
TRANSACTIONS OF THE

AMERICAN MATHEMATICAL SOCIETY

Volume 229, 1977

LIFTING IDEMPOTENTS AND EXCHANGE RINGSO)

by

w. k. nicholson

Abstract. Idempotents can be lifted modulo a one-sided ideal L of a ring

R if, given x E R with x — x2 6 L, there exists an idempotent e S R such

that e - x e L. Rings in which idempotents can be lifted modulo every left

(equivalently right) ideal are studied and are shown to coincide with the

exchange rings of Warfield. Some results of Warfield are deduced and it is

shown that a projective module P has the finite exchange property if and

only if, whenever P = N + M where N and M are submodules, there is a

decomposition P = A © B with A C. N and B Q M.

In 1972 Warfield showed that if M is a module over an associative ring 7?

then M has the finite exchange property if and only if end M has the exchange

property as a module over itself. He called these latter rings exchange rings

and showed (using a deep theorem of Crawley and Jónsson) that every

projective module over an exchange ring is a direct sum of cyclic submodules.

Let /(7?) denote the Jacobson radical of R. Warfield showed that, if R/J(R) is

(von Neumann) regular and idempotents can be lifted modulo /(7?), then 7? is

an exchange ring and so generalized theorems of Kaplansky and Müller.

The main purpose of this paper is to prove the following theorem: A ring R

is an exchange ring ¡S and only // idempotents can be USted modulo every leSt

(respectively right) ideal. The properties of these rings are examined in the first

section and the theorem is proved in the second section. The theorems of

Warfield are then easily deduced and a new condition that a projective module

have the finite exchange property is given.

1. Suitable rings. In this section, the rings of interest are defined, some of

their properties are deduced, and several examples are given. All rings are

assumed to be associative with identity and .7(7?) denotes the Jacobson radical

of a ring 7?.

1.1. Proposition. IS R is a ring, the Sollowing conditions are equivalent Sor an

element x öS R.
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(1) There exists e   = e G R with e — x G R(x — x ).

(2) 77zez-e  exists  e2 = e G Rx and c G R such  that  (1 - e) — c(l — x)

G J(R).

(3) There exists e2 = e G Rx such that R = Re + R(l - x).

(4) There exists e   = e G Rx such that 1 — e G R(l — x).

Proof. (1) => (2). If e - x = r(x - x2) then 1 - e = (1 - rx)(l - x).

(2) =» (3) Given (2) it is clear that e + c(l — x) is a unit.

(3) => (4) Given (3) write 1 = te + s(l - x) and define/ = e + (1 - e)/e.

Then/2 = / G Rx and 1 -/ = (1 - e)s(l - x).

(4) => (1) Given (4), e - x - e(l - x) - (1 - e)x G R(x - x2).   D

1.2. Definition. A ring is called suitable if each element satisfies the

conditions in Proposition 1.1.

It would appear that these rings should be called left suitable as it is not

clear that the definition is left-right symmetric. However, it will be proved

below (Theorem 2.1) that every "left suitable" ring is "right suitable", and

conversely. Thus the left-right analogs of all the results below are true.

If L is an additive subgroup of a ring R, we say idempotents can be lifted

modulo L if, given x E R with x — x E L, there exists e — e G R such

that e — x G L. Jacobson [3, p. 53] defines a condition on the radical of a ring

he calls "suitable for building idempotents". Hence the next result explains our

use of the term suitable.

1.3. Corollary. A ring is suitable if and only if idempotents can be lifted

modulo every left ideal.

Proof. Clear by (1) of Proposition 1.1.    D

If L is a left ideal of a ring R the idealizer of L is I(L) = {a E R\La Q L).

It is well known that L is an ideal of I(L) and L/I(L) =£ endÄ (R/L). In these

terms, the condition in Corollary 1.3 can be rephrased as follows: A ring R is

suitable if and only if, for every ideal of R, idempotents can be lifted in I(L)

modulo L. (If the condition is satisfied use the fact that x G I(R(x - x2)) for

each x.)

The next result is an immediate consequence of Proposition 1.1.

