unique homomorphism making the following diagram commutative:

4>2 * lA2

TX*A2 ■+F* Tx * A2

If*'?

-*F*T2
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Proposition 3.  Let 0, and ß2 be as in Proposition 2. IfAl,T1,A2

are kw groups so is T2. (77ze proof is in § 10.)

We will be interested in p.c.b.'s with a fixed co-group of the following

type:  (F(A"), \]j), where \p is the co-multiplication associated with X.   Of course

for the existence of FiX) we require X to be completely regular from now on.

Because of this restriction we can abbreviate the notation of a p.c.b. to

<T, <j>, A).
Definition 6.   (J, 0, A) is called a locally trivial p.c.b. if the following

holds:  There exists a system  {ga: Ua —► T} of continuous maps such that

{ Ua} is an open cover of X, and rl<j>ga = 1 v   for all Ua of the cover (/-j :

FiX) * T—> FiX) the projection).  The {ga} are called the sections of (T, <¡>, A).

Proposition 4.   Let ßt and ß2 be as in Proposition 2.  Then ifßx is a

locally trivial p.c.b. so is f^ißx) = ß2.

Proof.  If {ga} are the sections of j31 then {fTga} are the sections of ß2.

We denote the category of locally trivial p.c.b.'s by C.

5. The restriction functor Ô. In this section we reveal the technique by

which we will study the structure of p.c.b.'s, via the well-known structure of

associated p.f.b.'s.

Let /?,. = (T¡, <p¡, A¡> EC, i = 1, 2.  Then, TiS = <f\X x T¡), and <¡>¡s:

Tjs —> X is defined as follows: <j>iS = rt (0,-!r. ), with rx as in Definition 6.

If </. fr1'- ßi —*■ P2 *s a morphism in C, we denote by fTS: TlS —► T2S the

map fT\Tls.  This construction makes sense because X x T¡ is imbedded in

FiX) * T¡ [8].

Theorem 1.  77ze function 6 which assigns to each ß = {T, <¡>, A)E C the

triple 5(j3) = (Ts, <t>s, A) and to each morphism <f, fT): J3X —» ß2 E C the pair

</ fTS) is a functor from C to F. (77ze proof is straightforward.)

Proposition 5. ¿er Tand X be kw spaces.   Then so is Ts. ijhe proof

is in §10.)

6. The extension functor e.  Let a = (S, p, A) E F. We consider the

following relations in F\S):

{s-a -isa)'1 =e\sES,aEA}.

Denote the quotient group with the quotient topology of F(5) relative to

the above relations by ST, and the quotient homomorphism by q: F(5) —* ST.

We also denote by pT the unique homomorphism which makes the following

diagram commutative:
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F(S) F(S) * F(S)

ft

F(p) * q

ST-" F(X) * ST

where x is the homomorphism induced by the map which sends sES to s x • s2

E F(S) * F(S), where sx, s2 are copies of s in the two components of the free

product.  For any (f, fs): ax —> a2 G F we define fST: SXT —► S2 T, as the unique

homomorphism which makes the following diagram commutative:

F(fS)
F(Sj)

Î1

F(S2)

f:
Si:

TS
-*s

42

IT

Theorem 2. The function e which assigns to each a = (s, p,A)Ep the triple

e(ct) = (ST, pT, A) and to each morphism </, fs): ax —* a2 E F the morphism

e<f, fs) = <f, fST): e(ax ) —* e(a2) is a functor from VtoC. (The proof is again

straightforward. )

Proposition 6.   If S and A of a, in Theorem 2, are kw spaces, so is ST.

(The proof is in §10.)

7.   Relations between e and 8.   We open this section with the remark

that e is a left adjoint functor to 5.  However for the classification theorem in

the next section we need a stronger connection between these two functors.  To

achieve this we replace C by its subcategory e(F) which we denote by C'. Under

this condition we obtain the following result:

Theorem 3.  77ie functors e and 8 are inverses of each other.

Theorem 3 is the main tool which enables us to deduce properties of

px.b.'s from p.f.b.'s.

Proposition 7. Let <1, fT):  < Tx, <t>x, A) —* {T2,<t>2,A)E C.  Then

<1, fT) is an equivalence.

