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BOUNDARY VALUE PROBLEMS FOR FUNCTIONAL

DIFFERENTIAL EQUATIONS WITH L2 INITIAL FUNCTIONS

BY

G. W. REDDIEN AND G. F. WEBB

ABSTRACT.  Existence results are given for boundary value problems
2

for vector systems of functional differential equations with £   initial functions.

The proofs are essentially constructive and lead to computational methods in

important cases.

1.    Introduction.    Let r > 0 and N > 1 be chosen and define X =

L2 [-r, 0] x 7?^ where functions in L2 [~r, 0] map [-r, 0] into 7?^ and if

{</>, h} is in X, U<P, h}1i2x = r2r \<p\2dx+ \h\2. Let M and TV be bounded linear

mappings from X into X, let L be an N x N matrix, and as an example, let F be

a Lipschitz continuous mapping from L2 [-r, 0] into RN. The purpose of this

paper is to provide constructive existence proofs for solutions to the boundary

value problem

(1.1) x(r) = Lx(t) + F(xt),     0<t<b,

with the boundary conditions

(1.2) M{x0, x(0)} + N{xb, x(b)} = {*,k}

where for t > 0, xt E L2 [-r, 0] is defined by xt(6) = x(t + 6) for almost all

0G[-r,O],andx(Z>) = xft(O).

By constructive is meant here that either a finite difference method will be

used to show existence by actually establishing existence and convergence of the

difference approximations, or a contraction mapping argument will be used.

Thus the proofs provide the basis for actual numerical computation.

The existence results obtained here are partial extensions of results of

Waltman and Wong [7], Fennell and Waltman [2], and Grimm and Schmitt [3]

where boundary value problems for functional differential equations are studied

but with continuous initial functions. The difference method studied here is a

variation of Euler's one-step method and can be implemented as a shooting me-

thod. Thus our results also partially extend those of deNevers and Schmitt [1].
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We remark that for smooth boundary value problems for functional equations,

high order difference type methods can be obtained for a class of second order

problems using results of Reddien and Travis [5]. The problems studied here

are general vector systems however.

We use here recent results for initial value problems for functional differen-

tial equations with L2 initial functions obtained by Webb [9]. We also will use

some results for the numerical solution of such initial value problems obtained

recently by Reddien and Webb [6]. However, the references to this last paper

are minimal and the results given here are essentially self-contained.  §2 contains

the existence result using a contraction mapping argument and also definitions

and lemmas needed to obtain the existence result by finite differences. This

result is contained in §3. An application is given in §4.

2. Preliminaries. Two classes of nonlinear terms will be considered:  Case

I: F is Lipschitz continuous with Lipschitz constant ß as a mapping from

L2 [-r, 0] into RN, and Case II: F has the form F(4>) = s(/°, ^(0)0(0)) where

g: RN —► RN is Lipschitz continuous with Lipschitz constant ß, the domain of

F is the continuous functions defined on [-r, 0], tj: [-r, 0] —* Lip(X, X) (the

Lipschitz continuous mappings from X into X), tj is of bounded variation, tj(0) =

0 and limg^^ t(0) + 0 where r(0) =f jf, \dr\\ (the total variation of t? between

-r and 6). As a mapping from L2 [-r, 0] into RN, such an F may be only

densely defined and discontinuous, but this class of F includes equations of delay

type not included in Case 1.

In either case, it has been shown that the initial value problem x = 7,x(f)

+ F(xt), t > 0, and {x0, x(0)} = {0, A} has an associated solution semigroup

Tx(t) (defined in a generalized sense in Case II, see Webb [9]). In Case II, it is

convenient to renorm X. Define II { 0, A} II2X   = flr 1012dp + IA12 where dp(B)

= r(8)dd.  Xß will represent the set X with this norm. Note that the two norms

are equivalent on X.

We also associate a semigroup with the equation x = 7,xf(0), f > 0, and

{x0, x(0)} = {0, A} as follows. The equation is actually an ordinary differential

equation with solution x(t) = etLh, which is independent of 0.    Define

T2(t){<¡>, A} = {0, etLh), t > 0, where 0(f + s) = e(t+s)Lh for t + s > 0 and

<j>(t + s) = 0(f + s) otherwise, -r < s < 0.  T2(t) forms a semigroup of bounded

linear operators on either X or X^.