1.4. Proposition. Every homomorphic image of a suitable ring is suitable.

1.5. Proposition. A ring R is suitable if and only if R/J(R) is suitable and

idempotents can be lifted modulo J(R).

Proof. Assume the conditions and let x G R. Write x = x + J(R) and

ÏÏ = R/J(R). There exists S2 - a G Rx and c G 2? such that

T - 3 = e(T - x).

We may assume a E Rx. Choose/2 = /such that/ = a. Then u = I —f+ a
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is a unit in R and so e = u~ /w = h /a satisfies e = e E Rx. Since

ë = / = 3 it follows that (1 - e) - c(l - x) E J(R) so 7? is suitable by

Proposition 1.1. The converse is immediate.   D

It should be noted that Proposition 1.5 remains true if J(R) is replaced by

any ideal A Q J(R). This result enables us to show that the class of suitable

rings is quite large and, in fact, contains all semiperfect and all (von

Neumann) regular rings. Call a ring R semiregular if R/J(R) is regular and

idempotents can be lifted modulo /(7?).

1.6. Proposition. Every semiregular ring is suitable.

Proof. We may assume 7? is regular by Proposition 1.5. If x E R choose

y G R such that xyx = x and write/ = yx. If e = / + (1 — S)XS then e2 = e

E Rxand 1 -e = (1 -/)(1 - x).   D

1.7. Example. Let D denote a division ring and let S be a subring of D

containing 1. Define

R(D,S) = {(xx,x2,...,xn,s,s,s,...)\n > l,x, E D,s E S).

Then 7? is a ring (with componentwise operations) and 7? is suitable if and only

if the same is true of S. In fact, 5 is a homomorphic image of R while, if S is

suitable, the same is true of 7? by a componentwise calculation. Furthermore,

every nonzero left (or right) ideal of 7? contains a nonzero idempotent so

J(R) = 0.   D
A ring 7? will be called local if R/J(R) is a division ring. Such rings are

suitable and the ring L of all rational fractions with odd denominators is local.

Hence, if Q denotes the rational numbers, R(Q, L) is a commutative suitable

ring with zero Jacobson radical which is not regular (L is a homomorphic

image). This means R(Q, L) is suitable but not semiregular.

The next result provides another class of suitable rings and gives a

characterization of suitable rings among rings with central idempotents. Call

a ring clean if every element is the sum of a unit and an idempotent.

1.8. Proposition. (1) Every clean ring is suitable.

(2) A ring with central idempotents is clean ¿/ and only iS it is suitable.

Proof. (1) If x = e + u where e2 = e and « is a unit then

u[x — m   (1 — e)u] = ue + u  — u + eu = x  — x

and the result follows from condition (1) of Proposition 1.1.

(2) If 7? is suitable and x E R choose e2 = e G Rx with I - e E R(l - x).

If e — ax we may assume ea = a so that axa = a. If idempotents are central

then xa = x(ax)a — xa(ax) = (xa)ax = a(xa)x = ax. Similarly write 1 - e

= b(l - x) where (1 - e)b = b and 6(1 - x) = (1 - x)b. Then an easy cal-

culation shows that a - bis the inverse of x - (1 - e).   □
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We note in passing that the proof of (2) shows that every central element in

a suitable ring is the sum of a unit and an idempotent.

A ring is said to be reduced if it has no (nonzero) nilpotent elements. These

rings have central idempotents. Hence if a ring is either commutative or

reduced, it is suitable if and only if it is clean. In particular every strongly

regular ring (regular and reduced) is clean. However, the ring R(Q, L)

described following Example 1.7 is a commutative, clean, reduced ring with

zero Jacobson radical which is not strongly regular.

It is easily verified that every local ring is clean so there exist clean rings

with nonzero nilpotent ideals. Also, the ring of all n X n matrices over an

algebraically closed field is clean since every matrix is similar to a Jordan

matrix. Moreover it is not difficult to show that a ring R is clean if and only

if R/J(R) is clean and idempotents can be lifted modulo J(R). Hence the class

of clean rings is quite large.

Call a ring R potent if idempotents can be lifted modulo J(R) and every left

(equivalently right) ideal not contained in J(R) contains a nonzero idempotent.

