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Abstract.   An investigation is made of the differential equation

d^w/dx1 = [u2(x - x0)xf(u,x) + g(u,x)/(x - x0)2}w,

in which m is a large real (or complex) parameter, X is a real constant such
that X > -2, x is a real (or complex) variable, and f(u,x) and g(u,x) are
continuous (or analytic) functions of x in a real interval (or complex domain)

containing x0. The interval (or domain) need not be bounded. Previous

results of Langer and RiekstinS giving approximate solutions in terms of

Bessel functions of order 1/(X + 2) are extended and error bounds supplied.

1. Introduction and summary. A differential equation of the form

(1.01) d2w/dx2 - {u2f(x) + g(x))w,

in which « is a large parameter and the functions f(x) and g(x) are indepen-

dent of x, is said to have a simple transition point, or simple turning point, at

x = x0 if/(x0) = 0 and/'(x0) ¥^ 0. More generally, if f(x) has a zero at x0

of order m, then equation (1.01) is said to have a transition point of order m

at x = x0.

The foregoing definition may be extended to cases in which

f(x) = (x- xQ)Xh(x),

where h(x) is finite and nonvanishing at xQ, and the constant a is an

unrestricted real number, usually to be regarded as fixed. In these circum-

stances we may say that equation (1.01) has a transition point oí fractional

order A at x0. The problem of constructing asymptotic solutions of (1.01) for

large u which are uniformly valid in a region containing x0 was first solved for

arbitrary values of À by Langer [1], [2], [3]. In [1] Langer made the following
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assumptions: À > 0; the variable x ranges over a bounded or unbounded real

interval containing the fractional transition point x0; the function g(x) is

bounded as x -» x0 ; and the large parameter u is real or complex. In [2] these

results were extended to the complex x-plane. In the third paper [3] he made

further extensions to permit X > -2, and g(x) to possess a simple or double

pole at x0. In each case Langer constructed approximations for the solutions

in terms of Bessel functions of fixed order, accompanied by asymptotic

estimates of the corresponding error terms. These error estimates take one of

two forms depending whether \u (x - x0) | is bounded away from infinity

or bounded away from zero.

More recently, in a survey paper [8] Riekstinä extended Langer's result in

the case of real variables, by showing that the condition concerning the

behavior of the function (x - xQ) g(x) at x0 can be eased from analyticity to

(* - x0)2g(x) = a + 0{(x - x0)a)      (x -* xQ),

where a and a are constants, a being positive.

One of the purposes of the present paper is to show that the conditions on

f(x) and g(x) given by Langer and Riekstinä can be further weakened. The

primary purpose, however, is to supply strict and realistic error bounds for the

known asymptotic solutions, both for real and complex values of u and x. The

availability of error bounds is of obvious computational value. Equally

important, however, is the theoretical consideration that by examining the

asymptotic behavior of the bounds as |«| -» co, we can cope-in an almost

trivial manner-with a considerably enlarged class of differential equations of

the form (1.01) in which f(x)andg(x) aie replaced by functions J\u,x)

and g(u,x) that depend on « as well as x. Furthermore, the bounds

facilitate exploration of the uniformity of the approximate solutions with

respect to other parameters that may be present in the differential equation,

for example X. These extensions greatly increase the scope of the asymptotic

theory. The analysis that we shall give draws heavily on results given in the

writer's recent book [5], and it will be assumed that the reader has some

familiarity with this work.

The case X < -2, for which equation (1.01) possesses an irregular singular-

ity at x — xQ, and the case X = -2, for which the singularity is regular, were

excluded by Langer and Riekstins, and will also be excluded in the present

investigation. This is because uniform asymptotic approximations in terms of

elementary functions, complete with error bounds, have been given for these

cases in [5, pp. 203-205 and 220-224]. Other cases for which error bounds have

been published include X = 0 with g(x) continuous at x0, X — 1 with g(x)

continuous at xQ, and X = -1 with (x - x0) g(x) analytic at x0; see [5,

Chapters 6, 11 and 12, respectively]. Also, error bounds for X = 2 with g(x)
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continuous at x0 are included as a special case of a theory supplied recently

by the present writer for differential equations with two coalescing simple

turning points [6].

