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FROBENIUS CALCULATIONS OF PICARD GROUPS

AND THE BIRCH-TATE-SWINNERTON DYER CONJECTURE

BY

RAYMOND T. HOOBLERÍ1)

ABSTRACT. Let Y C Pm be a subvariety of codimension d defined by an

ideal / in charp > 0 with //'(Y, 0 (-1)) = 0. If t is an integer greater than log (d)

and Hi( Y, f/l"+i) = 0 for n » 0 and i =1,2, then Pic(Y) is an extension of a fi-

nite p-primary group of exponent at most pt by Z[ 0 (1 )1 and Br'(Y)(p) is a group of ex-

ponent at most pl'.   If Y is also smooth and defined over a finite field with dim Y

< p and p i= 2, then the B-T-SD conjecture holds for cycles of codimension 1.

These results are proved by studying the etale cohomology of the Frobenius neigh-

borhoods of Y in Pm.

Let i : Y —»• ?m be a smooth subvariety of Pm over C. If dim(JO >

Vi(m + 2), then Barth and Larsen have shown that Vic(Y) = Z and it is generated

by Öy-(l). This follows easily from their isomorphism theorems for the cohomol-

ogy of smooth subvarieties of low codimension and the exponential sequence.

Ogus has given an algebraic proof of this result in characteristic 0 by studying the

cohomology of the formal completion V of Pm along Y and using the exponen-

tial map to pass from Pic^) to Pic(Y).

We use the same approach via V, but the techniques required to study

Pic(Y) are quite different in char p > 0.  Clearly a general exponential map does

not exist. Instead we have the Frobenius map. Moreover if Y0 C Y is a square

zero deformation, then the truncated exponential sequence shows that Pic(Y) —►

Pic(Y0) has a p-torsion kernel and cokernel. In particular if i : Y —► Pm is a

closed embedding defined by an ideal / and V is the formal scheme obtained by

completing Pm along Y, then Pici^) has the same rank for any N but Pic(y)

may have smaller rank. This is essentially due to a p-adic limit phenomenon

wherein the limit may be zero without the groups being 0. By requiring that

H'(Y, In/In+1) = 0 for 1 = 1,2 and H\Y, 0Y(-1)) = 0, we can avoid this and

can obtain a remarkably strong theorem-Pic(Y) has rank 1 and contains no p"

torsion for n > log (d) where d = codim(y, Pm).  Moreover we verify the Birch-

Tate-Swinnerton Dyer conjectures in codimension 1 for such smooth varieties
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over a finite field by using a recent result of Bloch which interprets fppf cohomol-

ogy in terms of crystaUine cohomology.  The strength of this theorem shows that

the hypotheses on I"/In+l are not usually satisfied.  However in charO Serre

duality implies H'(Y, I"/I"+1) = 0 for n » 0 and i ¥= dim Y since Y has an am-

ple normal bundle (see remarks following the theorem).  Our use of the Frobenius

map will help explain why this fails in char p > 0 and why the analytical flavor

of algebraic geometry in char 0 must be replaced by a p-adic flavor in charp even

when the questions are formulated in the same way.

From now on k will denote a field of characteristic p > 0. We wül be com-

puting cohomology groups in various topologies on X such as in X X, the faith-

fully flat, locally of finite presentation site, and in XZat, the Zariski site.  If no

subscript is indicated, we are working in the Zariski site. We will use without

mention the isomorphism H\X ,, F) = H'{X, F) for a coherent sheaf F on X

where F is a sheaf on XpX via HT, F) = H°iT, p*F) for p : T —*■ X in Xpl.

Let i : Y —*■ Pm be a closed embedding defined by the ideal I. iN : YN —* Pm

wiU denote the closed embedding of the scheme defined by IN+1 in Pm.

i(r) : Y,r} —► Pm, the rth Frobenius neighborhood of Y in Pm, wiU denote the

closed embedding defined by I^ where 1^ is the ideal in 0pm generated by

p'th powers of elements in I.  Thus we have a cartesian diagram

where Fr is the r fold composite of F = Ffm, the Frobenius map of Pm.  For

simplicity of notation we wUl write /for the restriction of F to Y,ry The con-

text wül always make clear which Frobenius neighborhood of Y we are using.