Potent rings for which J(R) is a nil ideal have been variously called /-rings and

Zorn rings.

1.9. Proposition. Every suitable ring is potent.

Proof. It suffices to show that there is a nonzero idempotent in

Rx for each x G J(R). Suppose x G R is such that e2 = e E Rx implies

t? = 0. Given a E R choose e2 = e G Rax such that l-e£Ä(l- ax).

Then e = 0 and so 1 G R(l - ax). This means x G J(R).   D

If Z denotes the rational integers then, in the notation of Example 1.7, the

ring R(Q,Z) is a commutative potent ring with J(R) = 0 which is not

suitable.

The next result is easily proved and will be referred to below.

1.10. Proposition. If R is suitable and e2 = e E R the ring eRe is suitable.

Proof. If x G eRe choose/2 = / G Rx such that \ - f E R(l - x). Then

fe = /so (eff = ef E (eRe) and e - ef = e(l - f)e E eRe(e - x).   D
Using this result, a natural extension of property (4) in Proposition 1.1 can

be proved which leads to a result about lifting orthogonal idempotents modulo

a left ideal.

1.11. Proposition. Let R be suitable and suppose x, 4- x2 + • • • + xn = I in

R. Then there exist orthogonal idempotents ex, ...,en such that e¡ E Rx¡ for

each i and ex + • • • + en = 1.

Proof. Assume zz > 2 and proceed by induction. Given xx + ••• + xn+x

= 1 choose an idempotent/ G R(xx + •■• + *) with 1 -/ G Rxn+X. Write
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/ = r(xx + • • • + xn). Since /7?/ is suitable, choose (by induction) orthogonal

idempotents/j,/2, ...,/, in/7?/such that/ G /R/h^/for each i and/j + • • •

+ Sn= /• For each / write/ = //¡//vc,/and define e¡ = //¡//vc,-. Then

*/$ = (fir¡frxi)(SjrjSrXj) = SiSjitfrXj)

holds for each / and / so these e¡ are orthogonal idempotents. Write

e = ex + • • • + en. Since e,- G Rx¡, 1 < / < n, it remains to prove 1 - e

E Rxn+X.  But ej = S, for each / and so e/ = /. Consequently  1 - e

= (l-e)(l-S)ERxn+x.   D
The lifting theorem for orthogonal idempotents is now easy.

1.12. Proposition. Let R be suitable, let L be a leSt ideal öS R, and let

JCj, ..., xn be orthogonal idempotents modulo L; that is, x¡ = x¡ (mod L) Sor

each i and x¡x¡ = 0 (mod L)Sor all i ¥= j. Then there exist orthogonal idempo-

tents ex,..., ensuch that e¡ G Rx¡ ande¡ ■ x¡ (mod L)Sor each i.

Proof. Write x = xx + • • • + xn and, by Proposition 1.11 choose orthogo-

nal idempotents ex, ...,en such that e¡ G Rx¡ for each / and

l-e E R(l- x),

where we write e = ex + • • • + en. For each /', the hypotheses imply that

xx¡ = x¡ (mod L) and, since e¡ E Rx¡, that ex¡ = e¡.lí I - e = r(l - x) this

gives

x¡ - e¡ = (1 - e)x¡ = r(l - x)x¡ = 0   (mod L)

for each /. This completes the proof.   D

It should be noted that, in the notation of Proposition 1.12, if L

C J(R) and xx + '• • + xn = 1 (mod L) then necessarily ex + ••• + en = I.

2. Exchange rings. A left 7?-module M is said to have the exchange property

(see Crawley and Jónsson [2]) if for any module X and decompositions

X = M' @ Y =  ®N:
16/   '

where M' :ü M, there exists submodules N'¡ C N¡ for each / such that

X = M' 0 (®N'i).

If this condition holds for finite sets 7 (equivalently for |7| = 2) the module

M is said to have the finite exchange property. This is equivalent to the full

exchange property for finitely generated modules. Crawley and Jónsson [2,

Theorem 7.1], proved that, if the modules A^- are all countably generated and

have the exchange property, then any two direct sum decompositions of

®¡B¡N¡ have isomorphic refinements.
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In 1969 Warfield [9] showed that an indecomposable module has the

exchange property if and only if it has a local ring of endomorphisms. In 1972

he called a ring R an exchange ring if RR has the (finite) exchange property.

