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Abstract. This paper is about two properties of the A/?-calculus and

combinatory reduction, namely (E): all complete reductions p and o of the

residuals of a set of redexes in a term X have the same end; and (E+): p and

a leave the same residuals of any other redex in X. Property (E) is deduced

from abstract assumptions which do not imply (E+). Also (E+) is proved

for the usual extensions of combinatory and Aß-reduction, and a weak but

natural form of (E+) is proved for A/?7)-reduction.

1. Introduction. This paper is about Curry and Feys' Property (E), which

says in the A-calculus ([1, p. 113]) that

(E) 7/ a term X contains a Sinite set R oS redexes, then there exists a complete

reduction relative to R, and all such reductions end at the same term.

Curry and Feys used (E) as the key to their proof of the Church-Rosser

theorem for A/?-reduction, and Church and Rosser before them did the same

([1, pp. 113-115], [2, pp. 20-25]). Church and Rosser originally proved (E) by

induction on X, but M. H. Newman pointed out that in order to make the

induction work one must prove the following slightly stronger property,

which will here be called (E+):

(E+) Property (E) holds and all complete reductions relative to R produce the

same residuals oS each redex in X.

(For comment see [1, p. 149].) Church and Rosser did not mention (E+) in

their proof of (E) though the arrangement of their proof made the 'preserva-

tion of residuals' property fairly obvious. However, this property is rather

tedious to check in detail; Curry and Feys showed this in [1, pp. 119-121],

preparatory to proving (E+) and (E) on pp. 123-130.

Property (E) is now no longer needed to prove the Church-Rosser theorem

for A-conversion (see Martin-Löf [5, §2.4]), but I feel that (E) and (E+) are

still interesting properties in their own right, likely to be useful whenever one

needs to replace reductions by others.

This paper will show that (E) can be proved using assumptions that do not

imply (E+). It will also prove (E+) for A/?- and combinatory weak reduction
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with extra 'arithmetical' operators added, and prove a restricted but natural

and useful form of (E+) for A/Jrj-reduction.

I would like to thank the referee for some improvements in the exposition

of this paper.

2. Notation and basic assumptions. In the first few sections we shall be

working in an abstract setting, with arbitrary points instead of A-terms, and

lines from point to point instead of A/3-contractions. The notation of [3, pp.

545-548] will be used, except that the lines called cells there (one-step

reductions) will be called contractions here. The main features of the notation

are as follows (for the details, see [3]).

To each ordered pair ¿, n of contractions which are coinitial (i.e. both

starting at the same point), there is assumed to exist a set |/tj of contractions,

the residuals of £ with respect to n, all starting at the end of n.

A reduction p is a finite series £, + ••• +?„ of contractions, each one

starting at the end of the one before. Residuals |/p of a contraction £, and

residuals a/p of a set a of coinitial contractions, are defined in the natural

way (see [3, p. 546]). The sum, p + o, of two reductions is the reduction

obtained by putting the contractions of a in order after the end of p; of

course it is defined only when the start of a is the end of p. To each point X,

the null reduction at X, called 0, starts and ends at X and has no contractions.

No assumption is made that the end of a contraction or reduction must be

different from its start, nor that coinitial sets are finite.

Given a set a of coinitial contractions, a development of a is a reduction

p = £, + •• • + £„ such that £, is in a and each |(+I is a residual of a with

respect to £, + • • • + £,. A complete development (CD) of a is a development

p such that a/p is empty. For any binary relation -< between contractions, a

minimal complete development (MCD) of a with respect to this relation is a

CD £, + ••• + £„ such that £, is minimal in a (with respect to -< ), and each

£l+, is minimal in a/(£, + • • • + £().

For two reductions p and a, we shall say that p is weakly equivalent to a

(p =• a) iff p has the same start and end as a. We shall say that p is strongly

equivalent to o (p at a) iff p =• a and l/p = t/o for all contractions £

coinitial with both p and a. In this notation, properties (E) and (E+) say

(E) Every finite set a of coinitial contractions has a complete development,

and all CDs of a are weakly equivalent.

