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ON THE BLOCKS OF GL(n, q). 1
BY

JPRN B. OLSSON

ABSTRACT. A study is made of the distribution of the ordinary irreduc-
ible characters of GL(n, q) into p-blocks for primes different from the character-
istic. The paper gives a description of all possible defect groups for p # 2 and
their normalizers. Various other results are obtained, including a classification of
the blocks of defect 0.

About 20 years ago, J. A. Green determined completely the irreducible
characters of the finite general linear groups GL(n, q), n integer, ¢ prime-power,
in a long and deep paper [6]. Until now no attempts have been made to try to
determine the distribution of the irreducible characters into p-blocks for primes p
different from the characteristic. The present paper starts investigations of this
problem. There are similarities between general linear groups and symmetric
groups, which are illustrated by the analogy of results in this paper to results
from the representation theory of symmetric groups. The blocks of Sym(n), the
symmetric group of degree n, were determined by Brauer [2] and Robinson [12]
in 1947, continuing the fundamental work of Nakayama [10], [11].

In §1 we investigate the possible defect groups for p-blocks of GL(n, q),

p # 2, p4q. The Sylow p-subgroups of GL(n, q) are direct products of wreath
products of cyclic p-groups (see [14]) and the same is true for the possible defect
group. We also determine the normalizers and centralizers of the possible defect
groups, so that a theorem of R. Brauer can be applied to determine which of
them actually occur. §2 concentrates on studies of the degree formula for the
irreducible representations. We give a description of p-blocks of defect 0. After
introducing the concept of the (e, p)-series for a partition, it is possible to com-
pute the power of p dividing the degree of a representation. §3 contains a gen-
eral result on the blocks of GL(n, q).

1. The defect groups. Let NV be the set of positive integers and q a prime-
power. For n €N, GL(n, q) denotes the general linear group of degree n over
the finite field GF(g). Let V(n, q) denote an n-dimensional vector space over
GF(q), so GL(n, q) is the group of isomorphisms of V(n, q).
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If p € N is a prime, we say that p is of degree e w.r.t. q, if p1(g° — 1) and
pt@ -1)for 1 <f<e,ie.,if g + pZ is of order e in GF(p). In particular
elp-1.

If n is any integer, »(n) € N is defined by p*|n and p*"+1 t .

In this section we assume that p # 2 is a prime of degree e w.r.t. q, and
that v(g° — 1) = a ( > 0). We want to study the possible p-defect groups of
GL(n, q), and start with a few preliminary lemmas.

LemMA (1.1). Leth €N. Then

_ {0 ifeth,
v(qh_l)—{a+u(h) ifelh.

The proof is straightforward.
The Sylow p-subgroups of GL(n, q) have been described in [14], and we
assume knowledge of this work.

LEMMA (1.2). Lets, k €EN.

(1) The Sylow p-subgroups of GL(s, ¢°*) and GL(s, quv(k)) are isomorphic.

(2) vIGL(se, )| = vIGL(s, g%)| = sa + v(s"). In particular the Sylow p-
subgroups of these groups are isomorphic.

ProoF. Use (1.1) and the fact that, for any s, k € N, GL(s, ¢*) can be
embedded in GL(s%k, g).

For n € N, Sym(n) denotes the full symmetric group of degree n. For
j> 0 let R; be a Sylow p-subgroup of Sym(p) and let Ry =1

We define

Dy=Z .4~ R; forij>0,

where ~v denotes wreath product. Then Dil- can be embedded as a Sylow p-sub-
group of GL(p/, q‘Pl).

LEMMA (1.3). The minimal dimension of a faithful representation of D,-j
over GF(q) is p'*ie.

PRoOF. We have to show that k = p‘*/e is the smallest integer, such that
GL(%, q) contains a subgroup isomorphic to D;;. If 4 is any group, then for ex-
ponents we have exp(4 Vv Z,) = p - exp(d) as is easily seen. Thus if 7 is the
largest integer, such that p"e < n, then the exponent of a Sylow p-subgroup for
GL(n, q) is p®*". This proves our assertion for j = 0.

