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ON THE BLOCKS OF GL(n, q). 1

BY

J0RN B. OLSSON

ABSTRACT.  A study is made of the distribution of the ordinary irreduc-

ible characters of GL(n, q) into p-blocks for primes different from the character-

istic. The paper gives a description of all possible defect groups for p =£ 2 and

their normalizes.  Various other results are obtained, including a classification of

the blocks of defect 0.

About 20 years ago, J. A. Green determined completely the irreducible

characters of the finite general linear groups GL(w, q), n integer, q prime-power,

in a long and deep paper [6]. Until now no attempts have been made to try to

determine the distribution of the irreducible characters into p-blocks for primes p

different from the characteristic. The present paper starts investigations of this

problem. There are similarities between general linear groups and symmetric

groups, which are illustrated by the analogy of results in this paper to results

from the representation theory of symmetric groups. The blocks of Sym(n), the

symmetric group of degree n, were determined by Brauer [2] and Robinson [12]

in 1947, continuing the fundamental work of Nakayama [10], [11].

In § 1 we investigate the possible defect groups for p-blocks of GL(n, q),

p=£2, pfq. The Sylow p-subgroups of GL(«, q) are direct products of wreath

products of cyclic p-groups (see [14]) and the same is true for the possible defect

group. We also determine the normalizers and centralizers of the possible defect

groups, so that a theorem of R. Brauer can be applied to determine which of

them actually occur.   §2 concentrates on studies of the degree formula for the

irreducible representations. We give a description of p-blocks of defect 0.  After

introducing the concept of the (e, p)-series for a partition, it is possible to com-

pute the power of p dividing the degree of a representation.  §3 contains a gen-

eral result on the blocks of GL(n, q).

1. The defect groups.  Let N be the set of positive integers and q a prime-

power. For n E N, GL(n, q) denotes the general linear group of degree n over

the finite field GF(q). Let V(n, q) denote an «-dimensional vector space over

GF(q), so GL(n, q) is the group of isomorphisms of V{n, q).
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If p E N is a prime, we say that p is of degree e w.r.t. q, if p \ (qe - 1) and

p \ (g? - 1) for 1 < / < e, i.e., if q + pZ is of order e in GF(p).  In particular

e\p-\.

If« is any integer, v(n) EN is defined by pv(-n^\n and py(")+1 -f/j.

In this section we assume that p =£ 2 is a prime of degree e w.r.t. q, and

that i>(#e - 1 ) = a ( > 0). We want to study the possible p-defect groups of

GL(«, q), and start with a few preliminary lemmas.

Lemma (1.1). Let h EN.  Then

, h    n_/0   ifeih,"«        J     V + KA)   <T«IA.

The proof is straightforward.

The Sylow p-subgroups of GL(«, q) have been described in [14], and we

assume knowledge of this work.

Lemma (1.2). Let s.kEN.

(1) The Sylow p-subgroups of GL(s, qek) and GL(s, qePv    ) are isomorphic.

(2) v | GL(se, q) I = v \ GL(s, qe) \ = sa + p(¿0- ^w particular the Sylow p-

subgroups of these groups are isomorphic.

Proof.  Use (1.1) and the fact that, for any s, kEN, GL(s, qk) can be

embedded in GL(s&, q).

For n EN, Sym(«) denotes the full symmetric group of degree n.   For

/ > 0 let Rj be a Sylow p-subgroup of Sym(p') and let R0 = 1.

We define

DU = Za+i^Rj    for/./>0,
p

where 'v denotes wreath product. Then D¡¡ can be embedded as a Sylow p-sub-

group of GL(p7, c7eí? ).

Lemma (1.3).  The minimal dimension of a faithful representation ofD¡¡

over GF(#) is p'+'e.

Proof.  We have to show that k = p'+'e is the smallest integer, such that

GL(fc, q) contains a subgroup isomorphic to D¡-.  If A is any group, then for ex-

ponents we have exp(/l "u Z ) = p ■ exp(^4) as is easily seen. Thus if r is the

largest integer, such that pre < n, then the exponent of a Sylow p-subgroup for

GL(«, q) is pa+r. This proves our assertion for / = 0.