(E+) Property (E) holds and all CDs of a finite coinitial set are strongly

equivalent.

In later sections, it will be shown that the assumptions (A1)-(A8) of [3, p.

548] imply (E) but not (E+). This makes these assumptions interesting

relative to (E), so they will now be listed for future reference. They assume

that there is a relation -< between coinitial contractions (corresponding to
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one redex being a proper part of another), such that

(A1K-¿7,=>t,<£

(A2)£ <vandr¡< £=>£< S;
(A3) £ -£ n => I/tj has at most one member;

(A4)£/£=0;
(A5)t]x -£ Zand-qx ■*. r¡2=>r¡x/Z -K tj2/|;
(A6) ¡S n, -< |/or i = 1,..., n, then there is a minimal tj, whose residuals

are also minimal among tj,/£ u • • • U i),/?l

(A7) to each coinitialpair £, tj correspond MCDs £//tj, tj//£ of the sets £/tj,

tj/£ respectively, such that

t + i\//i - v//r,
(A8) ;/ (A7) is true and f is coinitial with £ and tj, then

r/(« + u/A)-f/0i + «/A)
in the following cases:

(ii) ij -< £ a«</ Í ■< £ ana" ? ^ tj and f/€ -^ ij/t
Most of these assumptions are fairly natural (see [4, p. 20]), but (A6) and

(A8)(ii) have no excuse for their existence except that they imply the Church-

Rosser theorem and they are satisfied by several of the known systems

including Ajß-reduction ([4, §§7-8]). (They are not satisfied by A/irj-reduction,

though.) (A8) is slightly weaker than the corresponding assumption in the

abstract work of Newman, Curry and Schroer, which is

(D+) For all coinitial £ and n, £ + tj//£ — i? + £//?)•

This (D+) is the strong form of D of Curry and Feys [1, p. 119]; the weak form

of D is just (A7). Just as this weak D is a special case of (E), so the strong D

is a special case of (E+).

Lemma 1. Assuming only (A1)-(A4); every finite set of coinitial contractions

has a complete development, in fact an MCD.

Lemma 2. Assuming all except (A6) and (A8)(ii), for any finite set a qS

coinitial contractions, all MCDs oS a are weakly equivalent.

Proof. See [3, Lemma 8].

Finally, all the A-calculus notation in this paper will be taken from [1,

Chapters 3 and 4]. In particular, the result of substituting TV for x in M, and

changing bound variables to avoid clashes, will be called [N/x]M. However,

identity will be denoted here by '=', not '=', and reduction will be denoted

by '>' (one step) and '»' (several steps, possibly none).

3. (A1)-(A8) imply (E). Let a be any finite set of coinitial contractions. We

know that a has at least one MCD by Lemma 1, and that all MCDs of a are
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weakly equivalent by Lemma 2; so to prove that all CDs are weakly

equivalent, we need only show that an arbitrary CD m is weakly equivalent to

an arbitrary MCD, p.

In fact we shall prove the following slightly more general property (Figure

1):

(1) If a is finite and p is an MCD of a and m is any development of a, then

m + p' —   p, for some MCD p' of a subset of a/m.

3p'v

MCD

Figure 1

This will imply what we want, because if m is complete, then a/m will be

empty, so the p' given by (1) will be 0 and hence m =*  p.

Proof of (1). The proof uses induction on the number of contractions in m.

For the basis (m = 0), choose p' = p. For the induction-step, suppose that

ît = £ + 7r', where £ is a member of a (Figure 2).

Figure 2

Let p* be a £-MCD of a, as defined in [3, pp. 551-552]. Then by Lemma 2,

p* ends at the same point as p. Apply [3, Lemma 9(ii)] to £ and p*, giving an

MCD p, of a/£ and an MCD a of a/p* such that

£ + p, =* p* + o.

But p* is complete, so a = 0, which gives us

£ + Pi -  P* =  P-
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(See Figure 2.) Now apply the induction hypothesis to m', px and a/£ to get

the result.