Proof. Since 5<l,/r> is an equivalence in F, S<l,/r> is an equivalence in

c.

Pi-
Proposition 8.   Let (/ fT): ßx —* ß2 G C'.  Then f*(ßx) is equivalent to
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Proof. This follows from the universal property of induced p.c.b.'s (i.e.

that any morphism in C' factors through the canonical map into the induced

p.c.b.) and Proposition 7.

Proposition 9. Let f: Ax —*A2 be an homomorphism between two

topological groups, and let ßx = (Tx, <¡>x, Ax > G C.   77ie« /*(£,) and e(J*(8(ßx)))

are equivalent.

Proof. This is an easy consequence of Proposition 7.

At this point we would hke to remark that we can replace F by a subcate-

gory F' of all p.f.b.'s <S, p, A), such that 5 and A are kw spaces, and C' to be

replaced by C" whose objects (J, <p, A) satisfy: A, Tare kw groups such that T

has the weak topology of Fn(Ts).  All results of this section hold for these

categories with e and 6 properly changed.

We close this section with the notion of a trivial p.c.b.

Definition 7. The p.c.b. {T, <j>, A) is called trivial if T = F(X) * A and

0=0*1^.

Proposition 10.   The functors e and 8 correspond trivial p.f.b. 's to trivial

p.c.b. 's.

Proof. It is enough to show that 6 maps a trivial p.c.b. to a trivial p.f.b.

Since F(X) x A is embedded in F(X) * A, and (F(X) * A)T = X x A the re-

sult follows.

8.   The classification theorem for p.c.b.'s.   In this section we present and

prove a classification theorem for the category C" of locally trivial p.c.b.'s.  For

the classification we use the functors 8 and e, which reduce the problem to the

category F'. In this category we rely heavily on a result of Milnor's which is

also extended in this section.

Let X be a countable simplicial complex.  Denote by Z all finite (n + 1)-

tuples (xn, xn_x, . . . , x0) of points in X such that each pair x¡, xt_x lie in a

common simplex of X  We denote by Z the equivalence classes of Z under the

relation: (x„.x/+1, xt, x¡_x, x0) is equivalent to (x„, .... x/+1, x¡_x,. . . ,

x0) whenever xf = x¡_x, and denote the class of (x„,. . . , x0) by [x„,. . . , x0].

We also use the following notation: (a) E(X) - {[xn,... ,e]EZ};(b)p: E(X) —*■

X such that p([xn, . . . ,e])=xn; (c) G(X) = kerp.

Theorem I [7]. <E(X),p, G(X)> = %Er'.

Theorem II [7]. Every a G F' is co-induced from %.

The homomorphism which co-induces a of the theorem depends on a

system of slicing functions of a. We call this homomorphism a Milnor homomor-



136 ELYAHU KATZ

phism.  Next we state the main result:

Theorem 4. Denote by r\ — e(£); then:  (a) Every p.c.b. a E C" is in-

duced by a Milnor homomorphism from 77.   (b) If h0, hx : GiX) —► A are loop

homotopic homomorphisms (i.e. there exists a map H: GiX) x [0, 1] —► A

such that Hi , t) for a fixed f£[0, 1] is a homomorphism and //( , 0) = hQ,

Hi , 1) = ftj) then n0*(n) is equivalent to ht »(77).  (c) Ifk0 and kx are Milnor

homomorphisms for two equivalent p.c.b. 's of C", then they are loop homotopic.

The rest of this section is devoted to the proof of Theorem 4.  As for

part (a) it is an immediate consequence of Milnor's Theorem II and Proposition

9.  The proof of (b) follows also from Proposition 9 and the following:

Proposition 11. ¿er /0, /j : A —► A¡ be two homomorphisms which are

loop homotopic. Ifa = (S, p, A)E F', then /0*(a) is equivalent to /j »(a).

Proof.   If {g¡j} is a system of transition functions for a with the open

cover {Ua} of X, then {hçgy} and {n^} are systems of transition functions

with the same open cover for /0.(a) and l1*(a) respectively.   Let H be the

loop homotopy given in the theorem, then Hig¡¡ x \¡) is a system of transition

functions for the open cover [Ua x /} of X x /.   By Theorem 9.8, p. 51 of

[3] we conclude that l0*ia) and /i*(a) are equivalent.