The centralizer of D, in GL(p'e, q) is cyclic by 1I, 7.3 in [7]. Since D,
contains a direct product of p/ copies of Zpa +p» our result follows for all j.

LEmMa (1.4). (1) Dy; has a characteristic homocyclic subgroup A of
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exponent p**! and order p(“”)"i . A is the only abelian subgroup of D;; of this

order, and no abelian subgroup has larger order.
(2) Consider D, C GL('*/e, q) = GL(V). There exist decompositions

o N
k=1 k=1

such that dim V¥ = ple, 4(%) ~ Z P A(") acts faithfully on vV ®) and triv-
ially on VO for k # 1.

Proor. (1) This is proved by induction on j, using for instance Theorem
2 of [1].

(2) For any m € N, a statement similar to (2) can be formulated for a
homocyclic subgroup of GL(mp'e, q) of exponent p®*! and order p@*?™_ This
statement is proved by induction on m using II, 3.10 in [7] and (1.3) forj = 0.

ProrosITION (1.5). Let e <n € N. A p-defect group for GL(n, q) is a
direct product of p-groups, each isomorphic to some D;;.

PrROOF. Let D be a defect group for the p-block B of G = GL(n, q).

Casel. e= 1.

(a) Assume Q,(Z(D)) < Z(GL(n, q)). Then Q,(Z(D)) is cyclic, so Z(D) is
cyclic. Write |Z(D)l = p®*9 for some d > 0. This is possible because Z(G) con-
tains a subgroup of order p®. A basic property for a p-defect group is that it is
a Sylow p-subgroup of the centralizer of some p’-clement. So assume D €
Syl,(C; (), where y € G is a p'-element.

Write y = YeVq' the product of a g-element and a q-element. [yq, yq:]
=1.

If Vg =1 let

ll
i [V]s

£z

be the decomposition of V = V(n, q) into irreducible GF(g)[{y)]-modules, where
Vij = Vi if and only if i = k. If dim V}; = k;, then

(1) o) ~ [ GLGs;» ¢*).
i=1

This follows for instance from II, 3.11 in [7].

Ifyg # 1, then Cg(y) = CCG(J' ) (Vq), where Cg(v4) has the form de-
scribed in (1).

Since Z(D) is cyclic, we conclude that in any case m = 1, so n = s5,k;.
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If y, = 1, then s, must be a power of p and »(k,) = d in order that the
Sylow p-subgroup of C;(y) =~ GL(s,, qkl) has cyclic center of order p®*¢. Thus
D has the desired form, as is seen by using (1.2)(1).

Ify, # 1, then Cj, ( sl,q"l)(yq) contains a homocyclic subgroup of type

@"L, ..., p"Y) (r times) where a, = v(qkl - 1) and r is the number of parts in
a certain partition of s; (corresponding to the Jordan canonical form of Vq)- We
getr = 1. By Lemma 2.1 in [6], D is cyclic and v(k,) = d. Thus D >~ D, in
this case.

(b) If Q,(Z(D)) € Z(GL(n, q)), then there is some z € Z(D) having at
least 2 distinct eigenvalues. Then C;(z) is a direct product of general linear groups
of smaller dimensions. Since DC;(D) < Cg(2), D is a defect group for Cg(2),
so we are done by induction.

