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Abstract. We study flat families Z/T, together with a section a: T -» Z

such that the normal cone to the image of a in Z is flat over T. Such a family

is called a "normally flat deformation (along a)"; it corresponds intuitively

to a deformation of a singularity which preserves the Hilbert-Samuel

function. We construct the versal normally flat deformation of an isolated

singularity (X,x) in terms of the flat strata of the relative jets of the "usual"

versal deformation of X. We give explicit criteria, in terms of equations, for

a flat family to be normally flat along a given section. These criteria are

applied to demonstrate the smoothness of normally flat deformation theory-

and of the canonical map from it to the cone deformation theory of the

tangent cone-in the case of strict complete intersections. Finally we study

the tangent space to the normally flat deformation theory, expressing it as the

sum of two spaces: The first is a piece of a certain filtration of the tangent

space to the usual deformation theory of X; the second is the tangent space

to the special fibre of the canonical map N -* S, where N (resp. S) is the

parameter space for the versal normally flat deformation of (X,x) (resp. for

the versal deformation of X). We discuss the relation of this second space to

infinitesimal properties of sections.

Introduction. A basic numerical invariant of a singularity is its Hilbert-

Samuel function (see (1.2.1) for a definition): equivalent to the multiplicity in

the case of a hypersurface (but not otherwise), it provides one important index

for the progress of desingularization procedures. Moreover it gives a good

stratification of singular loci (on excellent schemes [6]); these strata should be

strictly coarser than equisingular strata. Now if one thinks of a Hilbert-Samuel

stratum T in the singular locus of some variety Z as the parameter space for

a family of suitable transversal sections to T in Z, one comes to the idea of a

normally flat deformation. Thus, intuitively, a normally flat deformation of a

singularity is one which carries along the singular point in such a way that the

Hilbert-Samuel function is preserved; if one weakens this to require only that

the first j values are preserved, one obtains the concept of a normally flat

deformation of order j.

In attempting to understand this as an infinitesimal deformation theory-
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following the approach of Schlessinger [4]-one is led to a formulation in which

the basic object is: a (flat) family Z -» T (i.e. an "ordinary" deformation)

together with a section a: T -* Z such that the normal cone to the image of a

in Z is flat over T. From this point of view it is seen immediately that the

normally flat deformation theory of a singularity (X, x) is the right one to map

functorially into the deformation theory of (i) the tangent cone to X at x and

(ii) the blowing up of X at x. The normally flat deformations of order j

correspond to families with sections whose normal cone is flat through degree

j; equivalently this can be viewed as a deformation of X which induces a

normally flat deformation of the/th infinitesimal neighborhood of x in X.

Thus, given (X,x) we define the functor % (resp. %ß of normally flat

deformations (resp. normally flat deformations of order j) of X at x; it is not

hard to see that % and 9t • coincide for j sufficiently large. These assign to a

scheme T a set of pairs (Z, a) as above, modulo T-isomorphism. If we restrict

ourselves to artin schemes T, these functors have "prorepresentable hulls" Nj

in the sense of [4] : If 36/5 is the versal deformation of X (so that 5 is the space

of "formal moduli"), N¡ embeds canonically as a subscheme of ¿6 (not of 5);

in fact the N¡ are the intersections of the flat strata (or more precisely, their

components through the point x in the special fibre of 36) of the sheaves of

"principal parts of order «" Rys for n < j. The versal normally flat deforma-

tion of order j is then

Nj xs X

Pri

with versal section (1^.,/), where /: N¡ ̂ > 36 is the embedding. This is exposed

in §1. We note that Lejeune and Teissier [7], [9] have observed that relative

Hilbert-Samuel strata of a morphism may be defined, and may be used in the

case of 36/S to give a versal equimultiple family in a suitable sense.

Now in order to progress beyong the "abstract" existence theorems of §1,

the first basic problem is to give explicit conditions for a deformation of a

fixed singularity to be normally flat of order y along a given section. In general,

if T «^ Z is a subscheme, Hironaka [8] gives necessary and sufficient condi-

tions for the normal cone to T in Z to be flat over T at a point-provided T is

nonsingular there; in fact the terminology "normal flatness of Z along T at t"

was coined by him to describe that situation. The condition is on the ideal

defining Z locally at t in some nonsingular ambient space. If we drop the

requirement that T be nonsingular, but instead assume that T is the image of

a section a of a morphism Z -* T (as in our situation), then essentially the

same idea works for the normal flatness of a (see (2.4)): the condition is now
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on the ideal of Z viewed as embedded locally at / in a neighborhood of the 0-

section of ArT for suitable r (we may assume a is the 0-section). Unfortunately,

(2.4) does not explicitly involve the ideal of the original singularity x E X

^> Ark (i.e. the special fibre of Z over 7) so it is not by itself suited to our

purpose. Without going into great detail here, suffice it to say that the missing

ingredients come out of the flatness of Z over T (not used for (2.4)), albeit in

a surprisingly nontrivial way. The basic fact is that the same conditions which

insure that a "standard base" (2.2) of the original ideal of X in krk at x is stable

under the deformation, also insure that (2.4) is satisfied. Thus everything

works out in the end: we finally get the conditions (2.13)—(2.14) for the normal

flatness of a deformation which seem quite natural, and which provide the

technical foundation for everything else. We note that one reason for the

difficulty of this analysis is undoubtedly the fact that a standard base is highly

unstable in general, and must be carefully nurtured through every infinitesimal

stage if it is to survive (see (2.10), (2.12) and the subsequent examples).

Roughly speaking, we can distinguish two general directions along which

the theory can now develop. The first is essentially a study of the smoothness

properties of the functors 91-, or equivalently of the loci AL The "absolute"

form of this question is that of obstructions in the 91- themselves. The

question, however, has a relative form suggested by Hironaka, which may

admit a more comprehensive answer: Is the canonical morphism (denoted u)

from the normally flat deformations (i.e. the functor 91) to the cone

deformations which was mentioned above a smooth morphism? We first note that

the answer to this question is affirmative, and moreover the functors9ty are unob-

structed in the case when X is a strict complete intersection at x, i.e. when the tan-

gent cone to X at x is a complete intersection ((2.16)—(2.18)). These facts follow

easily from the criteria (2.13) and (2.14). In the case of hypersurfaces, using the

differential characterization of the N.- (see especially (1.5.3)), the smoothness can

be proved directly without substantial difficulty. For more general strict complete

intersections, however, this approach appears to be much too complicated; indeed,

going in the other direction, the smoothness of the AT- should be expected to give a

simplifying insight into the structure of certain differential loci-but we will not

pursue this here.

In §3 we work out one example(2)of a nonstrict complete intersection where

everything turns out to be smooth: the normally flat deformations, the cone

deformations, and the morphism u. However I see no reason to expect that the

91- are smooth even for general complete intersections which are not strict,

although I have no counterexample in hand. Moreover, the question of the

smoothness of u is completely open (except for the strict complete intersec-

tions as noted above), but here there seems to be a chance of an affirmative

(2)§4 does not depend on §3, so that §3 may be omitted in a first reading.



4 B. M. BENNETT

answer in general. In any case there is good evidence that a suitably

formulated obstruction theory for u, as well as for the functors 91- themselves,

can shed light on a variety of geometric problems, and moreover will be seen

to have considerable intrinsic interest. At the moment, for the purposes of this

paper, we will content ourselves with the few indications already mentioned.

Now the second general direction, in contrast to the first, shows all its major

features already in the case of hypersurfaces, i.e. it is not concerned with

problems stemming from the ideal theoretic complexity of the singularity. On

the contrary, the essential ideas are most visible in the strict complete

intersection case, because of the smoothness of the N in that case. We deal

here with those aspects of the deformation theory which can be understood in

terms of sections. It turns out that this point of view, if followed consistently

to its natural conclusions, gives an approach to the general problem of

stratification of moduli. The program which is suggested has yet to be carried

out in full; the first stages are found in §4 of this paper, and we now describe

the main ideas:

We consider the versal deformation ir. 36 -» 5 of the singularity X, x. The

first consequence of the inclusion of sections in the functors 91- was that the

parameter spaces Nj lie in 36-the "total space" of the versal family-rather than

in 5, the moduli space of X in the usual sense. The mapping Nj-* S induced

by m represents the "forgetful" morphism of functors from 91- to the

deformation functor of X; the morphism forgets the section. We will refer to

such a section in %j as a "y-section". Let 5,- denote the image of Nj in 5. Then

we have the following facts:

(i) Ay-section (or indeed any section at all) of 36 over 5, may not exist; here

is a situation where taking prorepresentable hulls of functors fails to commute

with taking the image of a morphism of functors.

(ii) Nj "acquires" singularities by it, i.e. Nj is "less singular" than 5.. We can

see this precisely in the strict complete intersection case in characteristic 0:(3)

then Nj is smooth, and is the normalization of 5-; this follows from the

smoothness together with the "completeness" of the modular family 36/S at

every "point" of 5 [14].

Now there is a precise relationship between (i) and (ii): Look at the tangent

spaces te^ of the functors %j, or, what amounts to the same thing, at the

Zariski tangent spaces TN of Nj at x, where x is viewed as a point in the

special fibre A" of 36 over 5. We prove in §4 that we have a vector space

decomposition TN, = Kj® 7jl where Kj is contained in the tangent space to

the fibre of 36/5 at x, i.e. in TXx, and TjX is contained in TSs where s is the

special point. Moreover, Kj can be interpreted as the space oîj-sections of the

trivial 1st order deformation of X, and Tl is the common part of the tangent

(3)In charp N, is a purely inseparable cover of the normalization [14].
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spaces of A^- and Sj. Thus (say, when Nj is smooth), Sj is singular "precisely" to

the extent to which X admits nontrivial j-sections of the trivial 1st order family]

We must resolve these singularities before we can actually realize the sections. The

reader will note the analogy here with the situation that arises in connection

with the "level surface" deformation/ = t of, say, a hypersurface/ = 0. Then,

as has been remarked for example in the context of monodromy questions, we

must pass to a ramified cover of k[[t]] in order to get a section. Actually, our

remarks above apply only toy > 0, for A^ is all of X.

We note that T} may be defined as they'th piece of Tx (the tangent space to

S at s, or equivalently to the deformation theory of X) with respect to a certain

filtration induced by the m-adic one (m = the maximal ideal of x in X) with

regard to a standard base for the ideal J embedding X locally at x in a

nonsingular ambient space (4.4); this all makes sense, because 7^ is a quo teint

of Home (J/J2,Q), where B = Bx x. The filtration in question is the dual of the

one that figures in our analysis in §2. As for K¡, in the sense of a subspace of

Tx x it may also be characterized as the tangent space to the subscheme of Tx x

which leaves theyth infinitesimal neighborhood of the vertex in Cx invariant

by translation; recall that Cx x is the tangent cone to X at x, with Cx x «-* TXx.

In particular, for y sufficiently large so that %¡ = 91, Kj is the "strict tangent

space" Tx : the largest linear subspace which splits off CXx. In conclusion, I want

to give one indication of how this set-up can be expected to give some insight

into stratification. We restrict ourselves now to the hypersurface case for

simplicity; in practice, any results here should go over at least to the general

strict complete intersections without substantial difficulty. We want to think of

Sj as a "higher discriminant locus" of it: X -* S; it consists of those points of

S whose fibre in X contains at least one point of multiplicity > j. We have

observed that the singularities of Sj, very nonisolated in general, are resolved

by normalization Nj. The singularity at the special point is measured up to first

order by Kjt since that is the tangent space to the special fibre of Sj in N¡.

Moreover, we can get our hands on the common tangent directions Tj to both

Sj and N. Now we can define a subvariety of Sj, denoted 5, which we call the

"/th transversal discriminantal singularity". Intuitively, B- contributes the singu-

larity to Sj, for its fibre in Nj is the same as that of Sj. The idea is to view Sj

itself as a family parametrized by another nonsingular subspace of itself which

is tangent to T}, and which we will also denote Tl for simplicity. The special

fibre of this family is B¡:

v—>s¡

p

{0} e  t}
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Now we want to consider the equisingular stratification of Bj\ Since Bj, like Sj,

should be resolved by normalization, there is no trouble making sense of such

a stratification; in our situation we call the strata "transversal strata". We stress

that we are talking here about an intrinsic stratification of B, which a priori

is unrelated to any stratification according to the fibres in 36. However, let us

denote by 36- a neighborhood of N in 77-_1(5y) C 36, which does not contain

any point of a fibre which is a singularity of multiplicity less than y (i.e. for
y" < j, £j D Nj> = N). In our algebraic setting, we could take 36 to be a

formal neighborhood. Then, conjecturally, 36- is locally trivial over each

transversal stratum. Note that one meaning of this conjecture is that the

"lattice of equisingular strata" of Bj is the same as the lattice of jump-

phenomena for singularities of multiplicity at least j near X, and that

36- Xs B- -^ Bj is the versal jump deformation for multiplicity at leasty.

We should remark here that recent work of Giraud [15], [16] shows that the

normally flat locus N ^> 36 has maximal contact with X (viewed as the special

fibre of 36 of 5) in that N contains the infinitely near Hilbert-Samuel stratum of

A" in a suitable sense (loc. cit.). In this regard one may ask for a deformation-

theoretic interpretation of the question of obtaining a sufficiently "effective"

maximal contact space, i.e. effective for general desingularization problems.

It is my great pleasure to acknowledge the support I received during various

stages of the preparation of this work, above all in the form of interest,

encouragement and concrete suggestions, on the part of H. Hironaka and M.

Schlessinger; I thank them heartily. My deep thanks also go to Isolde Field,

who typed the manuscript, and provided invaluable assistance in its prepara-

tion.

1. The versal normally flat families.

(1.0) Preliminaries on sections which are n-flat. Suppose we are given a

cartesian diagram of schemes

(1.0.1)

36 xs T=ZT
I
I

Pi

°\
\
\ \

Pi  □

f
T —-► 5

where a: T -> 36r is a section of px, i.e. px a — \T. Let Ia (or just / where there

is no danger of confusion) denote the ideal sheaf of 6S defining a. We denote

by Ta" (or just T") the nth infinitesimal neighborhood of a in 36r, i.e.

0^   = eïr//"+1. We then have embeddings /„: T" <^> 36r, on: T ^> Tn, with a
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T"a^-^XT

T

Now given X/S and an arbitrary morphism /: T -» 5, our immediate goal

is: For eacA integer n > 0, to find conditions on f such that there exists a section

o as above for which BT„ is flat over 0r. To do this, we use the "sheaf of principal

parts of order n of X over S", denoted P^s. With the notations of the

preceding paragraph, this is just T" in the special case where T = X, / = m,

and a is the diagonal(4). We assume that the morphism m is of finite type. Then

Rys is a coherent sheaf of 0^-algebras. Now we take ins flattening stratification

of X corresponding to J|/5. This is by definition a family {%ne}eez of locally

closed subschemes of X whose underlying point sets are pairwise disjoint and

cover X, and which has the property: Given any morphism g: T -* X, g* {R{/s)

is a rlat ©^module if and only if g factors through the natural map

IIe £„e -* X induced by the inclusions je : Xne «^ X. In fact the underlying

point set of X„e is

{x e X/dimk{x)(P$s ®Sl *(*)) = e),

and g factors through je if and only if g*(R{fS) is locally free of rank e. The

existence of flattening stratifications is proved in [2, Lecture 8].

Now suppose we have a diagram (1.0.1) with section o as above. Let

g = p2o. Then with notations as above, we have

(1.0.2) Lemma. g*(PI"s) = eT„.

Proof. g*(P¿"s) = a* (p* Pys) = o*(P£n ) since the formation of the

sheaf of principal parts commutes with base extension [1, 16.4.5]. Now we use

the following fact [1, 16.4.11]: If W-* U is a morphism with section a, then

a*(Hv/u) is isomorphic to 0^, viewed as 0^ algebra, where as usual U" denotes

the subscheme of W defined by the n + 1st power of the ideal of o, with the

structure of [/-scheme on U" given by composing the inclusion U" «=-» W with

the structure map W -» U. Thus in our case o* (^" ) is QT„. Q.E.D.