The results given in the present paper for general values of a specialize into

results similar to those just cited for the cases X = 0, ±1 and 2. The new

results also include further cases with X = 0 and g(x) unbounded as x -* x0

that are important in the calculation of phase shifts in scattering theory; see

[5, pp. 208-211 and 449-451]. Thus the present analysis achieves a unification

of the error theory of second-order differential equations in regions containing

a singularity or turning point that is analogous to the unification in the

asymptotic theory achieved by Langer's work. It needs to be emphasized,

however, that each of these unifications is confined to the first approximations

to the wanted solutions. Except in the cases X = 0, ±1 it is not known how to

construct asymptotic expansions for the solutions in descending powers of the

large parameter that involve only functions of a single variable; see [4, §§2-6].

The paper is arranged as follows. §§2-5 are concerned with real values of u

and x. In §2 the Liouville transformation is applied to convert equation (1.01)

into a standard form in which/(x), or more generally f(u,x), is replaced either

by ¿(X + 2) xx or by -|(X + 2) x , these alternatives being designated Cas-

es I and II, respectively. In §3 we state and prove a theorem for Case I which

gives approximations to the solutions of the transformed differential equation

in terms of modified Bessel functions, complete with error bounds. In §4 the

uniform asymptotic nature of these approximations is demonstrated by an

investigation of the behavior of the error bounds as u -» oo. For Case II, a

similar theorem and asymptotic investigation appear in §5; in this case the

approximants involve ordinary Bessel functions instead of modified ones. The

concluding section, §6, supplies the corresponding theory for complex varia-

bles.

Of course the cases of real u and x treated in §§2-5 can also be regarded as

special cases of the analysis given in §6 for complex variables. Separate

treatments of the real cases are desirable, however, because weaker, nonana-

lytic, assumptions can then be made concerning the functions /(«, x) and

g(u,x), and simpler and sharper error bounds can be found. Furthermore, the

methods developed for real variables will be applied in a forthcoming paper

[7] to the problem of constructing connection formulas for a transition point

of any integer multiplicity.

2. Transformation to standard form: real variables. In accordance with the

observations made in §1, our starting point is taken to be the differential

equation

(2.01)        d2w/dx2 = {«2(x - x0)Xf(u,x) + g(u,x)/(x - xQ)2}w,
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in which m is a positive parameter, X is a number such that X > -2, and

f(u,x) and g(u,x) are real.(2) This equation has real solutions when x > x0,

but, in general, these solutions become complex when continued along the real

axis through x0. Accordingly, we restrict x to the partly closed interval [xQ, b),

where the right endpoint b may be finite or +co.(3)

For x G [xn,b) and each value of u, we assume that d2f(u,x)/dx2 and

g(u,x) are continuous functions of x, and f(u,x) is nonzero. All quantities,

including x0, b, and X, may depend on u. Since f(u,x) is nonvanishing in

[x0,b), its sign is constant. In Case I we suppose that this sign is positive, and

in Case II that the sign is negative.

To convert (2.01) into a standard form, we apply the Liouville transforma-

tion. This means that we introduce new variables W and I, related by

W = x~x'2w, the dot signifying differentiation with respect to f. Then W

satisfies

(2.02) £f = {»2x\x - xnfffax) + p^% + iV*Ä*-W)V
dl        \. (x- xn) dl j

The relation between x and I is prescribed by setting

(2.03) x2(x-x0)Xf(u,x) = ±i(\ + 2)2l\

and stipulating that 1 = 0 corresponds to x = x0. Here, and in what follows,

the upper sign pertains to Case I and the lower sign to Case II. Integration of

(2.03) yields

(2.04) ^+2)/2=fX(t-xQf2\f(u,ttf2dt.

This equation defines a one-to-one continuous relationship between I and x.

We denote by ß the value of I corresponding to x = b; the value of ß is

positive, and finite or infinite depending whether or not the integral in (2.04)

converges as x -» b.

