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A QUASI-ANOSOV DIFFEOMORPHISM

THAT IS NOT ANOSOVf1)

BY

JOHN FRANKS AND CLARK ROBINSON

ABSTRACT.   In this note, we give an example of a diffeomorphism / on

a three dimensional manifold M such that /has a property called quasi- Anosov

but such that / does not have a hyperbolic structure (is not Anosov).   Mané has

given a method of extending / to a diffeomorphism g on a larger dimensional

manifold V such that g has a hyperbolic structure on M as a subset of V.   This

gives a counterexample to a question of M. Hirsch.

M. Hirsch asks in [2], if a diffeomorphism g: V —► V has a compact invar-

iant submanifold M C V with a hyperbolic structure as a subset of V, does it fol-

follow that g restricted to M is Anosov (has a hyperbolic structure). He proves

this is true in certain cases if g has a dense orbit in V.   Ricardo MarTé notes that

g restricted to M has a property he calls quasi-Anosov [5].  He asks if a quasi-

Anosov diffeomorphism is always Anosov.  C. Robinson [6] gives an example of

a quasi-Anosov flow (not a diffeomorphism) that is not Anosov on an eleven di-

mensional manifold.  In this note, we give an example of a quasi-Anosov diffeo-

morphism / on a three dimensional manifold.  (This is the minimal dimension.)

Mane gives a method in [5] of embedding our result in a diffeomorphism g of a

manifold V such that g has a hyperbolic structure on M. This gives a counter-

example to the question of Hirsch as stated above.  However, we do not know if

g can be constructed so M is contained in the nonwandering set of g. Also, the

results of Hirsch [2] show that if our f:M3 —*■ M3 is embedded in g: V—► V

so that g has a hyperbolic structure on M and the dimension of Kis four or five,

then g cannot have a point with a dense orbit in all of V.

1. Definitions and Theorem. A diffeomorphism is quasi-Anosov if the fact

that | Tf"v\ is bounded for all n £ Z implies that v = 0. Here Tf is the induced

map on tangent vectors of M, v E TM.  If A C M is invariant by a diffeomorphism

/, we say that /has a hyperbolic structure on A if there are 0 < X < 1, C> 0,

and a splitting TM IA = F" 0 Es such that for n > 0,
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\Tf"us\<CX"\vs\   for vs EES,

I Tf-"üu\ < CXn\vu\   for vu E Eu.

A diffeomorphism / on M is Anosov if/has a hyperbolic structure on M. The

nonwandering set, Í2, of /is the set of points x EM such that for each neighbor-

hood U of jc there is an integer n > 0 such that f"(U)C\ U¥:0.

We define the stable and unstable manifolds at all points jc G M by rv"s(jc) =

{y EM: d(fnx, fny) —> 0 as n —> ~} and W(x) ={yEM: d(f"x, f"y) -> 0

as n —»• - <*>}. If /has a hyperbolic structure on the nonwandering set then these

are actually manifolds [3]. If we also assume the periodic points are dense in Í2,

then by [4] or [10] each point v of M is on the stable and unstable manifolds of

some point in SI. Also {u G TXM: \ Tfnv\ is bounded for n < 0} = Tx [W"(x)]

and {v E TXM: | Tf"v\ is bounded for n > 0} = Tx [Ws(x)]. See [3]. Therefore

under these conditions if Tx [Wu(x)] n Tx [W*(x)] = {0X } for all x in M, then /

is quasi-Anosov. See [4] or [10] for more definitions and basic facts of the

theory.

Theorem.   Let M be the connected sum of two copies of the three torus.

There is a diffeomorphism fon M that is quasi-Anosov but not Anosov.

Remarks. 1. The diffeomorphism/has two hyperbolic invariant subsets

and the dimension of the stable bundle on the source is two and on the sink is

one. Since the dimension of Es is not constant / cannot be Anosov. However

Tx [Wu(x)] n Tx [Ws(x)] = {0X } for all x in M, so /is quasi-Anosov.

2. A quasi-Anosov diffeomorphism on a two dimensional manifold is

Anosov, so our example is in the lowest possible dimension. To prove this state-

ment, note that iff is quasi-Anosov on a two manifold then/has a hyperbolic

structure on Í2 as approved in [5], [7], or [9]. Since / is quasi-Anosov, all the

splitting must be one dimensional (exercise). Since the splittings have constant

dimensions on SI  [2], [5], and [7] all prove that /has a hyperbolic splitting on

all of M. Therefore / is Anosov.