Using these semigroups, the boundary value problem (1.1)-(1.2) may be

written in several ways, first as

(2.1) M{0, h} + NTx(b){<p, A} = {0, k},

where {0, A} is considered to be in X or Xu, depending on whether or not the F
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generating the semigroup Tx(t) is of Case I or Case II. With the boundary value

problem formulated as in equation (2.1), it is possible to give existence results

using the contraction mapping theorem. We give two possibilities in the next

theorem. The Lipschitz constants defined in the theorem are with respect to X

or Xß depending on whether or not the mapping F generating the semigroup

Tx(t) is of Case I or Case II respectively.

Theorem 2.1.   (i) Let (M + Nfx exist with the domain of (M + N)~x

containing the range ofN(Tx(b)-I),let {\p,k} be in the domain of(M + N)~x

and let H(M + NfxN(Tx (b) - 7)11 Lip < 1. Then solutions to (2.1) exist and are

unique,  (ii) Let (M + NT2(b))~x exist and have domain containing the range of

N(Tx(b) - T2(b)), let {^>,k}be in the domain of (M + NT2(b))~x, and let

\(M + NT2(b)TxN(Tx(b) - T2(b))lUp < I. Then solutions to (2.1) exist

and are unique.

Proof.   For example, (2.1) may be written as

M{<j>, h} +NT2(b){(t>, h} +N(Tx(b) - T2(b)){<?, «} = {!//, k)

and then using (ii) as

{<p, h}+(M + NT2(b)TxN(Tx(b) - T2(b)){<p, h}

(2-2)
= (M + NT2(b))-xW,k}.

Equation (2.2) has the form x + Sx = y with ll5llLip < 1 in a Banach space,

and so it is solvable uniquely.

Remark.  It follows from results of Webb [9] that in Case I, llri(¿?)HL¡p

< eub where co = lllll^ + ß + }4 and lLlN represents the Euclidean matrix

norm of the TV x TV matrix L.  In Case II, it follows from [9] that ll7'1(6)l1Lip

< ewb where co = t(0X1 + (ß + ll7,H7v)2)/2. Thus the hypotheses of Theorem

2.1 are actually on M, TV, the length of the interval and the magnitude of the

constants j3, ll7J,y- and r(0). Theorem 2.1 is an extension of Theorem 4.1 of [7],

We note also the following result. See also Remark 1 in [7].

Lemma 2.2.   (M + NT2(b))~x exists with domain equal X (Xß) if and

only if the problem

(2.3) x = £xf(0),      0 < r < b,

and the boundary conditions

(2.4) M{x0, x(0)} + N{xb, x(b)} = {ip,k}

are uniquely solvable for each {\p, k} in X(X^).
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Proof.  Equation (2.3)-(2.4) is equivalent to

M{0,A}+AT2(A){0,A} = {0, k},

giving the result.

Our next existence result, Theorem 3.2, will relax these conditions on M, N

and F.  The small Lipschitz constants required by the contraction mapping theo-

rem will be traded for almost uniform boundedness on F and a compactness

argument. First, a sequence of lemmas will be given.

Define f„ = r/n and let X/ = X[_f„/_fn(/_i)) for/ = 1, 2,. . . ,n, xA de-

noting the characteristic function of the set A. Let Xn denote the subspace of

X (Xß) defined by

X„ = j {0, A}: 0 = ¿ Ü/X/», VjERn,j=l,...,nl.

Let Pn be a mapping from X (Xß) into Xn defined by

*.{**}-j¿ vtf,hl

where

vi = ~r~J-tnj       ^ds-

Define 7Tj{0, A} = 0.  In Case I we assume {F„} is a sequence of Lip-

schitz continuous mappings from itxXn to RN with Lipschitz constants ß„ —*■ ß

and with Fn(?riP„{ 0, A }) —► F(<p) as n —► ~ for all {0, A} £ X.  For { 0, A} =

{SjL, vpd}, A}, define

A„{<P, h} =   - ¿ ( ?)(«>,_, - ^Ox?, -F„(0) - ¿A J

where u0 = A.  We then have the next lemma which is a slight extension of a

result in [6]. Define / = llTJjy and let ( • , • ) denote the RN inner product.

Lemma 2.3.   For each n let f„ = r/n and let yn = ßn + / + Vu  Then

I - tnAn is a Lipschitz continuous mapping from Xn into Xn taken as a subspace

of X with Lipschitz constant \(I -t„An)\hiv < 1 + tnyn.