Our main tool wül be a result in [3] which we describe here for the case

i : Y —> Pm in order to fix notation.  Let Q,r = fipm/fc and Zr, Br be the

sheaves of abelian groups of closed, exact r forms on Pm respectively. They de-

fine coherent sheaves on Pm when they are regarded as subsheaves of F^,Qr. Now

F: Pm —► Pm is a purely inseparable Galois covering. The fundamental exact se-

quence on P£î of [3] is

0-^g   pm-F,G   pm^Z1^^S21->0m,Vm *   m,Pm

where C.Z1 —> Í21 is the Carrier operator and I:ZX —*■ SI1 is the "inclusion."

Since we are using the absolute Frobenius on Pm, the map uV appearing in [3] is

the identity. Note that C is a linear map while / is only p-linear since Zl is being

regarded as a subsheaf of F^Sl1.
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Our first result is the basic tool for analyzing the fppf cohomology of Fro-

benius neighborhoods of Y.

Proposition l. Let i : Y —> P¡? be a subscheme of Pm.   77iere are exact

sequences in Ypl :

(1.1) 0->Gm>Y-^f*GmtY{l)-+i*ZlC-^Í «•n'—0,

(1.2) 0 — i*Zl -»/¿fofi1 ^/¿ip2

where c, i denote the restrictions of C, I to Y, and i*Z , etc. are the coherent

sheaf restrictions ofZ1, etc. which are then regarded as fppf sheaves on Y.

Proof.  Since F:Pm —► Pm is a purely inseparable Galois covering, so is

/: Y,Xj —*■ Y [3]. Hence there is an exact sequence in Ypl,

0 _* Gm,y ~*^m,yr1) ~*ZYtX)jY *" ̂'*fiY(1)/Y ~^ °>

where \j/ ° f = FY is the Frobenius map on Y, c is the Cartier operator on Y, i

is the "inclusion" map on Y, and ZY    ,Y is defined by the exact sequence

0 ^ ZY{1)/Y -^ f*nYrx)IY -^ f*nY(l)IY-

But n'Y    jY = i^jjS2pm for i = 1,2 and so ZY(U/Y — i*Zx as coherent sheaves

on Y.   Moreover \¡i : Y —► Y,x ̂  is the closed embedding defined by I/I^.  Since

'(i)^ = '» ̂ ^Y(t\/Y = '*^!•  ®nce tnese identifications have been made, we

find that C, / are identified with the restriction to Y of the corresponding opera-

tors on Pm which accounts for the notation c, i.    O

In order to describe the effect off* on ?ic(Y^) and

Bt'(Y(n)) = H2(Y(n)pX,Gm),

the cohomological Brauer group of Y,ny in terms of the Zariski cohomology of

'(n)^1 an(^ '(n)^1' we nee^ an inductive formulation provided by the next result.

Proposition 2. Let i : Y —*■ Pm be a closed subscheme with tautological

bundle 0Y(l) = 0(1) defined over a field k.

(a) IfH°(Y, 0Y) = k, then f* : ?ic(Y) —► Pic(Y{x)) is injective and

H°W(iyOY,x)) = k.

(b) IfH°(Y, 0Y) = k, Hl(Y, 0Y(- 1)) = 0, then there is an exact se-

quence
0 —> ?ic(Y) -* Pic(r(1)) -» Z/pZ -rf 0

where the image of 0Y( .(1) is a basis element of Z/pZ and f* : Br'(Y) —■*■

Br'(r(i j) is injective.  Moreover Hl(Y, i*i2x) = * and Hl(Y,xy QY    (- 1)) = 0.