Writing

fax) - (X - Xn)X\f(u,x)\/lX

and substituting in (2.02) by means of (2.03), we arrive at the required form of

(2) Actually g(u,x) can be complex without any significant complications in the analysis and

final results.
(3) When X is an integer, equation (2.01) also has real solutions in the interval x < x0. These

cases can be accommodated in the present theory by replacing x by — x. With the further

specialization that X is a nonnegative integer and/(u,x) and g(u,x)/(x - xQ) are continuous at

x0, each solution is real on both sides of jc0. The problem of continuing the approximate solutions

through x0 in these cases is considered in [7].
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differential equation, given by

(2.05) d2W/dl2 = {±¿(X + 2)2u2£x + ttu,n/f2}W,

in which W = f^A(u,x)w, and

4(x- x0) f(u,x) dl

On carrying out the differentiations by use of (2.03), we find that when $(u,f )

is expressed in terms of the original functions it is given by

X(X + 4)    (X + 2)2/    S    \X+2

16-4     Vx-x0/

Here the arguments u and x have been suppressed, and primes denote partial

differentiations with respect to x.

The nature of the functions S m Ç(u,x) and <t>(u,Ç) is indicated by the

following lemma, the proof of which is a straightforward generalization of the

proof given in [5, p. 399] for the case X = 1, and therefore omitted.

Lemma. With the conditions stated in the first two paragraphs of this section,

£/(x - x0) is a positive, twice continuously differentiable function of x in [x0,¿),

and<b(u,Ç) is continuous in the corresponding ̂ -interval [0,/?).(4)

3. Real variables: Case I. From now on it will be convenient to replace the

symbol X by u - 2; thus p is a positive number that is independent of x,

though not necessarily independent of u.

By the lemma of §2 the function <b(u, £ ) is continuous on the right at £ = 0.

We introduce a number v defined by the relation

(3.01) ¿(pV-i) = ,*,(«, o),

and a function i//(w,I) defined by

«í>(«,n/?2 = (M2''2-i)/4í2 + iK«.n/f.

Clearly \p(u,Ç) is a continuous function of f in (0,/?), and 4>(u,Ç) = o(l/f ) as

£ -* 0+. With these substitutions the standard form of differential equation

for Case I becomes

C) At the left endpoints of the intervals, differentiability and continuity apply only on the right
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(3.02)      ^.(^+¿^i+miy:

compare (2.05). The strategy for solving (3.02) will be to approximate the

solutions by those of the equation

,3.03) ^.(^+¿^l)r.

Exact solutions of (3.03) are f1/2/,(«r/2) and £1/2Kt(u^12), where

Iy and Kv denote the modified Bessel functions in the usual notation. In the

present paper, we confine attention to nonnegative real values of the order v.

Referring to (3.01) we see that this implies that <p(u,0) > —\. Cases in which

<f»(t/,0) < -\ could be treated by analogous methods using modified (or

unmodified) Bessel functions of purely imaginary order, but details will not be

pursued in the present investigation.

For reference, we quote here some pertinent well-known properties of

modified Bessel functions of nonnegative order and positive argument, given

by

(3.04) /,(*) - ex/(2vxf2,   K,(x) ~ (n/2xf2e-x      (x - +00),

(3.05) /„(x) ~ (|x)7n> + 1),   K,(x) ~ T(v)/2(\x)'      (x -* 0+,r > 0),

(3.06) IQ(x) = 1 + \x2 + 0(x4),   K0(x) ~ In(x_1)      (x -> 0+).

Each of these relations may be differentiated with respect to x. For fixed v,

Ir(x) is positive and strictly increasing in the interval 0 < x < 00, and Kp(x)

is positive and strictly decreasing in the same interval. Lastly, the Wronskian

relation satisfied by the modified Bessel functions is given by

(3.07) %{Kv(x),Iy(x)) = 1/x.

Before stating the main result of the present section, we shall also need to

introduce a balancing function ß,,(x).(5) This is any conveniently chosen

function of x that is continuous and positive in the interval 0 < x < 00, and

has the properties

(3.08) Û„(x) = 0(x)      (x -► +00),

nr(*)-0(l)      (x-+0+,f>0),
(3.09)

ln(x-')i20(x) = 0(1)      (X-+0+).

(5) The significance of the name is explained in Remark (i) at the end of this section.
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Subject to these conditions the choice of tt¥(x) is at our disposal. Next, we

define

(3.10)
/,=    sup   {2Q,(x)I,(x)Ky(x)).

*e(0,oo)

From (3.04), (3.05) and (3.06) it is immediately seen that conditions (3.08) and
(3.09) are precisely those needed to ensure that /, is finite. One possible choice

for the balancing function is, in fact, fl,(x) = l/{2I¥(x)K,(x)}, and in this

event obviously lr—\.