Proof.   For {0, A} = {2^, A^, A0} and {*. k} = {S;=1 k,x«, k0},

we have
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\(I-tnAn){hh}-(I-tnAn)W,k}l2

= '„ i lVi-*,-il2+l«o-*o'2
1=1

+ 2r„(A0 - ft0, Fn(<t>) - F„(*)) + 2r„(ft0 - ft0, L(h0 - k0))

+ t2n\Fn(<p)-FnW) + L(h0-k0)\2

< Ifo, h} -{*, ft}»2 + tnßn(\h0-k0\2 + 10- *l2) + r„lft0 -ifc0l2

+ 2r„/lno-Ä:ol2 + r2ß2l0-^l24.r2/2lno-*ol2

+ f*/y(l0-*l2 + lfto-fcol2)

<(l+t„(ßn+l + K))2n<P,h}-{l,,k}P,

giving the result.

Remark. Since it follows that Pn: X—+Xn is a bounded linear projection

with llFrt 1 = 1, then the estimate

Kl-tnAn)Pn\Lip<l+tnyn

is valid in X.

We next give a similar lemma for Case II. Recall F has the form F(<¡>) =

g(jS.rdr¡(dyp(6)). X„ is defined as before but will now be renormed and denoted

as Xn T when it carries this new norm. With r(0) = jfr I di\ I, define

<{<P, ft}, {*. k})XnT = t„ ¿ (u,, w/rfLi + (ft, ft)
/'=i

where r" = r(-r„/), / = 0, 1,. . . , n, and ( • , • ) denotes the inner product on

RN. Pn is defined as before.  The next lemma regarding Pn will be needed and

follows directly from definition of the norm onXnT.

Lemma 2.4.   Let Pn: Xß—+ XnT. Then

H7>„ll2<max(l,r(O)/lim^T(0)).

We next define how F is to be approximated in this case. Let F„: tixXn/l

—* RN be given by

Fn(t »jXj)=g„(t (v(-Q-l)t„)-ri(-jtn))vj

where {gn } is a sequence of Lipschitz continuous mappings from RN into RN

with Lipschitz constants ßn satisfying ßn —* ß, and with gn(h) —* g(h) asn—*

o° for all A G RN. Now define An as in Case I. We then have the next lemma

which extends a result given in [6].
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Lemma 2.5.  For each n let tn = r/n and let yn = (1 + ß2n + 1„)(t(0) + 1).

Then the Lipschitz constant of (I - tnAn) as a mapping from Xn T into XnT

satisfies

|(/-^«)|L«p(A-„(r,^>r)<i + '„v

Proof.  Let {0, A} = {2?=, hpfi, A0}, {0, k] = {2»=1 */X?, fc0} and

u¡ = h¡ - kt, i = 0, 1,... , n.  Observe that by the Cauchy-Schwarz inequality

it (r?_, -f)\*i\\2<mi W2(1-i-i7)-

Combining this inequality with the definition of F„, it follows that

\\(I-tnAn){<p,h}-(I-tnAn)W,k}\\2

= t„ Z  '"/-i l2»M + l"o'2 + 2fB(ii0, F„(0) - F„(0) + L(«0))
j=i

+ f2lFn(0)-F„(0)+L«ol2

<*n ZI"/-ilM-i + '»o'2 + 2f>0lr3„ Z (r^ -r?)ltt/l
i=i i=i

+ 2tnl\u0\2+tffi(¿tf_1-T?)\ui\2

+ 2f2/i3„í ¿ (r£, - rDI",lj l«0' + tfW*

n

I
1=1

(rU-^)W)2
í=i /

<'.  Z l"/-ll2î?-l  +  l«o'2 +^(l"Ol/3^(0),/2)2
i=l

+ f„((l/r(0),/2)Z(r?_1-r7)l«,V

+ 2f„/l«0l2 + t2nß2„T(0) Z   l"/l2(^-i - T?)
(=i

+ f2í/2í32l«0l2 + KO)  Z   '"l'^-l -^)) + '¿'XI2

<'«  Z    '"l-l'M-1  +  '"O1' +fj«o>2^(0)
1=1
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+ '„£ (r?_1-r?)l«1l2 + 2r„/l«0l'
1=1

n
2

+ ^r(0)Z  ^\2(i^_x-^) + t2nl2ß2n\uQ\
i=i

i=i

<(l+r„(T(0) + 2/ + ß2r(0)))luol2

+ <n t '"."V-i +*(0) t l^-i +W"0I2
l=i i=i

+ t2„r(0)t ^i^-i+^K"2
/=i

<(1 + r„(r(0) + 21 + ß2„r(0)) + t2nß2nT(Q) + r2r(0) + r2/2 + r2/2/}2)

•l{0,A}-{</',ft}ll2vn)T

< (1 + r„(l + /32 + 0(r(0) + l))2 ll{0, ft} - { *, k}i2Xn t,

which completes the proof.