Proof.  In addition to (1.1) and (1.2), we need three other exact sequences

in YpX,
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m + 1

(1.3) O^TO1 ->    ©    öy<-l)^0y->0,
1

(1.4) 0 -> i**1 -* f*2* -^ r*«1 -»■ 0,

(1-5) 0-^Oy^/,Öy(1)— i**1—0

which are obtained by restriction just as above. Moreover i*Bl = ® j 0y(~ nf)

where «,. > 0 since F^0pm = ©o0(~ ",-) where n0 = 0 [2, Chapter HI, Corol-

lary 6.4].

(a) Let Blm be the cokernel of Gm Y —*/*Gm Y    . The hypothesis on

Y shows that H°iY, 0{- 1)) = 0 and so'/Y°(y, TO1) = 0 = #°(y, FZ1). Thus

#°(r, ¿^) = 0 as desired. Moreover (1.5) shows that#°(y(1), 0Y(1)) = k.

(b) The hypothesis and (1.3) shows that H°{Y, 0Y) -*HxiY, TO1) is

an isomorphism. Since the first deRham Chern class of QY    (1) lies in the im-

age of HxiY, i*Zx),Hl{Y, i*Zl) = k. Now i* is p-Unear and so the kernel of

c* - i* = Z/pZ. Since H°iY, TO1) = 0, this shows that H\Y, Blm) = Z/pZ and

there are exact sequences

0 -+ Pic(Y) —► Pic(r(1)) ->■ Z/pZ -*■ 0,   0 -> Br'(y) -* Br'(ya)).

Finally since F^0{-1) = ©0(- mf), m¡ > 0, /*0y(1)(~ 1) is a sum of 0y(- mf).

Hence//1(r(1),0y(1)(-l)) = 0.   D

Our main result now follows by comparing the action of / and FY on

H'iYpl, Gm), i = 1,2.  In order to get the most effective bounds we need a

slight generalization of the usual exponential sequence. So suppose / : YQ C Y

is a closed subscheme defined by an ideal / such that Ip = 0. Then there is an

exact sequence of sheaves in the Zariski (or fppf) site on Y,

where e is defined by

e(g) =Z fln\,     gEYiU.I).
o

Since g'hp~' = 0 for g, h E T(t/, I), e is a homomorphism with log as an inverse.

In particular the kernels of Pic(y) —* Pic(yo) and Br'(Y)—*Br'(yo) are p-torsion.

If Y C X, we say that the algebraic codimension of Y in X is less than or

equal to d if 0Y¡y 1S the quotient of 0x,y by an ideal generated by less than or

equal to d elements for ally EY.  Thus if X is regular and y is a local complete

intersection, then the algebraic codimension coincides with the geometric codi-

mension of Y in X.

Theorem.   Let i:Y —*■ Pm be a subvariety of Pm of algebraic codimen-

sion d with Hl{Y, 0Yi~ 1)) - 0. Let t be any integer greater than logp(cf).

(1) Suppose Hl{Y, In/In+1) = 0/or n » 0.  77ien PiciY)ip), the p-pri-
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mary component ofPic(Y), is a p-group of exponent no more than p*.

(2) Suppose H'(Y, I"/In + l) = 0forn»0 and i =1,2.  Then Pic(Y)

is an extension of a finite group whose p-primary component has exponent at

mostpf by Z[0Y(l)].

(3) Suppose H2(Y, In/In + 1) = 0 for n » 0. Then Br'(Y)(p), the p-pri-

mary component of Br'(Y), is a group of exponent no more than px which is

finite if Y is smooth and k is finite.

Proof,  t enters into the calculation in the following manner. Let r » 0.

Then Ipt'pr C /<r> C lPr and so the nilpotent embedding, Y , c_> Y,r)) may be

factored into a sequence of t nilpotent embeddings each defined by an ideal Ik

with IP = 0,

Ypr = y0   ^  Yt   c*».   ^Yt_x   UYlfy

corresponding to the chain

/(O ciPt~i-pr +/(r) c ••• C.IP-P" +/(r) C/Pr.

The exponential sequence then shows that the kernels of Pic(Y^ —► Pic(Y r)

and Br'(Y,r^) —► Bi'(Y r) are p-groups of exponent at most pf.