Hence 0r„ is locally free over BT of rank e if and only if g factors through

je: Xw °» X. Note that a is uniquely determined by g, in fact a = (\T,g): T

—►   1   Xp X   =   At,

Conversely, suppose/factors through je, i.e./ = irjj' for some S-morphism

f'-T^Ke-

(4)The reader is referred to [1, 16.3 ft".], for details on these P£
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y
f/ne

T--5

Let g =jef- Then (\T,g) defines an 5-morphism a: r-»36r, and since

pl a = lr, a is a section. Then as above, since g factors through je, g*(I$js)

= 8T„ is free of rank e.

The functoriality of the situation is seen as follows: Let f:T-*S and

suppose a is a section of pl : 36r -» T with 0r„ flat of rank e. Let h: 7" -* T be

a morphism. a induces a section a' oîp\ : 36r -» 7", namely o' = (lr,/J2a«).

T'—--► 7-l-y S

It is then easy to see that the flatness of 0r„ implies that of 6™ of the same

rank. In fact, if we let g = p2a and g' = p'2a', then as we have seen above the

flatness of 07„ (resp. 0r„) is equivalent to the factorization of g (resp. g')

through je. But since g' = gh if g factors through je so does g'.

We summarize:

(1.0.3) Proposition. Let n: 36 -> 5 ôc a morphism of finite type, and let n and

e be nonnegative integers. Let Fme denote the contravariant functor from 5-

schemes to sets defined by

Fme(T) = {a\o is a section ofpx : 36r -» T with B^nflat over 0r of rank e).

Then Fnne is represented by JLne (the rank e stratum in the flattening stratification

ofl£jS with inclusion je: 36ne -> 36) viewed as S-scheme via the composition irje; the

universal section is (lXn Je): £ne -* 3Lne Xs 36.

(1.0.4) Remark. Since any morphism T -*» 36„e gives T an 5-scheme

structure (after composition with ii), we may view Fme as defined on the

category of all schemes, with

F™e(T) = {(/'a)l/: T-* S and a a section of XT as above

where now XT denotes pullback over this/}.
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In this case as well, Fme is represented by Xne, as is easily checked. The

situation is of course the same if we are viewing the whole structure over some

base k: X„ e represents the functor of sections on the category of ¿-schemes.

We will use the terminology: If Z -» T is a morphism with section a, we will

say "a is «-flat" if T" is flat over T.

(1.0.5) Remark. Given Z -* T with section a defined by an ideal / C 0Z, a

is «-flat for all n < AT if and only if Gr" (0Z) is flat over 0r = 0Z// for n < N.

This is easy to check by induction on n, using the exact sequences 0 -» I"/I"+l

-> 0z//"+1 -* 0z//n -* 0.

(1.1) Normally flat deformations of order j. Let X be an algebraic ¿-scheme (¿

a field). Assume that either X is proper over k or that X is affine with only

isolated singularities. We recall the definition of the versal formal deformation

of X, whose existence is proved in [4]: There is a complete local ¿-algebra R

and a flat morphism m; X -* S — Spec (R)(5) with the properties:

(i) If sQ denotes the closed point of S the fibre X  is X.

(ii) If T is a local artin ¿-scheme and p: Z -» T is a flat ¿-morphism with

closed fibre X, then there is a ¿-morphism f:T-+S for which r Xs X = Xr

-*» Z as T-scheme, i.e. there is a commutative diagram

XT->Z

V
r

This may be expressed functorially as follows: Let Dx (or D when there is no

danger of confusion) be the contravariant functor from local artin ¿-schemes

to sets defined by

(a) D(T) = the set of T-isomorphism classes of flat ¿-morphisms p: Z -* T

with closed fibre X.

(b) T -> T induces D(T) -» D(T) by Z i-» Zr = F Xr Z. Then with the
terminology of [4], S is a "prorepresentable hull" of D. (S fails to prorepresent

D in the strict sense because the morphism / of (ii) above is in general not

unique.)

(1.1.1) Now let x be a ¿-rational point of X. For each integer/ > 0, we

define a contravariant functor 91, ̂  x (or just 91- when there is no danger of

confusion) from artin local ¿-scheme to sets by:

(a) 9L,(r) is the set of all pairs (Z, a) where Z E D(T) and a is a section of

Z -* T which meets the closed fibre in x and which is «-flat for all « < /.

(s)Strictly speaking, this formulation is valid only in the affine case. In the proper case, all we

can assume is that ï is a formal scheme and 5 = Spf (R).
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(b) T' -*» 7 induces %j(T) -> 91.(7") by assigning to a the section a'

= (\T,,a ° h) oîpx : Zr = T' XT Z -» 7'.
Note that in virtue of the remark (1.0.4) and (a) above, a pair (Z,a) is in

9ly(7) if and only if the normal cone to a in Z is flat over 7 through degree j.

(1.1.2) Terminology. A pair (Z,a) as in (a) above is called a "normally flat

deformation of order j of X at x"; we say that a is a "normally flat section of

order j" or a "j-section", or even that "Z is normally flat along a of order f\ (This

recalls the terminology of Hironaka who defined the normal flatness of Z

along Y to be the flatness (over Y) of the normal tone to Y in Z.) If 7 isy'-flat

for allj, it is simply called a "normally flat section", and the pair (Z,a) is then

a "normally flat deformation". The functor of normally flat deformations is

denoted %x x or just 9i- We will see below that 91 = 91- for y sufficiently large.

(1.1.3) Remark. Each functor %j admits a morphism Oj to the basic

deformation functor D of X; this morphism sends the pair (Z, a) to just Z, i.e.

it forgets the section. We will see shortly in (1.2) that the functors 91-^ admit

prorepresentable hulls N- which embed naturally in the total space 36 of the

versal deformation 36/5 of X:

It is then not hard to see that the maps it, : N -> 5 induced by it represent the

morphisms of functors a-. One of our goals will be to make a deeper study of

iTj, and to interpret the singularities of its image. Considerable progress can be

made in this direction when A is a "strict complete intersection" (cf. (2.15)),

for here the locus N is smooth (2.18), and moreover-in characteristic 0—is the

normalization of its image in 5 by it, [14].

(1.1.4) Example. The family of plane curve singularities

(1) v3 + x4 - txz = 0

over k[[t]] is normally flat along the 0-section x = v = 0; in fact the normal

cone to this section is given by the ideal generated by v3 + tx3 in &[[/]][*, v],

and is therefore flat over k[[t]]. By contrast, the family

(2) v3 + x4 - tx2 = 0

is only normally flat along x = y = 0 of order 1, since the cone is now given

by tx2, and is therefore not flat over k[[t]] in degree 2. We note however that

the family
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(3) y3 + X4 - t2X2 = 0

viewed now over ¿[[z]]/f3, is normally flat along the section y = 0, x

= (\/\ß)t. In fact, if we let z = x - (\/y/6)t, then in terms of the coordinates

y, z the family is,y + z + (4/\/S)iz3, and the section is y — z — 0. Thus the

cone is given by y3 + 4/yßtz*, which is of course flat over ¿[[i]]/f3. We

remark that the phenomenon of this last example (3), where we have a family

which is trivial up to some finite order, but which admits a nontrivial/-section,

is essentially the same as the phenomenon of singularities in the image of the

iTj (see the remark (1.1.2) above); these ideas will be exposed later, beginning

in §4.

(1.2) The versal family. We now construct the versal normally flat family of

order / for X at x. The basic components of the construction are the result

(1.0.3) on the representation of the functor of «-flat sections of a given

morphism, and the "ordinary" versal deformation X/5 of X. The upshot is that

the functor 9ly has a prorepresentable hull Nj which is naturally embedded in

X, and which may be thought of intuitively as follows: A^. is the "locus of

points" in X which, when viewed in their fibre over S, have a Hilbert-Samuel

function (see below) which agrees with that of X at x at the first/ integers. Of

course, this kind of formulation is not useful in the framework of infinitesimal

geometry which is convenient to deformation theory. This is why we rely on

the flatness of the normal cone to a section-rather than the constancy of the

Hilbert-Samuel function along the section-for our definitions. However in a

classical geometric context the two concepts are equivalent. We now make

things precise:

(1.2.1) Definition. The Hilbert-Samuel function HJQ of X at x is defined
as follows: If 0 = 0^   and m = m^ x, then

^A(")=deflength6(0/m"+I).

For simplicity we will denote HJpx = H. Then for every « we have the

subschemes X„ #(„) as in (1.0). Now since Px"s(x) = 0/m"+1 (this is the special

case T - {t} of Lemma (1.0.2)), we see that x is in XnW(„) for all «. It follows

from (1.0.4) that £„<H(n) represents the functor of sections of X/5 which are «-

flat and pass through x in the closed fibre. Now since X„ H/n\ is locally closed

in X for all «, the subscheme

(1.2.2) NJ =def nQ0*n,H(n) n Spec (0^)

is a nonempty closed subscheme of Spec (0^ x) for all/, and we get:

(1.2.3) A^- represents the functor of sections of X/5 which are «-flat for all

« < /-i.e. normally flat of order /-and which pass through x in the closed
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fibre, if we restrict this functor to the category of local Ar-schemes. The

universal section is (lN.,ij): Nj -* Nj xs 36, where ij is the inclusion. Note that

Nj C Nj+l, so that the Nj stabilize for some y by the noetherian property. Thus

^=def r\Nj= n36„>//(n)nSpec(0ïiX)

is actually a finite intersection, and thus it is easy to see that: Over the category

of local k-schemes N represents the functor of normally flat sections of '36/'5 which

pass through x; the universal section is (lN,i): N Xs 36.

(1.2.4) Theorem. A^ is a hull o/9ly( ); the versal normally flat deformation of

order j is

NjXsX-ZL>Nj

and the versal j-section is (\N.,ij)'- Nj^*Nxs3i, where ij is the inclusion.

N = DjNj is a hull of the functor 91 in the same sense; the intersection is actually

finite.

Proof. We just put the components together: We know that 5 is a

prorepresentable hull of the ordinary deformation functor D of X, and 36/5 is

the versal formal deformation. This means that if hs denotes the restriction to

the category G = ((artin local ^-schemes)) of the functor of points of 5, then

the morphism hs-¿* D (given by pulling back 36) is smooth, and is an

isomorphism on tangent spaces. It follows immediately from the defintion of

9ly ((l.l.l)(a)) that if F denotes the restriction to ßof the functor ofy-sections

of 36/5 through x, then / induces a morphism F -* %j which is also smooth

and identifies tangent spaces. Finally, if hN is viewed as defined on G (1.2.3)

implies that hN and F are isomorphic; and it is clear that the resulting smooth

morphism hN = F-* 9ly identifies the universal y-section of 36/5 with a versal

normally flat deformation of order y of 36.

(1.2.5) Nj (and hence N) is finite over 5. In fact, since we are starting with an

isolated singularity, A^- is quasi-finite over 5, hence finite since 5 is the

spectrum of a complete local ring.

We remark that in any characteristic, we can start with 36 = Spec (0Ï)JC)

(rather than 36) over 5; this amounts to considering the corresponding versal-

family of formal or "algebroid" singularities. Then if we define Ay for 36 as we

did N for 36, the A^ are finite over 5. In fact, Ñ¡ is simply the spectrum of the

completion of the local ring of N at x.

(1.3) Our basic idea up to now has been that the flat strata of the i|% both

(6 ) Here we mean that if hN denotes the restriction of the functor of points of Nj to the category

of artin local ¿-schemes, there is a smooth morphism hN -* 9Ly which is an isomorphism on

tangent spaces.
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represent the functor of «-flat sections, and give the constant loci for the

"relative Hilbert-Samuel function", i.e. the Hilbert-Samuel function of the

fibres. Thus, intuitively it is equivalent to say that a section is normally flat of

order /, and that the first / values of the relative Hilbert-Samuel function

remain constant along the section (this last condition, of course, has nontrivial

content only when dim (5) > 0, whereas the first makes sense infinitesimally).

Now this "equivalence" has been justified by the fact that at rational points of

the fibres, i.e. at points y E X for which n(y) = k(s) where i = ir(y) and k

denotes residue field, we have a canonical identification:

(*) H)&)mhJ*Ü'

It is natural to ask, however, what is the relationship between the P" and

the Hilbert-Samuel function at arbitrary (nonrational) points of the fibres. In

this regard, it is easy to see that (*) still holds when n(y) is separable (algebraic)

over k(j): The problem is just on the fibre, so we may assume S = Spec (n(s)).

Then we reduce to the rational case after a base extension to get X'

= X x / ) n(y); the point is that the base extension commutes with the P"'s,

and is étale because of the separability, so the truncated local rings at y in X

and at any /c(.y)-rational point/ in X lying over y are identified. Note that the

coherence of the J|"5 (when X/5 is locally of finite type) together with (*), give

a proof of the upper semicontinuity of the relative Hilbert-Samuel function

when S is of residue characteristic 0 at all points.

Now in the inseparable case of k(.v)/k(í), (*) is false-in fact any inseparable

field extension L/K gives a counterexample: P¡jK is generated as L-algebra by

the differentials of elements in a «-base for L over K. Similarly, upper

semicontinuity of the relative H-S function fails quite decisively in the

presence of inseparablity(7). As a first example, let K be a field of characteristic

p with a E K- Kp. Let

S = a]¿ - Sr>scK[X\      X = Speci^A-, Y]/(YP - a)),

and 7t: X -» S the projection on the Z-coordinate. Let s E S. If k(s) contains

{ß the fibre X; is isomorphic to Spec (k(s)[Z]/Zp), where Z — Y - Kß ; here

the fibre is singular. However, if Kß E k(j), then x~s is the spectrum of the field

k(í)(^/S). Since there are infinitely many s G S with Kfâ E k(s), the locus of

points in X where the relative H-S function is larger than the constant function

1 is not a closed set.

Note that in this example, the uppersemicontinuity fails "globally", but

"local" uppersemicontinuity, i.e. nondecreasing under specialization, is still valid

(7 ) This is in contrast with the behavior of the absolute H-S function on scheme X, which is always
upper-semicontinuous whenever X is excellent, cf. [6].
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(the generic fibre of 36/5 is a field). We now give an example, however, to show

that local uppersemicontinuity can also fail: Again, let a G K — Kp, and

consider the irreducible plane curve

C = SpecK[X, Y]/(Yp - aXp).

Let if be the origin, and let P2 = (1,^/a), i.e. the point defined by the ideal

(x - \,yp — a), if is a A'-rational point at which C is singular. The residue field

at ¡2 is Atfya), and C is nonsingular at ^ (although C fails to be "smooth"

anywhere). Let 0, denote the local ring of C at P¡, i = 1,2. We get our example

by letting 36 = Spec (0¡ <8>K 02), 5 = Spec (0,), and it = pr, . In fact, since

the closed point of 5 is Ä'-rational, the closed fibre looks like Spec (02) which

is a regular scheme of dimension 1; its Hilbert-Samuel function is therefore

H(n) = n + 1 for all n. On the other hand, the generic point of 5 is just the

function field F of C, which contains Kja. Thus the generic fibre of 36 over 5

is the local ring at (1, {ß) of the/>fold line (Y - {/aY = 0 in A^.. Since this

is not reduced, it is singular, and its H-S function is therefore larger than that

of the closed fibre.
There are many intriguing aspects of this situation in characteristic p which

would take us too far afield to treat here in detail. We mention, however, one

striking fact: It can be shown that the uppersemicontinuity of the relative H-

S function for a morphism 36 -> 5 when 5 is local can fail only if 5 is singular]

This can be regarded as evidence of the "universality" of the above example

in a suitable sense. A discussion of these matters will be published elsewhere.

We finally note that Lejeune-Jalabert and Teissier [7] prove uppersemicontin-

uity and in fact the existence of stratifications for a certain modified relative

H-S function which takes the inseparability into account (i.e. it behaves like

the rank of the P"'s), and which agrees with the usual one in characteristic 0.