The centralizer of Di0 in GL(p'e, q) is cyclic by II, 7.3 in [7].  Since D¡¡

contains a direct product of p' copies of Z a+;, our result follows for all /.

Lemma (1.4).  (1) D¡j has a characteristic homocyclic subgroup A of
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exponent pa+' and order p(-a+l^p . A is the only abelian subgroup ofD¡¡ of this

order, and no abelian subgroup has larger order.

(2) Consider D¡¡ Ç GL(p'+'e, q) = GL(K).  There exist decompositions

p1 p1
V= JT®F(fc),    A= n^(k>

k=l k=i

such that dim V{k) = p'e, A(k) =* Z a+/, Aw acts faithfully on V{k) and triv-

ially on Vil) for ki=l. "

Proof.  (1) This is proved by induction on /, using for instance Theorem

2of[l].

(2)  For any m EN, a. statement similar to (2) can be formulated for a

homocyclic subgroup of GL(mp'e, q) of exponent p"+l and order p(fl+')m.  This

statement is proved by induction on m using II, 3.10 in [7] and (1.3) for; = 0.

Proposition (1.5). Let e < n E N. A p-defect group for GL(«, q) is a

direct product ofp-groups, each isomorphic to some D¡¡.

Proof.   Let D be a defect group for the p-block B of G = GL(«, £7).

Case I. e = 1.

(a) Assume S2j(Z(I>)) < Z(GL(n, q)). Then i2x(Z(D)) is cyclic, so Z(D) is

cyclic. Write \Z(D)\ = pa+d for some d > 0. This is possible because Z(G) con-

tains a subgroup of order pa.  A basic property for a p-defect group is that it is

a Sylow p-subgroup of the centralizer of some p'-element.  So assume D E

Sylp(CG(y)), where y E G is a p'-element.

Write y = yqyq-, the product of a ¿/-element and a q'-element,   [y , y •]

= 1.

10^ = 1, let

m    */

/=i/=i

be the decomposition of V = V(n, q) into irreducible GF(i7)[<y>]-modules, where

Vy <* Vkl, if and only if i = k.  If dim Kjy = k¡, then

(1) CG(y)-n GL(Sf,c7fc0.
1=1

This follows for instance from II, 3.11 in [7].

\ïyq =7* 1, then CG(y) = CC(;(y ,)(yq), where CG(yq-) has the form de-

scribed in (1).

Since Z(D) is cyclic, we conclude that in any case m = 1, so n = slkl.
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If y   = 1, then st must be a power of p and p(£j) = d in order that the

Sylow p-subgroup of CG(y) — GL(s1, q *) has cyclic center of order pa+d. Thus

D has the desired form, as is seen by using (1.2)(1).

If yq + 1, then CGL,    qkiÁyq) contains a homocyclic subgroup of type

(p l.P l)(r times) where at = v(q 1 - 1) and r is the number of parts in

a certain partition of sl (corresponding to the Jordan canonical form ofj> ). We

get r = 1. By Lemma 2.1 in [6], D is cyclic and i>(fcj) = d.  Thus D — D0d in

this case.

(b)  If n^ZiD)) <Z Z(GL(«, q)), then there is some z E Z(D) having at

least 2 distinct eigenvalues. Then CG(z) is a direct product of general linear groups

of smaller dimensions. Since DCG(D) < CG(z), D is a defect group for CG{z),

so we are done by induction.

Case II. e > 1.  Choose z G Z(D) of order p such that the multiplicty of 1

as an eigenvalue is minimal. We can write

CG00 - II GL(S/, ?*')

for some splitting in n = I,j=:1siki, where fcf = 1 or e. Now k¡ = 1 for at most

one /'. If ki = 1, then the contribution to D from GL(s,, q) is 1 by the choice

of z.  In GL(Sj, qe), p has degree 1 w.r.t. qe, so we are done by Case I.