Theorem 1. In the differential equation (3.02), let u be a positive parameter and

p and v numbers that are independent of x and satisfy u > 0 and v > 0. Assume

also that for each value ofu the function uV(«, £) is continuous in a finite or infinite

interval 0 < I < ß, and denote

(3.11)
i r tfas)
^ fi„(«r/2)

Then in (0,ß) equation (3.02) has solutions Wx(u,l) and W2(u,l) that are twice

continuously differentiable functions of I, and have the forms

(3.12)

where

(3.13)

(3.14)

(3.15)

(3.16)

wl(u,!) = ll/2{i,(ul,l/2) + 'ifa!;)l

^(«,n = f,/2{^(«í'i/2) + £2(«,f)},

h(u,l)\ < /,(«r/2)[exp{/,%>t(H)) - 1],

3e,(iq)

3Í < -[exp{/,\f(//)}-l],
2lK„(ul'i/2)

e2fan\ < KM^iwnßW)- il

3Í

provided that these bounds are finite.

In this result T denotes the variational operator defined in [5, pp. 27-29];

thus, for example,

V77) = If/Ä^aV.
M-h ß (M„e/2)
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Moreover, in conformity with this reference, we call H(u,£) the error-control

function for the present differential equation. In definition (3.11) the choice of

integration constant is immaterial, because the bounds (3.13) through (3.16)

involve only the variation of H.

To establish (3.13) and (3.14) we begin by substituting the first of (3.12) in

(3.02). After subtracting equation (3.03) satisfied by f l/2/,(«í',/2), we arrive at

the following inhomogeneous differential equation for the product of Ç^2 and

the error term e, («,£):

¿(t "\M) - (¿£"-2 ♦ ¿Jf¿)tt w, w»

- ^{s^im''1) * r*\w».
Then applying the method of variation of parameters and referring to the

Wronskian (3.07), we construct an equivalent Volterra integral equation

(3.17) ex(u,n = jj Jff K.(lv)^u,v)(Ir(uv^2) + ex(u,v))dv,

in which

(3.18) K(f, v) = iM^KrW2) - A-,(Mr/2)/,(«t/"/2).

When 0 < v < £ the monotonicity properties of the modified Bessel

functions quoted above show that

(3.19) /,(w"/2) < Iv(ut*/2)(   A>r/2) < K,(m^2).

Hence

(3.20) 0 < KG» < W^Wi*'/2)       (0 < v < a

Next, differentiation of (3.18) gives

iijp* = Ipu^-^i'M^Ki^2) - r,tt*K0»*/1».

Applying (3.19) and bearing in mind that I'v is positive and K'w is negative, we

see that

3Kq,i>)

5?
< \pu&-2V2{l'M>/2)K,(uv>>'2)

-***>**&£&
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and hence, by use of (3.07), obtain

H K,(w^2)      , M

11 km"12)

Having bounded the kernel and its f-derivative, we can solve the integral

equation (3.17) by the standard procedure of successive approximation^6) and

on using the definitions (3.10) and (3.11) we arrive at the desired bounds (3.13)

and (3.14). The proof of (3.15) and (3.16) is similar.

Remarks, (i) The name "balancing function" is suggested by the following

consideration. If Q„(x) is changed, then both the quantity /„ defined by (3.10)

and the total variation \ß(H) of the error-control function (3.11) are

affected. Moreover, it is apparent that when one of these quantities increases

the other is likely to decrease. To minimize the error bounds (3.13) to (3.16)

we need to choose Qy(x) in such a way that the best balance is struck between

/„ and \ß(H) in forming the product of these quantities^7)

(ii) The inequality (3.13) furnishes direct information concerning the relative

error tx(u,l)/l¥(ul*'2) in the first of the approximations (3.12). On the other

hand, inequality (3.14) does not supply direct information concerning the ratio

of dex(u,l)/dl to i//,(«r/2)M. that is, ¿/uif0,-2)/2/;(itf't/2). Meaningful
information is available indirectly, however, because the differentiated forms

of (3.04), (3.05) and (3.06) show that, except when v = 0, the ratio of

l/Kv(x) to xl'v(x) is finite and bounded throughout the interval x G (0, oo).