We will also need later the facts contained in the next three lemmas.

Lemma 2.6.  Let K = {(I- tnAn)m»Pn{<j>, h}:m„ = [t/tn], t„ = r/n, n

= 1,2, ... , and II [<p, ft } IIx < 1} in Case I and define Kß analogously to K but

with l{ <j>, A}Bv   < 1 in Case II. (Note that itxK or it^^ is a set of step func-

tions on [-r, 0].) 7/r > r, then itxK and 7Tj7CM are uniformly bounded in the

supremum norm on [-r, 0] and K is uniformly bounded in X and K^ is uni-

formly bounded in Xß.

Proof.  Let n be fixed and recall that Pn{<p, A}{2"=1 vp¿j, vQ} where

vj = 'r~J-jtn       ^ds'   uo

Define tt2{0. A} = ft.   For 1 <j <mn-n, define

"*=i

+ ¿rr2(7-r„>í„)fc-1Fn{0,A}).

Then
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if-' tnAnVnih *> =     Z  "j-l*"- " + WlW *» + '„Wní* A}!
(/=i !

-J Z ü/-iX/. "-i Í,

('- tnAn)2Pn{<p, A} = ] Z W/-2X?, u-f + ^(^,(7- f„^„)Pn{0, A})
(/=i

+ fnLrr2(7-f^„)Pn{0,A}|

= JZ   U/-2X7.«-2   .

(7- t„An)m»Pn{<p, A} = j Z tV-m„x7, v.mn ¡.

Therefore, to show the conclusion, it suffices to show the expressions v_.-, / =

0, 1, 2,. . . , mn - n, are bounded independently of n and {0, A}. But for / =

0, 1,.. . ,m„,

v.¡ = ^(I-tnAjPn{^,h}.

Thus in Case I,

IWL.,1 < (1 + f„7ny'll{0, h}ix,      j = 0, 1.mn.

In Case II,

lu_,l < (1 + f„Tn); max(l, T(0yiim^ r(fl)) " • I {0, h}lXß,

/ = 0, 1,. . . ,m„,

from which the result follows.

Lemma 2.7.   Let K and Kß be defined as in Lemma 2.6. TAen fAere

exisfs a constant C> 0 so that for any 0n = itx(I - tnAn)mr'Pn{(p, h} in itxK

or jTjT^, mn = [t/tn], tn = r/n and t > r,

Wn) - *n(0' - !>»)• <Ctn>       / = 2, 3, . . . , n.

Proof. Using the notation introduced in the proof of Lemma 2.6, it fol-

lows in both cases that
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\»j-mn - »j-mn + l ' < '„ UV«!? - tn^nT»-'-^*. «)'

+ r„«l7r2(7- tnA„Tn-i-xPn{0,A}l.

For Case I, the result follows using this inequality, Lemma 2.6, the uniform Lip-

schitz continuity of the Fn's and their pointwise convergence to F.  Now in

Case II, recall

\F„(<p)\ = Sn ft W-Q - !)'„) - r)(-jtn))v)

<ßnZ 0/-1 -^b.K^TÍOÍmaxIu,.!.
/=i /

Thus combining we have

lvi-mn - vi-mn + i I < ßnT(0)tn   max lu       +i I
Ks<n "

+ tnl\n2(I-tnAn)m»-hlPJ<t,,h}\.

Now using Lemma 2.6 and Lemma 2.5 with this inequality, the result for Case

II follows.

Lemma 2.8.   Let K and Kß be defined as in Lemma 2.6. 77ten for t>r,

K is pre-compact in X and Kß is pre-compact in Xß.