A modification of the above proof gives a slightly stronger result, which

can be formulated as follows:  Write

' *<
(*) n = c + em,   m = £ m¡P'>   mi= H 0ii/P'»      c, m > 0,

i=i /=i

where the last sums are arbitrary p-adic splittings.  Associated to the splitting (*)

of n is the subgroup G(*) of GL(rc, q), which is isomorphic to a direct product

of GL(c, q) and (for each (i, /)) a-- copies of GL(p'+/, #) = G¡¡. These direct

factors are embedded as "diagonal blocks" in GL(«, q). We use the faithful rep-

resentation of (1.3) to embed

in G{*). Then D(*) is denoted the group corresponding to the splitting (*).

Proposition (1.6). Let e <n EN. Any p-defect group for GL(n, q) is

conjugate in GL(«, q) to £>(*) for some splitting (*) of n.

In the following we compute NG(D) and CG{D), if D is the group corre-

sponding to a splitting, so that Brauer's results (e.g. (5c) in [3] ) can be used to

determine whether D actually occurs as a defect group in G.
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Lemma (1.7).  Let a EN and consider the subgroup D = D^jC GL(ap,+/e, q)

= G.   Then

NG(D)^Nij^Sym(p¿),

"he*N,-NGL(pl+Je> ¿D,).

Proof. Write

V = V(api+U, q) = ¿ • F(fc)   and   D = ft £><*>,
fc=l fc=l

where Dw <* Dtj, dim F(fc) = pi+ie and £>(fc) ç GL(F(fc)).

Let N be the subgroup of NG(D) in which every element permutes the sub-

spaces V^. It is easily seen that N — N„ "» Sym(a), so we need only show

N = NG(D).

By (1.4)(1) each D^ contains a homocyclic characteristic subgroup A^.

Let B = \[kA{k). Let

pi J
VW = £ © v(k)   and   A(k) m Jt AWt      i<k<a¡

/= l /= l

be the splittings described in (1.4)(2). The elements of Ufc>/G4/fc))* are exactly

those elements of B* for which the multiplicity of 1 as eigenvalue is maximal.

By (1.4)(1), B char D, so the elements of NG(D) permute the £>-orbits of the

subgroups A¡k^ by conjugation, and so they permute the subgroups A^k'. Now

V^ are exactly those elements of V, that are fixed element-wise by any element

of A^k * for all k' =£ k. Therefore any element of NG(D) permutes the subspaces

yW 0f T/ so NG(p) = jv*, proving the lemma.

An application of Schur's lemma (see e.g.  [4, 2.1-2.3]) and the above

result proves the following:

Lemma (1.8). Let D be the subgroup ofG = GL(w, q) corresponding to

the splitting

n = c + em,   m= ^ntpl,   mi = £ a^p1.

Then

NG(D) - GL(c, q) x ftNij ^ Sym(a/y)
U

where the N-s are as in (1.7).

Our next step is to consider the structure of the groups N¡¡.  Let us note

the following general elementary lemma.
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Lemma (1.9).   Let S be a transitive subgroup o/Sym(«), n EN, G an arbi-

trary finite group and G1 a subgroup of G.

(1) An arbitrary element of N - ^c^Sym(n)^i ^ $) can be written as

(Xj.xn\ %), where x¡ E A/G(C,), x¡ = x¡ (mod G,) for all i, j and % E

tfSym(„)(S)-

(2) In particular,

Na^SymW&i * ^Gl ~ S " WgGiWi) x (^Sym(n)(5)/5).

(3) ^4« element o/Cc^Sym(„)(C1 'v 5) /?as the form (x, . . . , x; 1)

vv/iere x G CG(G,).

Proof.  By an elementary calculation, using the transitivity of 5.

Lemma (1.10).  (1) Let Gtj = GL(pi+'e, q).  Tlten

Nü=Noi^-NM^ym^Zpa+i^R¡).

Here Z a+/ is considered a subgroup of (the Singer-cycle of) GL(p'e, q) and

(2) Dtj ■ Cep,,) - Dif x Zr, where qP'e - 1 = pa+i • r.