2. Proof of Theorem. We first construct a "734" diffeomorphism on Mx

= T3 with certain linearity properties near the source.

Lemma 1. Let Mx = T3; there exists a diffeomorphism /, : Af, —»• Mx

which leaves invariant a one dimensional foliation F and has the following

properties:

(1) TTiere is a point pEMx which is a source for fx and a neighborhood

Uofp with local coordinates xx, x2, x3 which are C except at p and such that



A QUASI-ANOSOV DIFFEOMORPHISM THAT IS NOT ANOSOV 269

(2) If q, fx(q) E U then x¡(fx(q)) = 2xf(í7); Le., in the x¡ coordinates fx

is multiplication by 2.

(3) The leaves of the foliation F restricted to U are given by x2(q) =

constant, x3(q) = constant.

(4) If Aj = n„>o f"ffli ~ ^)>tnen ^i 's a comPact invariant hyper-

bolic set whose stable manifolds are the leaves of the foliation F restricted to

Mx - {p}.

Proof.  The diffeomorphism fx is a "DA" on Mx = T3. This is a well-

known construction in dimension 2 [10] or [11] ; we include an exposition of

the dimension 3 DA construction as an appendix for completeness. However for

the moment we need only that fx is a perturbation of a hyperbolic toral automor-

phism which had a two dimensional unstable foliation and one dimensional stable

foliation. The perturbation changes a hyperbolic fixed point to a source, but pre-

serves the stable foliation so it remains invariant under fx. If p is the source and

Kis any sufficiently small neighborhood of p, then Ax =Ç\ B>0 fx(Mx - V)

has a hyperbolic structure and its stable manifolds are the leaves of F (the stable

foliation of the hyperbolic toral automorphism) restricted to Mx — {p} (see

Appendix for proof).

We assume the original hyperbolic toral automorphism g was based on a

matrix which has distinct real eigenvalues, one between 0 and 1 and the other two

greater than 1. For example,

( 0       0       1 1.

\l      -6      5/

We choose coordinates uv u2, u3 on a neighborhood of p in directions

parallel to the eigenspaces of g and such that p = (0, 0, 0) in these coordinates.

We assume (see Appendix) that fx is constructed to be linear on a neighborhood

of p in these coordinates, so that the ux direction, the contracting direction ofg,

is an eigendirection for fx with eigenvalue 2, and so that fx =gox\ the unstable

manifold W = {q\ux(q) = 0}.

Let wx, w2 be standard coordinates on R2 and define L: R2 —+ R2 by

L(wx, w2) = (2wx, 2w2). Since any two expanding linear maps of R2 are locally

conjugate by a homeomorphism which is a C°° diffeomorphism except at the

fixed points, we know that if D = {w ER2\\w\<9} there exists yp: D —► W

which is C except at 0 and has C°° inverse except at p and satisfies <p(L(w)) =
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/, (v(w)) when both sides are defined. Now if U = y(D) and we define coordi-

nates by jCj = h,, x2(q) = wl(<p~1(q)),x3(q) = w2(ip~1(q)) then one checks

easily that xJ(fx(q)) = 2jc/(<7).  Also the coordinates xv x2, x3 are C°° except

at p. Since the curves x2(q) = const, x3(q) = const are the same as the curves

u2(<?) = const, u3(q) = const, these are the leaves of the foliation F restricted

to U. This proves the lemma.

Next, we use f1'Ml —► Mx constructed in the lemma to construct a pre-

liminary diffeomorphism on the connected sum of two copies of T3. Let F be

the stable foliation of/j (one dimensional).  Let/2: M2 —> M2 be another copy

of the same thing, with one dimensional foliation F'. Let F be an open set on

M2 and yx, y2, y3 local coordinates analogous to U and jc,, x2, x3 on Mx, but

such that F' is given by yx(q) = const,y2(q) = const. Define | \x on U and

I |a on Fby \q\\ = 23=1 XAjtf and \q'\\ = 23=1 y¡(q')2.  UtD¡ =

{z G U\ \z\. < 1/8}. We will attach Mx - Dx and M2 - D2 along a collar neigh-

borhood of these boundaries to form a new manifold M diffeomorphic to the con-

nected sum of two copies of T3. Let Ax = {z E U\ 1/8 < \z\x < 8}and A2 =

{z E V\ 1/8 < \z\2 < 8}. We define an attaching diffeomorphismg: A2 —*■ Ax

by g( Vp y2, y3) = ÇZy?)~1(yl, y2, y3) in jc,- coordinates. Thus g sends the

circle of radius r in A2 to the circle of radius l/r in Ax, so the outer boundary

of A2 is taken to the inner boundary of Ax and vice versa. Note also that g °

f2~1(z)=flog(z).