Proof.   Let {<pn, hn} be a sequence in either K or Kß. Since {hn} forms

a bounded sequence in 7?^ in either case, {h„} has a convergent subsequence so

we need only show {0„ } has a subsequence converging in L2 [-r, 0] in Case I

and (L2 [-r, 0], p) in Case II to complete the proof. If the sequence {<pn} has

been chosen so that some mesh size r/ft repeats infinitely often, then convergence

of a subsequence of {tpn } follows immediately since the problem is finite dimen-

sional. Now assume that [fn } is a sequence of step functions in L2 [-r, 0] or

(L2 [-r, 0], u) satisfying \f„(ir/n) -/„((/ - l>/n)l < cr/n for some constant c

> 0 and independent of n with /„ having jumps only at the points ir/n, i = 1,2,

... , n/r.  (For simplicity in what follows we assume the sequence of integers

{n} is such that n mod r = 0.) In addition, assume the sequence {/„} is point-

wise uniformly bounded. Now let e > 0 and choose TVj so that cr/Nx < e.  Let

Ô = r/TVj. Let n be >TV, and let x, y be in [-r, 0] with Ix -y\ < 5. Then

'/„(*) -/„Ml < (I fj + 1) '- • c < 2 ̂  c - 2e.

Let {x,} be a countable dense set in [-r, 0]. Since {/„} forms a uniformly

bounded sequence, then {/„(*,•)}„;* i forms a bounded sequence of real numbers,
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so by the usual diagonal argument we extract a subsequence which we denote by

{/„ } that converges on this countable dense set. There exists a natural number

K so that the intervals \x -xA < 6, /' = 1,..., K, cover [-r, 0]. We now

choose Nx larger if necessary so that

'/,.(*/) - /«(*/)' < e      fox n,m>Nx,j= I,...,K.

Now let x £ [-r, 0] be arbitrary.  There exists an index / so that Ix - x-l < 5.

Then

IÍ.W-/.WK !/„(*/)-/„(*/)!

+ !/„(*)-/„(*/)l + l/*(*/) -/»I

< 5e,      n, m>Nx.

Thus for each x, {/„(x)} forms a Cauchy sequence, actually uniform in x.   There-

fore {/„ } converges uniformly to some function / and uniform convergence im-

plies L2 [-r, 0] convergence or (L2 [-r, 0], p) convergence. Since by the previous

two lemmas the functions { 0„ } have the properties assumed for the functions

{/„}> the proof is complete.

3.  Existence by finite differences. We introduce the notation

Tnx(t) = (I-tnAjt»M

where An is defined as in §2. We also want to obtain a similar notation for the

problem x = Lxt(0).  Let {0, A} = {2?=1 AyXy, A0> and define

An{4>,h}=    Z 7(Vi-ÄX>i/lo  ■
l/=i J

Then

(7 + f„.42) {0, A} =    g ViX/- « + 'nWo    =    Z ViX/. h-l \

and

(7 + f^2)fc{0,A} = JZA/_fcxJ,A_fc|,

where h_k = (I + f„7,)fcA0. We now define T"(t) = (7 + t„Al)[tn/r].  It follows

in an identical manner to the proofs of Lemmas 2.3 and 2.5 that 11(7 + tnA2)ix

<(1 +*•„(/+H»and ll(7 + /„^2)llX/t<(l +,„(1 +/2)(1 +r0)).

Using equation (2.1) as a basis, the numerical method will be to choose

{0„, A„}inX(XM)sofhat

(3.1) M{0„, A„} +NT?(b)Pn{<pn, hn) = P„{0, A}.
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To simplify notation we will later write zn for {ipn, hn}. Note that equation

(3.1) is not fully discretized since M and TV have not been approximated and zn

is arbitrary in X (Xß). An example will be given in §4 to show how in impor-

tant cases (3.1) is fully discretized.

We will assume (HI) that (M + NT2(b))~x exists with domain containing

the range of N(Tx(b) - T2(b)) and (M + NT2(b))~x is bounded, and also that

(M + NT2(b)Pn)~x exists for all n sufficiently large with domain containing the

range of N(T^(b)Pn - T%(b)Pn) and that {(M + NT^(b)PnTx} is uniformly

bounded in norm.    We also assume that { \p, A} is in the domain of

(M + NT2(b))~x and that Pn{\¡i, A} is in the domain of (M + NT^(b)Pn)~x.