Proof.  We apply (1.4)(2).  An argument similar to that in the proof of

(1.7) (about the multiplicity of 1 as eigenvalue) shows that every element of

NG^A) and there fore NG.(D¡) permutes the subgroups A^ by conjugation (in

the notation of (1.4)).  It follows that Nr (A) — M 'V Sym(p'). By induction
'7

on / it is easily seen that /?. is a transitive subgroup of Sym(p').  (1.9)(3) and

Lemma 2.1 in [6] proves (2).

Let us note that (1.9)(1) gives a description of the elements of Nt¡. M is

an extension of Z      .•       by a cyclic group of order p'e (by II, 7.3 in [7]).
(<?'"-1)

If n = c + em, m = 2 m¡p', m¡ = S a^p' is a splitting of n and D the

corresponding group, the results above imply that if G = GL(h, q), then

D ■ CG(D) *• GL(t\ q) xD x C,

where C is an abelian p'-group.  By (5C) in [3], D occurs as a p-defect group for

G if and only if GL(c, q) has a p-block of defect 0, and there exists an NG(D)-

conjugacy class of irreducible characters for C, satisfying a certain inertial condi-

tion. GL(c, q) has p-blocks of defect 0, if and only if, e > 1, as we shall see in

the next section.  In many cases it is possible to determine A/G(Z))-conjugacy

classes of characters of C, satisfying the inertia! condition, e.g. if a¡j < p for all
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2. The degree formula and blocks of defect 0. We study the degree for-

mula for the irreducible characters of GL(«, q), as given on p. 44 in [6].

Par(«) is the set of partitions of the positive integer n. To X = (/j.lr)

E Par(«), /j > • • • > lr, we associate the Young-diagram YÇK) of« nodes (boxes)

([8], [13] ).  f/(X) denotes the collection of n integers, which are the hook-lengths

of y(X)(see [13, p. 44]).

Example.  If X = (5, 3, 2) E Par(10), then

r(X) = • • • and

fi(X)= {1,1,1,2,2,3,4,4,6,7}.

If k is a positive integer define

**(*)-(! "OU-<*)•••(!-<*).

0o(r)=l    and    **(*) = (-1)***(0.

If X € Par(«) is as above and q is a prime power, let

(X : q) « n^+r-fG?)     IT     (1 - <7,í_,/-í+/).
i=l   ' l<í"</<r

Let us note:

Proposition (2.1).  (X:q) = (-1)" nheH(X)fa* - 1).

Proof.  This is proved exactly as the degree formula 2.37 in Robinson's

book.  Robinson's proof does not give any details, but these can be found in

Frame, Robinson and Thrall's work on hook-lengths [5]. Their Lemma 1 can be

formulated as follows:   Let fif(X) be the set of hook-lengths for the nodes in the

fth row of r(X).  (So H(X) = U/= i ̂ (X).) Then {1,2, . . . , l¡ + r - i} =

r/,.(X) U {/. -/;-/+/|/+l</<r} (A,-, - h, + r = /)•

Using this, the proposition is immediate from the definition of (X : q).

This proposition is the main tool in the classification of the p-blocks of

defect 0.  First we need some more definitions.

Index the set F = {/}■} of irreducible polynomials over GF(c7) (omitting

the linear polynomial with root 0) in such a way that {ftl.fis} is the set

of polynomials in F which are of degree i, i = 1, 2, . . .. An index for n is a list

of partitions (i^), / = 1,2,...,/= 1, 2,. . . , s¡, satisfying 2^1^-1/ = n, where

\v¡,\ is the integer of which v.. is a partition.

The set of indices for n is in a canonical one-to-one correspondence with

the set of characters and the set of conjugacy classes of GL(«, q).

Two indices (i>f ■) and fjuy) are called equivalent, if for each partition X and
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each i > 1, \{j\v¡¡ = VH = lí/IjU/y = X}| (the cardinalities coincide). The equiv-

alence classes are called types for n, and we denote by {vf/.} the type containing

the index (»¡X

An irreducible character (or a conjugacy class) for GL(n, q) is said to be

of type {vi}}, if the corresponding index belongs to that type.