The proof of part (c) of Theorem 4 is again a result of Proposition 9 and

the following:

Proposition 12.   Let k0, kt : GiX) —* A be Milnor homomorphisms for

equivalent p.f.b. 's in F'.   77ien they are loop homotopic.

The proof of this is done in several stages:

Lemma 1. Theorem I stated above is correct if we replace the simplicial com-

plex X by the complex X x /, whose cells are of the form r x /, with t a simplex bfX.

The proof is the same that Milnor gives for X in [7].

Lemma 2.   Theorem II holds if we replace X by X x I as in Lemma 1.

Proof. This is again, word for word, the proof of Theorem 5.1 in [7]

with the following observation: The proof of Proposition 5.3 which provides a

system of slicing functions, depends on the fact that the equivariant cohomology

groups //*(£/ mod A, Bn, T) are all trivial, since Simplexes are convex.  This

fact is also true in our case because t x / are also convex.

Lemma 3.   Let (S, p. A) be a locally trivial p.f.b. over X x Z.  Let 5ixx{o}

and S\x x{ j} have two systems of slicing functions.   Then <S, p, A) has a sys-

tem of slicing functions which extend the two already given.
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Proof.  The proof is again similar to the proof of 5.3 of [7], where this

time we use the following homotopy: for (x, r) x (y, s) E (r x /) x (n x /)

»((x, r), (ys), t)

( (x,r + t(s - r)), 0, s + t(r- s)), 0 < t < |,

J('*(«>-'*41 + (41-Ö('-ö*-'»)-

such that if for some (x, r), (y, s) there exists a t0 > lh such that

H((x, r), (y, s), t0) is in the diagonal of X x / or in (X x {0}) x (X x {0}) or

in (X x {1}) x (X x {1}) then H((x, r), (y, s), t) = H((x, r), (y, s), t0) for all

t>t0.

Proof of Proposition 12.   Since k0*(£) is equivalent to kx*(%), there

are two homotopic maps fQ, /, : X —► BA (where BA is the classifying space

for fiber bundles with fiber A).   Let H be the homotopy from /0 to fx and

<S, p, A) the pull back bundle of the universal bundle (EA, p, BA) via H.   By

Lemma 3 this bundle has a system of slicing functions extending the original

two given. By Lemma 2 the p.f.b. {S, p, A) is induced by a homomorphism

H : G(X x /) —y A.   Furthermore there exists a homomorphism /: G(X) x /

—► G(X x /) defined as follows:   the pair (a, t) is mapped to the tuple which

starts on the right with (e, 0), the next coordinates are those of a embedded in

X x t, and the last one is again (e, 0).  Combining the last two maps we get a

loop homotopy H = HJ: G(X) x I—* A such that H\G(X) x {0} = k0, and

H\G(X) x {1} is conjugate to kx.  However from the proof of Theorem II it is

apparent that the conjugating element is in the path component of the identity

of A.  Thus H\G(X) x {1} is loop homotopic to kx and we conclude that k0

and kx are loop homotopic.

9.   An example.   In this section we present a p.c.b. which arises in quite

a natural way, and show in fact that many p.c.b.'s are of this form. This is

done by relating p.c.b.'s to principal co-fibrations.

Let X be a connected subcomplex of a countable connected simplicial

complex Y.   Let e E X C Y be the base point.  We denote by CX the unreduced

cone over X, i.e. CX = X x //X x {1} and by 2X the unreduced suspension of

X, i.e. SX = X x I¡X x ({0}, {1}). We mark the point resulting from the col-

lapsing of X x {0} by v0 and of X x {1} by vx. Let Z be the identification
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space of Y U CX where (jc, 0) E CX is identified with xEY.   CX, SAT and Z

are again countable connected simplicial complexes.