(It might happen that a/£ is infinite. In this case let a' be the finite subset

of a/£ whose residuals actually occur in p,. Then px is an MCD of a', and

also of any other subset of a/£ which contains a'. Let a" be the finite subset

of a/£ whose residuals actually occur in m'. Then a' \j a" is finite, p, is an

MCD of a' U a", and m' is a development of a' U a", so we can apply the

induction-hypothesis to a' u a", m' and p,.)

Remark. We have just seen that to deduce (E) one does not need the full

(D+), but only the more restricted (A8). This raises the possibility that if all

the details were filled in the original Church-Rosser proof of (E), it might turn

out that only some, not all, cases of (D+) were required. I have not checked

this.

Another proof of (E) which does not use (D+) has recently been given in

[10, Chapter II, Corollary 1.12].

4. (A1)-(A8) do not imply (E+). This section consists of an example

satisfying (A1)-(A8) and therefore (E), but not (E+) or even its special case

(D+). And furthermore, no redefinition of residuals and the -< -relation will

give (E+) or (D+) to the system. (One can fairly easily construct slightly

simpler examples where (E+) fails but the failure can be cancelled by merely

redefining residuals without adding any new lines to the system; these are not

so interesting.)

The example consists of 23 contractions arranged along the edges of a

cube, as shown in Figure 3.

G

Figure 3
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Definition of -< -relation. 2 < 3,2 < 1.

Definition of residuals. To satisfy (A4), define £/£ = 0 for all £. Then

define

1/2 ={14},        2/1 ={5,6} (forced on us; no other definition

will give (A7)),

3/2 = {15},        2/3 = {8,9} (forced, in order to get (A7)),

1/3 ={7}, 3/1 ={4} (forced, in order to get (A7)),

5/6 ={17)>       6/5 = {17} (forced, to give (A7) to 1,2),

4/5 ={16},        5/4 ={10} (see comment later),

4/6 ={16},        6/4 ={11} (see later),

7/8 ={18},        8/7 ={12} (see later),

7/9 ={18},        9/7 ={13} (see later),

8/9 = {19},        9/8 = {19} (forced, to give (A7) to 2,3)
10/11 =11/10 ={20} (to get (A8), 10/11 cannot be 0; see below),
12/13 - 13/12 = {21} (to get (A8), 12/13 cannot be 0; see below),

10/12 =10/13 -11/12 =11/13 = {21}
12/10 =13/10 =12/11 =13/11 = {20} (forced, to get (A7)),

16/17 = {22}, 17/16 = {20} (forced),
18/19 - {23}, 19/18 = {21} (forced),
14/15 = {23}, 15/14 = {22} (forced).

Proof of (A1)-(A8). Properties (A1)-(A4) and (A7) are immediate. We get

(A5) and (A6) because £ -fc tj holds for all contractions except 1, 2 and 3. We

shall now prove (A8), considering each vertex in turn.

Contractions at D. For all £, tj, f, there are no residuals of f with respect

to £ + tj//£ or tj + £//tj.

Contractions at B.

4/ (5 + 6//5) = (4/5)/ (6/5) = 16/17 = {22}.

4/ (6 + 5//6) = 16/17 = 4/ (5 + 6//5).

5/ (6 + 4//6) = (5/6)/ (4/6) = 17/16 = (20).

5/ (4 + 6//4) = (5/4)/ (6/4) = 10/11 = {20}.

(To get {20} here we need 5/4 =£ 6/4 and 10/11 =£ 0; this forces the above

definition of residuals, except for the trivial alternative 5/4= {11} and

6/4 = {10}. (5/4 = {10, 11} would destroy (A7).))

6/ (5 + 4//5) = {20} = 6/ (4 + 5//4)   similarly.

Contractions at C. Similar to B.

Contractions at A. Contraction 2 does not satisfy the conditions for J in

(A8), so we need only check the residuals of 1 and 3.

1/(2 + 3//2) = 14/15= {23}.

1/ (3 + 2//3) = 7/ (8 + 19)   or   7/ (9 + 19) = {23}.