Characters of the same type have the same degree, and the class number

for conjugacy classes of the same type is also constant.

The degree for an irreducible character x of type T is

(2.2) X(D = *„(?)   II   (-D'^'OV?},
pf/er

where, if X = (/j.ll),li>l2> • • •> lr,

{k:q}=q2+2'3+~Kk:q)

and (X : q) is defined above.

If X G Par(n) and k1 > • • • > ks > 0 are the parts of the conjugate parti-

tion, let

-to
and

(ks+1 = 0). If x E c, a conjugacy class of G = GL(«, #) of type T = {p«},

then

(2.3) ICG(*)|=   fi   V.O?')-

If X G Par(«), kEN,y/e say that X is k-irreducible if f/(X) does not contain

an integer which is a multiple of k. We have in fact that X is ¿-irreducible if

and only if it G f/(X) by §5 in [10].

From (2.1) and (2.2) we get v

Theorem (2.4). Let T = {i>;/} be a type for n, p a prime of degree e<n

w.r.t. q.   The following statements are equivalent:

(i) Characters of type T are in p-blocks of defect 0.

(ii) For all i, j, vtj is e/(e, i)-irreducible.

Proof.  By (2.2), (i) is equivalent to

(H)' pÏQ>ij'(e) for dl/,/.
So we need only show p \ (i>f/- : ql) if and only if v^ is e\(e, 0-irreducible.  By

(2.1)
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(V') = ±      Il     (qhi-l).

Since p is of degree e w.r.t. q we have for all k E N that p \(qk - 1) if

and only if e | k. Thus

Pl(1'//'■qi)<=>e\hi for some « G H(y¡¡)

g
<=> T—r I « for some « £ HO'«)

(e, z) *''

■*=> cH is 7—^reducible.
«     (e, i)

The similarity between the above result and an analogous result for the

symmetric group is obvious:  If X 6 Par(«) and X^ is the corresponding character

for Sym(«), then X^ is a p-block of defect 0 if and only if X is p-irreducible.

So, in this sense, the degree of a prime divisor in |GL(«, q)\ behaves as the prime

divisors of |Sym(«)|, and types for GL(«, q) correspond to partitions for Sym(«).

Let us note the following:

Corollary (2.5). If p ||GL(«, q)\ is of degree e, then GL(«, q) has p-

blocks of defect 0, if and only if, e> 1.

Proof. The "only if part is clear, since |Z(GL(«, q))\ = q - 1 and p-

defect groups always contain p-elements in the center of a group.

To prove the "if "-part, we consider 2 cases.

(1) ef«.  Letr= {vnl},Pnl=(l).

(2) e\n.  Let T= {p1v vn_iX}, J>n =vn_11 = (1).

In both cases it follows from (2.4) that characters of type T are in p-blocks of

defect 0.

Lemma 2 in [5] can be reformulated as follows:

Lemma (2.6).   Let X G Par(fc), kEN.hE H(X). Suppose that the hook

H in YÇK) has length h = n ■ m, n> l,m> 1.  Then exactly « of the h hook-

lengths of nodes in H are divisible by m.

In the final part of this section we describe the power of a prime dividing

the degree of a character of GL(n, q). This is done by modifying Nakayama's

highly original approach in the case of the symmetric group (§6-§8 in [10]).

Definition.  Suppose that the prime p is of degree e w.r.t. q. Let X G

Par(«), nEN. The (e, p)-series for X is defined as follows. Determine the larg-

est integer p1; such that p^1e E f/(X).  Remove a hook of length p'*1e from X

to get X.  Let p2 be the largest integer < p.1, such that pM2e G f/(X) and remove

a hook of length pß2e from X. Continuing this process as long as possible gives

the (e, p)-series pMle, pM2e,. . . , pMfce? (pj > p2 > • • • > pfc > 0) for X. By
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§4 in [10], this series is independent of the choice of hooks.

Proposition (2.7).   Let p be a prime of degree e w.r.t. q, a = v(qe - 1).