(1.4) Suppose we have a family Z/7 with a section a. Let / denote the ideal

of a in 0Z. We have remarked earlier (1.0.5) that a is ay-section if and only if

Gr" (0Z) is flat over 0r = 0z/7 for « < y. If moreover Z is flat over 7, it is

easy to see that the flatness of these Gr"'s is in turn equivalent to I" being flat

over 0r for n < j + 1. Thus, in case Z is flat over 7, associated to ay-section

a are the two flat graded 0ralgebras (Bn<jIn/In+l and ©„<y+i/", as well as

the sequence of flat 0ralgebras {0z/7"}n<y+i. Conversely, the flatness of any

one of these three implies that of the other two, i.e., that a is ay-section. Of

course, if o is normally flat, i.e. if it is ay-section for ally, then the full algebras

Gr7 (0Z) = ®nIn/In+x and Pow/ (0Z) = ©„/" are flat over 0r.

(1.4.1) Lemma. Let B be aflat A-algebra, I an ideal of B. Suppose Gr, (B) is

flat over A through degree j (equivalently, Pow/ (B) is flat through degree j + 1).

Let A' be an arbitrary A-algebra, B' = B ®A A', I' = IB'. Then

(i) Gr;, (B') = Gr7 (B) ®A A' through degree j,
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(ii) Powr (B') = Pow7 (B)®AA' through degree j + 1

(and consequently these algebras are flat over A' in the degrees indicated).

Proof. First note that we always have B/I" ®AA' = B'/I'n (with no

hypothesis of flatness). Now as we have observed above, the flatness of

Gtj (B) through degree/ is equivalent to the flatness of the B/I", « < / + 1.

Thus

0-► /" ®A A'->B ®A A'-y B/I" ®A A'-► 0

II II
b' B'/r

is exact for « </ + 1, since Tor^ (B/I",A') maps onto the kernel. Hence

I'" = /" ®A A' for « < / + 1, which is (ii). For (i), observe that the sequence

0-H"/I" + 1 ®A A'->B/In + 1 ®A A'-► B/I" ®A A'-► 0

II II
B'/I'n + 1 B'/I'"

is exact for the same reason as above.

(1.4.2) Proposition. Suppose (Z/T,a) is a normally flat deformation of X at

x. Then

(i) C0/z (the normal cone to o in Z) is a flat cone deformation of Cx x (the

tangent cone to X at x) over T.

(ii) Let X' denote the blowing up of x in X, and let Z' denote the blowing up of

o in Z. Then Z' is aflat deformation of X' over T.

Proof. By definition, if / is the ideal of o in Z, C0/z

= Spec (Gtj (0z)) and Z' = Proj (Pow7 (0Z)). Because o is a normally flat

section, these are both flat over T, so the assertions (i) and (ii) correspond to

(i) and (ii) of Lemma (1.4.1) (letting A = 0r, A' = A/N, N = the maximal

ideal of the special point of T).

(1.4.3) Thanks to this proposition, we get morphisms of functors:

>Dncx>x)

where QCxx denotes the functor of cone deformations of the tangent cone

CXx, Dx. and Dp(cXx) denote the ordinary deformation functors of A" (the

blowing up of x in X) and P(CXx) (the projectivized tangent cone); u (resp. v)

associates to (Z/T, o) the normal cone to a in Z (resp. the blowing up of a in
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Z), viewed again over 7. Finally, P just replaces a family of cones by the

corresponding family of projective varieties. Note that the image of v actually

lands in the subfunctor of Dx, containing those deformations which carry along

the exceptional fibre F of X'. Of course, F= P(CXx), and the induced

deformation is given by the composition P ° u.

(1.4.4) Some remarks on obstructions. One very basic question is whether the

morphism u of (1.4.3) is smooth in general, i.e. for arbitrary singularities. This

amounts to the following: Suppose we are given a normally flat deformation

(Z/T,a), together with its associated cone deformation u(Z,a) = G over 7.

Suppose moreover that we have an embedding 7^7' and a cone deforma-

tion G'/T inducing G/T (we suppose 7, 7' are artin local schemes). The

smoothness means that for any such situation there exists a normally flat

family (Z',a') over 7', with u(Z',o') — G\ and which induces (Z,a) over 7

by restriction:

(7' ¿\ ■ restriction to 7    ,_    .
V. ,o) I—-► (Z, a)

I"      . I"
restnntinn tn T +

G'     y
restriction to 7

7'

In §2, (2.16) we show that this question has an affirmative answer when A is a

"strict complete intersection" at x. However at this moment the answer is

unknown for any other class of singularities. We note that for the strict

complete intersections, all the functors 91- are smooth (2.17), which is a priori

a separate question from the smoothness of u for general singularities.

In this paper we will not attempt to develop any systematic treatment of

obstructions, although in §3 we work out an example-not a strict complete

intersection-where all obstructions vanish, including the "relative" obstruction

to the smoothness of u. We would also like to indicate here how-in contrast

to the unsettled situation regarding u-one can get examples of ordinary

obstructions, i.e. cases where the functor 91^ x (or equivalently the space Nx x)

is not smooth. We will require

a projective variety V/k, say nonsingular, with an obstructed

deformation as an abstract variety; in other words a flat family

*Y/T (7 an artin scheme) with closed fibre V, which does not
(*)

extend to a flat family over some 7' <^> T. Moreover, we suppose

that this obstructed family *Y/Tis projective, so that T0-» P/\

some N.
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For example, we can let V be as in Mumford's paper [3]: He finds a curve

C e-* P3 with an obstructed embedded deformation theory (i.e. a singular

Hubert scheme) and blows it up in P3 to get V (observing that the deformation

theory of V as abstract variety is the same as the embedded deformation

theory of C in P3).

In any case, given 'Y/Tas in (*), we may assume for the embedding T^ Pj-

that for v > 1 all the higher cohomology of the sheaves B^y) vanishes (by

composing T^ P^ if necessary with a suitably high "n-tuple" embedding

ptf _» ptf'). Then the family of cones

G = Specf5ä°(^»)))

is flat over T. The closed fibre of G over T is of course the cone over the

embedding V ̂  PkN. Let X be this cone, x the vertex (since V is nonsingular,

x is an isolated singularity). Now G is certainly a normally flat deformation of
X, jc-for any cone deformation is its own normal cone to the 0-section.

Moreover, if G could be extended to a normally flat deformation (Z',o') over

T', the normal cone to a' gives a cone deformation G' which extends G. Hence

we get an extension of Tto 7" by taking the family of projective varieties over

T' corresponding to G'. This contradiction shows that G/T must be obstructed

as a normally flat deformation.

(1.5) Suppose X is the hypersurface/ = 0 in Ak = Spec (k[zx,.. .,zr]), with

only isolated singularities, one of which is at the origin x. In this case, as far

as the constructions of this section are concerned, it is easy to see things very

explicitly. As is well known, the versal deformation X/S of X may be described

as follows: Let g¡, i — 1, ..., m be a set of representatives in k[zx,... ,zr] of

a ¿-basis of k[zx,... ,zr]/(f,3//3z,,...,3//3zr). Let R be a formal power-

series ring over ¿ in variables tx, ..., tm. Then S = Spec (R), and X is defined

in Ars by the equation

m

(1.5.1) F{z,t)=f+ 2 ',g, = 0.
/=l

Now we want to compute Rßs. For this, we first note

(1.5.2) P¿sls = BKrs[dzx.dzr\/(dzx,... ,dzrr\

a truncated polynomial algebra over 0A, in the symbols dzj. In this algebra we

denote by dF the formal Taylor expansion through degree « of F with respect

to the variables z,:

(1.5.3) ¿F-«¿„V'"'-
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(Here       ¡i = Qiv ... ,/tr), |/i| = p.{ + • • • + p.r, p.] = /t, ! •. . p,!, &'*  = <fep
• • ■ <fe*, and i£ = a^F/azf • • • 3z?r.) Then we may describe:

(1.5.4)       %}s - P¿JidF,F) = %[*„... ,*,]/(áF) + (<¿r)"+1

where ¿Fis the image of dFin 0x[dz1;...,<&,]; the reader will find these basic

facts about the P" proved in [1, §16].

Suppose we are given y E. Ars with it(y) = s G 5. If k( v) = k(s), we see

from the definition (1.5.3) that dF, evaluated at y, is just the Taylor expansion

through degree n around the point v of the function induced by Fon the fibre

A^\; in this expression the dz's play the role of the parameters. Combining

this with (1.5.4), the isomorphism P{/S(y) = ©W^s*1 ¡s evident. Now the

Hilbert-Samuel function at a point of a hypersurface / = 0 is completely

determined by the multiplicity at that point, i.e. by the order of/there. Thus

in view of what we have observed above, the rank of F^is at a point v depends-

in our case at hand-only on the smallest integer v such that F(v) # 0 for

some n with |/¿| = v. Thus, as we expect:

(1.5.5) In the hypersurface case, with notation as above, N is the component

through x of the subscheme of3L defined by the ideal generated by the F, |/x| < y.

(1.5.6) Remark. For a general singularity X, x, the locus Nx consists of those

points of 36 at which the Hilbert-Samuel function of the fibre, evaluated at 1, is

the same as that of X at x. This means simply that the embedding dimension,

i.e. the rank of 91L/91L , remains constant. However, in the case of a

hypersurface X:f = 0 in Ark, the embedding dimension at a point is r if and

only if X is singular at the point (otherwise the dimension is r — 1). Thus here

A, may be described as the "critical locus" of the mapping 36 -* 5, i.e. those

points at which the fibre is singular. In fact, it is easy to see by induction that

(1.5.7) When A is a hypersurface, and y is < the multiplicity of X at x, Nj is

the "critical Jacobian locus" of the mapping Ay_j -* 5; this is by definition the

locus where the dimension of the kernel of the associated map on tangent

spaces is greatest or, equivalently, where the dimension of the Zariski tangent

space to the fibre is greatest(8).

Whether (1.5.7) holds for arbitrary singularities seems to be an open

question.

2. The equations defining normally flat deformations. In this section we use

the following notation:

(8) In the terminology of the Thom-Boardman theory of singularities of differentiable maps,

(1.5.6) says that (in the hypersurface case): if kx,..., ks is the "symbol" of w: ï -* S at x, then

fory < v (the multiplicity of X at x), Nj is the Boardman variety 2*.•*> (cf. [11]).
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A is a local ring,   N = max (A),   k = A/N,

B = A[[xx,...,xn]],   M = max(ß),

/ C (x)B is an ideal of B,

0 = B/J,   m = max(e).

Geometrically, this corresponds to a family of singularities over Spec (/I),

with section x = 0. We want to find necessary and sufficient conditions for

this section to be normally flat, i.e. so that Gr^ (0) is flat over A. This analysis

has two stages. In the first-with no assumption of flatness on 0 itself-we find

that the flatness of the Gr is equivalent to the existence of an M-standard base

{/},- for J such that vM{f¡) = Uíx)(f¡) for each i (Theorem (2.4); see below for

definitions). The techniques here are analogous to those used by Hironaka [8]

for a slightly different situation. From the perspective of deformation theory,

however, the point is not to recognize a standard base of an ideal given

abstractly over A. Thus, in the second stage, we assume that 0 is a flat

deformation over A of k[[xx,... ,xn]]/J, where we are given an (x)-standard

base {/},. of J. We show that if J = {/},.£ with / (modN) = /• and v(x){f¡)

= ¡>íx\{f¡), then the/ are necessarily an A/-standard base of J ((2.10)); we can

then invoke (2.4) to get the normal flatness. We then obtain the criterion

(2.13), which is most germane to the study of the normally flat deformations

of a given singularity.

For example, it follows easily from this that the normally flat deformations

of a strict complete intersection (i.e. a singularity whose tangent cone is a

complete intersection) are unobstructed, and that the morphism u of (1.4.3) is

smooth in this case ((2.16), (2.17)).

To begin our study, we first note that the inclusions N^ffl C Af"1"" induce

a map

/8:GrAf(Grw(0))->GrB(e).

(2.1) ß is an isomorphism.

Proof. The surjectivity of ß follows from the commutativity of the diagram

GiN(GHx)(B))-^G:M(B)

GxN(GHx)(e))-^Gxm(e)

1 1
0 0

and the fact that 5 is an isomorphism (both Gr^ (Gr(x) (B)) and GrM (B) are

polynomial rings over Gr^ (A)'mxx, ..., xn). Now suppose that A is an artin

(2.0)
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local ring, and that J contains some power of the ideal (x). Then 0 is an A-

module of finite length, which is the same as the length of both Grm (0) and

Gtn (Gr^ (0)). Thus ß, being surjective, is also injective, so that ß is an

isomorphism in this case.

Now, still assuming that A is artin, let 0 be arbitrary, and let 0 denote

Q/(x)p. Then we have a commutative diagram

CU) Grjv(Gr(:c)0p)-^Grm(0p)

0 0

where ß is an isomorphism by the remarks above. Since Gt,x\ (0 ) is simply

the truncation of the graded algebra Gr^ (0) at level p, given any element

£ E Gr^ (0) there is a p such that 8p(£) ¥* 0. The injectivity of ß follows

therefore from that of ß„.

Finally, we must eliminate the artin hypothesis on A. For this, let A be

arbitrary and now use the notation 0 to denote 6/Np6. With this new

interpretation the diagram (2.1.1) is still valid, and the same argument as

above works to give the result once we show that given £ # 0

G Gtn (Gr^) (0)), there is a p for which 8 (£) is not zero. Suppose that £ is

homogeneous, of bidegree p., v, so that £ is the initial form of an element / in

N^xfe. Then oß) = 0 if and only if / E iV+1(x)'0 + A'i(x)"+10 + Np6.

Now since 0 is noetherian,

n(A"+1 we + N^xf^e + Npe) = a"+1w"0 + a"W+10.
p

Thus if 5p(|) = 0 for all/?, £ = 0, a contadiction. This concludes the proof

of (2.1).

(2.2) Definition. Let <3lbe a ring, I andJ ideals. An I-standard base of J is a

sequence of elements {f^ of J whose I-adic initial forms In; (f¡) generate the

initial ideal Gr, (/,<&) of J in Gr; (a).

We remark that a generating set for J is not necessarily a standard base. For

example, if SI = &[[.*, v,z,w]], / = max(ÇR), the elements

/l = xy2 + z4,   f2 = x2y + w4
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are not an /-standard base for the ideal J which they generate. In fact, if

h = xfx- yf2 E /, In7 («) = xz4 - yw4, but

In; («) € (In7 (/,), In, (/2)) Gr, {<%) = (xy2,x2y)k[x,y,z,w\.

Note that in this example, / is a complete intersection, but Gr7 (J, SL) is not;

(/p/2,/1) is a minimal standard base.

Conversely, however, it is not hard to show:

(2.3) If <&, is a local ring, then any I-standard base of J generates J (cf. [8,

Chapter II, Lemma 6]).

Recall that if 91 is a ring, I an ideal,/ E % v¡(f) denotes the highest power

of/containing/.

(2.4) Theorem. With the notation of (2.0), Gr^) (0) is flat over A if and only

if there is an M-standard base {/•} of 3 with v^(f¡) = vM(f¡)for each i.

Proof. We consider the commutative diagram

0

1
GiM(J, B) ®A GrN(A)-*-► GrM(J, B)

i I
(2.4.1)     Gr(x)(B) ®A GrN(A)-1-► GrM(5)

1 „ 1
Gr(x)(ß) ®A GiN(A)-*-> GrNGHx}(6) -^Grm{B)

0 w0

obtained as follows: the vertical sequence on the left arises from applying

®a Gtn (a) t0 tne exact sequence 0 -* Gr(x) (/, B) -> Gr^j (B) -* Gt^ (0)

-» 0; the horizontal maps u, v, w are induced by the canonical homomor-

phisms Gr^ (B) -» Grw (B) and Gtn (A) -» GvM (B); a is canonical (and is

always surjective), and ß is the isomorphism of (2.1). We note that v is an

isomorphism, since B is just a formal power series ring in (x) over A.