(1) Since Hl(Y, In/In+1) = 0 for n » 0, the exponential sequence

0-+l"/l"+1^0*Yn+1-+0Yn-^0

shows that Pic(yn + 1) —► Pic(Yn) is injective for n » 0.  Proposition 2 shows

that f*r : Pic(y) —► Pic(y(r)) is also injective.  Consequently the factorization of

FY( . through fs for sufficiently large s and the argument above show that

Pic(Y)(p) has exponent at most p'.

(2) IfXCPm,let/>(^) = Pic(AO/Z[0Ar(l)].  Proposition 2 shows that

/* :P(Yfr^) —► •''(^(r+i)) is an isomorphism. As above the hypotheses and the

exponential sequence shows that Pic(y„ + 1) —■* Pic(y„) is an isomorphism for

n » 0.  Thus, for r, s y> 0, the exponential sequence, the remarks above, and

the hypotheses show that FYS factors as below:

p*s

P(Y)—    -—   -*P(Y)

P(Y\r))

f*S

0-+K^ P(Y(r+s)) - P(Ypr+s) C P(Y,r))

where the bottom row comes from the embedding Y,^ C Y r+s C Y,r+S^ and

K is a p-group of exponent at most pf.  Since FYS is multiplication by ps on

Pic(y). the definition of P(Y) shows that Pic(Y)(p) = K. Now Picy/fc red is a
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Unear group since Pic(y)(p) is p*-torsion.  Hence the torsion in Pic(F) of order

prime to p is finitely generated as is Pic(iO/Pic(y)tors-  Since the cokernel of

FYS is p'-torsion, the rank of Pic(F) = 1 and Pic(y)/Pic(y)tc,rs is generated by

0y(l) or ¿ where ¿®p = 0y(l) for i < t which completes the desired decom-

position.

(3)  The exponential sequence in the fppf topology and the hypothesis show

that Br'(y„) —► Br'iYn_x) is a monomorphism if n »0. On the other hand Prop-

osition 2 shows that /* : Br'iY,rs) —► Br'iY,r+x-)) is injective for aU r.   Since

FY: Br'(F) —► Br'(10 is multiplication by p, factoring FYS and arguing as above

shows that Br'iY)(p) is at most pf-torsion.  If Y is smooth, then the kernel of

FY can be computed by [3].  In particular it is an extension of a finite p group

by a vector space over k and so is finite if k is finite.

Our first coroUary was suggested by Spencer Bloch.

Corollary 1. Let Y = P'1 x Y2 —► Pm "be the Segré embedding de-

fined by an ideal I.   Then H2{Y, I"/I" + x)is not always zero for large n.

Proof.  Since HxiY, 0Yi~ 1)) = 0 by the Kiinneth formula and the rank

of Pic(r) > 1, either HX{Y, I"/In + X) or H2{Y, I"/I"+1) satisfies the corollary.

Let Pi'.Y —► Pr/ be the respective projection maps. Then there is an exact dia-

gram

o -+ i/i2 -+ TO1 -* pî S2jri ® p* npr2 -^ 0

I       1° 1»
m + l

0-+///2-+    ©    Oy(-l)-*    C^O
1

and cokernel ß = cokernel a- 0Y- This immediately shows that HxiY, I/I2) = 0

and H2iY, I/I2) * 0.  Now S"{I/I2) = I"/In + 1 where S" denotes the nth sym-

metric power, and 5"(©^" + 10Y{- 1)) has a descending filtration whose succes-

sive quotients are I'/I'+1 ® S"-'{C)- But H^Y, 5"(©f + 10Yi~ 1))) = 0 and

so the vanishing of HxiY, I"/I" + x) will follow from proving that

H°iY, il'/l'+x) ® Sn-'iC)) = 0

for/ < n.  But S"~'{C) has a filtration whose successive quotients are

sk(P*&ri ®p*2nxpr2)

for k < n -j.   Since Skip*i^\r¡) is contained in p*iSki&x + 1 0 ,f~ 1))), the

desired assertion follows immediately.