We will say that zx ~ z2 if zx = g(z2) and define M to be (Mx - Dx) U

(M2 - D2)/~. Then M is a C°° manifold and we define a diffeomorphism /„:

M-* M by f0(z) = fx(z) if zEMx-Dx and/0(z) =f2\z) if zEM2 - D2.

Notice if z G (Mx - Dx)C\ (M2 - D2) = Ax U AJ ~ and if z is the equivalence

class of q E A2 and q E A x, then g » ffl (q) = /, (g(q)) = fx (q) so f2 ' (q) ~

fx(q'), and hence /0 is well defined.

We will consider the annulus A =AXU A2/~ and use the coordinates xx,

x2, x3 which come from Ax. Then if \z\2 = \z\\ = Sx,(z)2, we have A =

{z|l/8<|z|<8}.

There are two one dimensional foliations on A, the restrictions of F on Mx

and F' on M2. We will denote these also by F and F'. The foliation F con-

sists of straight lines in the JCj- coordinates but the foliation F' is a more com-

plicated "dipole" foliation in these coordinates which will be discussed later.

Since there are tangencies of F and F', we want to modify /0 and F' to eliminate

these tangencies.

Lemma 2.   77zere exists a C°° isotopy htof A such that:

(1) h0 = id: A —► A

(2) ht(z) = z for all t and all z in a neighborhood of the boundary of A.
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(3) 7/5 = {z £ A11/4 < |z|<4} then the foliations F and hx(F') are

nowhere tangent on B.

(4) Ifz, f0(z) are in B then ht(f0(z)) = /0(Af(z)), for 0 < f < 1.

(5) |A,(z)| = |z|/orz£/l,0<f < 1.

We defer the proof for the moment and show that the existence of this

isotopy allows us to finish the construction of a quasi-Anosov diffeomorphism.

Proof of Theorem. Define a diffeomorphism f:M—*-Mby f(z) =

/0(z) if z $. A and if z £ A by

f0(z), 1*1 > %

hl-f0ohxi(z),      |z|<2.

Here hx is extended to be the identity off of A. Notice by (4) of Lemma 2 that

Aj o/0 =/0 o Aj on F so/0(z) = hx o/0 o A¡"'(z) if Vi < \z\ < 2. Thus /is a

well-defined diffeomorphism. We must check that it is quasi-Anosov. If Aj and

A2 are the compact invariant hyperbolic sets in Mx and M2 (thought of now as

subsets of M), then v E TMZ and z £ A¡ implies sup„ez|7)/"(u)| = °° because

of the hyperbolicity. On the other hand if z £ A¡ then the orbit of z under /

intersects the set C = {w E A | 1 < |z| < 2} so it suffices to check tangent vec-

tors at points of this set.

We notice that the parts of the stable manifolds of A, which lie in C are

precisely the leaves of the foliation F restricted to C. This is because f\M _D   =

/, \M _D . Hence if v E TMZ and z EC then if v is not tangent to F it follows

that

lim   |7?/"(ij)| = lim \Df"(v)\ = °°.
n-coo „-tec

Also the parts of the unstable manifolds of A2 which lie in C are the leaves of

the foliation hx(F'). This is because/"M^ _D   = A, o /2 o AJ"1 restricted to

M2 - D2 and the stable manifolds of/2 are the leaves of F', so since hx conju-

gates f2 and/-1 it carries the stable manifolds of/2 to those of/-1. Thus if

u £ TMZ, z £ C and u is not tangent to A,(F'), it follows that lim,,,,.. \Df~n(v)\

= °°. Any tangent vector at a point of C is not tangent to at least one of the

foliations F and hx(F'); hence the diffeomorphism/: M —► M is quasi-Anosov as

desired. We note that / is not Anosov because the two compact hyperbolic sets

Aj and A2 have hyperbolic splittings of different dimensions and hence are not

the restrictions of a single hyperbolic splitting on all of M.