These hypotheses are on the matrix L and the operators M and TV and can be

verified directly in several important examples, one of which will be given in

§4. We further assume (H2) that in Case I, Fn takes bounded sets in itxXn

with the induced itxX norm uniformly in n into bounded sets in RN and that

lim sup -"   "      < Ô
•{«n.o}!*-"»:*««"!*« ^{<t>„, 0}WX

holds uniformly for all n large and any 5 > 0. In Case II we assume Fn takes

bounded sets in itxXn with the induced itxX  norm uniformly in n into bounded

sets in RN and that

lim sup -"   "'     < S
H<t>n.o}iXii-*«-,<t>„^xx„ \\{<p„, 0}«^

holds uniformly for all n large and any S > 0. Note that this condition would

be satisfied in Case I if {Fn} were totally uniformly bounded and in Case II

with a similar condition on {g„}. We note that the induced itxXß norms on

ffjA^ are uniformly equivalent in n to the itxXn T norms so that the preceding

assumption could just as well have been expressed in terms of the nxXn T norms.

Define sn(t, {<p, h}) = Fn(itxTÏ(t)Pn{<t>, A}) and define Z"(jt„) as a map

from X„ into Xn by Zn(jtn)Pn{<p, ft} = {0, sn(jtn, {<¡>, ft})}.

Lemma 3.1.

[nt/r]

W*«=   IT   U + tnA2n + tnZ»(jt„))PJ<t>,h}
/=0

= (I + tnA2Jnt'r>Pn{<p,h}

+ tn   ZV + tn¿nT-'-X Z"(ftn)PJ<P, A }
1=0

where m = [tn/r].
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Proof. The first equality follows from the definition of T"(t)Pn. Let S

= 7 + tnA2. 5 is a linear mapping in Xn. The second equality is evidently cor-

rect for m = 1. Let

m—2 m—2

n (s+tnzn(jtn))=sm-1+tn z ¡r-^zratj.
/=0 /=0

Then

m-2

(S + tnZ"((m-l)tn))ll  iß + tnZ"(jtn))
j=0

= Sm+t„ Z2 Sr-'-^Qt,,) + i|(Z»((m - 1)/,,),
/'=o

giving the result.

Remark. This formula can be viewed as a discretization of the variation

of parameters formula given in Hale [4].

We now give the main result of this section.

Theorem 3.2. Let hypotheses (HI) and (H2) hold. Then the solution to

(3.1)'       Mzn+NTKb)Pnzn=Pj,   zn={<P„,h„},   0 = {0,*},

exists for all n sufficiently large and has a strong limit point in X (Xß) which is

a solution to (2.1). Moreover, any sequence of solutions of (3.1)' that converges

can only converge to a solution of (2.1).

Proof.  Rewrite equation (3.1)' as

(M + NTn2(b)Pn)zn + N(Tnx(by?n - Tn2(by?n)zn = Pj

and further as

(3.2) z„ + (M + NTn2(b)PnrlN(Tnx(b)Pn - T%(b)Pn)z„ = (M + NT^byP^Pj.

Define S„ = (M + NT^by?^1 N(Tnx(by?n - Tn2(b)Pn) and y„ = (M + AT^A))"1

• Pn\p for later reference. From Lemma 3.1 we have

m-l

(3.3) T?(b)Pnz-TÏ(b)Pnz = tn  Z  (I + tnA2nT-^Znqtny?nz
;=o

where m = [An/r], z = {0, A}.  Let z;- = {0y, A-} be any sequence in X (or ATM)

with IzHjf—*■ °° (or izAx  —► «>). Define

0<fc<[6n/r] ;n=l,2,... *
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and analogously define j3;-   with the norm taken in X^. Recall that Pn{<p, ft} =

{2;=1ü/Xy,w0} where

. n C-U-i)tn
W0=A'      Vj = JJ-.itn <r<S)dS

and

(7-r^„)kF„{0,A}=    X »/-**>-*

where the u¡ are explicitly given in Lemma 2.6. Thus nx T"(ktn)PnZj =

^"=ivs-kT¿- Fors-k>0,vs_k = vf,j = s-k. Fors-ft<0,

»s-k = «¿Ï - tnÀnf~'Pnzp      *a<* «> = »•

In both Case I and Case II, we have for s - ft < 0 that luJ_fcl < cBz.-ll for some

constant c independent of n using the proof of Lemma 2.6. Thus in Case I,

inSXkt^ZjW^ <     £    u^xjl+lz:     V*X?I
1   '  '      l*-*>o |f-*<0

II Ks<n t      tl<s<n I

<hliJi+(z i»s-k\%)v'<Wx+Uzjtx- z tHY

<(l+(rct)\z¡\x

and in Case II,

^T^^l Mii) < 1^1      + I Z    V*X?|
fo-k<0 1(L2[-r,0],M)

Thus we may take the supremum over n in the definition of fy and pv M and ob-

tain finite numbers. Moreover, the bounds obtained depend on Izl and not z-

itself.