Case I1. e > 1. Choose z € Z(D) of order p such that the multiplicty of 1
as an eigenvalue is minimal. We can write

t
k
Co@) =[] GLis, ¢ )
i=1
for some splitting in n = Z{_,s;k;, where k; = 1 or e. Now k; =1 for at most
one i. If k; = 1, then the contribution to D from GL(s,, q) is 1 by the choice
of z. In GL(s,, ¢°), p has degree 1w.r.t. ¢°, so we are done by Case L.
A modification of the above proof gives a slightly stronger result, which
can be formulated as follows: Write
t Si
(* n=c+em, m=Yy mp, m=Y o, ¢e¢m>0,
i=1 j=1
where the last sums are arbitrary p-adic splittings. Associated to the splitting (*)
of n is the subgroup G(*) of GL(n, q), which is isomorphic to a direct product
of GL(c, ¢) and (for each (i, /)) ;; copies of GL(p"*/, q) = G;;. These direct
factors are embedded as “diagonal blocks” in GL(n, q). We use the faithful rep-
resentation of (1.3) to embed
~ Oss
L]
in G(*). Then D(*) is denoted the group corresponding to the splitting (*).

ProrosITION (1.6). Let e < n € N. Any p-defect group for GL(n, q) is
conjugate in GL(n, q) to D(x) for some splitting (*) of n.

In the following we compute Ng(D) and C;(D), if D is the group corre-
sponding to a splitting, so that Brauer’s results (e.g. (5c) in [3]) can be used to
determine whether D actually occurs as a defect group in G.



ON THE BLOCKS OF GL(»n, q) 147

LemMA (1.7). Let « € N and consider the subgroup D = D C GL(ap'*e, q)
=G. Then

NG(D) = ]Vii ~ Sym(a),

where N;; = N

GL(pit e, q)(D"i)’

ProoF. Write

V= V(ep'tle q) = i ®yk) apnd D= ﬁ D®),
k=1 k=1

where D(¥) ~ Dy;, dim p &) = pitie and D®) C GL(¥'®).

Let N be the subgroup of N (D) in which every element permutes the sub-
spaces V®), 1t is easily seen that N = Nj; ~ Sym(a), so we need only show
N = Ng(D).

By (1.4)(1) each D) contains a homocyclic characteristic subgroup 4.
Let B = I, A%). Let

ol i
v = 5 0pK ang 4® = f‘I AP, 1<k<aq,
i=1 I=1

be the splittings described in (1.4)(2). The elements of Uk, ,(A,("))# are exactly
those elements of B¥ for which the multiplicity of 1 as eigenvalue is maximal.
By (1.4)(1), B char D, so the elements of N;(D) permute the D-orbits of the
subgroups A,(") by conjugation, and so they permute the subgroups A®), Now
V() are exactly those elements of V, that are fixed element-wise by any element
of A% for all &' # k. Therefore any element of N (D) permutes the subspaces
V&) of ¥, so N;(D) = N, proving the lemma.

An application of Schur’s lemma (see e.g. [4, 2.1-2.3]) and the above
result proves the following:

LEMMA (1.8). Let D be the subgroup of G = GL(n, q) corresponding to
the splitting
n=c+em, m=rmp, m=3 op.
i
Then

Ng(D) = GL(c, q) x []N;; ~ Sym(eyy)
ij

where the Nyj/’s are as in (1.7).

Our next step is to consider the structure of the groups Nj;. Let us note
the following general elementary lemma.
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LEmMA (1.9). Let S be a transitive subgroup of Sym(n), n € N, G an arbi-
trary finite group and G, a subgroup of G.

(1) An arbitrary element of N = Ngn,symn)(G1 v S) can be written as
(egs - - oy X5 8), where x; ENG(G), x; = x; (mod G,) for all i, jand £ €
Nsym (m)S)-

(2) In particular,

Ngnsymm) Gy VG, v 8§ = (Ng(G1)Gy) x Wgym(n)(S)S)-

(3) An element of Consymn)(CGr1 v S) has the form (x, ..., x; 1)
where x € C;(G,).

PrROOF. By an elementary calculation, using the transitivity of S.
LEMMA (1.10). (1) Let G; = GL(p'*/e, q). Then

N;; NG (Du) M’\zSy o ,)(Zp v R)).