Proof of Lemma 2.   First we give a geometric description, and then we

write down the equations and verify carefully that there are no tangencies of F

m =
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and fti(F'). In the jc,. coordinates, (xx(f(q)), x2(f(q)), x3(f(q))) =

%xx(q),x2(q), x3(q)) and the foliation Fis given by x2(q) = constant, jc3(q) =

constant, i.e.Fis tangent toi_ = b/bxx. We take "spherical" coordinatesp,ip,6, on

A with <p varying between — rr/2 and jt/2 instead of 0 to it as in usual coordinates.

Note that <p = 0 is the equator and p(q) = \q\x. The attaching map g in local

coordinates reflects about the sphere of radius one. Therefore the vertical foli-

ation F' goes into the "dipole field".

We construct the isotopy ht on B = {q\ 1/4 < \q\x = p(q) < 4}. It pre-

serves p and the <¿> and 6 variables are independent of p. It is then easy to extend

it to an isotopy of A = {q: 1/8 < p(q) < 8} that is the identity near the bound-

ary.

The first step of the isotopy is to twist the south pole relative to the north

pole. The foliation F' then twists around the equator. If we orient F', we get a

vector field that points up near the poles y = ± ir/2, and is nearly horizontal near

the equator.
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In fact, the map which assigns to a point in F the unit tangent vector field has an

image that only covers slightly more than the upper hemisphere of 52. The

greater the twist, the more horizontal the vector field is at the equator, and the

more nearly the image comes to just the upper hemisphere. (The unit tangents

to the original F' cover S2 because they point down at the equator.) The folia-

tion F is tangent to i_. To eliminate fangendes we need to make the unit tangents

of hx(F') miss both ± i_(a point and its antipital point). So far the vector field

points nearly in the i_ direction near <p = 0 and 6 = ±jt/2. We next tilt the foli-

ation up (in the k = b/bx3 direction) at these points and let it point down again

near 6 = 0, rr where it has some component in the j_ = b/bx2 direction.

In this way, hx(F') never points in the ±i direction.

Next we write down the equations and verify completely that hx(F') is

never tangent toi.  The equations for the attaching map g in spherical coordi-

nates are p(g(q)) = (Vy2)-*, <p(g(q)) = <p(q) = tan-l(y3l(y\ + y\t),

0(g(<¡)) = 0(<7) = tan-1 (y2/yx). Therefore the tangent to F' is

bp    b        bi£_ _b      _90  _d_

9^3  bp     by3 btp     by3  39'

y3(Zyf)'3'2 - - (l>?) y3(Zyf) ~1/2 - - p2^ *,

'l+ylfiyj+yl+ylr1

2+x2+x2)^2+v2+v2)->/2

Then

bp_ =

3^3

=(*

= p cos <f5,   and
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Factoring out -p we get a tangent vector field to F' to be p sin tpd/bp -

cos tpb/bip.   Let /3 = tan-13 and a = tan_,2.  Let y(<p) be negative, equal to

zero in a neighborhood of ±n/2, and constant between ±ß. We specify its size

later. Let TQp) = / *ff/2 y(<p)d<p.

-jr/2     -ß     -a aß        ir/2

The diffeomorphism

(p, *, fl) -* <p, /, 0') = (p, v, ö + i»)

adds the twist near the equator. Let A(ip) be a positive function that is equal to

zero for \<p\> ß and constant for <p between ±a. Let 8(<p) = A'(<p).

-ß    -a

A
V

Let p(0')= - H sin 20'so p'(0') = - cos 20'. The diffeomorphism

(p\ *', 0') -> (p", /, 0") = (p\ </ + A(^')M(0'), B')

pushes up near 0' = ±rr/2 (as we shall see). The derivatives of the two diffeo-

morphisms have matrices

1        0        0\ /l 0 0

0        1        0   j  and  j  0      1 + 5(</>')p(0')   A(</)p'(0'))

0      ydp)      1/ \0 0 1

Notice if 16((/)p(0')| < Vi then both matrices are invertible. Since both maps

are linear near the poles they are differentiable. All immersions of S2 to itself are

diffeomorphisms, so these are both diffeomorphisms (isotopic to the identity).