He verified that the definition was left-right symmetric and that a module has

the finite exchange property if and only if its endomorphism ring is an

exchange ring [10, Theorem 2]. In addition, he proved that every semiregular

ring is an exchange ring. In particular, this implies (using the Crawley-Jónsson

theorem) that every projective module over a semiregular ring is a direct sum

of cyclic submodules (generalizing results of Kaplansky [4] for local and

regular rings and Müller [6] semiperfect rings). Later Monk [5] gave a ring-

theoretic description of these exchange rings and showed that there exist

exchange rings which are not semiregular.

For the purpose of the next theorem only, call a ring R left suitable if each

element has the properties in Proposition 1.1 and define right suitable rings

analogously. The theorem implies that these conditions are both equivalent to

R being an exchange ring and will be used to deduce results of Warfield and

Monk. If M is a left i?-module its i?-endomorphisms will be written on the

right of their arguments.

2.1. Theorem. If R is a ring, the following conditions are equivalent for a left

R-module M:

(1) end M is right suitable,

(2) M has the finite exchange property,

(3) end M is left suitable.

Proof. (1) =» (2). Suppose X = M © Y = Nx © N2 are fl-modules. Write

E = end X and choose m2 = m E E with M = Xm. Let rx and t2 be orthogo-

nal idempotents in E such that tx + t2 = l, N¡ = Xr¡, Nx = kerr2 and N2

= kerTj.Then m = mrxm + mr2m so, since mEm = end M is right suitable,

choose orthogonal idempotents v¡ E m^mEm such that vx+ v2 = m. Write

v¡ = mTiai where a¡ E mEm and where we assume a¡v¡ = a¡. Now define

tj(- = T¡a¡T¡ (i = 1,2). These are orthogonal idempotents and A'tj,- C N¡ for i

= 1, 2. Hence A^- = Xti¡ © N'¡ where N'¡ = N¡ n ker r¡¡ and so X = (A'tj,

© Xr¡2) © (N\ © N'2). We show X = M © N\ © N'2.

Note first that ttt/,- = v¡t¡ so that m7]¡a¡ = v¡T¡a¡ = v¡ = v¡. Suppose now

that x G M n (N\ © N'2). Then xt\x = 0 = xtj2 and so x = X7z = 2xtz,.

= ExïTr/^aj. = Sxîjj-a,- = 0. Next choose x G A' and write x = xx+ x2

+ w where x; G Xt]i and co G N\ © N'2. We have

y¡<XiVj = (Vñ)(aiv)rij = (tyi-H«.»*)^) = %1/

where 8y = 0 or 1 according as i # j or i = /. It follows that x¡ - x(a(- G N]

for each i and so
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x - xxax — x2a2 = (xx - xxax) + (x2 - x2a2) + u G N\ © N'2.

Since x¡a¡ G M for each i this shows X = M ® N\® N'2.

(2) => (3). Given (2) write A' = M © M and write TV, = {(x,0)\x G M},N2

= {(0,x)|x G M) and D = {(x,x)|x G M). Suppose a, ß E end A/ are

such that a + ß - 1. If AT = {(xa,-xß)\x E M) then M' == M and X

= M' ® D = Nx® N2. Hence there exist JV; Ç AT. such that A = M' © TV,

© N'2. If x G M this gives a unique decomposition

(*)   (x, x) = (ya, -yß) + (xx, 0) + (0, x2)

where (xx,0) G TV, and (0,x2) G N'2. Define a', ß' G end M by xa' = x2

and x/?' = x,. Then the decompositions

(xa'a,xa'a) = (xa'a,-xa'ß) + (0,0) + (0,xa'),

(xß'ß,xß'ß) = (~xß'a,xß'ß) + (xß',0) + (0,0)

show that a'aa' = a' and ß'ßß' = /?' and so a'a and /3'/3 are idempotents.