Here Z ., is considered a subgroup of (the Singer-cycle of) GL(p'e, q) and
M= GL(p’e, q)(zpa+i)' i ‘
(@) D; - Cg, (D )=D; xZ, where gP'e — 1 = pa+i .,

ProoF. We apply (1.4)(2). An argument similar to that in the proof of
(1.7) (about the multiplicity of 1 as eigenvalue) shows that every element of
NG”(A) and thereforeNG (D;;) permutes the subgroups A®) by conjugation (in
the notation of (1.4)). It follows that Ng (A) =M~ Sym(p’). By induction
on j it is easily seen that R; is a transitive s’ubgroup of Sym(p/). (1.9)(3) and
Lemma 2.1 in [6] proves (2)

Let us note that (1.9)(1) gives a description of tht? elements of N;;. M is
an extension of Z(qui_l) by a cyclic group of order p'e (by II, 7.3 in [7]).

Ifn=c+em m= Em,-pi, m; = Eaiipi is a splitting of n and D the
corresponding group, the results above imply that if G = GL(n, q), then

D Cz(D)=GL(c, q) x D x C,

where C is an abelian p"-group. By (5C) in [3], D occurs as a p-defect group for
G if and only if GL(c, q) has a p-block of defect 0, and there exists an N;(D)-
conjugacy class of irreducible characters for C, satisfying a certain inertial condi-
tion. GL(c, q) has p-blocks of defect 0, if and only if, e > 1, as we shall see in
the next section. In many cases it is possible to determine Ng(D)-conjugacy
classes of characters of C, satisfying the inertial condition, e.g. if a; <p for all

i, J.
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2. The degree formula and blocks of defect 0. We study the degree for-
mula for the irreducible characters of GL(n, ¢), as given on p. 44 in [6].

Par(n) is the set of partitions of the positive integern. ToA=(ly,..., 1)
€ Par(n), I, > - - - 21, we associate the Young-diagram Y(\) of n nodes (boxes)
(18], [13]). HQ\) denotes the collection of n integers, which are the hook-lengths
of Y(A) (see [13, p. 44]).

ExampLE. If A = (5, 3, 2) € Par(10), then

ooooo

YQ)=""-" and

HO)=1{1,1,1,2,2,3,4,4,6,7}.
If k is a positive integer define
=== (1-15),
g =1 and Y, () = 1.

If X € Par(n) is as above and g is a prime power, let

0= oyeri@ T =g,
i=1

1<i<j<r
Let us note:

ProPOSITION (2.1). A:q) = (1) Mcyry@" = D).

Proor. This is proved exactly as the degree formula 2.37 in Robinson’s
book. Robinson’s proof does not give any details, but these can be found in
Frame, Robinson and Thrall’s work on hook-lengths [S]. Their Lemma 1 can be
formulated as follows: Let H,(A) be the st of hook-lengths for the nodes in the
ith rowof YQA). (So HQA) = U= H;A)) Then {1,2,...,L+r-i} =
HOU =L -i+jli+1<j<r} (hy =h;+r=i.

Using this, the proposition is immediate from the definition of (A : g).

This proposition is the main tool in the classification of the p-blocks of
defect 0. First we need some more definitions.

Index the set F = { f;;} of irreducible polynomials over GF(q) (omitting
the linear polynomial with root 0) in such a way that {f;,..., f;"i} is the set
of polynomials in F which are of degree i, i = 1,2, . ... An index for n is a list
of partitions (V,.,.), i=1,2,...,j=12,...,s5, satisfying Ei,i"'iili = n, where
vl is the integer of which v;; is a partition.

The set of indices for n is in a canonical one-to-one correspondence with
the set of characters and the set of conjugacy classes of GL(n, q).

Two indices (v;) and (i) are called equivalent, if for each partition A and
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eachi > 1, |{jlv; = AH = |{jly; = A} (the cardinalities coincide). The equiv-
alence classes are called types for n, and we denote by {v,.j} the type containing
the index ("ii)'

An irreducible character (or a conjugacy class) for GL(n, q) is said to be
of type {v,j}, if the corresponding index belongs to that type.