Now let e > 0. By assumption there exist numbers R > 0, p > 0 and a

positive integer TV,  so that in Case I,  lnxPn{<p, 0}inxX < p implies

'^«("l'iii*» °})' < ^ and lnxPn{<p, 0}lniX > p and n > TV, implies

IF^ÍtTjT^Í^, 0})l < ell7r1?n{0, O}!*,*. In Case II identical statements hold

with the norm in itxX replaced by the norm in tt,^. From (3.3) it follows

that

m-l

(3.4) irfrypji-Twyp^Kt» z «(/ + ̂ 2)m-*-,z"(ftr„v>„z/i
*=0

holds in either the X or Xß norm. In either norm, we have shown the existence
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of a constant y so that 117 + tnA2 II < 1 + tny, i.e.

y = max(/ + J4, (1 + /2X1 + t0)).

Thus using (3.4) we have

lTnx(by?nZj-Tn2(bynZjl< tHfâ (1 + tnyT-k-x\Z*(ktny?nzA)\ .

Since Zn(ktn)PnZj = {0, FJjt^T^ktJP^j)}, it follows that for all n > Nx, in

Case I

(3.5a) IIT^py?nZj - T%by?„zf lx < beyb max(R, eßj)

and in Case II

(3.5b) I Wy,*/ - n(by?nZj\\Xii < Ae?6 max(F, ̂ ).

Now we have shown 0;. < Cj lzA\x for some constant Cj and ßjifl <c2llz/.llx

for some constant c2. Combining this with (3.5) we have for n > A^j, in Case I

(3.6a) IITftby?^ - TRby?^ Wx < be^ max(F, ecx h¡ \\x)

and in Case II

(3.6b) IITRbyPj, - T*Hby?nz,lXß < be"> max(R, ec2 Im,lXß).

Now returning to (3.2), we have that it may be written as

(3-7) zn+Snz„=y„

where Wy„^x < c3. Sn is a completely continuous operator in X in Case I and

in Xy in Case II for each n, because both T"(b) Pn and T"(b)Pn are Lipschitz

continuous mappings into a finite dimensional subspace, Xn, of the appropriate

space and so have finite dimensional range. Now use inequality (3.6) to deduce

that for any 0 < e < 1, there exist positive numbers p, R, and A^ such that

llzll > p implies ILS^zll < ellzll and llzll < p implies IIS^zll <F and these bounds

hold uniformly for n>Nx.  It then follows from the fixed point theorem of

Granas [7] that (3.7) is solvable for each n> Nx. Moreover, these solutions

z„ satisfy either llz„ II < p or then from (3.7) we have llz„ II < c/(l - e). Thus

the solutions {z„} remain uniformly bounded in X or X , depending on the

case being considered.

We next show that some subsequence {z„.} of {z„} is convergent to say

z EX(Xß) and z is a solution to (2.1). Define

^n=N(T^(b)Pnzn-T"2(b)Pnzn).

From Lemma 2.8, we have that the 0„'s lie in a pre-compact set and so have a

convergent subsequence (which we call { 0„ }) satisfying 0n —► 0 in X (X ).
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Now since

(M + NTn2(b)Pn)-x -(M + NT2(b)Tx

= (M + NTn2(b)PnTx(NT2(b) - NTn2(b)Pn)(M + NT2(b))'x,

we may write that

l(M + NTÏ(b)P„rx *n-(M + NT2(b)Txî>l

(3.8) < ll(M + NT!¡(b)Pn)-x II • IIí - \pn I

+ i(M + NT^(b)P„)-xt - »TV» • i(T2(b)~T^(b)Pn)(M + NT2(b))-xii.

The first term on the right in (3.8) goes to zero since \pn —*■$ in norm.

T2(b)Pn converges pointwise on X (Xß) to T2(b) since this convergence is simply

the convergence of Euler's method for an ordinary differential equation. This

convergence will then be uniform on compact sets and so convergence of

HT2(b) - T%(b)PnXM + NT2(b)Tx$i to zero follows.