The apparent failure in the case v = 0 is attributable to the presence of a zero

in I'q(x) at x = 0.

Similar observations apply to (3.16), except that the case v = 0 is no longer

special. This is because the ratio of l/Iv(x) to xK'y(x) is finite and bounded

throughout x E (0, oo) for each value of v, including zero.

(iii) The condition that $(u,l) be continuous when I E (0,/J) is not

essential. From the conditions given on p. 218 of [5] it can be seen that

relations (3.12) to (3.16) still apply when iK«.f) has a finite number of

discontinuities in (0,ß), provided that %ß(H) is finite. The only change in

Theorem 1 is that 92 IVjdl2 and 32 W^dl2 are discontinuous at the disconti-

nuities of ifXw.f).
(iv) In the case ¡i = 1, inequality (3.21) could be applied to the analysis of

[5, pp. 441-442], to derive bounds similar to (3.14) and (3.16) for the

derivatives of the error terms associated with the series expansions of the

solutions. These bounds are simpler than those given in [5].

(*) For example, by application of Theorem 10.2 on p. 220 of [5].

O "Weight function" could be used in place of "balancing function", but this term is used in

a different context in §§5 and 6.

(3.21)
3KG»

3Í
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4. Asymptotic properties of the approximate . ti ns. In order that the

bounds (3.13) and (3.15) for the relative errors i i,s approximations to the

solutions Wx(u,Ç) and W2(u,$) are finite, it suft . > that the error-control

function H(u, f) defined by (3.11) is of bounded variation in the interval (0,ß).

From condition (3.08) it is clear that by proper choice of the balancing

function Sl„(x) we can arrange for the variation of H(u,£) to converge at

I = ß, provided that $~p'2\i{u,Ç)\ is integrable at ß. Similarly, at the other

endpoint £ = 0 the variation of H(u,Ç) can be made to converge as long as

|«K«>£)I is integrable when v > 0, or \M.U>$ ) bi£| is integrable when v — 0.

What is the asymptotic behavior of the error bounds as the parameter u

tends to infinity? The answer obviously depends on the way in which the

function \p(u,Ç) involves the parameter u. For illustration, we consider an

example in which ß = ce, and each of ¡i, v, and 4(u, £ ) = uXf ) is independent

of u. Other cases may be attacked along similar lines.

Example. Assume that:

(i) \p(Ç) is continuous in (0, oo).

(ii) ¡~^2\}fiQ;)\ is integrable at £ = +oo.

(iii) u/(£ ) = 0(fp-1) as f -» 0+, where p is a positive constant.

We first observe that these conditions ensure that uX£) meets all the

conditions given in §3 and the first paragraph in the present section. An

admissible choice of Slr(x) is furnished by

Q,(x) - 1 + x (f > 0), QQ(x) = (1 + x)/ln(<? + x"1),

where e is the base of natural logarithms. In consequence of condition (iii)

there exists a constant A such that |vXí)| < AC*'1 (0 < £ < 1). Hence in the

case v > 0 we have

%m_I/'JM_*<±Cj£!* _^rÄ
°-lv   '     pJo i + „„m/2 p.Jo i + uvi*/2     p2u2p/liJo    1+T

The last quantity is estimated by

0(m_1)      (u<2p),     0(M_1ln«)      (p = 2p),   or

(4.01) , ,
0(u-2ph      (p > 2p).

Next,

compare condition (ii). Adding this estimate to that for %<X(H) given by

(4.01), we see that %.«,(//), also, is estimated by (4.01).
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When v = 0, the analysis is modified by introduction of the factor

ln(<? + «"' f"M/2) in the integrals for \x (H ) and \M (H ). It is easy to verify,

however, that the final estimates (4.01) continue to apply to %>00(//).

Bearing in mind that the quantity ¡p defined by (3.10) is independent of u,

we see from (3.13) and (3.15) that the relative errors ex(u,l)/Ip(ulM'2) and

*ifa$)/KÁut^2) in ^ approximations (3.12) each have the estimates (4.01)

as u -* oo, uniformly with respect to l G (0, co). Moreover, the same esti-

mates also hold for f^K'l/2)3e1(w,f)/3f and í/r(MÍ"/2)3e2(M,f)/3f.(8)
These are the required asymptotic results for the present example.