Let ft j be the composition. The tangent vector to A,(F') is

X = psm<p-£— cos ̂ [1 + S(^)p(0") + y(<p)A(<p)p'(d")] r
op o<p

3
-7(¥>)cos¥> —,
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p sin <¿>

-cos >p(l + 5p + yAp.')\

- y cos <p

Notice 0" = 0' and <¿>' = <p. We want to find the/ and fc components of X.  We

compose with the derivative into rectangular coordinates. Remember - 7r/2 < <ç
-*     i*. n nii it .     n" n n .        » ,  ±.
^ 7T/2 so Xj = p   cos 0   cos ¡p , x2 = p sin 0 cos <p , x3 = p sin <p , and the

matrix of the derivative is

/ nii ll nil ll .     nlt n^
r cos 0   cos v?       - p cos 0   sm <¿>        -psinfl   cos y>

nil » !_    rt» " /i» »
sin 0   cos y       - p sin 0   sin y p cos 0   cos y

sin </>" p cos <p" 0

The/ and & components are

p~lX ' j = sin 0" cos i^" sin <p

+ sin 0" sin / cos *> [1 + S(^)p(0") + 7&>)A(<¿>)p'(0")]

— cos 0" cos <p" COS ̂ 7(v5),

p-'X . ¿ = sin <p" sin v? - cos / cos ̂ [1 + 5(<p)p(6") + y(<p) A(<p)¡i'(d")].

To show X is never parallel toi, we need to show p~lX • / and p~xX • k never

vanish simultaneously.

Near the poles X • k does not vanish. Near the equator for (a) 0" near

±tt/2, X • k does not vanish (where we pushed up), and for (b) 0" near 0, it,

X ' ¿ does not vanish. We divide up the regions as follows:

(1) -ß < V < ß, -n/3 < 0" < tt/3 or 2tt/3 < 0" < 4 tt/3 (use X •£),

(2) \<p\>ß (useX'k),

(3) a < M <ß, ff/3 < 0" < 2ff/3 or 4tt/3 < 0" < 5rr/3 (use X • k),

(4) -a < V < a, tt/3 < 0" < 2tt/3 or 4tt/3 < 0" < 5ir/3 (use X • k),

We separate cases (3) and (4) because different terms dominate. We make the

following assumptions on 7, S, and A:

l7(<p)| > 50 for —j3 < 00 < ß,

ISfcOKl,
|A(<p)T(<p)l <4,
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A^Mf) = - 4 for - a < f < a,

lp(0")l<tf,
lp'(Ö")l < 1.

Remember p(6") = - V¡. sin 2d". We may need to make 8(<p) smaller and hence

Tfa) larger in cases (3) and (4). Since AQp) = 0 for M > ß, we have that \*p"\ >

ß if and only if \<p\ > ß (ip" = <p + Ap). Now for the cases.

Case (1). Assume - ß < <p, / < ß, and -tt/3 < 0" < jt/3 or 2tt/3 < 6" <

4?r/3. Then

sec 0" sec </ sec <pX • j = - y(ip) + tan 0" tan <p

+ tan 0" tan <p"[l + 6(<^)p(0") + 7(v)A(^)p'(0")]

> 50 - (V3)3 + 6/3)3 [1 + 1/2 + 4] > 0.

Case (2). Assume M, |/| > ß. Then

sec <p" sccipX' k = tan / tan <¿> - y(<p)A(<p)p'(0") - 1 - 6(<p)p(d")

> 4 - 0 - 1 - 1/2 > 0.

Gzse (3). Assume a < | tf< ß, and tt/3 < 0" < 2ir/3 or 4jt/3 < 0" < 5tt/3. By

taking AQp) smaller, we can insure that |tan <p"\ > 1 so tan <p tan <p" > 2 Qp" =

yp + Ap). Then, since -y(ip)A(yp)p'(d") > 0,

sec yp" sec <pX • k > tan ip" tan <p - 1 - S (<p)p(0")

> 2 - 1 - 1/2 > 0.

Case (4). Assume | *>|< a, and ir/3 < 0" < 2ir/3 or 4tt/3 < 0" < 5rr/3.

For A(v?) small enough, we have tan \ptan y > — 1/4   (yp" = yp + Ap), i.e.

*p and (¿T have the same sign except for small <p and yp". Also -y(yp)A(yp)p'(d") =

-4 cos 20" > 2 for these ranges of 0". Therefore

sec / sec ypX • fc = tan / tan <p - y(yp)A(yp)u'(0") - 1 - 5(<p)p(d")

> - 1/4 + 2 - 1 - 1/2 = 1/4 > 0.

This completes the proof of Lemma 2 and hence the theorem.

3. Appendix:  Construction of the DA diffeomorphism. We begin with a

hyperbolic toral automorphism g:  T" —> Tn with the following properties: g

is induced by a linear automorphism L: Rn —*■ Rn which can be represented by

an integer matrix with determinant 1, with one real eigenvalue X which satisfies

0 < X < 1 and all other eigenvalues greater than one in absolute value.