Let F(Z) be a subcomplex of F(Z) (see §8) consisting of all tuples such

that no coordinate lies in (Z - (CAT -1^)) unless it is the first on the left.  Let

GiZ) denote those tuples of F(Z), with first coordinate from the left equal to

e.  Every element a of GiZ) can be represented by a product of special elements

a = ax • a2 • • • an, with a¡ £ GiZ), where a¡ is one of the following types:

{[w] E GiY)}, {[u • x • vt • e]\ u is a tuple in y that starts on the left with e,

and xEX},  {[e • Uj   x • u]\ u E E[Y], x E X}, {[e -v1-xl-wxi'Vi-e]\

u is a tuple in y}. Define a homomorphism 0: G(Z) —* FiX) * GiZ) such that:

[w] for a = [w],

x • [e ■ i>! • x ■ u] for a = [e • v1 ■ x ■ u],

[u • x • ux • e] • x~l for a = [u ■ x • Uj • e],

*iLe ' vi •*! "" "*2 ' ui ' eVî1    for a = [e-vi-xl-u-x2-vi-e].

0(a) =

It is easy to check that 0 is well defined.

Theorem 5.   (GiZ), 0, GiY), FiX)) is a locally trivial p.c.b. in C" (see

§7).

Proof.   Let S = [a E <§(Z)|0(a) EX x G(Z)}.  These are all elements of

the form {[e • vt • x • u]\u E EiY)} which are homeomorphic to {a E EiY)

whose first element on the left is in X}. We denote this set by EiY, X).  Since

(S = EiY, X), 05, GiY)) is the pull back p.f.b. of the p.f.b. (EiY), P, GiY))

via the inclusion map of X into Y, the pull back bundle is also locally trivial.

The result now follows from Theorem 2.

To see the generality of the above example consider the following:   Let

/: X —*■ Y be any map between spaces of the homotopy type of countable c.w.

complexes since up to homotopy type / can be replaced by the inclusion of a

countable simplicial complex into another countable simplicial complex. We con-

sider this situation, i: X —> Y.   Let Y —*■ Y U¡ CX —*■ SAT be the principal co-

fibration induced by i from the co-fibration X —* CX—* SX

Theorem 6. 77ze total space, the co-base, and the co-fiber, of the p.c.b.

of Theorem 5, are of the homotopy type of the loops of: the total space, the

co-base and the co-fiber of the principal co-fibration Y —► Y U¡ CX —>• SX

Proof. That GiY) has the homotopy type of SlY follows from [7].

The rest of the proof is split up in the next two propositions:

Proposition 13.   GiZ) has the homotopy type of GiZ), thus also of ÜZ.
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Proposition 14. FiX) has the homotopy of Í2SX

Proof of Proposition 13.   We start with the proof that <¿(Z), P, GiZ))

is a p.f.b. of F", where P: EiZ) —► Z sends a tuple of EiZ) to its first coordinate

on the right. It is clear that GiZ) operates effectively on EiZ). The rest follows

by the use of Milnor's arguments in [7] for proving that <F(X), P, GiX)) is a

universal p.f.b. with the following changes. For the coordinate neighborhood of

Uj there is no change. For the coordinate neighborhoods stiu) where « is a

vertex of X, the connection of u with a point in stiu) n X is as in the original

proof, while the connection with a point r E stiu) n (CX - X) is via an extra

coordinate in X, which lies in a straight line under the point in CX- X, between

t and u.  The rest of the proof is with no change. The rest of the proof follows

by the five lemma and the homotopy ladder of the following commutative

diagram of p.f.b.'s

GiZ)-► EiZ)-► Z

GiZ)-> EiZ)-> Z

where the vertical maps are inclusions.

Proof of Proposition 14. Let G(SX) be the subgroup of G(SX) gen-

erated by elements of the form [e • vl • x • v0 • e].  G(SX) is homeomorphic to

F(X) via the map which sends x to [e • vl • x • v2 • e]. To complete the proof

it suffices to show that G(SX) is of the homotopy type of G(SX).  Define

¿(SX) C £(SX) which are those of G(SX) with the exception that they do not

have to end in e but anywhere in SX   If P: ¿(X) —*■ X is the projection on

the first coordinate from the left then as in the proof of Proposition 13 we get

that <£(X), P, GiX)) is a p.f.b. The rest of the proof is similar to the proof of

Proposition 13, this time with the following diagram:

G (SX) -► ¿(SX) ->X

G(SX)  -► ¿(SX) ->X

where the vertical maps are inclusions.