Characters of the same type have the same degree, and the class number
for conjugacy classes of the same type is also constant.

The degree for an irreducible character x of type T is
22) xD=v,@ Il D

v,-jeT

where, if A\=(y,..., ), =L, =>--2>1,

gl =¢84 00

and (A:q) is defined above.
If A € Par(n) and k; =+ - 2 k> 0 are the parts of the conjugate parti-
tion, let

v;:

T{v;q},

2(3)
n =

A i=1 2
and

N+2ny T 1
7@ =q * Hl¢ki- "1+1(5)
i=

(k41 = 0). If x €, a conjugacy class of G = GL(n, q) of type T = {v;},
then
(2.3) ICcl =TI a, (@

If \ € Par(n), k EN, we say that \ is k-irreducible if HQ\) does not contain
an integer which is a multiple of k. We have in fact that A is k-irreducible if
and only if k € HQ\) by §5 in [10].

From (2.1) and (2.2) we get -

THEOREM (24). Let T = {v;} be a type for n, p a prime of degree e <n
w.r.t. q. The following statements are equivalent:

(1) Characters of type T are in p-blocks of defect 0.

(ii) Foralli,j, v is e/(e, i)-irreducible.

Proor. By (2.2), (i) is equivalent to

(i) pt@;:q) for all i, j.
So we need only show p t @y :q") if and only if vy is e/(e, i)-irreducible. By
Q.1
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(Vi;:ql) =z JI @ -
hEH (vii)
Since p is of degree e w.r.t. ¢ we have for all k € N that pl(g* - 1) if
and only if e|k. Thus

pl;; : 4') = e hi for some h € H(v;)

e

- Ze—,T)Ih for some h € H(v;)

. _e .
<= p;; is ——-reducible.

(e 1)

The similarity between the above result and an analogous result for the
symmetric group is obvious: If X € Par(n) and X, is the corresponding character
for Sym(n), then X, is a p-block of defect 0 if and only if X is p-irreducible.

So, in this sense, the degree of a prime divisor in |GL(n, q)| behaves as the prime
divisors of |[Sym(n)|, and types for GL(n, q) correspond to partitions for Sym(n).

Let us note the following:

COROLLARY (2.5). If p lIGL(n, q)| is of degree e, then GL(n, q) has p-
blocks of defect 0, if and only if, e > 1.

ProoFr. The “only if” part is clear, since |Z(GL(n, ¢))l = ¢ — 1 and p-
defect groups always contain p-elements in the center of a group.

To prove the “if”-part, we consider 2 cases.

(1) etn. LetT= {v,,},v,, =(1).

(2 eln. LetT= {11, V,_11}: V11 = V11 = (D).
In both cases it follows from (2.4) that characters of type T are in p-blocks of
defect 0.

Lemma 2 in [5] can be reformulated as follows:

LEMMA (26). Let X\ € Par(k), k €N, h € HQ\). Suppose that the hook
Hin Y(Q\) has length h =n -m, n = 1,m = 1. Then exactly n of the h hook-
lengths of nodes in H are divisible by m.

In the final part of this section we describe the power of a prime dividing
the degree of a character of GL(n, q). This is done by modifying Nakayama’s
highly original approach in the case of the symmetric group (§6—8§8 in [10]).

DEFINITION. Suppose that the prime p is of degree e w.r.t. g. Let A €
Par(n), n € N. The (e, p)-series for \ is defined as follows. Determine the larg-
est integer u,, such that pllee H(\). Remove a hook of length p"le from A
to get X. Let i, be the largest integer < u,, such that p'2ec H(')\\') and remove
a hook of length p"2e from . Continuing this process as long as possible gives
the (e, p)-series p*le, p"2e, ..., p**e (u; >p, >+ >y, > 0) for \. By
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§4 in [10], this series is independent of the choice of hooks.