Choose a real valued C°° function p(t) with graph as in the figure below.
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We summarize the properties we wish p to have:

(1) p(t) = p(-t),

(2) p(f) = 0 if | r| > 1, p(t) = 2 - X on a neighborhood of 0,

(3) p(t)>-X,

(4) f01p(t)dt = 0,

(5) p(a)= 1 -X,p(t)< 1 -X for \t\> a and p(t)> 1 -X for |r|< a.

Now define \J/: R —>R by i/(x) = Xx + fx0 p(t) dt.  Note that ^ is a dif-

feomorphism, since \¡/'(x) = X + p(x) > 0 for all x, and that u7(x) = Xjc for |jc|

> 1. Also ̂ (x) = 2x for all x in a neighborhood of 0.

Since p(t) > 1 - X for | r|< a, there is a b > a such that \¡>(t) > t for all

0 < r < b. Let X = supU|>6 y/'(x), then X < 1, since p(t) < 1 - X when |r| >

a. We can now construct the 7X4,/: Tn —*Tn.

Let 0: R —► 7? be a C" bump function satisfying 0 < 10(r)| < 1, d(t) =

1 on [- b, b] and 0(r) = 0 for \t\> 1. Choose linear local coordinates ux,...,

u„ on a neighborhood U of 0 in Tn, such that «j is parallel to the eigendirection

corresponding to X and u2.un span the complimentary expanding space.

We suppose U = {g\ 2JLj uj(q) < 4}. We now define /by altering g on U as

follows:  Let u¡(f(q)) = u¡(g(q)) for 2 < i < n and let ux(f(q)) = \p(ux(q))0(r)

+ «i(s(<7)) (1 - 0(r)), where r = ÇZJL2 u^q)2)*. Note, since \p(x) = Xx for

|x| > 1, / agrees with g outside {q\ 2¡L, u¡(q)2 < 1}. On a neighborhood of 0

in T", /is an expanding map, linear in the u¡ coordinates ($(x) = 2x for x in a

neighborhood of 0). It is not difficult to check that / is a diffeomorphism on Tn.

We note that / leaves invariant the lines u2 = const, ...,«„ = const on U

so that in fact /leaves invariant the foliation of stable manifolds of g on all of

Tn. Thus if F* is the stable bundle of g, this bundle is invariant under Tf.  The

unstable bundle E" is not invariant under Tf.

Now let V = {q G U\ \ux(q)\ < b and (S?=2 u^a)1)* <b}. If xEU-

Vand v E F* then by construction | Tf(v)\< XI v\ (recall 1 > X > X). Hence

we have this inequality on all of T" - V (since it holds with X instead of X on
Tn - U).

One checks easily that f(V) D K and we wish now to show the hyperbolic-

ity of / on A = Om>o fm(Tn - V), which is clearly a compact /-invariant set.
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To do this we consider r=ri©r" where Vs = {C° sections of Es(g)} and

T" = {C° sections of Eu(g)} and define/#(?) = Tfo y »f~l and g# = Tg o

y o g~l for y = 7* + y" E T.

Now g#: rs © T" -> r* © r" has the form (A ' £) (both Ts and T" are

invariant under g#) where \A'(y*)\ < X|7S| and \C"(yu)\> Kr"\yu\, for some

K > 0, and r > 1. The map /#: r* © T" -* Vs © T" has the form (A £) where

C : T —► T " is the same as in the expression for g. To show that A is a hyper-

bolic set it suffices to show /#|r    is hyperbolic where TA = {7lA : 7 £ T } (cf.

Lemma 1 of [1]). Now/# restricted to TA has the form (A fj) where C: T^

—* T£ is invertible and expanding since \Cn(yu)\> Krn\y"\. Also A: TA —*

TA satisfies Uí/íl < "X17s! since A < Tn - V and | Tf(v)\ < X| v\ if u £ Esx,

x £ T" - V.  Wc prove that if p E C and \p\ = 1 then/# - p7: TA —> TA is

invertible by exhibiting an inverse, namely

/(A - P7)"1    - (A - p7)-,F(C - p7)-!\

\       0 (C-pJ)-1 )'

Thus/Jr    is hyperbolic. It is clear that the stable manifolds of A are leaves of
*     A

the stable foliation of g restricted to Tn - {0}.

Remark.   The above construction does not work if the stable dimension

of the original linear map is greater than one. The difficulty is that the maximal

invariant set does not have a constant splitting. What is happening is not well

understood.
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