10.   Proofs.

Proof of Proposition 1.   The total space S2 is homeomorphic to the
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total space of the fiber bundle aj[/l2] [3, p. 44], which is a quotient space of

the kw space Sx x A2.

Proof of Proposition 3.   The only fact not proved in Proposition 2 is

that T2 is Hausdorff.  This follows from Propositions 1 and 9.

Proof of Proposition 5.   Claim F(X) x T is closed in F(X) * T.  Since

X is closed in F(X) [1], X x T is closed in F(X) * T.   Thus Ts being the in-

verse image of a closed set is closed and therefore also kw. Next we prove the

claim.  Let F(X) = \JX¡ and T = U Y, be kw decompositions, then F(X) * T

= UA((X(- V Yj)') is also a kw decomposition, where A sends a word to its re-

duced form.  If we denote Xn and Yn by K° and Kn respectively then

A((X„ V Yn)n) can be replaced by a finite union of the following compact sets:

A(1T?= j Kj[) where i¡ takes values 0 and 1.  Now it is clear that

F(X) x T n A((X„ V YnT) =     U     A((X„)k) x A((r„)').
k + l=n

k.l > 0

Since the right hand side of the last equality is compact the claim follows.

(Note that the claim and the proof generalize trivially to a finite number of

groups.)

Proof of Proposition 6.  Let S = \Jk=1Sk be a kw decomposition.

Define the following sets:

¿k - <Sk x Sk),   A'k - Ak U (Akl),   S'k = p'(Sk x A'k x • • • x A'k),

where r is the translation function of (S, P, A) (Definition 1), p is defined on

Sk x (A'k)k and is induced by p, the action of A on S, and (A^1) are the

inverses of Ak in the group A.    We also use the following notation:

Tk = {s ■ a ■ (saTx, (sa)~l -s-a^-a'1 -(sOT1))-1, Wl)Tl -s-a'^sE

S'k, a G A'k}, H'k = {u~l -vu\uE Fk(S'k), v E T? }. H' = (X=Ä K =

Fk(H'k), H" = \Jk=lHk, Hk = h(H"k) and H - \Jk=xHk, where A sends a word

to its reduced form in elements of S.   It is obvious that H = ker q, and that each

Hk is compact.  Our problem is now reduced to showing that H D Fk(Sk) C Hk.

This is the outcome of the following claims which actually amount to the fact

that an element in H, not in Hk, cannot be in Fk(Sk).

For a word w in F(S) we denote by |W| its length in elements of S.   We

say that the words ex, e2 E F(S) have a link of the first, second, third or fourth

kind if one of the following holds respectively: \ex • e21 > max{ \ex |, |e21},

\ex ■ e2\ =max{|e1|,|e2|}, \ex • e2\ = max {|c,|, |e2|}- 1, \ex • e2\ <

max {\ex I, |e2|} - 1.  Let W = cx ■ c2 • • • ck be a representation in elements of

H1 of a word in F(S), such that c¡ cannot be represented by c¡ = d) • • • d(', d\ E

H', with max1<y<l|<//| < |cf| for all 1 </</:.  Such a representation will be
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called proper.  Every word of F(5) has a proper representation.

Claim 1.  Let w = ci • c2 • • ■ ck be a proper representation. Then be-

tween any two pairs of consecutive elements of {c¡} with links of the third

kind, there must be a pair of consecutive elements, with link of the first kind.

There is no link of the fourth kind.

This claim is achieved by observing that in each of the many possibilities,

if the claim is not satisfied, the representation cannot be proper.  As an easy

consequence we get:

Claim 2. If w = cl • • • ck is a proper representation, then \w\ > [|c,-l/2]

for 1 < / < k, and \w\ > k.  i[x] = the largest integer < x.)

Claim 3. If w £ F(5fc) n H, then w has a representation in elements of

FiS'k) O H1. This follows from the definitions of {S'k}, {A'k} and the operations

needed in the proof of Claim 2.

The proof of Proposition 6 follows now at once.
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