By Grothendieck's local criterion of flatness, the flatness of Gr/^ (0) is

equivalent to the injectivity of a, hence to the injectivity of w. By the snake

lemma this is equivalent to the surjectivity of u. Now the image of u is

generated as an ideal by the image of Gr^ (J,B) ®A k. If £ is an element of

Gt,x\ (J,B) ®a k, say homogeneous of degree v, then £ is the class mod A7 of

In(x) (/) f°r some / E J n (*)" - (x)"+ and «(£) is the image of / in

M"/Mv+X. Thus it is clear that if w(£) # 0, v = v(x)(f) - rM(f), so that h(£)

is the M-adic initial form of an element/ E J with this property. Conversely,

if fEJ with PM(f) = p{x)(f), then In(x) (/) <5Ê N Gt{x) (J,B). Hence
^n(x) (/) ê*ves a nonzero class î m Gr/^ (/,.B) ®A k and moreover m(£) # 0
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(otherwise vM(f) > vix^(f)). We have shown: The image of u is generated by

(InM (/)|/ G J,vM(f) = V(x)if)}- Thus the surjectivity of u is equivalent to

the existence of an Af-standard base of J consisting of such /. Q.E.D.

(2.4.2) Remark. We saw in the proof of (2.4) above that the flatness of

Gr/ x (0) is equivalent to the surjectivity of u in the diagram (2.4.1). On the

other hand, if Gr(jc) (0) is flat then the map Gr(jc) (J, B) ®A Gtn (A)

-* Gïix} (B) ®a Gïn (A) is injective, so since v is an isomorphism, so is u.

Hence, with notation as above, the section (x) = 0 is normally flat if and only

if the natural map Gt^ (J, B) ®A Gtn (A) -** Gr^ (J, B) is an isomorphism. It

follows that in the normally flat situation, if {j^} is any (x)-standard base of J

with pM(J,) = v{x)(f¡) (or equivalents that In(jc) (f,) G N Gt,x) (B)), then {f¡)
is also an M-standard base.

(2.5) Remark. The proof of (2.4) yields the more refined result: Gr^ (0) is

flat over A in degree < m if and only if there exists an M -standard base for J

in which those elements/ of A/-order < m satisfy ^x)(f¡) = vM(f¡). Thus, with

the terminology of (1.1.2), we have a criterion for the section x = 0 to be

"normally flat of order «".
(2.6) Suppose we are deforming a hypersurface XQ :

/=0,      fek[[xx,...,xn]].

Then, with notations as above, J is a principal ideal (/), where /(mod N) = /;

/itself is a standard base of J. Then we may apply the criterion above (2.5) in

the following form:
(2.6.1) The section (x) = 0 is normally flat of order m if and only if either

tr)(/) = "*(/) < m> or v(x)U) > m.

In fact, if vtx)if) > m, then vM(f) > m, so that there is no standard base

in degree < m, and the condition is trivially satisfied.

For example, if A is a ¿-algebra, and / = /+ g with g G NB and

vix\(f) = v, then if m > v the section (x) — 0 is normally flat of order

m o viAg) > v, i.e. if it is simply normally flat; and if m < v the section is

normally flat of order m <=» vix-^(g) > m.

It follows that if we begin with a singular hypersurface / = 0, a section is

normally flat of order 1 <=> the family "remains singular along the section".

Thus in the hypersurface case, in view of the results of §1, the functor of

normally flat deformations of order 1 has as its prorepresentable hull the

"critical locus" of the versal family 36 -» 5.

(2.7) Example. We consider the space curve X defined by/[ = xy + z3,f2

= x2 + v3. X is a complete intersection, and has an isolated singularity at the

origin. However the tangent cone C to X at the origin is not a complete

intersection. In fact, if we let/3 = y/2 - xfx, the ideal of C is generated by the

initial forms oîfx,f2,f3, i.e.
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C = Speck[x,y,z]/(xy,x2,y4 - xz3).

Now a deformation X' of X over k[t]/(t2) is given by an ideal (f\,f2) in

k[t,x,y,z] where f\ =/j + r^./^ = /2 + te2 for ^ choice of g,,g2 in

¿[je,y,z]. Let, for example

(i) gx = 0, g2 = z2. The corresponding deformation is nontrivial, as is seen

when we identify these first order deformations with the module

R © R/{9f/dx, 3//6>, df/dzj = (/, ,/2)}

via X' h» class of (gx,g2). (Here R = T(X) = ¿[x.y.zl/i/p/j)); we refer to

the Jacobian matrix

/i     h
3/3*     / y     2 A

3/3y    (  x     3y2 J '

3/3z     \3z2     0 /

Let P, M denote the ideals (x,y,z) and (t,x,y,z) oí k[t,x,y,z] respectively.

Note that we have v(J\) = vM(f'¡) = »>(/) for i = 1, 2. However, the defor-

mation is not normally flat along P = 0, since if we let

/3 = yf'i - xf\ - h + '(J«2 - *Il) -/s + i>'z2'

!n? (/á) - íyz2 so thatyz2 is Morsion in Gr,, (0) (0 = k[t,x,y,z]/(f\ ,f2));

the point is that here there is no choice gx, g2 which give an equivalent

deformation and which satisfy vp(yg2 — xgx) > 4 (i.e. so that the P-adic

initial form of the corresponding f3 will not be divisible by t).

By contrast, we consider the deformation given by

(ii) gx = y2, g2 = 0. Here we appear to have the same problem, for

/j -■ f3 — txy2, and vP(f'-¡) = 3 < vM(f'3). However in this case the difficulty

is only apparent: If we let x' = x + yt, we get:

/i =fx(x',y,z),f'2 = f2(x',y,z) - Itx'y =f2(x',y,z) + t(2z3 - 2f\).

Thus in terms of the new coordinates x', y, z, the ideal defining the deforma-

tion is generated by

/, =fx{x',y,z),   f2 =f2(x',y,z) + 2/z3.

Letting /3 - yj2 - xjx - /, + 2/yz3, we find that vM{ft) = %,,„)(?,) for

/' = 1, 2, 3. Since these/ give a standard base mod(/), it then follows from

(2.10) below that they are an M-standard base. Hence by the criterion of (2.4)

above the deformation is normally flat along x' = y = z = 0, which is of

course the same as x = y = z = 0.
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We now consider the question of recognizing a normally flat standard base

in the case of a flat family, i.e. (in the terminology (2.0)) when we assume 0 is

flat over A. The main technical result here is (2.10), which in combination with

(2.4) above gives the workable form of the criterion for normally flat

deformations. We begin with a few generalities.

Let R be a ring, I and J ideals. Let P' -* R/J -* 0 be a free resolution; we

can apply Gt¡ to get a complex which need not be exact for several reasons.

However if we use standard bases to construct P' at each stage, and if we

suitably "weight" the nitrations of the P' then the exactness is preserved. To

be precise, suppose that P' has been constructed up to degree « as a complex

with "weighted 7-adic" filtration g*, so that

pn Jn^ pn-\ _^-> p0 _^ Rjj _^ Q

remains exact upon applying Grg.. By such a filtration we mean that for each

j, 5' is a filtration of P' such that:

0)i"'= u,6Z#,
(2) Ify C 2»+1, with equality for v sufficiently large.

Moreover we require for the filtered complex that for all /, v, ¿¡(¡Q) C g¿_1 ;

Grg. (</,.) then consists of the induced maps 2¿/S¿+1 -» 3»-l/3i¡+í.

This being said, let Kn = ker (*/„), and let {ba} be an g"-standard base for

Kn in P", i.e. the In5» (ba) generate Grs„ (A„,F") as Gr7 (R)-module. Let

va = "b-ÍU- Let pn+l * ©a*. and define 5"+1 by g;+1 - ©a/'-'« (Ip

= R if y? < 0). Note that by this definition, if ea is the ath canonical basis

element of P"+l, then v^](ea) = va. Hence, if dn+x is defined by ea \-> ba,

Grg- (dn+\) sends In5»+i (ea)t0 In5» (*«)• Tnus Grg- (dn+\) is surjective onto

Gr5„ (Kn,Pn); and since this latter is the kernel of Grg. (dn), we get the good

construction up to n + 1.

In particular, we get the following result:

(2.8) If{fx,... ,fs} are an I-standard base for J, let <p,, ..., <ps be their I-adic

initial forms. Let K C Rs and $ C Gr; (R)s be the respective modules of

relations. Let v¡ = v¡(f¡), and let 3 be the filtration of Rs defined by S„

= /"-"i © ... © /"-"'. View Gtj (R)s as a graded Gx¡ (R) module whose

homogeneous part of degree v is Gt]~"1 (R)®---® CrP' (R). Then Gr7 (R)s

and Grg (Rs) are naturally identified as graded modules, and in this sense

Gr5(A,*,) = <S>.
Stated more succinctly but less precisely, this says that in the case of a

standard base, "module of relations commutes with Gr". It follows that

(2.8.1) J//,, ...,fs is an I-standard base of J, in a ring R, with I-adic initial

forms <px,... ,<ps, then any relation among the <p,- is the %-adic initial form of a

relation among thef¡, where g is the filtration of Rs in (2.8) above.

(2.9) Lemma. R a ring, I, J ideals, f = (fx,... ,fs) an I-standard base ofJ. Let
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r = (rx,...,rs) E Rs with

(*) r-f (-J^)e/*

/or some integer AT. TAe« /Aere « a relation r' = (r',,... ,r's) among thef¡ (i.e.

r' •/= 0) w/iA

r^r'i   (mod/"-"),

wAere rç = y,(/).

Proof. Given r, let d(r) = inf ̂ (r,/) (note that this is the same as j»g(r)

where 5 is the filtration of Rs defined in (2.8) above). We fix N, and prove the

lemma by descending induction on d(r).

First observe that if d(r) > AT the condition (*) is trivially verified; and since

r¡ £ /rfW-'' c IN~Pi in this case, we get the conclusion by letting r' = 0. Now

assume the lemma is true whenever d(r) > d, where d is some integer < N,

and suppose we have an r satisfying (*), with d(r) = d. Let

r(0) = vi(p)--->Ç(0)) eGrg(AÎ)

denote the g-adic initial form of r. Then, if <P = (<px,...,%), with <p¡

= In7 (/), (+) implies r^ • O = 0 (since ¿ < AT). Hence, by (2.8.1) there is a

relation r among the / such that r^ = Ing (f). In particular »>g(r — r)

= </(/■ — f) > d, and of course we still have (*) for r — r, i.e.

(r-r)-f(ElN.

Hence, by induction, there is a relation r with

(r,-r,)mft   (modi"-«)

for each i. Letting r' =■ T + f, we get the result.

With these preliminaries we can prove the following result on the infinites-

imal stability of a standard base in the flat case:

(2.10) Proposition. Let 0 -» (/) -» A' -* A -* 0 be a "small extension" of

local rings, i.e. ma\(A')t = (0). Let B' = A'[[x]\, B - A[[x]], B~ = k[[x]]

where x = (xx,... ,xn) and k is the residue field of A' (and A). Let M', M,M

denote the maximal ideals of B', B, B. Let f'¡, i = 1, ..., s, be elements of B';

denote their images in B and Bby^and^. Write J' = {f\)B', J = {f,)B,J
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r      j       i

f'i i—► ft '—► h

B\ M'       B,M        B,M

»      n      »
A'[[x]]-+A[[x]]^k[[x]]

î              î î
(i) -*■ A'-► A-► k

Suppose that

(i) B'/J' is flat over A',
(ii) the fi are an M-standard base for J.

(iii) thefj are an M-standard base for J,

(iv) vC/J) = PM(ft).
Then thef'¡ are an M'-standard base for J'.

Proof. Let h(1) = (u\l\.. ,,ujp) G B'". We want to show that if £ = «(I)

InM,(£) G {In,,, (/;■)} GrM,(n

We first note that

(*) This conclusion holds in case u^' G tB".

Namely, tB' -** B via / \-> 1 (small extension), so we conclude by (iii).

Let   v, = V(/;X 4 = V(«Í°X "i = inf("/ + 4)-   Thus   ?„,(£) > n,.
Hence if tr1' •/' G A/'"1"1"1, we are done, since then

(**) InM,(£)=     2     lnM,(^)lnM> (/;.).

Suppose, then, that «(1) •/' G M"'1+1. Then by (2.9), since also vM(f) = v¡ by

(iv), we get (letting ir' denote the image of t/1' in B*):

w-0) = r + M-(2)

where r • f = 0, and ù}2' G Af "1+1-,'i. Now since J' is a flat deformation of J

over /T, we can lift r to a relation r' among the/, [5], and we can certainly lift

the deviation h(2) to an element i/2) of B's with u\2) G Ai "l,+1 ""'''. We then

have

„(0 _ (r> + M(2)) = „(0 e /y3-*(

and since r' is a relation,
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„(O./' - „(»./' + „(2)./'.

Note that the number n2 defined for w ' as «j was for u"' is strictly larger than

«,.

Now suppose that after iterating this procedure finitely many times (expres-

sing successive u^''s as v^' + u^+l' + a relation), we arrive at a/ for which

(***) ù^ • f E M"J+]

(where, as above, iP> denotes the image of u^' in B% so that

u0).f $ m'"j+1 + (t) n M'"'.

Then by (**), InM, (iA" •/') is in the ideal generated by the In^- (f'¡), and by

the above (since it has degree «) it is not in Gr^, ((t)B',B').

We now write

| = „(•)./' = (¡,(0 + ... + „(/-») .f + UU) .f>.

Let

g « („(» + ...-nA»))./'.

Since each r is in (i)B'5, InM, (g) is in the ideal generated by the Inw- (f'¡) by

(*), and is of course also in GrM,((t)B',B'). Hence if InM, (g') and

\nM, (tA" •/') have the same degree, they cannot cancel each other; thus, in

any case, \nM, (£) is in the ideal generated by the In^- (f'¡) as desired.

We must finally consider the case where the iteration procedure does not

terminate, i.e. when there is no/ for which (***) holds. Then

i = M0)./= lim   ¿ („M./').

In fact, the limit makes sense because

M0)./'_(„0>+ ... + „</))./' EM'"J,

and n, -*■ co as/ -» oo. Thus in this case, we may assume w1' E tB's, so we

conclude by (*). Q.E.D.

(2.11) Remark. In Proposition (2.10) it would suffice to assume merely that

the/; are in J'; that they then generate J' follows from the flatness, and the

assumption that they generate mod(/). Namely, in view of the flatness,

tB' n /' = W. Hence, since the/- generate mod(/),

j = {/;.}/? + a = {/;.}/? + t{f\)B + t2j - {/;.}/?

since t2 = 0.
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(2.12) Remark. We give an example which shows that condition (iii) in the

hypothesis of Proposition (2.10) above is necessary, i.e. that (i), (ii), (iv) do not

by themselves imply that the/ are an M '-standard base:

Let A = k[[r]], A' = k[[e,r]]/(e2,£T) (so that in the terminology of (2.10),

t = e). Let

/, = x2y + tx4 + w6,   f2 - xy2

in .<4[[x,.y, w]] = B. We first note that/,, f2 are an M-standard base of the ideal

they generate. To see this, observe that the only relations among the initial

forms of/,,/2 (other than the "trivial" relations) are the multiples of (y,-x).

Now yfx - xf2 =f3 = tyx4 + yw6, so Inw (/,) = ryx4 = rx2 InM (/, ).

Moreover, ryx4 is not a zero-divisor in B, so any multiple of (y, —x) still yields

an element whose initial form is a multiple of InM (/. ). (However yfx - xf2

= yw , so we fail to have (iii) in this situation.)

Now let/j and/2 be the elements of B' = ^'[[x,^, w]] which are written the

same way as/j,/2. Since e kills t, eyfx - exf2 = eyw6, which is not in the ideal

generated by In^, (/',), InM, (/2), i.e., f\,f2 are not an A/'-standard base

although (i), (ii), (iv) are satisfied.

For the above example it was crucial that t not be a zero divisor in A ; in

particular, the example would not have worked if we let A = &[[t]]/t2 instead

of k[[r]]. We can, however, get an example in this case as follows: Let

A = k[[r]]/r2,   A' = *[M]/(e2,eT,T2).