Furthermore, equating components in (*) yields y = x(a' - ß') and so

x = ya + xß' = x(a'a + ß'ß). Hence a'a + ß'ß = lM and it follows that

end M is left suitable.

(3) => (1). Applying (1) => (3) to RR shows right suitability implies left

suitability for any ring. The converse for any ring is analogous and, in

particular, it holds for end M.   D

If 7? is any ring it is clear that R =* end^R. Hence exchange rings and

suitable rings are the same. The following is thus immediate:

2.2. Corollary (Warfield [10, Theorem 2]). A module M has the finite

exchange property if and only if end M is an exchange ring.

Proposition 1.6 now gives an easy proof of another result of Warfield:

2.3. Corollary (Warfield [10, Theorem 3]). Every semiregular ring has the

exchange property.

The next result was proved for commutative rings by Shutters [8] and is

immediate from Proposition 1.5.

2.4. Corollary. A ring R is an exchange ring // and only i/ R/J(R) is an

exchange ring and idempotents leSt modulo J/(R).

The original proof of the next result was different and more involved than

the present one.

2.5. Corollary (Monk [5, Theorem 1]). A module M has the exchange

property if and only if, given a E end M there exists y and o in end M such that

yay = y and o(l — a)(l — ya) = 1 — ya.

Proof. Write E = end M and let a G E. If such y, o exist let t = ya.
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Then t2 = t G Ea and (1 - t>(1 - a)(l - t) = 1 - t. If

77 = 1 - (1 - t)o(1 - a)

then m — m = mr E Ea and l — m E E(l — a). Hence E is suitable. Con-

versely, let m2 = m G Ea and 1 - m E E(l — a). If m = ßa and 1 — m

= o(l — a) we are done with y = ßaß.   □

If i? is a suitable ring and e — e E R it was shown in Proposition 1.10 that

eRe is also suitable. In the light of Theorem 2.1 this shows immediately that if

a module M has the finite exchange property the same is true of any direct

summand of M [2, Lemma 3.10]). It is also shown in [2] that the direct sum of

two modules with the finite exchange property has the same property. Hence:

2.6. Corollary. If R is a ring and e = e E R then R is suitable if and only

if eRe and (1 — e)R(l — e) are both suitable.

It would be of interest to see a direct ring-theoretic proof of this and of the

fact that left and right suitability are equivalent.

The next result gives a new condition that a projective module has the finite

exchange property. Two preliminary results in projective modules will be

needed.

2.7. Lemma. If P is a projective module and P — Mx + ■•• + Mn where the M¡

are submodules, there exist a¡ G end P such that Pa¡ Q M¡ for each i and

«l + ••• + «„= h-

Proof. Let M¡ = 2/6/, ^xij f°r eacn ' anc* 'et ^ De a free module on basis

{.vJl < i < n,j E J¡). Define <p: F -* P by setting y¿sp = x¡¡ for all i,j. Then

<p is onto and so there exists \¡>: P -» F such that \fy = lP. Let m^: F-* R

denote the projections and write <p¡j = tyr~ for all i,j. Then {<p¡j,x¡j) is a dual

basis for P and we are finished with a¡ = 2/ej, Vijxij f°r eac^ '•   E

2.8. Lemma. Let P be a projective module and suppose P = P + N where P is

a direct summand of P and N is a submodule. Then there exists ̂  Ç N such that

P = PX®P2.

Proof. Choose y2 = y G end P with Py = P. If <p: P -» P/N is the

natural map let a E end P satisfy ayrp = <p. Define 5 = y + (1 — y)ay. Then

82 = 8, P8 = Py = Px and ker 5 = A/(l - y)(l - ay) ç N. Take P2
= ker 5.   D

<p\p

P-=L*Pl-S-* PIN-»• 0
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2.9. Proposition. The following conditions are equivalent for a projective
module P.

(1) P has the finite exchange property.

(2)IfP = Mx + "- + Mn where the M¡ are submodules there is a decomposi-

tion P — P © • • • © Pn with P¡ Q Mjfor each i.

(3)IfP = M + N where M and TV are submodules there exists a summand P

of P such that P Q M and P = P + N.