Let X G Par(/i) and let p"le,. . . , p"ke be the (e, p)-series for X.   Then i>((X : q))

= b, where

b= ¿ \p*rb + (/A-1 + p"'~2 + • • • + 1)].
r=l

Proof.  Sketched. (Missing details can easily be obtained by studying §7—

§8 in [10].) Let X» (•>!,..., a,), a, > • • • > «,.

If X' = (7j, . . . , 7f-) is the dual partition to X, define ßt = a,. + (f - /') for

1 < i < f and §; = tj + (/' -/) for !</< f'.

Let //,■• be the hook in YÇK) with the (i, ;)th node as corner and let «f/- be

the hook-length of//",--. Assume «f;. = pßle, and pick sequences of integers

i0 = / > i'j > • • • > /„,     }0 = j >/| > • • • > /„

of maximal length such that

ßi   -ßi = PP,li + ie,      p-0,1,..., il,

5,   - S, = pp"1 + 1e,      p = 0, 1.v.'p      '

An argument of Nakayama shows that there exist no /' or /' such that

$¡> - ßi = u'p1*1    e   for u > u,

V ~ ^ï ~vplXl   e  *°r v' "> ü"

For 1 < «' < u, 1 < v' < v

Av/,=vi + («,+«yi+1)

(the hook-length for the (/M-,/u<)-hook of X). The [e, p)-series for X is p(u + v)

+ 1 times p"!e followed by the (e, p)-series of X, where a" is obtained by re-

moving the (/tt,/u)-hook from X.

On the other hand, if

/ m

u - £ a¡p'   and   v = £ 6,-p'
1=0 /=0

are the p-adic decompositions of u and v, then in a suitable ordering p   Ml    e,

. . . , p     »    <? (a, times),.. . , p^1    e.pM1    e (a0 times) p     *l    e,

. .. , p       *    e (£m times),. . . , p '    e,. . . , p '    e (bQ times) are the

first terms in the (e, p)-series for X, where X is obtained by removing H¡j from X.

The remainder of the (e, p)-series for X coincides with the (e\ p)-series for X.
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Let us prove

u(\:q)-v(k:q)

(1) =p% + r/i-1 +p"i-2 +•••+. 1] - (w + K"!)) - (P + K»0).

To do this we compare the hook-lengths for X and X (and use (2.1)). This has

been analyzed by Nakayama [10, §3].

We get that, if H¡¡ are the hook-lengths in H¡¡, then

i— I     / i h      1

v(k:q)-*$■*) =   Z   K<7A-1)+ Z v(-hzh—
h&H(j fc=l    y? ,fc     '' - L

«    / qh'f-l+ Z "  „,-»..   ,
;= i     \n  '/     V - 1

Using (1.1) it follows from (2.6) [with h = p"1«? and m = pre, r < pj that

Ml-l

(2) Z   K<7"-1) = P'11«+   Z   P*
ASH« k=0

,fc

Since «„ = pMle, it follows that »»(qr '* - 1) = v(q '*    '7 - 1) unless

p1*1    e\hik - ha, in which case v(q ik~ *i - 1) = a + i>(«/fc - A,-). Now A/fc

h¡- = 8k - 8j, so p x    e\hik - h¡- happens exactly v times. It follows that

i-i    / q*ik-\

and similarly we get

*= i    \ c7 ,fc    " - 1 /

/= i    \q l>    v - 1

so (1) is proved, using (2).

Now it is a fairly straightforward calculation to finish the proof of (2.7).

By induction we can assume (2.7) true for X and X, so we know v(k : q). Since

we also know v(\ : q) - v(k : q), it is readily computed that

v(\:q)-v(\:q) = (p(u + v)+ 1)f/'a + Vp*].
L fc=o    J

5»
viX : q) is known by induction, and we are done.

Using (2.7) and (2.2) we get a description of the power of p dividing the

degree of an irreducible character x of type T. We note that if p is of degree
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e w.r.t. q, then p is of degree e/(e, i) w.r.t. ql for any i E N.  Thus (2.7) also

gives an alternative proof of Theorem (2.4).