Let B' and B be ,4'[[x,;>,z,h>]], ̂ [[x,>>,z,vv]] respectively. Let

/, = x2y + rx4 + w6, f2 = xy2, /3 = ryw6 + z10

in B, and let the/, be the elements of B' which are written the same way. The

point here is that we have chosen /3 so that tyf, - rxf2 has the same initial

form as /3 (whereas yfx - xf2 has initial form tx2 InM (/, ) as in the previous

example). Thus fx,f2,f3 are a standard base. However, In^, (eyf\ - txf2)

= eyw6, which cannot be expressed in terms of the lnM, (/•)• Note that the/-

fail to be an A7-standard base (again yfx - xf2 is bad) but they are a complete

intersection, so that everything is flat; again (i), (ii), (iv) hold but the

conclusion of (2.10) is false. This example is of interest for the additional

reason that the extension B'/J' -* B/J is split (where J', J are the ideals

generated by the/i- and the/) over the obvious splitting of A' -* A; in fact we

have a commutative diagram:

B'/J'f^—^B/J-► 0
+       u       +

A'--v A-"O

v
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where u, v are ¿-algebra homomorphisms. We see that the standard base

property is unstable even under this type of "trivial" deformation.

This strange phenomenon is irrelevant to our application, where (iii) is given

as part of the basic setup:

(2.13) Theorem. Let A be a local ring, and let /,, ..., fs be an (x)-standard

base of an ideal 7 in k [[x]], where x = (xx,..., xn ) and k is the residue field of

A. Suppose J C A[[x]] is aflat deformation. Then the deformation is normally flat

along (x) = 0 // and only if there exist elements fx, ...,fsqfj with f¡t-*f¡ and

p(x)(f¡) = v(x)(f¡) 0 ~ 1> • • • >s)> tnese ft are tnen DOtn an M-standard base and

an (x)-standard base ofJ(M = max/l [[*]]).

Proof. We prove the "if" part first:

Let B = A[[x]]. Since for any/ E B we have inequalities v<x\(f) < vM(f)

< V(X)(J) (where ~ denotes reduction mod max (A)), the hypotheses imply that

v(x)(f¡) = vmU,)> i = 1,..., *. Thus if we can show that the / are an M-

standard base for /, the conclusion will follow from Theorem (2.4). Let

AT = ma\(A), and for every integer /, let B¡, M¡, J¡ denote the reductions

mod Nl. We first claim that if the images of the/ in B¡ are an Afrstandard base

of J, for each /, then the / are an M-standard base for / (this reduces the

theorem to the case when A is an artin ring).

To see this, let / E J. Let v = vM{f), and let / > v. Then if ~ denotes

reduction n\odNl, In^(/) is the image of \nM (/) in GrM(B¡)

(= Grw (B)/GrM (NlB,B)). Hence, assuming they* are an A/rstandard base,

we get

InM (/) E {InM (/)} Gr,, (fl)(modGrw (n'b,B)).

But since GrM (NlB, B) fl Gr^ (B) = (0) (since / > v), we find that lnM (/)

E{InM(/)}GrM(fl).

We now prove the "if" part of the theorem when A is artin. Write

A = An ~* An-\ -*-* A\ -* A0 = k

where each step is a small extension. Let Mj «■ max (fly), fly = .4y[[x]], and let

fV' denote the image of/ in fly (sof^"' = f¡,f^ = f¡). Now for each/, we

have inequalities:

v/        v/

Thus, the hypothesis vtAfî) = vU)tí¡) impliesnus, me iiypuuicaia rix)\J¡) — f(x)\J¡)

(1) For all/, v^uñ = yífH
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By (2), applying Proposition (2.10) to each step (noting Remark (2.11)), we get

by induction: the (/} are an M-standard base of J as desired. We conclude by

(2.4) as noted above.

Now for the "only if" part:  Choose gx, ..., gs E J with g¡ h» f.. If

v(x)(8i) " t*)(//)>then we are done> letting£/ = fi-If v(x)(8i) < p(x)(fi)>then

we must have In^ (g¡) G N Gtíx) (B). Now in view of the normal flatness

(which asserts that Gr^ (B)/Gr^ (J,B) is flat over A), we have

N Grw (B) n Grw (J,B) = N Gt{x) (J,B).

Hence In,^ (g¡) — 2; {/1%) (fy)> with hj G 7, tj G A. Let A = 2, tjh,
G A5, and let g/1} = g¡ - h. Then we still have gW t-*ft, and v,x)(g>l))

> vix\(g). After finitely many repetitions of this alternation process, we arrive

at a gf', for some d, with v^(gf ') = ^(/O, and of course gf> *-*f¡.

Letting/ = gf\ we are done.

Finally, to see that these/ are both an (x) and an M-standard base of J, we

first note that by the normal flatness

Grw (7,B) ®A A/N -** Gr(jc) (J,B)   (1.4.1).

Since this isomorphism makes the class of In/^ (/) correspond to that of

1Q(*) (7i) (smce ''wi^) = v(x)(f~i))> we ^nd by Nakayama that the/ are an (x)-

standard base of J. That the / are an M-standard base then follows from the

isomorphism

Gr^ (J, B) = Grw (7, B) ®A GxN (A)

which holds in the normally flat situation (see (2.4.2)). This completes the

proof of (2.13).
(2.14) Remark. An easy modification of (2.13) gives the criterion for

normally flat deformations of order j:

Theorem. Let A,fx, ...,fs,J,J be as in (2.13). Then the family A[X]/J is

normally flat of order j if and only if there exist elements fx, ..., / in J with

fi^fiond
(0 %)ifi) = %c)<Ji) >fv(x)(fi) <7>
(ii) rw(/) > j ifv(x)(/)>y.

Then those/ with vix\(f¡) < j are both an M-standard base and an (x)-standard

base for J in degree < y.

Proof. Simply replace J by J + (x)J+ . Condition (ii) is equivalent to the

assertion that J + (x)J is generated in degree > j by the monomials of

degree/ + 1 in (x). Note that this is true of 7 + (x)J+ in any case, and the

degree of such a monomial is invariant under reduction mod the maximal
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ideal of A. Hence conditions (i) and (ii) together are equivalent to the normal

flatness of A[x]/J + (x)J+ by (2.13); and this is the same as the normal

flatness of /i[x]/J of order/.

We now apply these results to that class of singularities which are the

"nicest possible" from the standpoint of normally flat deformation theory:

(2.15) Definition. A local ring 0 is called a "strict complete intersection" if

Grm (0) is a complete intersection, m = max(0). Thus if 0 = R/J, where R is

a regular local ring with maximal ideal M, then 0 is a strict complete

intersection if and only if Grw (J,R) is generated by a regular sequence in

GxM (R). A strict complete intersection is always a complete intersection (via

(2.3)); the converse is false, as any of the examples in this section show.

We recall (1.4.3) that given any singularity 0, m there is a natural morphism

u from the normally flat deformation functor of 0 to the cone-deformation

functor of Grm (0): given a normally flat deformation A" of 0 over A, with

section o, u(X,o) =def Gr0 (X), viewed as a deformation of Grm (0).

(2.16) Theorem. If B is a strict complete intersection, u is a smooth morphism.

Proof. The assertion means that the map of formal moduli induced by u is

a smooth morphism or equivalently, that the normally flat deformations are

"relatively unobstructed" over the cone deformations. We must show that if

(X,o) is a normally flat deformation of 0 over A, with Spec (Gr0 (X)) = C,

and if A' -* A is an extension with a cone deformation C over A' inducing C,

then there is a normally flat deformation (X',o') over A' inducing (X,o) over

A and Spec (Gr(o,) (X')) = C.

(X',o')<-*(X.o)

C

A'-► A

To see this, write 0 = B/J, B — k[[x]], and choose an (x)-standard base

/i, ..., fs whose initial forms çx, ..., ys are a regular sequence in Gr^ (fl ).

(Then /,,..., /j are a regular sequence in fl.) By a change of coordinate, we

can assume the section o in the normally flat deformation X over A is (x) = 0,

where X = Spec (B/J), B = A[[x]]. Then by Theorem (2.13),

J = (/i. • • • Js)b   where/ i->/., t>,x)(f¡) = v¡ = v(x)(f¡),

and the / are an (x)-standard base. Hence if <p¡ = In^ (/■), <p;-1-» q¡¡ and the

cone  deformation  C is  Spec (A[x]/((px,.. .,<ps));   then  C  is  given  by
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A'[x]/(fp\,..., <p's) where the <p'¡ are forms of degree v¡ in (x) and <p'¡ t-> <p,-.

Now to get A", first lift the / to elements g¡ in A'[[x]] so that vtx)(g'¡)

= pw(/). Let îj,- = In(jc) (g¡). Then r¡¡ h» <p;, so n; - $ = £,, another form of

degree i>- in (x), and £, (-» 0 in ^4[x]. Then let/¿ = g'¡ — £, (where we now view

£f in A'[[x]] instead of A'[x]). Thus In^ (f'¡) = <p'¡,f'¡ H»jJ, and of course we

still have r, - %)if'i) - i^)(//). Moreover, if J'= (f\,...,f's)B'(B'
= A'[[x]]), then 5'/7' is flat, since the {f'¡} yield the regular sequence {/•} at

the closed fibre. Hence we can apply (2.13) to deduce that X' = Spec {B'/J')

is normally flat along a' : (x) = 0 and the f'¡ are an (x)-standard base.

Therefore, since In^,) (f'¡) = q>'¡ by construction, Spec (Gr0- (A')) = C, and

we are done.

(2.17) Theorem. The normally flat deformations of a strict complete intersec-

tion are unobstructed.

Proof. Here, given A' -» A and a normally flat deformation over A, we

must simply lift it to one over A'. Thus the proof is the same as above, except

it is easier since we need not worry about compatibility with a C given

beforehand. (Alternatively we can get this as a corollary of (2.16), noting that

the cone-deformations of a complete intersection are unobstructed.)

Similarly, noting the remark (2.14), the evident modification of the direct

proof of (2.17) yields the generalization:

(2.18) For any j, the normally flat deformations of order j of a strict complete

intersection are unobstructed.
Note that in view of (1.2.4) (and with the terminology of §1), (2.18) is

equivalent to the smoothness of the Ay. This was proved in the special case of

plane curves for/ = oo (i.e. for the equimultiple deformations) by J. Wahl

[10], and for arbitrary/ in the case of hypersurfaces in characteristic 0 by B.

Teissier [9,1].

3. An example.
(3.0) We now want to work out in detail one nontrivial example in which

the normally flat deformations, the cone deformations, and the morphism u

between them are computable. The singularity in question is the space-curve X

defined by the equations

/, = x2y2 + z5 + x6,   f2 = x2z2 + y5.

Thus A is a complete intersection, and its only singularity is at the origin, P.

Let 7 = (fx ,f2)k[x,y, z] be the ideal of A in A3, and let M denote the maximal

ideal of the origin in A3. To get an M-standard base of 7 we need to add the

polynomial

h = z2fx-y2f2 = z1-y1 + x(>z2
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so that X is not a strict complete intersection. We will find, however, that the

morphism u is smooth (compare Theorem (2.16)), and that both the normally

flat deformations of X and the cone deformations of the tangent cone to X at

P are (separately) unobstructed. Thus in these respects the singularity behaves

like a strict complete intersection. However as the example shows, this fact lies

fairly deep in its specific properties, and does not follow easily from general

theory we have developed thus far.

I originally worked out the example in the hope that it might give a negative

answer to the question: Is the morphism u smooth for arbitrary singularities!

Nevertheless, this question remains open, and indeed the reader may find that

the example suggests evidence of an affirmative answer!

(3.1) Now let C denote the tangent cone to X at the origin. Then C is defined

by the initial forms <p¡ of the/ (/' = 1,2,3):

2  2 2  2 7        7
<pl=xy,   (p2 = xz,   <p3 = z'-y'.

We will first study the cone-deformations of C. Over ¿[e]/e2 these are given by

equations <p'¡ + eh¡ (i = 1,2,3) where h¡ is a form in x, y, z of the same degree

as (p¡, and moreover the flatness condition is satisfied: If f denotes the ideal

generated by the (p¡, and if r = (ri,r2,r3) is a relation among the <p¡ (i.e.

r • <p = 0, <p = (<Pi><P2><P3))> then r • A E £(A = hx,h2,h3)). In other words

the condition is

(3.1.1) For each relation r among the <p¡, there exists a¡(i = 1,2,3) in

¿[x,y,z] such that, if we denote a = (ax,a2,a3),

—r-h = a-(p

(the negative sign is for our later convenience).

More generally, suppose we have a flat family over k[e]/en+l, say given by

«P(«) = «P + £h(i) + ■■■ + e"A(n)

(where <p/n\, <p, A^j denote 3-tuples). Every relation r among the q>¡ extends to

a relation r among the çy(\ of the form

f = r + ea(1) + --.+e"ö(„).

It is easily checked that the condition for <p,n\ to extend to a flat family over

¿[e]/en+2 is as follows:

(3.1.2) There exists A(n+1) such that for every relation f among the q>rn\ as

above

-' • Vl) = %)h(n) + a(2)h(n-\) + ■•• + %)\\)    (modf).

In fact if this is so, we can let
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V&i+l) = V(«) + e"+1A(B+i).

and if the two sides of the congruence above differ by say C(„+i) • <p, then r

extends to the relation r + £n+iatn+x\ among the ç>(n+1\,mode     .

(3.2) Remarks. (1) Note that (3.1.1) is just the case n = 1 of (3.1.2), but it

is much more convenient to write this case out explicitly without the

subscripts.

(2) The obstruction to extending a family from n = 1 to n = 2 is called a

"primary obstruction". Here it is also convenient to write down the condition

without subscripts: the family y' = y + eh over k[e]/e2 extends over k[E]/e3 if

and only if there exists h such that, for every relation r among the <p¡, if

r • h = a ■ cp, then

a • h = r • h   (mod $-).

(3) Our description of the conditions for extending these families is not a

priori canonical, since the a<¡\ are not uniquely determined. However it is not

hard to show that the condition is independent of the choice of the a,¡^, i.e. of

the choice of the extension r of r. For details, and in general for a complete

and more functorial treatment of the obstruction theory, the reader is referred

to [5].
(4) We will see below that every cone deformation of C over &[e]/e extends

to a family over k[[e]]. In other words, every tangent vector is represented by

a formal nonsingular curve in the moduli. This is sufficient to give the

unobstructedness of the deformation theory (although in the general case the

investigation of this question is insufficient for a complete understanding of

the obstructions). This fact is essentially the same as the following.

(3.2.1) Lemma.  Suppose R, M is a complete local k-algebra, with say

R/M = k, and with the property: Every k-algebra homomorphism R -» /c[e]/e

extends to k[[e]]. Then R is a formal power series ring over k.

Proof. Choose representations xx,..., xn in M of a fc-basis of M/M2, so

that R = k[[xx,... ,xn]]/I for some ideal /. We want to show 7 = (0). If

I ¥= (0), let / be an element of / of minimal order v (as a power series in

X], ..., x„); v is at least 2. Let <p denote the initial form of/, so that <p is a form

of degree v. Choose ax, ..., an G k so that y(al,..., an) G k(9). Now since

I C (xx,...,xn)", the map k[[xx,... ,xn]] -* k{e\/t" defined by x¡ h» a¡e

factors through R, say

p: R -> &[e]/e",   x¡ h» a¡e.

(9) Since base field extension k -» ¿preserves the hypothesis and reflects the conclusion, we may

assume k is infinite.
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But clearly p cannot be factored through ¿[£]/e"+l, since if p' were such a

factor, p'(/(x)) would have to be (p(ax,. ..,an)tv =£ 0 in ¿[e]/£y+I. This

contradiction shows that / = (0). Q.E.D.

(5) Since we are concerned with cone deformations, we require that at each

stage (i.e. for each « as in (3.1.2)), the hin^¡ are homogeneous, of the same degree

as <p'. If we drop this requirement then (3.1.2) is the condition for extending a

deformation of an arbitrary singularity defined by some ideal {q>¡}.

(3.3) With these preliminaries, we now compute the cone moduli of our

tangent cone C: <px = <p2 = (p3 = 0, where cpx = x2y2, <p2 = x2z2, (p3 = z7

-y7. We denote by % the ideal generated by the <p,-. One observes that the

condition (3.1.2) is trivially satisfied for a relation r = (rx,r2,r3) with the

r¡ E %. Thus in our case it is easy to check that there are only two significant

relations, namely

r0) _ (z2,-f,0)   and   A2) = (-y5,z5,-x2).