ProrosiTION (2.7). Let p be a prime of degree e w.r.t. q, a = v(q® — 1).
Let \ € Par(n) and let p*le, . . ., p"*e be the (e, p)-series for \. Then v((A:q))
= b, where

2.

b= 3 b+ G g
r=1

PrROOF. Sketched. (Missing details can easily be obtained by studying §7—
§8in [10].) LetA=(ay,...,a), ;=" 2 a,.

IfX' = (7,5 ..., %) is the dual partition to A, define B; =a; + (t — i) for
I<i<tand§;=v;+ (' -j)for 1 <j<rt.

Let H,; be the hook in Y(A) with the (i, /)th node as corner and let hy; be
the hook-length of Hjj. Assume hy; = p*le, and pick sequences of integers

fg=i>iy> >y, jo=i>j> >,

of maximal length such that

+1
My e

ﬁ,-p—ﬁi=pp , p=0,1,...,u,

e, p=0,1,...,0.

An argument of Nakayama shows that there exist no i’ or j’ such that

+1
B =B, =up"1" e foru' >u,

ﬂl+l

8,-'—8i=v'p e forv' >w.

Forl<u' <u,1<v' <v
h.

iy'ly'
(the hook-length for the (i, j,)-hook of X). The (e, p)-series for A is p(u + v)
+ 1 times p"1e followed by the (e, p)-series of i where X is obtained by re-
moving the (i, j,,)-hook from A.

On the other hand, if

=e(@"! + @ + "1t

l m
u=3ap ad v=3 bp
i=0 i=o

I+uq+1
131 e,
+1

By e

»

are the p-adic decompositions of u and v, then in a suitable ordering p
cees p“"‘“e (a, times), . . . N AP p"‘“e (a, times) "t
L pm Tt (b, times), . .. oA e p"‘“e (b times) are the
first terms in the (e, p)-series for A, where X is obtained by removing Hy; from A

The remainder of the (e, p)-series for A coincides with the (e, p)-series for X.
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Let us prove

v :q) - v(X:q)
M =pPla+ M1 4 P 1T b 1] = o) - @ + YY)

To do this we compare the hook-lengths for A and x (and use (2.1)). This has
been analyzed by Nakayama [10, §3].

We get that, if H;; are the hook-lengths in Hy;, then

~ i— ik —
W) - = T v@" - 1)+ 2 <—"—Il>

-h
hEHii k=1 ‘k -

izt [ M-
+z VTIT—- .
1=1 \q " "4-1

Using (1.1) it follows from (2.6) [with # = p"le and m = p’e,r < M, ] that

pp—1
@ > " -N=pat+ X o
hEHii k=0

Since hy; = p F1e, it follows that v(g Rike — 1)= (g Rike="ij _ 1) unless
p"‘“elh,k hy;» in which case ¥(q hi=hij _ 1) =a +v(hy —hy). Now hy -

hij =8, = §;, s0 p“1tle |y = hy; happens exactly v times. It follows that

i-1 gk -1 '
e = —[v + (!
kgl ’ g~ 1 o+ vl

id [ -1
VW |=—[u+ v
1§1 <qh’f_h’f - l) b+ )]

so (1) is proved, using (2).

Now it is a fairly straightforward calculatlon to finish the proof of (2.7).
By induction we can assume (2.7) true for X and 7\ so we know VO\ q). Since
we also know v(A:q) — v()\. q), it is readily computed that

and similarly we get

My -1
A2 q) - (X:q) = (p(u+v)+1)["la+ Zp]

v& :q) is known by induction, and we are done.
Using (2.7) and (2.2) we get a description of the power of p dividing the
degree of an irreducible character x of type T. We note that if p is of degree
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e w.r.t. g, then p is of degree ¢/(e, i) w.r.t. ¢' for any i € N. Thus (2.7) also
gives an alternative proof of Theorem (2.4).
If X\ € Par(n) and r EN, let

HQ), = (A ENI3Ih € HQ): h = ri'}.