Corollary 2. Let i:Y —>■ Pm be a smooth subvariety defined over a

finite field ¥q with HxiY, 0y(- 1)) - 0 and H2{Y, I"/In+X) = Oforn» 0.

Suppose q = pr with p ¥=0,2 and dim Y < p.  Then the rank of the group of

k-rational points on the Picard scheme of Y equals the order of the pole of f (7, s)
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at s = 2; that is, the Birch-Tate-Swinnerton Dyer conjecture holds for cycles of

codimension 1.

Proof.  Bloch has recently shown that

H2(YpX, Qp(\)) = (hm H2(YpX, pp„)) <8> Q

is isomorphic to the subspace of Hlris(Y/W) ® K on which the Frobenius acts as

multiplication by p  [1]. Consequently if q = pr, FY : Y —► Y acts via multipli-

cation by q on H2tis(Y/W) ® K.   But the dimension of this eigenspace is the order

of the pole of f (Y, s) at s = 2  [4]. Consequently the Kummer sequence reduces

the Birch-Tate-Swinnerton Dyer conjecture to proving that Br'(F)(p) is finite.

Finally we need some examples where the hypotheses are satisfied.  Short

of proving the Kodaira vanishing theorem in charp, there are two ways

Hl(Y, 0Y(- 1)) = 0 if dim Y = d > 2.

(1) Hl(Y, 0Y) = 0 =>Hl(Y, 0Y(- 1)) = 0: Bertini's theorem and the

short exact sequence defining the structure sheaf of D, a generic hyperplane sec-

tion of Y, shows that Hl(Y, 0Y(- 1)) = 0 if Y is a variety.

(2) Y smooth of dimension > 3,   Picy,fc  has maximal p-rank «•

H1(Y, 0Y(- 1)) = 0 : We may assume k is algebraically closed. The short exact

sequence

0 — Hl(Yet,Z/pZ) — Hl(Y, 0Y) —-H\Y, 0Y) — 0

and the assumption show that Hl(Y, 0Y) has a basis {e,} for which F*(e¡) = e¡.

Now Bertini's theorem for nx shows that Hl(Y, 0Y) —* Hl(D, 0D) is an isomor-

phism if D is a generic hyperplane section, and so as above Hi(Y, 0Y(- 1)) = 0.

Recall that r"(E) is defined to be (S"(Ev)y/ for any vector bundle E on Y

where S" is the nth symmetric power.  In the terminology of [2],

H((Y, rn(E) ®F) = 0

for n » 0, any coherent sheaf F, and ¡' > 0 means E is T-ample.  Now in char 0,

Tn(E) = Sn(E) and so T-ample and ample coincide.  Serre duality and the ample-

ness of the normal bundle for YCPm show that Hd-l(Y, r"(Ay/pm) ® co) as

H'(Y, In/I" + 1) = 0 for n » 0 and i =£ d.   In charp this is, of course, false in

general.  However V"(E) as £"(£) if E is a sum of line bundles and so it holds

for strict complete intersections of dimension > 2.  By using base change we can

"spread this out" to a larger class of examples.

Consider the following situation: S is a variety over k, i:Y —> P™ is a reg-

ular embedding defined by an ideal / such that the fibres of the natural map q :

Y —> S are varieties of dimension d>2, and suppose that for some closed point

s0 G S, y    —► Pm satisfies the hypotheses of the theorem.  Then for n » 0,

Hd(Yt, Y"(NYtlVm) ® coyf) = 0 for any t E S and so
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Rdq¿rHÍNY/r„) ® coy/5) = 0.

Moreover by Grothendieck's base change yoga there is an open set U C S con-

taining s0 such that

H\Yt, OT+1) = Hd~iiYt, Yn{NYt) ® uYt) = 0

for ail r £ U, n >£> 0, í = 1,2.  Shrinking U somewhat if necessary we can also

ensure that Hx(Yt, 0Y (- 1)) = 0 for t E U.  Thus if the hypotheses hold for

Y E?m then they hold for the generic deformation of Y.
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