Then according to (3.1.1) the conditions that certain homogeneous polynomi-

als hx,h2, A3 (of degrees 4, 4, 7) give a flat family over ¿[e]/e2 are

0) z2A,-y2A2E£ (fromrW),

(2) -y5A, + z5A2 - x2A3 E %       (from r(2)).

Since the only generators of j- in degree < 6 are z2x and y2x2, (1) implies that

Aj = x2u,   h2 = x2v

for some u, v of degree 2. We get, letting A = (A,,A2,A3)

(3) r"' • A = —vpx + u<p2.

In other words, the "a" works for r^ as in (3.1.1) is a"' = (v, -u, 0). Note that

(3)' a« • A = (t/,-H,0)(;e2«, AA3) = 0.

Now in view of what we know about A,, A2, equation (2) above becomes

-y5*2« + z5x2v - x2h3 E £,

i.e. simply x2A3 E f, which is equivalent to saying that A3 E (z2,y2)k[x,y,z\.

Hence, for some wx, w2 of degree 5,

A3 = y2vfi + z w2.

We get
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(4) r(2) ■ h - (-fu - wx )<px + (z3v- w2)cp2,

and the "a" that works for r2' as in (3.1.1) is

ai2) = (y^u + wx,-z3v + w2,0).

Note that

(4)' a(2) • h = x2uwx + x2vw2   (mod }).

Now, according to (3.1.2) or more specifically the remark (2) of (3.2), the

vanishing of the primary obstruction is equivalent to the existence of h~

= (hx,h2,h3) subject to the two conditions

r(i). Ü = fl(0 . h       (mod J),

r(2). a m a(i). h   (mod^.

In view of (3)', (4)' above, these conditions are respectively

z2h~x-y2h2 = 0 (mod*),

—y hx + z h2 — x h3 = x uwx + x2vw2      (mod J).

Finally, we observe that these conditions can always be satisfied by letting

Á"l = h2 ~ 0»    ^3 = ~"KWi ~ v**i — VM>2 •

Thus: There are no primary obstructions to the cone deformations of C.

To check that there are no higher obstructions, we proceed similarly, using

(3.1.2) ff. to define successively the h/n\'s and ö(„)'s. We summarize the situation

in the table below; the cases n = 1, 2 already worked out are included, but

now with the general subscript notation of (3.1.2). The computations are not

difficult, especially since the relation r^' ceases to be relevant for n > 1, and

the entire procedure trivializes after « > 3. The notation ac¡j means the

coefficient of e" in the extension of the relation nk> (k = 1,2) to a relation

among the <pín^¡, where

<P(n) = 9 + h(\)e + ■ ' ■ + h(n)e"

(everything is, of course, a 3-tuple).

Note that there is no restriction on u, v, wx, w2 in ^ x P2 x P^ x Ps (where Pv

denotes the space of homogeneous polynomials of degree v). Choose polyno-

mials {ua}, {vß}, {wXy}, {w2S} so that the elements (x2ua,x2Vß,y2wXy + z2w2S)

are linearly independent modulo % and the ideal generated by the first partial

derivatives of the triple (<jPi,<p2,<p3). Let {sa}, {tß}, {qy), {qs} be the dual basis.
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« = 0

«=1

« = 2

« = 3

a<&=rV = {z2,-y\0)

a{l] = r™ = (-yS,z*,-x>)

a{\] = (v,-u,0)

a{\]= (y3u + wi > ~z*v + w2, o)

a{\]= (0,0,0)

a{2] = (ryu2,zu2,0)

agj = (0, 0, 0)

fljlj = (0, 0, 0)

\0) = ^ = {x2y2,x2z2,z1-y1)

Aj = (x2u, x2v, y1wl + z2w2)

A(2) = (0, 0, uwt + vw2)

"(3) = (0. 0, -V + zv3)

everything 0 thereafter.

Table (3.3.1)

Then

(3.3.2) The formal cone-moduli space of C is Spec (fl), where

R = *[[{*«},{'„},{*,}.{*«}]];

the versal family of cones over fl is (according to Table (3.3.1) above) given

by the ideal generated by

<p, + x u,   <p2 + x v,   <p3 + y2wx + z2w2 + uwx + vw2 — yu3 + zv3

where u = 2a *«»«> v = 2/j tpvß, wx = 2Y/>Yw,y, w2 = 25 *«wM-

(3.4) We now consider the normally flat deformations of X. Since X ^> A3 is

the complete intersection/, = f2 — 0, a deformation of A" is given by arbitrary

deformations of/,, /2. In particular, over ¿[e]/e2 the deformations are given by

/Í-J5 + ««    0'=i.2),

g,, g2 being arbitrary. We wish to determine when this family is normally flat

along the 0-section x = y = z = 0. Let /' = (f\,f'2)k[e,x,y,z]/e2. Since

/,, /2 and/3 = z2/, - y2/2 are an Af-standard base of J (see (3.0)), by Theorem

(2.13) the condition is that there exist/* E /' (/ = 1,2,3) such that/ (mode)

= f„ and vM(f¡) = vM(f¡).
Suppose this condition is satisfied, i.e. suppose in J' we have/| = / + eg¡,
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with gx, g2 G M4, g2 G M7. Then by flatness, we must have g¡ - g¡ G 7 (/

= 1,2), and z2gx - y2g2 -ft G 7. Thus the normal flatness implies

(3.4.1) f^- e M4 + 7,   i = 1, 2   (i.e. g, = ft (mod 7), ft G M4),

U2gi - A2 G M7 + 7     (i.e. z2gl - A2 - ft (mod7),ft G M7).

Conversely, if these conditions hold for gx, g2 the deformation they define is

normally flat among the 0-section. In fact, given (3.4.1) suppose that

it " Ä + a/l/l + aafi>      Si E m4> ' = !' 2>

and

¿2£i - A2 == ft + Vi + V2.      ft e ^?-

Then, letting

/ = /J - z(aiXfx + ai2f2),       i = 1, 2,

~h = z1f\-y2fl-e(bxf'x + b2f'2),

we see that / = /■ + eg¡ and is in 7' for i = 1, 2, 3, so the conditions of

Theorem (2.13) are satisfied. Moreover, since the J¡ are then an (x,y,z)-

standard base of 7', the cone-deformation associated to 7' by the morphism u,

i.e. the normal cone to the 0-section viewed as a deformation of C, is given by

the In^,) (/) = <p¡ + eh¡, where h¡ - In(jc>>jZ) (g¡), i = 1, 2, 3.

We now ask: what is the image of the map of tangent spaces corresponding

to u? In view of the above, this amounts to the following: Given homogeneous

polynomials (hx,h2,h3) of degrees (4, 4, 7) satisfying (3.1.1), does there exist

gx, g2 so that (with the notation of (3.4)) the ideal 7' contains / + eg¡ with

h¡ = lnixy^ (g¡), i = 1, 2, 3 ? To answer this question, we may clearly start

by assuming that already gx = gx, g2 = ft are in M4 with In(x>,)Z) (g¡) = h¡

for 1 = 1, 2. Then by (3.4.1), the condition that (hx,h2,h3) be in the image of

u is

(*) z2gx-y2g2-hiEJ + Ms.

Now write gx — hx + a, g2 = h2 + b with a, b G M5. We know from (3.3)

that hx = x2u, h2 = x2v for some «, v of degree 2, so that z2hx - y h2

= — v(px + ucp2. Thus the expression on the left in (*) is

z2hx + z2a - y2h2 - y2b - h3 — -vyx + uy2 + z2a - y2b - h3

= -„(/, - z5 - x6) + u(f2 -y5) + z2a- y2b.

Hence (*) is equivalent to
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vz5 - uy5 + z2a -y2b-h3EJ + A/8.

Now, since z2a, y2b are in A/7, the validity of the above is not affected if we

replace a, b by their initial forms. Assuming this done, the condition is

(**) vz5 - uy5 + z2a + y2b - A3 E %,

where the expression on the left is homogeneous of degree 7. Now recall that

A3 is necessarily of the form y2w, + z2w2, where wx, w2 are arbitrary forms of

degree 5, and in particular are independent of u, v. Thus if we identify a cone

deformation over ¿[e]/e2 with the data (u, v, w) we see from (**) that it is in the

image of u(10) if and only if there exist forms a and b of degree 7 so that

y2(-uy3 - b - wx) + z2(vz3 + a - w2) E %.

In particular, if we let a = w2 — vz , b — —w, - uy , this condition is

trivially satisfied. Thus

(3.4.2) The deformation of X over k[e]/e given by

/,=/,+ e(x2u + w2 - vz3),   /2 = f2 + e(x v - wx - uy3)

is normally flat along the 0-section, and the corresponding cone deformation is

(u, v, wx, w2) (thus the morphism u is surjective on tangent spaces). In fact, we

note that <p3 + y2wx + z2w2 is the initial form of the element

~h = (z2 + v)Jx-(y2 + u)f2.

This situation is perhaps better expressed if we view u, v, wx, w2 as depend-

ing on the parameters sa, to, p , qs as in (3.3.2). We may then dispense with e,

and state simply that up to the first order in these parameters the versal cone

deformation is the normal cone to the 0-section of the family

/, = /, + x u + w2- vz ,   f2 = f2 + x v — wx — uy .

Let us extend this family by adding some second-order terms: we now let/,, f2

be defined by

ft — f\ + x u + w-, — VZ   + V z,

(3.4.3) '      ' 2
h - Si + x2» - wi - «v3 + "2y-

Then we check that the element /3 = (z2 + v)fx - (y2 + u)J2 viewed, say in

k[[sa,tß,py,qs]][x,y,z] has as its initial form

Í1 °)The symbols u and u should not be confused. The former is a morphism of functors, the latter
is a form of degree 2.
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<p3 + y wx + z w2 + uwx + vw2 — yu3 + zv3.

Note also that the initial forms of fx and/2 are <px + x2u and q>x + x2v. Thus

we deduce from (3.3.2) that

(3.4.4) The normal cone to the 0-section of the deformation of X given over

k[lsa> tß'Py ?fi]] byf\, /2 in (3.4.3) above is the versal cone deformation of C.

Now suppose we denote by ux and <o2 two sets of parameters for the general

form of degree 5 in x, y, z, i.e.

F¡ = 2 «,TMT,       / = 1 or 2,
T

where {MT}T runs over the district monomials. Then we observe that the

deformation (3.4.3) can be rewritten as the family

(3.4.5) /j = /, + x2« + F,,  J2 = f2 + x2v + F2

over the parameter space 7 with the coordinate functions sa, tß, w1t, to2r; we

simply collect all the degree 5 terms in (3.4.3) together. Now let us preserve

the notation sa, tß,py, qs for the coordinate functions on the parameter space

U of the versal family G of cones. The identification of G with the normal cone

to the 0-section of (3.4.5) is accomplished via the isomorphism 7 -£* U of the

parameter spaces given by

sa *"* sa>    lß ""* fß>

py h> a'y(u2T>sJ,   qs H> a"s(ulTtß),

where o'y(u2T>sJ and o"s(ulTit ) are the coefficients of wXy and w2fi, respectively,

in the forms

-F2- uy  + u y   and   -Fx + vz  - v z.

This is of course essentially a tautology since we are viewing F¡ as the total part

of degree 5 in/ (/ = 1,2); we can then use (3.4.3) to express vf; in terms of u,

v and the F¡.

Now let Gx and G2 denote arbitrary polynomials in x, y, z with vixy¿ÁG¡)

> 5, i = 1, 2. If we add G¡ on to / in (3.4.5) we still get a normally flat

deformation; for the effect of the G¡ on /3, defined say as above to be

(z + v)Jx - (y + u)J2, is to add terms of order at least 8. Thus the G¡ do not

effect the initial forms oîfx,f2,f3 at all. It follows that if we let N denote the

formal space of choices (u,v,Fx,F2,Gx,G2), then the normal cone to the 0-

section of our new big family 36 over N defined by

(3.4.6) /i -/i + x2u + FX + GX,  f2=f2 + x2v + F2 + G2
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is just N Xr S. Here N -* T is the projection onto u, v, Fx, F2 and 6 is the

normal cone to the 0-section of the family (3.4.5) over T (or the versal family

of cones via the identification induced by the isomorphism T-* U described

above).

More precisely, let

AT = Spec¿[[í,/,co,,u2,T)]]

where s, t, ux, w2 are the coordinate functions on T, and rj represents a new set

of functions corresponding to a parametrization of the space of pairs of

polynomials Gx, G2 (modulo equivalence of deformations, which insures

finiteness). Thus we may view the family X of (3.4.6) as defined over N. Let

the morphism p: AT -* U denote the composition of the projection N -* T and

the isomorphism T -^+ U described earlier. Then

(3.4.7) If Q denotes the versal family of cones, the pull-back of Q to N via p is

the normal cone to the 0-section of (3.4.6) (i.e. N Xu 6 is u applied to the family

(3.4.6) together with its normally-flat 0-section).

(3.5) Now we want to show that the family X given by (3.4.6) over N is, once

we suitably interpret the notation, the versal normally flat family. It will then

follow from (3.4.7) that the morphism of functors u is represented by p, so that

u is smooth in this case. In order to proceed, we will have to assume a result

will be proved in Chapter 4, (4.49): The tangent space to the normally flat

deformations of X at P is a direct sum Tx p © Tq , where:

(1) fxp is the "strict tangent space to X at P", i.e. the largest linear subspace

(of the Zariski tangent space) which splits off the tangent cone Cx ¡>.

(2) Tq is the filtered piece of degree 0 of the tangent space Tl to the ordinary

deformation theory of X at P, with respect to a certain filtration which we now

describe: Let fl, M and 0, m be the local rings at P of the ambient space and

of X respectively. Let 0 ■» R/J. Then we know Tl is a quotient of

Home (J/J2,B) by the canonical image of Der¿ (0,0); If {/} is an ideal base

of / then a first-order deformation/ + eg¡ corresponds to the homomorphism

which sends the class of/ (mod/2) to g¡. Now if {/} is an M-standard base of

/, with v¡ = vM(f¡), we will say a homomorphism A has degree d if A (class of

/) is in m'i+d for all /. This defines a filtration on Homfl (J/J2,B), and hence

onT1.

To see the plausibility of this definition, note that 7¿' as defined above

should essentially be viewed as those deformations which (modulo coordinate

change) are given by (/ + eg¡) with vM(g¡) > v¡; this coincides with the space

of deformations which are normally flat along the 0-section.

Now to return to our situation, one first checks that in our case fx p = (0)

(in other words all of the variables are "necessary" to give the equations of the

tangent cone C). Thus the tangent space to the normally flat deformations is
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just T¿. Now we have seen that the only choices of gx, g2 for which

7*1 + ££i>/2 + eft is normally flat along the 0-section are gx = x u + higher-

order terms, g2 = x v + higher-order terms, where u and v are forms of degree

2; in fact, it turned out (3.4) that this property of g,, g, is the same as saying
9 9 7

that z g2 - y gx is in M + 7. On the other hand, given any homomorphism

h:J/J2^>6, with h(fx) = gx, h(f2) = g2, then h(f3) must be z2g2
- .y2£i (mod7). Hence 2q is a quotient of the space of h G Horn (7/72,0)

with ä(/i) = £p K/2) = ft wnere 2i> ft are as above.

Now if we recall the definition of N and the family 36 of (3.4.6), we see that

the conclusion of the previous paragraph is the same as the statement: T¿ is a

quotient of the Zariski tangent space V of N; the projection V-* Tq is

obtained by viewing the restriction of 36 to a tangent vector of A as a family

over k[e]/e2 which is normally flat along the 0-section. Thus if we restrict

ourselves to a suitable subspace of the space of coordinate functions s, t, ax,

<o2, Tj of N, and correspondingly restrict the parameters of variation of (3.4.6),

we find that (preserving the notation) we still have a normally flat family 36

over a smooth space N, but now it is the versal one up to first order. It follows

that it must be a versal one (of all orders); for this one can use the same

abstract argument used by Schlessinger [4] to construct versal families; the

point here is that N is smooth, so the family 36 can be viewed as the limit of

successive "maximal" infinitesimal extensions of the versal first order family.