If [HQA),| = b, one can define a (reducible) representation for Sym(b),
called the r-quotient for A, which is of degree f{") = b!/(Mye ) k). (See [13,
§4.4] or [5].)

A type T = {y;;} for n is called primary, if I{V,ilv,.i # 0}/ =1, and an
irreducible character for GL(n, q) of primary type is called primary irreducible.

Let x be a primary irreducible character for GL(n, q) of type T, where, if
A is the nonzero partition of T, n = [A|d. Moreover, let p be a prime of degree
e<nwurt.qanda=v(g®—1). Pute, = e/(e, d), and assume lHO\)e,‘ =,

LEMMA (2.8). In the above notation

v(d)
»(x(1) = »IGL(n, )] - »IGL(, ¢~ )l + v(fED).
ProoOF. By (2.2) we need only show

b2 ¢%) = » IGL(, ¢ ) - wrD).
By (2.1) and (1.1)

vA:qD= X v@-D=ba+v@d)+ X v

hEHQ) h’eﬂ()x)e1
The last sum in this equation is equal to v(b!) — v(f{el)), S0

v\ :q%) = bla + (@) + v(d!) - v(FL).
Now the result follows from (1.2) with s = b and e = ep”@),

3. A general result. In §2 we determined the types of blocks of defect 0.
It still remains to determine the distribution of the other characters into p-blocks.
As a step towards this, the result below may be useful.

If x; is an irreducible character of GL(n;, q), i = 1, 2, then one can define
an irreducible character X, © X, of GL(n; + n,, q). (See [6, p. 410].) A char-
acter x of type T = {y;;} can be written as a o-product of primary irreducible
characters of the smaller dimensional linear groups (GL(Iv,.ili, Q).

We prove:

ProPOSITION (3.1). Let p be a prime, p ¥ q. Let o and o' be irreducible
characters of G, = GL(n, q) in the same p-block and let (8 be an irreducible char-
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acter for G, = GL(m, q). Then a o B and o o 8 belong to the same p-block for
G = GL(n + m, q).

ProOF. We use Green’s notation. By assumption, if x; € ¢, where ¢, is
a conjugacy class of G, then
Gyl ofx)) 1G4l @'(x,)
m ICq, )l (1) ~ ICq, )l (1)
where P is a suitable prime-ideal.

Ifx€c,wherec=(""" ra... ) is a conjugacy class for G, then by
23)

(mod P)

ICe()l = fg_ 4,(n@*?),

where d(f) is the degree of £ We also have

‘pn.{-m(q)
o f)(1) = 7= o(1)B(1
(oo A1) = =S (D)

by Lemma 2.7 in [6].

Thus

IG' - qr IGll . IGzl . 1
CetieAD™ T o) "B May @)

where 7 is some nonnegative integer.

So by Theorem 2 and Lemma 2.6 in [6],

Gl 1
iCo @ = Hm @ ° PR
@ TN . A% 0@
=q cgz ORI B(x,) A @)
NGO

wherec; = (- f * +) runs through the conjugacy classes of G;, x; € ¢;,
i=1,2and gﬁl »7*2(4) is a Hall-polynomial.

We exploit a remark of Morris in [9]. What he denotes sz is
q_""+"°‘+""gzﬂ(1/q). We get in fact:

If A} C {a} {8} (multiplication of Schur functions), then there exists a
polynomial rzﬁ(q), such that

(@)
a'ehs(q) = ;;%%@—-) @

where [ is a suitable integer.
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It follows that the right hand side of (2) becomes

IG, la(x;) IG, 18(;)
p . _0nlxxy)  1GpB(ap)
2 ¢ e Gpla() g, B 12 @

€1:c2

where b is some integer (depending on ¢, ¢,) and the Seys 02’5 are polynomials.
Using (1) our result follows.
It is still an open question, to which extent a converse to (3.1) is valid.
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