5. Real variables: Case II. The standard form of differential equation for

Case II is given by

(loo      fH-^t"~!+eiFi+#r>
The approximating equation is taken to be

(,„2) ^.(-¿¿^i^iy,

with solutions f^W72) and £1/2 W/2).

For nonnegative values of the order v and positive values of the argument

x, relevant properties of the Bessel functions are given, for example, in [5, pp.

436-438]. And exactly as in this reference we introduce auxiliary weight,

modulus, and phase functions Ev(x), Mr(x), and 0„(x), respectively, such that

(5.03) Jv(x) = E;x(x)M,(x)cos0,(x),   Yr(x) = Er(x)M,(x)sin9,(x).

We shall also need to introduce corresponding modulus and phase functions

for the derivatives; thus

(5.04) J'p(x) = E;x(x)N,(x)cos<úr(x),   Y',(x) = Ey(x)N,(x)smU,(x),

with the same weight function Ey(x) as in (5.03).

The balancing function Qf(x) and error-control function H(u,I) are defined

exactly as in §3 above. Auxiliary positive constants that will be needed are

defined by

lvfl - sup{7tÜy(x)M2(x)},       /,t, = sup{7rQ„(x)|/vW|F,WA/,W},

/„>2 = sup{7tÜv(x)\Yv(x)\E;x(x)M,,(x)},

(8) Compare Remark (ii) at the end of §3.
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each supremum being taken over the x-interval (0, oo). It is easily verified that

all three suprema are finite; moreover, / , < lpJ0 and /r>2 < 1,$.

Theorem 2. Let u be a positive parameter and ¡i and v be numbers that are

independent of x and satisfy p > 0 and v > 0. Assume also that for each value

of u the function vX">£) '■* continuous in a finite or infinite interval 0 < I < ß.

Then in this interval the differential equation (5.01) has solutions Wx(u,l) and

W2(u,l) that are twice continuously different ¡able functions of I, and have the

forms

wx(u,i) = ix'2{JM'i/2) + hfat)l
(5.05)

rç(«>o = r1/2w'/2) + e2(«,m
where

(5.06)     \tx(u,l)\ < (/,il//,,o)F;1(«r/2)^(«r/2)[exp{/,i0%ií(/í)} - 1],

(5 07) ^MW < i^Afi^-^E-^^NM^)

x[exp{lyfi%iS(H)}-l),

(5.08)    \e2(u,l)\ < (/,Ao) WM/2)^(«r/2) x [txp{lV)n\ß(H)) - 1],

|3e2(«.OMI < MU'^^EM^WM11'2)
(5.09)

x[exp{lvß\ß(H)}-l],

provided that these bounds are finite.

The proof of this theorem is similar to that of Theorem 1, and it is

unnecessary to record details.

Similar observations to those made in §§3 and 4 also apply in the present

case. Thus if \p(u,l ) = yp(l ) is independent of u, and satisfies the conditions

of the example given in §4, then both

e1(«,n/{£;,wi/2)A/,(«r/2)},   hto)/iW*Wi*',*)i

are estimated by (4.01) as u -* oo, uniformly with respect to f G (0, oo).

Similarly for the derivatives. It may be noted that this particular example was

also treated by Riekstinä, and our results resemble those given on p. 73 of [8].

6. Complex parameter and argument. In this concluding section we consider

equation (3.02), that is,
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for complex values of u and f. We continue to suppose that p is real and

positive, and v is real and nonnegative. We assume that for each value of u

there is an open domain A(k), which contains Í = 0 and may be unbounded,

and tK«,í ) is holomorphic in A(«) except possibly at £ = 0. The domain A(m)

need not be confined to a single Riemann sheet.

Relevant properties of the modified Bessel functions for real orders and

complex arguments are given in [5, pp. 453-454], and exactly as on pp.

454-457 of this reference we introduce real weight, modulus, and phase

functions <Sr(z), Tl„(z), and d„(z), respectively, such that when |phz| < ¿9r,(9)

(6.02) \I,(z)\ = ff,(z)SR,(z)cos*,(z),       |A,(z)| - g,"1 (z)2Jc„(z)sin*,(z).