A word must be said about the meaningfulness of (3.4.7) in view of this

"smaller" sense of N that we adopted in the paragraph above. One first

observes that the original morphism p: N -* U must factor through 7¿' (on the

level of tangent spaces) by functoriality. It is then not hard to interpret p as

being well defined in the new sense of N, in such a way that (3.4.7) is still valid.

We leave the details here to the reader.

4. Tangent spaces.

(4.0) In this section we study the tangent spaces to the functors 91- of

(infinitesimal) normally flat deformations of order/ of an isolated singularity

(A, x). We denote by F the "ordinary" deformation functor of A over k-v/e

assume x is a ^-rational point of A as usual. In particular, the tangent space

tF of F is F(k[e]/e ), the set of isomorphism classes of (flat) deformations of A

over the dual numbers. We will obtain a decomposition of the tangent space

% to %j into the sums of a certain subspace of tF and a space of certain

sections of the trivial deformation; the precise definitions depend on the

results of §2. This decomposition is useful (especially in the strict complete

intersection case and in particular the hypersurface case) to interpret the

singularities of "higher discriminant loci" in the formal moduli.

To begin, we recall briefly the vector space structure on tF (for details the

reader is referred to [4],): Let D = Spec (k[e]/e2). We have ¿-morphisms
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a:D^>D®kD       (= Spec (¿[e]/e2 Xk ¿[e]/e2))

and

ßb:D->D       (bEk);

a is given (on rings) by (e,0) h» e and (0,e) h» e, and ßb by e i-> be. These

morphisms induce the addition and scalar multiplication on tF as follows: If

ZX,Z2 E tF, we define Z, + Z2 to be a*(Zx ®x Z2) (note Z, ®x Z2 lies

naturally over D ©fc D, since A' is the fibre of Z¡ over Spec (¿), the closed

point); similarly for Z E tF, bF is ß*(Z).

Concretely, suppose X = Spec (¿[x,,... ,xn]/J), and say J = (/,,...,/)

is any ideal base. Then we may assume that for / = 1,2,

Z,. = Spec¿[e,x]/(/, + £g,(í),...,/ + egj'>)

with the gy'' E ¿[x]. One checks easily that then

(4.0.1) Zx + Z2 = Spec (k[e,x]/(fx + e(g,(I) + g/2>),...,/ + «¿»> + g™))).

Similarly, if Z is given by fj + tgj,j = 1, ..., s, then for b E ¿, bZ is given

by^ + eègy.

Now suppose Z, and Z2 are given in tF together with sections a¡: D -» Z¡,

which pass through the singular point x of the closed fibre A'. Then we define

(a, + <r2): D -* Z, + Z2 to be a*(a, © a2), where a, © o2 : D ®k D -* Z,

©^ Z2 is the natural morphism determined by a¡ on the ith summand-thus:

P
Zx +Z2 ■*zt bxZ2

h +°2 V.©a,

D i   /

Similarly we define bo to be ju* (o) for ¿> in ¿, and Z E tF with section a.

Explicitly, given Z,, Z2 as above, let / be the ideal in 0Z ffi z which defines

a, © o2. Then the ideal of a, + o2 is obtained by lifting / to Z, + Z2 viap (see

the diagram above). Now if fl, is the affine ring of Z(-, and if I¡ is the ideal of

a,- in fl;, then I = IXXBI2C Bz■ ejrz2 (say A" = Spec (fl) = Spec (fl,/efl,)).

Assume that Z¡ ^ A"D = Spec(¿[£,x,.x„]), and that x is the origin of the

closed fibre. Then, in the ambient space,

h = {*! ,('), ,xn-a^e]k[e,xx,...,xn],

Mfor some ay' E k, so that
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7, X 72 = {(Xj - aUeUXj - aVeV)}]_xk[eU¿2\xx,.. .,xn].

(Here we view

zi ®x z2 ** A2> ®aï A2> = Spec*[e(1),e(2),jc,,... ,xn\,

e"\ r2' correspond to (e,0) and (0,e).) Consequently, the ideal of ax + a2 is

(ambiently):

(4.0.2) {xj - (a<p + a^)e]^xk[e,xx,.. .,*„].

(4.1) Now let it: 36 -» 5 be the versal formal deformation of X in the sense

of Schlessinger [4]. (We will view 5 as the spectrum of a complete local ring

R, rather than a formal scheme.) Let N denote the intersection of the

components through x (the distinguished singular point of A now viewed as

the closed fibre of it) of the flat strata of Rj)s, n <y. We have seen in §1,

(1.2.4), that Nj is the "prorepresentable hull" of the functor 9ly for (X,x), and

that the versal formal normally flat deformation of order/ is

Pr2

(The versal section is (i, \N), i being the inclusion of the closed subscheme

Ay =-» 36.) In particular the tangent space to the functor 91^-, i.e. 9ly(/c[e]/£2) is

TN , the tangent space to the k-scheme N at the closed point x. Recall (§1, 1.1.1)

that for an artin local ¿-algebra A with residue field k,

®>M) =def {(Z.o)lz S F(A),a: Spec (A)

-»Za section such that Gr0 (Z) is flat/4 through degree/}.

We note that the forgetful morphism of functors 9ly- -* F which forgets the

section a is represented by it « i: Nj -* 5. Let 5- denote the (scheme-theoretic)

image of this map(M):

(^JN.B.: The functor represented by Sj contains, but is not necessarily a prorepresentable hullof

the image of the morphism of functors. The point is that Nj is finite, but not in general étale-or

even flat-over Sf, for example in the case when (X,x) is a strict complete intersection Nj -* Sj is

the normalization (char 0).
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(4.1.0)

Thus we have a diagram of tangent spaces

6
'w • — *N-

"j "l,x - r*'o = '"

(4.1.1)

where s0 denotes the closed point of S, and 5 is the map on tangent spaces

induced by ir\N. Let Kj denote the kernel of 8.

(4.2) Our first step is to study Kj. It is clear from the definition that Kj is the

space ofj-sections of the trivial deformation (over ¿[e]/e2), i.e. of X Xk D, which

pass through x, the origin of the closed fibre. Now if X ^ Ak, so that

Xxk D °* Spec (¿[e,x,,... ,xj) = A"D, any section a through the origin

corresponds uniquely to a tangent vector a: D -» X at x. The image of a is then

of the form z, = • • • = zn = 0, where zi = x(- - a¡e; we think of a

= (ax,...,an)ekn = TXtX,

Let / denote the ideal of X in A¡J, and choose a standard base fx, ..., / of

J with respect to M, the maximal ideal of the origin ((2.2)). Then in terms of

the new coordinate system z, in A"D, the trivial family is defined by the ideal

/' = (/,(z + at),... ,fs(z + ae))k[e,z]

where z = (z,,..., z„), a = (ax.a„). Let v¡ = vM(f¡).

(4.2.1) Proposition. TAe section o of the trivial family given by x¡ h» a¡e is in

Kj if and only if

a-Vf¡ E A/"' + J for i such that vi < /

and

a • V/ E M7+ + J for the remaining i.

(Here V/ = (3//3x„ .... 3//3x„) is the "gradient" o//.)

zn whereProof. We note that the ideal / of a is generated by z,, .

z¡ = x¡ — a¡e. Hence by (2.14), o E Äy-i.e., o is normally flat of order/-if and

only if there exist g¡ £/',/= 1, ..., s, with g¡ (mode) = / and such that:
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P(2)(g¡) > v¡      for those i with v¡ </,

viz\{g¡) >/       for the remaining i.

Now such a g¡ is of the form /(z) + eh¡(z) where pmQi¡) > p¡ (resp. vM{h¡)

>/). On the other hand, by the description of 7' above, /(z + ae) = /(z)

+ ea • V/(z) is also in 7', so that e(h¡ - a ■ V/) G 7', i.e. h¡ - a • V/ G 7.

Thus the existence of the g¡ is equivalent to the existence of h¡ with vM(h¡) > rç

(resp >/) and a • V/ = h¡ (mod7); this is evidently the same as the assertion

of (4.2.1). Q.E.D.
(4.2.2) Remark. Suppose A is a hypersurface, so that 7 = (/), with, say

vm(Í) = p' Then (4.2.1) may be stated more simply: a is normally flat of order

j (< p — 1) if and only if

(*) "M(a-Vf)>j

(with notations as above). In fact, by (2.6.1), the condition is that 7'

= (/(z) + eh(z)) with ïvz)(A) >/ if/ < v — 1 (normal flatness of order y

> ? — 1 is equivalent to normal flatness of all orders, so the restriction on/ is

only apparent). Now just as in (4.2.1), if/ + eh G 7', then a-Vf-h G 7, i.e.

a • V/ G M-'+1 + 7. However, since 7 C M", and/ < p — 1, the condition is

simply (*).

(4.2.3) Example. Let A be the cusp f(x,y) = y2 + x3 = 0. Then V/

= (3x2,.y), and the vectors a = (ax,a2) which satisfy (*) above for/ = 1

(normal flatness of all orders) are the multiples of (1, 0).

Returning to the general situation, it will be clarifying to interpret the

conditions of (4.2.1) as conditions on initial forms. For this, let <p¡ = Inw (/),

vi = vM(f), and everything is as in (4.2.1). In addition we will denote

f = Gtm (J,R). Now given a G k" = Tx , notice that the condition a • V/

G M"' + 7 is equivalent to the condition a • Vcp; G %, since the only possible

terms of degree < p¡ in a • V/ are those of degree vi — 1 coming from

a ' V*Pi (fi = <Pi + higher order terms). Similarly, if p¡ > y, the condition

a • V/ G Mj+1 + 7 is equivalent to a • V<p(. G 9K/+1 + % where 91L denotes the

ideal of the vertex in GxM (R). Thus (4.2.1) becomes:

(4.2.4) If we identify sections a of the trivial deformation with their correspond-

ing a G Tx    = k" (as in the beginning of (4.2)), then

A, = < a G 71* „ \a • Voo, G < ... >.
j      i_ ^i       r,      ^j + 6jn/+i       otherwise)

(Recall 0X>JC = J?/7, R = 0A» , M = max(R),/[,...,/ an M-standard base
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for/, v¡ = vM(f¡), <p¡ = Inw (/), f = Gtm (J,R), 911 the ideal of the vertex in
GrM(R).)

(4.2.5) We have seen that K may be identified with a subspace of TXx via

ffH>aas above. On the other hand, Kj is the kernel of TN -» Ts.x (3.1).

Therefore

K = TN.   n T*

where j0 is the closed point of S. Hence, since XJo = X we get another

embedding K^ Tx x. We want to check that these two embeddings are the

same. To see this, let o E Kj C °Hj(D) = U (more precisely we should think

of the element of 91¡(D) as the pair consisting of the trivial deformation over

D together with the section o). Now since %. = TN.x (1.2.4) o corresponds to

a unique d: D -* N:

In particular the pullback via 3 of

N¡ x, X

Pri

Ni

is the trivial deformation. This means that Im(/ • 3) =-* £s, and so the

identification oí o E Kj with a tangent vector of X¿ at x is made explicit:

o K-» (/ • 3). On the other hand, we know that o may be recovered as the

pullback by 3 of the versal section (lN.,i): N¡-* Nj Xs X. Thus o is (1^, i • 3):

D -+ D Xk £So = D Xk X, so that if o corresponds to a E TXx (first embed-

ding), / • 3 is given on coordinate rings by x(- (-» ea(., in other words, / • 3 is also

the tangent vector a. We get the result: The functorial expression of either

embedding is a \-> i • 3. As a consequence,

(4.2.6) TAe subspace K- C TXx described explicitly in (4.2.4) is the tangent

space of Nj D X at x (we view X = Xf ).
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(3>
(In the above figure, the horizontal plane is included solely for

spatial reference; only X and Nj are actually contained in J.)

Figure (4.2.7)

(4.2.8) Remark. We note that K0 is the space of all possible sections of the

trivial deformation, so that K0 — TXx. On the other extreme, let / be an

integer > sup¡(v/x^(f¡)), where the/ are an (x)-standard base of J as usual.

Then 9ly+r = 91- for all r > 0 (so the same is true of the A7s). Namely,

normally flat of order/ means that each/ has been deformed without lowering

v¡ (2.14). But then the family is normally flat (i.e. of all orders) by (2.13).

(4.3) Relationship of the K with the tangent additive spaces. Let X °-> A"k (in

either the geometric or formal sense), and let U be any subscheme of Ak. We

can ask whether translation by U-in the sense of the additive vector group

structure on AMeaves X invariant. More precisely, if a: A" X A" -* A" is the

addition of vectors, we ask if the restriction of a to U X X factors through X.

More generally, let Xj denote the/th infinitesimal neighborhood of the origin

x E X; as usual, we think of x as our distinguished singular point of X. Then,

given U as above, we ask if
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(*) U leaves X} inside A, i.e. the restriction of a to U X Xj factors through X.

(This is of course much weaker than leaving A invariant.)

(4.3.1) Given X <=-* Ank, there is a maximum U with the property (*), which

we denote by Uj(X,x), and which is a subscheme of A.

Proof. The map a is given on rings by z¡ \-* z¡ + u¡, where we view

AK X Ank = Spec (k[ux,... ,un,zx,... ,zn]).UX is defined by the ideal7in A",

the condition that U = Spec {k[ux,... ,wj/21) satisfies (*) is then that

(4.3.2) f(z + Ü) G (21 + 7 + (z)J+l)k[u,z]   for all/ G 7.

Now choose a ¿-basis of k[z]/J + (z)J+   consisting, say, of monomials

zr — zj1.z£\ as r ranges over a certain finite set of multi-indices. We can

think of /(z + m) as the Taylor series

/(z + «)=/(«) + z.V/(«) + ...,

in which the coefficient of zj1,..., zr¡¡ is

D,(f(u)) - l/rl^M/dtQ, ...,Mj

where |r| « r, + • • • + r„, ri — r, ! • • • rn\ (12). Then (4.3.2) is satisfied if and

only if Dr(f(u)) G 21 for each r and each/in 7. Hence the ideal generated by

these Dr(f(u)) defines the largest i/with the desired property. Moreover, since

the ideal in question contains 7 (i.e. D0(f(u))), Uj (A, x) =-» X.

(4.3.3) Uj(X,x) represents the functor qfj-sections of the trivial deformation of

X, through x, which induce a trivial deformation of Xj. In fact, let t denote the

0-section of the projection Uj Xk Xj -* Uj (where Uj = Uj(X,x)). By hypothe-

sis, from the addition map we have ÍZ- X Ay -*» X; thus we get an embedding

i — (Pri > û): UjXXj^ UjXX, which fits into a commutative diagram

U, x Xtc---► Uj x X

\      /

\

It is clear that i ° t gives a section of Uj X X, and that the y'th infinitesimal

neighborhood of this section is just the image of / (and is therefore the trivial

deformation of A- over U).

Now suppose, for some scheme 7, we have a /-section a of 7 Xk X -> T,

Í12) In characteristic p we take DrJ(u) to mean the appropriate Hasse derivative, i.e. so that it will
be the desired coefficient in the Taylor expansion.



50 B. M. BENNETT

along which the/th infinitesimal neighborhood varies trivially (and of course,

o passes through x in the special fibre). This means that we have a

commutative diagram

where f is the 0-section and z" is an embedding, which reduces to the

embedding of Xj in X on the special fibre over T. Moreover, the composition

c = pr2 o /' ° t' maps T into X, and hence into Ak. It is then easy to check

that T xk Xj pT2°' > X is induced by the addition in A", i.e. that the diagram

A" x A"-2—► A"

c x inclusion

i'       L
T*kX,--X

commutes; the result follows from the maximality of £/•. Moreover, we get

(4.3.4) The various U(X,x) that are a priori associated to different embed-

dings of X in affine space (of any dimension) are canonically isomorphic.

What is the relevance of this to our functors 91, and in particular to our

study of their tangent spaces? Let AT denote the fibre of A^- over the special

point s0 of S, so AT = A/, n X where X = Xíq, and Kj = TN.j((4.2.6)(13). Then

Nj represents the functor of j-sections through x of the trivial deformation ofX.