Proof. (1) => (2). If P = Mx + • • • + Mn use Lemma 2.7 to find a¡

E end P such that Pa¡ C Mi for each /' and a, +-1- a„ = lP. By Proposi-

tion 1.11 there exist orthogonal idempotents m¡ E (end P)a¡ such that mx

+ • • • + 7T„ == lp. Then (2) follows with P = Pm¡.

(2) => (3). Obvious.

(3) =* (1). Let ax,a2 E end P be such that a, + a2 = 1. Then P = T'a,

+ Pa2 so, by (3) and Lemma 2.8, let P = Tf © P, where P¡ Q Pa¡ for each /.

Let 7T,, 772 be idempotents in end P with mx + m2 = 1 and Pm¡ = TJ. There exist

ßi E end P such that fi¡a¡ = m¡. Hence end P is suitable and (1) follows by

Theorem 2.1.   D

A submodule K in a module M is said to be small in M if K + TV — M

where TV is a submodule implies TV = M. An epimorphism P -» M -* 0 is

called a projective cover of M ii P is projective and the kernel is small in P. A

projective module is said to be semiperfect if every homomorphic image has a

projective cover.

2.10. Corollary. Every semiperfect module has the finite exchange property.

Proof. If P is semiperfect and P = M + TV, the fact that P/M has a

projective cover means P decomposes as P = Tf © P2 where P Q M and

M n P2 is small in P [1, Lemma 2.3]. Since P = Tf + (A/nT^) + TVit follows

that P = Tf + TV and the proof is complete.   D

We note in passing that the endomorphism ring of a semiperfect module is,

in fact, semiregular (see [7]).

A ring R is called left perfect if every left module has a projective cover.

Hence, this result shows that, over a left perfect ring, every projective module

has the finite exchange property. It appears to be an open question whether

the converse is true. The next result collects some information on the subject.

An ideal A is left T-nilpotent if, given ax,a2,... from A, a, a2 • • • a„ = 0 for

some n.

2.11. Proposition. A ring R has the property that every projective left module

has the finite exchange property if and only if the same is true ofR/J(R) andJ(R)

is left T-nilpotent.

Proof. Assume T? has this property and write J(R) = /. If Fis any free T?-

module then rad F = JF is small in F by Proposition 2.9 since it contains no
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nonzero direct summand. Consequently, / is left F-nilpotent. Now it suffices

to show any free R/J(R)-mod\i\e has the finite exchange property. Every such

module has the form F/JF where F is a free /{-module. If <¡p: F -* F/JF is

natural, suppose Ftp = Nx <p + N2<p where F = Nx + N2. If F = P © P2 where

P¡ Q N¡ then Ftp = Pxq> © P2<p and i^<p Ç A/.<p.
For the converse, we use the observation in [8] that every projective R/J-

module P has an Ä-projective cover. Indeed P is a direct sum of cyclic

modules [10, Theorem 1] and so, since idempotents lift modulo J, P

= ©¡(ReJJe) where each ef = e¡ E R. Then @¡Re¡ is the required projective

cover (since J is left F-nilpotent). Now suppose F — Nx + N2, where F is R-

free and the N¡ are submodules. If <p: F -» F//F is natural then Ftp = Nx tp

+ A/29 so write Frp = Ax © ̂ 2 where A¡ £ A¡<p (i = 1,2). If ß, -»"M, -» 0

are Ä-projective covers, let a: Qx © Q2 -» F satisfy aœ = ttj © 7z2. Since /F is

small in F it follows that a is an isomorphism (see [1, Lemma 2.3]) and so

F = Qxa © Q2a where ß,cwp = A¡ C N¡<p for each i. Thus ß(a Q N¡ + JF

and so F — Nx + JF + Q2a. This means F = A/, + ß2a (/Fis small) and so,

by Lemma 2.8, F = Px® Q2a where Px Q Nx. But then F = P + N2 + JFso

F = P + N2. We are finished by Lemma 2.8.   D

We conclude with the observation that the existence of a ring which is left

perfect but not right perfect [1, p. 476] shows that the condition in Proposition

2.11 is not left-right symmetric.
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