If XGPar(«)andrG7V, let

ri(X)r = {«' G N\ U E H(X) : h = rh'}.

If |H(X)rl - b> one can define a (reducible) representation for Sym(è),

called the r-quotient for X, which is of degree f^ = b\l(UheH^ h). (See [13,

§4.4] or [5].)

A type T= {v^} for « is called primary, if \{v¡¡\vi¡ # 0}| = 1, and an

irreducible character for GL(«, q) of primary type is called primary irreducible.

Let x be a primary irreducible character for GL(n, q) of type T, where, if

X is the nonzero partition of T, n = \K\d. Moreover, let p be a prime of degree

e < n wj.t. q and a = v(qe - 1). Put el = e/(e, d), and assume |H(X)e I = b.

Lemma (2.8). In the above notation

V(d) (r   \

KXO)) = "IGUn, q)\-v\GUP, qep      )l + "(fx X0-

Proof.  By (2.2) we need only show

KX : qd) = v | GL(Ô, ̂^l - ^ei)).

By (2.1) and (1.1)

v(k:qd)=    ¿Z    v(qhd - 1) = 6(a + v(d)) +       ¿2      vQi).
ftSH(X) ft'SH(X)e

The last sum in this equation is equal to v(bl) - v(f£l), so

KX : qd) = ¿(a + u(d)) + u(b\) - v(f^l}).

Now the result follows from (1.2) with s = b and e = epv^d\

3. A general result. In §2 we determined the types of blocks of defect 0.

It still remains to determine the distribution of the other characters into p-blocks.

As a step towards this, the result below may be useful.

If Xf is an irreducible character of GL(n¡, q), ' = 1> 2, then one can define

an irreducible character Xi ° X2 of GL(«( + n2, q). (See [6, p. 410].) A char-

acter x of type T = {u^} can be written as a o-product of primary irreducible

characters of the smaller dimensional linear groups (GL(|i>f-|i, q)).

We prove:

Proposition (3.1). Let p be a prime, pKq- Let a and a be irreducible

characters of Gx = GL(«, q) in the same p-block and let ß be an irreducible char-
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acter for G2 = GL(m> 0)- Then a ° ß and a ° ß belong to the same p-block for

G = GL(« + m, q).

Proof.  We use Green's notation.  By assumption, if xt Ect, where Cj is

a conjugacy class of Gt, then

|C, I    a(x1)_      \Gt\    a'Cx,)

0) ICGl(x,)l  a(l)      ICc^x^l a'(l)
(mod P)

where P is a suitable prime-ideal.

If x G c, where c = ( • • • /"^ • • • ) is a conjugacy class for G, then by

(2.3)

\CG(x)\ - u "V(fi(«d(fi).

where <i(/) is the degree of/  We also have

(aog)(l)= /;t"(<l\ a(l)fXl)

by Lemma 2.7 in [6].

Thus

ICI „1^1     |G2|
^|CG(x)|(a o ßXi)   t  o(i)    Äi)    n^^W)

where r is some nonnegative integer.

So by Theorem 2 and Lemma 2.6 in [6],

|CG(x)| (a o ßXi)

(2) r  ^   IG,I IC2| , 4%,x2cn(^w)

where c, = (•••/ '     • • • ) runs through the conjugacy classes of C,-, x,- G C;,

i = 1,2 and g£   x (q) is a Hall-polynomial.

We exploit a remark of Morris in [9].   What he denotes F*ß is

q—\+tt*+»ß£ß(llq)m We get in fact:

If {X} C {a} {0} (multiplication of Schur functions), then there exists a

polynomial r^fa), such that

q's«*(q) = ̂È^)^q)
where / is a suitable integer.
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It follows that the right hand side of (2) becomes

b ICiK*!) IG2lff(«2)

c¡72 q    \cGi(Xl)Hi) ' lcG20c2)|/j(i)' Sci-C2{q)

where ô is some integer (depending on cl, c2) and the sc   c 's are polynomials.

Using (1) our result follows.

It is still an open question, to which extent a converse to (3.1) is valid.
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