Now by a similar analysis, (M + NT2(b)Pn)~xPn$ converges to

(M + NT2(b))~x #. Then from (3.2), it follows that {z„ } itself is convergent,

say to 2. It thus follows again as above and using the fact that T"(b)P„ con-

verges pointwise to Tx(b) [6] that

z + (M + NT2(b)TlN(Tx(b)z - T2(b)z) = (M + NT2(b)Txz,

i.e., z solves the boundary value problem (2.1). This completes the proof.

Remarks.   We note again that Theorem 3.2 is an extension of a result

[7, Theorem 3.1] obtained by Waltman and Wong in two directions. First, we

have considered L2 initial functions where these results applied only to the con-

tinuous case, and second, we have given a constructive proof that leads to a fi-

nite difference method. It is possible to use the analysis given here to establish

similar numerical results for the C[-r, 0] case boundary value problems studied

in [7]. Indeed, convergence can be obtained for a simpler Pn given in Webb [8].

We omit the details and statements of theorems as they are analogous to results

given here.

4. An application. Consider the equation

(4.1) x = Ax(t) + f°x g(x(t + s))ds,     0 < r < 2,

where x: [-1,2] —*■ 7?2, x = (XjX2)r, A is a two-by-two constant matrix, and

g: L2[-l, 0] —*Z,2[-1, 0] is measurable, bounded and Lipschitz continuous,

and subject to the boundary conditions
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(4.2)
x(t) = 0(f) = (0!02)r,      f £ [-1, 0], a.e.,

x,(0) = 0,   x2(2) = 0,

where 0 £ T,2 [-1, 0]. The equation M{ 0, A} + NT2(b){0, A} = { 0, *} in this

example becomes x = Ax, 0 < f < 2, with

where A = (hxh2)T, k = (kxk2)T, 0 = (0102)T, (e2Ah)2   denotes the second

component of e2Ah and the elements indicated by " • " play no expUcit role.

We assume e2A = (A/y) and A22 ¥= 0. Then these equations haver the unique

solution 0j = 0j, 02 = 02, Aj = kx and A2 solves (e2Ah)2 = k2 uniquely.

Thus (M + NT2(2))~l exists and is everywhere defined and the solution formula

shows (M + AT2(2))

The equation

,-i is bounded in either X or X,"•

(4.4) M{ <pn, hn } + NTn2(2)Pn{0„, A„ } = Pn{ 0. k}

submits to a similar analysis. The numerical method (see §3) may be written as

x¡ = x¡_x + tnAx¡_j where x0 = An and x¡ is taken to approximate x at it„, tn

= 1/n. Thus x¡ = (7 + tnAjhn, and (4.4) becomes 0„ = P„0, (A„), = *,, and

(A„)2 must be such that

((I + tnA)2"h)2(4.5) k2.

Since (7 + A/n)2n approaches e2A elementwise as n —► °° and b22i= 0,equation

(4.5) uniquely defines A2 for all n large and so (M + NT2(2y?n)~l exists and is

everywhere defined.    The solution formula enables us to deduce that

{(M + NT^(2y?n)~1} are uniformly bounded in norm.

We thus may apply Theorem 3.2 with Fn = /?,£(•) and deduce the ex-

istence of solutions to equations (4.1)-(4.2). Since second order problems can

be written as first order vector systems in the usual way with A = (q 0), the re-

sults of this example extend in one direction results of deNevers and Schmitt [1].

Here we have more general, but autonomous, functional on the right-hand side

and allow L2 initial functions.

Finally, in this example, (4.4) gives an implementable numerical method.

Let f„ = 1/n and z, = t„i for i =-n,-n + I, ... ,0,1,2, ... ,2n.   Equation
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(4.4) can then be written as follows where x¡ is taken to approximate x at z, and

F/=tF=£xg(.):

(4.6) *'~*/~1 = Ax, + J_° g(Pnx)ds,      / = 1,. .. , 2n,

where Pnx is the piecewise constant function defined on [z¡_n_x, z¡_x) with

value at zt_¡ of xH, xs = (F„0Xz,) ^or zs ^ u>tne ^irst component of x0 is zero

and the second component of x2n is zero. This leads to 4n scalar equations in

An unknowns. One could also implement this as a shooting method by doing a

search on x2(0) and solving (4.6) as an initial value problem to see if the com-

puted x2(2) = 0.
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