This follows immediately from our basic set-up of (1.2), and is one way of

expressing the fact that the map Ay -» S induced by projection m: X -* S

represents the morphism of functors from 9ly to the ordinary deformation

theory of X which "forgets" the section. Thus it follows from (4.3.3) that

(4.3.5) Uj(X,x) is canonically contained in AT

However, it is easy to see that Uj(X,x) =£ AT in general (even on the level of

tangent spaces), or in other words, that a/-section of the trivial deformation

does not necessarily induce a trivial deformation of Ay (even to first order).

Indeed, suppose X is defined by an ideal J in Ak, and/ E J with vix\(f) = v.

Let / > v, and suppose that for some coordinate function z, the section

z = u,yx = • • • = yn_x =0 (where the yi's are the other coordinates on A")

i13) JvJ can also be described as the component through x e X of the simultaneous flat strata of

the sheaves J^.Pxjk.
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of the trivial deformation over k[u]/u2 is a /-section. Thus, if we change

coordinates by using z' — z — u instead of z, the family is then given by an

ideal 7' of k[u,z',y] which contains f(z',y) + udf/dz', and the section is the 0-

section. Assuming that / is part of a standard base for 7, the fact that

a: z' = yx — • • • = yn_x = 0 is ay-section implies in particular that p^df/dz'

> v; by suitable choice of/we may also suppose that

(t) a//3z' G7' + (z',y)y+1.

Now in order for the y'th infinitesimal neighborhood of a to be a trivial

deformation of A, we must be able to eliminate u from the generators of the

ideal 7' + (z',y)J by a suitable change of coordinates. In view of (f), this

change must be back to the original coordinates (z,y). But this change must

necessarily introduce u as the coefficient of the derivative with respect to z of

any monomial of degree/ + 1. Thus, if we have chosen 7 so that not all such

derivatives are initial forms of elements of 7, we see that the trivialization

cannot be accomplished. For example, we may take 7 = (f,g)k[z,yx,y2],

where/ = yx - z ,g=y2-z, and/ > 2.

However, it is easy to see that

(4.3.6) IfX: f = 0 is a hypersurface, with P(x)if) = v, then Uj(X,x) = Ñjfor
y < p — 1, i.e. for those/ which can give rise to distinct A's (recall that the N's

stabilize after j = p - 1 in the hypersurface case). Here Uj — Wj is the

subscheme of Ak defined by the partial derivatives of f of orders 0 through j.

As a corollary, we get

(4.3.7) If X: f = 0 is a hypersurface with Prx\if) — p,

Kj = TUj(X,x),0

forj < p - 1, where 0 denotes the origin.

As we have seen, (4.3.7) is false for general singularities. However, we will

find below that for arbitrary A, x, Kj coincides with the tangent space at the

origin of Uj(CXx,0) where Cx x is the tangent cone to A at x.

(4.3.8) Definition. Let A, x be an arbitrary singularity, and let Cx x denote

its tangent cone. Then U¡(CX x,0) as called thejth tangent additive space of X

at x, and is denoted AjXx (or just Aj, if there is no danger of confusion).

(4.3.9) Remark. We clearly have

cx,x = Ao D '•• => Aj 3AJ+l3--DA- HAj,

where A is the largest subscheme of A" = TXx which leaves Cx x invariant by

translation; A is thus a subgroup-scheme of Txx (this is false for Aj when/ is

small). In characteristic 0, A is a linear subspace of A" = Tx x, which can also

be described as the largest linear subspace which splits off Cx x, i.e. CXx
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= (CXx/A) XkA. This linear subspace is sometimes called the strict tangent

space to X at x, denoted fXx. In characteristic p, A involves finite subgroup-

schemes of Tx x which arise from/?th powers in the equations of this cone; this

is related to the phenomena studied by Hironaka [12].

(4.3.10) Theorem. For any X, x, and anyj > 0,

Kj = TAj,X.xfi

where 0 is the origin, and Kj is the subspace of t^ introduced in (4.2), i.e. the

space ofj-sections through x of the trivial first-order deformation of X.

Proof. Let z,,...,zn denote the coordinates on A", and let D

= Spec (¿[e]/e2). We will identify a tangent vector a = (a,,... ,an) in TA„0

with the map a: D -* A" defined by z¡ i-> a¡e. Then a is in TA 0 <^» 7^, 0 if and

only if the composition

DXkCx¡xJa^AnXkA"-^An

factors through CXx (where CXx, denotes the/th infinitesimal neighborhood

of the vertex in CXx, and i: Cx xj "^ A" is the inclusion; a denotes vector

addition as usual). Now the image of this mapping is defined by the ideal

ft E k[zMz + ea) C £¿[e,z] + (z)j+lk[e,z]}

where z = (z,,... ,zn), a — (ax,...,an) and %■ is the ideal of CXx in A".

Hence a E TA. 0 if and only if % itself is in this ideal, i.e.

<p¡(z + ea) E £¿[e,z] + (z)j+lk[e,z]

where the <p¡ generate % we may assume for example that the 9,- are the initial

forms of the elements of an (x)-standard base for /, where J is the ideal of X

in A". Noting that (p,(z + ea) = <p¡ + ea • V<p(-, the condition above is equiva-

lent to a • V<p(- E j- + (z)J+ for each /. Now for those / such that v¡ = degç>(-

< /, deg(a • Vç>,-) = v¡ - 1 < /, so that for these /, a • Vq>¡ E J- + (z)J ** a

• Vqp, E %. We get:

tAj,o = {« 6 r^|« • v*,. e II + {2)J+X    12^L}

and the result follows from (4.2.4).
(4.3.11) Remark. Even though Kj = Tj¿ x agrees with TA for any X, x, it

is not true that AT, = A¡ Y r; in fact when X is an isolated singularity AT, is

always artinian, but Aj need not be (/ > 0). When A" is a cone, however, (with

or without isolated singularities) and x is the vertex, then one can show
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Ay = Aj-, this case, together with the hypersurface case (4.3.6) are essentially

the only situations where this is true. A study of the higher order structure of

the Ñ for general singularities will be the subject of a sequel to this work; even

in the hypersurface case much more can be said. At any rate, it is shown in

[14] that Ay is the normalization of its image in 5y when A is a strict complete

intersection at x in characteristic 0, and in characteristic p is a purely

inseparable cover thereof.

(4.4) The image of 8. Up to now we have been concerned with the kernel Kj

of the map

8: ta. = T»   -> T?. — tu'%
% S,s0

of tangent spaces induced by

►i

where 5 is the space of formal moduli of A, i.e. the prorepresentable hull of

the ordinary deformation functor F of A, and 36/5 is the versal formal

deformation with special fibre A = 36i(). We have seen that Kj can be

interpreted either as the space of/-sections of the trivial first-order deforma-

tion of A, or as the first-order "y'th tangent additive space" to A at x (4.3). We

now want to study the image of 8 in Ts . (Of course, we can view the image

as lying in TSt, where 5,- is the image of Ay by v.; however this will not be so

important in the present content.)

The image of 8 can be described in terms of a certain filtration of Ts s .

Indeed, although we think of Ts s as a vector space, it also has a canonical 0-

module structure, where 0 = 0^- x. In fact, let 0 = R/J, where R is the local

ring at x in some smooth space W over k in which A is embedded (locally at

x). Then, according to the theory of Schlessinger we have an exact sequence

of 0-modules which gives an explicit realization of TSs :

(4.4.1) 0 -» Dtrk (0,0) -> Der* (R,0) -> Home C/A©) Ts,s0

which comes from dualizing the exact sequence of differentials 7/72 -» ülR/k

®k 0 -» Ql6/k -* 0. Equivalently, in the language of the cotangent complex of

Schlessinger-Lichtenbaum [5], [13] the sequence (4.4.1) may be written

o-&->'*# W,x N
X/W,x ÀX,x
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where /: X °> W is the inclusion, and Nx/W is the normal sheaf to X in W.

Thus 7¿ío, tF, TXx all stand for the same object. In this section, where we wish

to stress the 0-module structure, we will henceforth use the notation TXx, or just

r1 for short, instead of TSsq or tP We have, from (4.4.1):

(4.4.2) r1 - (J/J2)*/*.

where * denotes 0-dual, and A is the submodule consisting of those homomor-

phisms, which, for some k derivation D of fl to itself, have the form

/(mod/2) h> £»(/) (mod/).

Now we describe the filtration: Let/,, ...,/ be an (x)-standard base of J

(i.e. an A/-standard base where M = max(fl)), and let v¡ = vM(f¡). Suppose

the/ are arranged so that vx < v2 < • • • < i> ; for any positive integer/ we let

/(/) denote the largest index such that v^\ < /. Let F = Br denote the free 0-

module of rank r, with the standard basis e,,..., er, and let 91L = max(0).

We filter F* = Home (F,B) by letting

F* = The submodule consisting of those homomorphisms a

for which a(e¡) E 9!t"' for i < /(/), and a(e¡) E 91c/+1, i > /(/)•

Equivalently, if we identify F* with 0r via the dual basis e*, ..., e*, then

(4.4.3) Fj* = 91t"1 © • • • © 91t"'W © 9R/'+1 © • • • © 9R/'+1 C 0r.

Note that this filtration is not exhaustive, in fact (in the sense of (4.4.3)), for

/ > sup (?,•),

If = 91t'1 © • • • © 91t"'.

Now F maps surjectively onto J/J2 via e¡ t-> class of/, and hence we get an

injection (J/J2)   ^ F*. The filtration described above on F* induces one on

(y//2)*, i.e.

(^2);=def(^2)*n^*.

(4.4.4) Definition, t} is the image of (J/J2)* in Tl (in the sense of (4.4.2)).

That this definition is independent of the embedding 0 = R/J, of the choice

of standard base is a corollary of the theorem below:

(4.4.5) Theorem. 1^ is the image of TNx in Tl = Ts¡o by ô.

Proof. The image of TN in Tx is the space of first-order deformations of

X, say over k[e]/el, which admit a/-section. If Z is such, with/-section say

2j = ... = zn = 0, then in terms of our standard base/,, ..., / it is given by
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equations/(z) + eg¡(z), i = 1.r, where we view the g¡ as being in R; by

our criterion (2.14) we may assume that they satisfy: ^(g,) > p¡ for i < /(y),

and PMig¡) >/ for /' > /(y). Moreover, since Z is flat over k[e]/e2, we know

that the g¡ are representatives in R of elements (*(/•) G 0, where/ denotes the

class of / in 7/72, and a G (7/72) . Now the conditions above on the

"OoUOO) imply a fortiori that ̂ M/)) > p¡ if / < /(/). and i%(a(/)) >y
otherwise. We have shown, therefore, that the image of 5 is contained in Ij1.

Conversely, suppose a deformation Z over k[e]/e2 is in 71. Z is defined by

equations/(z) + eg¡(z), i = 1, ..., r, in R[e]/e2 (where now zx, ..., zn denote

a regular system of parameters of R). Moreover, if g¡ is the image of g¡ in 0,

then by definition of T¡, (gx,... ,gr) is in 91L"1 © • • • ® Vl"™ ® 9tt/+1 © • • •

© 91t;+1 modulo the submodule generated by (dfx/dz¡,.. .,dfr/dz¡), I = 1,

..., /j. This means that for some choice of

(hx,...,hn) ER",   (sx,...,sr) E/,

(ft,... ,ft) G M"1 © • • • © M"'0> © Mj+1 © • • • © Mj+\

we have

{4A.6) (gx,...,gr) = (gx+ îh^ + sx>...,§,+ îh^ + sry

Now we want to show that the deformation Z admits a j-section); in fact we

claim that z¡ = —eh¡, I = I, ..., n, is such a section. To see this, let z¡

= z¡ + eA/ (so the section is a: z¡ — 0, / = 1, ..., n). Then in terms of the

coordinates z¡, for each /':

/(z) + eg,(z) = /(z- - eA) + egi(z - eh)

= /(f) + e(-2iA/(z)M| + g,(z)).

Now by (4.4.6) the expression in parentheses is just ft (z) + s¡, so we get: For

each    i = 1.r, /(z) + eg,(z) = /(z) + eft(z) + ej,.,    with     ^(ftiz*))

> p,. for i < /'(/). and v/¿\(g¡(¿)) >y otherwise. However, since s¡ is in 7

= (/]>••■ >/)-R> and e2 = 0, it is easy to check that the ideal generated by the

/ + eg¡ + es¡ is the same as that generated simply by the/ + eft. Hence we

conclude from (2.14) that a is ay-section. Q.E.D.

(4.4.7) Remark. Since the image of 8 is functorial, it follows that the

filtration 71 is intrinsic, and is independent of any choice of embedding or

standard base.

(4.4.8) Example. If A: /= 0 is a hypersurface, T1 can be identified with

k[[z]]/(f,df/dz¡), where we view x = origin. Suppose P/2)(f) "■ P. If j < v

-1,  then Tjx is just (z)7+1 ¿[[z]]/(/,a//3z,.). If/ > v - 1, f is
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(¿)"*[M/(/,3//3z,.).

The following theorem summarizes the main results of §4:

(4.4.9) Theorem. Let 9ty denote, as usual, the functor of normally flat

deformations of order j of X at x, and let F denote the ordinary deformation

functor of X. Let 8: t^ -> tF be the map on tangent spaces induced by the

morphism of functors which forgets the section. Then (noncanonically)

(4.4.10) t%j=*Kj(BT}1

where K may be canonically identified with

(i) ker5,

(ii) the space of j-sections through x of the trivial first-order deformation of X

((4.3.4)//.),
(iii) the tangent space at the origin to the "jth tangent additive space A ■ Xxof

X at x" (4.3.10),

And T> is

(i) the image of 8 in TF(= Tl in the notation of Schlessinger),

(ii) /Ae//A piece in a certain filtration of Tl, induced by the 91t-aa7c one (via the

canonical structure of Tl as B-module (4.4.5); Aere 0 = 0^x, 91t = max(0).

Remark. It is interesting to inquire whether the splitting in (4.4.10) is in any

sense canonical. This is equivalent to asking whether each element of T¡1

(viewed as a first order deformation of A") has a canonical/"-section. Note that

for the proof of (4.4.5) we only have to produce some /-section.

Bibliography

1. A. Grothendieck and J. Dieudonné, Éléments de géométrie algébrique, Inst. Hautes Études

Sei. Publ. Math. No. 32 (1967). MR 39 #220.
2. D. Mumford, Lectures on curves on an algebraic surface, Ann. of Math. Studies, no. 59,

Princeton Univ. Press, Princeton, N. J., 1966. MR 35 #187.
3.   -, Further pathologies in algebraic geometry, Amer. J. Math. 84 (1962), 642-648. MR

26 #6177.
4. M. Schlessinger, Functors of Artin rings, Trans. Amer. Math. Soc. 130 (1968), 208-222. MR

36 #184.
5.   -, Thesis, Harvard Univ., Cambridge, Mass., 1964.
<5. B. M. Bennett, On the characteristic functions of a local ring, Ann. of Math. (2) 91 (1970),

25-87. MR 40 #5608.
7. M. Lejeune-Jalabert and B. Teissier, Normal cones and sheaves of relative jets, Thèses, École

Polytechnique.
8. H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic 0.

I, II, Ann. of Math. (2) 79 (1964), 109-203, 205-326. MR 33 #7333.
9. B. Teissier, Deformations à type topologique constant. I, II, Séminaire Douady-Verdier,

Secrétariat Mathématique, Paris, 1972.
10. J. Wahl, Deformations of branched covers and equisingularity, Thesis, Harvard Univ.,

Cambridge, Mass., 1971.
11. F. Pham, Classification des singularités, Université de Nice (mimeographed notes).



normally flat deformations 57

12. H. Hironaka, Additive groups associated with points of a projective space, Ann. of Math. (2)

92 (1970), 327-334. MR 42 #4553.
13. S. Lichtenbaum and M. Schlessinger, The cotangent complex of a morphism, Trans. Amer.

Math. Soc. 128 (1967), 41-70. MR 35 #237.
14. B. Bennett, Normalization theorems for certain modular discriminantal loci, Compositio

Math. 32 (1976), fase. 1, 13-32.
15. J. Giraud, Sur la théorie du contact maximal, Math. Z. 137 (1974), 285-310.
16.   -, Contact maximal en caractéristique positive (preprint).

Department of Mathematics, Stanford University, Stanford, California 94305