With the same weight function ®„(z) we also introduce corresponding

modulus and phase functions for the derivatives, given by

(6.03) \I'v(z)\ - g,(z)B,(z)cos«r,(z),      \K'v(z)\ = IS;l(z)9l,(z)*aLV,(z)$

again valid when |phz| < \w.

Next, the balancing function ß„(z) is defined to be a real or complex

continuous function of z, not necessarily analytic, which is nonvanishing in the

sector |phz| < \m, except possibly at z = 0, and has the following properties

in this sector:

ß,to = 0(z)      (\z\ -* oo),

0,(2)-0(1)      (!z|->0,?>0),

ln(z-')Q0(z) = 0(1)      (M->()),

each O-term being uniform with respect to phz. The auxiliary positive

constants needed in the present case are defined by

L„)0 = sup{2|ß„(z)|3K2(z)},       LPA = sup{2|n„(z)/„(z)|g;1(z)aic,(z)},

L,>2 - sup{2|0,(z)AF(z)|fifrWa»,(2)}.

Each supremum is taken over the sector |phz| < \tt, and is easily seen to be
finite.

Lastly, we again define

(') Outside the sector |ph;| < \tt the auxiliary functions are undefined.
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with any convenient choice of the constant of integration.

Theorem 3. With the conditions and definitions of the present section, the

differential equation (6.01) has, for each value of u, solutions Wx(u,Ç) and

W£(h>£) which are holomorphic in A(«), save at £ = 0, and have the forms

wí(«,n = f1/2a(«í,i/2) + e,(«.n},

^2(«,n = f1/2{^K,,/2) + 62(«,n},

where

(6.06)    |e,(«,ni < {LjL^M^nM1112) I«P{¿,,o %,*(#)} - 1],

|3*i(«.omi < irta,.i/^,o)i«í°,"2)/2i^(«r/2R(«r/2)

XlexpfL^itf)}-!],

when f G Zj (u) (defined below), and

(6.08)   |e2(«,f)l < (LjLpfi)<S;\utp/2)mM"/2)[^Lfß\ß(H)} - 1],

|3e2(«,f)/m < Íp(VL,,0)l«í°i-2)/2|e;1(Mf'í/2)9ír(«í'l/2)

X[exp{L,>0Tf>//í)}-l],

when £ £ Z2(u,ß) (defined below).

In this result the regions of validity Zx(u) and Z2(u,ß) are specified in a

similar manner to the case u = 1 treated in [5, p. 457]. Thus we denote by Z(«)

the intersection of A(«) and the sector |ph(«f M'2)| < \tr. Any branch of £*'2

may be employed, provided that it is continuous and used consistently

throughout.(10) Then Z, (u) comprises the set of points £ that can be linked to

the origin by a path(u) %x lying in Z(u) such that as v passes along S1 from 0

to £ both Reí«!/*1/2) and |f| are nondecreasing. The other region of validity

Z2(u,ß) comprises the set of points f that can be linked to an arbitrary point

ß = ß(u) of Z(tt) (possibly at infinity), by a path S^ lying in Z(u) such that as

v passes along S2 from ß to f both Re(i«>'1'2) and |f| are nonincreasing. Other

matters to be noted are (a) the argument af' of each function appearing in

(6.04) to (6.09) is the branch satisfying |ph(«f M'2)| < {-it; (b) the variations in

(6.06) and (6.07) are evaluated along the path %x, and the variations in (6.08)

(10) See also Remark (i) below.
(") Strictly, here, and in the definition of Z2(u,ß), a "path" means a finite chain of /?2-arcs in

the sense of [5, p. 147].
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and (6.09) are evaluated along â2; (c) the solution W2(u,l) depends on the

choice of ß.

The proof of Theorem 3 is similar to that of Theorem 1 above and Theorem

9.1 of [5, Chapter 12], and details are omitted.

Remarks, (i) By employing all possible branches of l^2 in the definition of

the region Z(u), the whole of the original domain A(«) can be covered by a

sequence of abutting sectors of angle 2it/¡i. In each sector, Theorem 3 furnishes

a pair of solutions of equation (6.01). The pair differs from sector to sector.

(ii) For large \u\ uniform asymptotic properties of the approximate solutions

can be investigated by a straightforward extension of the methods indicated in

§4.
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