3/ (2 + 1//2) = {22} = 3/ (1 + 2//1)   similarly.
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This completes the proof of (A1)-(A8). And we have seen incidentally that

any change in the residuals, except interchanging 5/4 and 6/4, or 8/7 and

9/7, will destroy one of these properties.

Proof that (E+) fails. Consider the residuals of 2:

2/ (3 + 1//3) = (2/3)/ (1/3) =  {8, 9}/7 = {12, 13);

2/(l+3//l)={5,6}/4={10,ll).

So (E+) fails. Furthermore, we cannot change the definition of residuals to

give (E+), even if we abandon (A1)-(A8). To see this, check through the

residuals of 2 used in the equations above. In order to have (A7), which is

contained in (E+), 1/3 must be {7} and 2/3 must be {8, 9}, or {8} or {9} (if

we defined 8/8 = {19} or 9/9 = {19}). Then (2/3)/(l/3) must be a subset

of {12, 13}. Similarly (2/l)/(3/l) must be a subset of {10, 11}, so (E+) must

fail.

Remark. If the above example seems a bit too abstract, a system of terms

and replacement-rules satisfying (A1)-(A8) but not (E+) can be constructed

as follows.

The terms are built up by one operation (F^j) from 20 atomic constants

'a', 'b\ ..., *t. The contraction-rules are

1. ((ab)c)     >   ((de)f), 13.   (((jk)!)m)     >    (qm),

2. a    >    g, 14. ((gb)c)      >    (rf),
3. (ab)     >   (hi), 15. (gb)      >    s,

4. ((de)f)     >   (((jk)l)m),    16. ((ne)f)      >    {{(pk)l)m),
5. (de)     >   (ne), 17. (zze)      >    r,

6. d    >    n, 18. ((oi)c)      >    (qm),

1.    ((hi)c)     >   (((jk)l)m),    19. (oi)      >    s,

8. h    >    o, 20.   (((pk)l)m)      >    t,

9. (Az)     >    (oi), 21. (qm)      >    t,

10. j    >    p, 22. (rf)      >     t,
11. (jk)     >   (pk), 23. (sc)      >    t.

12. ((jk)l)     >   q,

The reductions of the term ((ab)c) can be seen to be isomorphic to Figure 3,

with the contractions numbered as above. (No contraction-rule applies twice.)

5. (A1)-(A8) and (D+) imply (E+). In the last two sections we saw that

(A1)-(A8) imply (E) but not (E+). On the other hand, if (A8) is replaced by

the stronger (D+), we do get (E+), as follows.

First of all, given (D+), checking the proof of [3] Lemma 8 shows that all

MCDs of a finite coinitial set of contractions become strongly equivalent.

And Lemma 9(ii) on [3, p. 552], which asserts a weak equivalence, will, given
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(D+), assert strong equivalence. Then the proof of (1) in §3 above will give

m + p' s p

instead of weak equivalence, and (E+) is a special case of this result just as

(E) was a special case of (1).

6. (E+) holds for modified and unmodified A/3- and combinatory reductions.

In this section (E+) will be proved for combinatory and A/?-reduction and for

these reductions with extra operators adjoined, for example the recursion

operator R, Curry's iterator Z, and the pairing operator (Curry et al. [8, pp.

216-229]).
It will be assumed here that terms are the usual combinatory or A-terms

(possibly with type-restrictions), together with a (perhaps empty or infinite)

sequence of atomic constants a,, a2,... (not necessarily all distinct). Reduc-

tion will be assumed to be defined by the usual Aß- or combinatory (weak)

axiom-schemes, together with one extra axiom-scheme for each a,, of form

(a) atMiX ■ • • Min¡ > M?,

where the m's are terms built up from the atoms (including perhaps some a's),

and certain 'meta-variables'. If vx,... ,vk/ are all the meta-variables in (a),

then the result of substituting for these u's any terms Ux,... ,Uk (not

containing meta-variables but possibly containing variables) is called an

axiom:

(2) [ux/vx]• • • [v«*J(««ii• • • **) >W*i] • • • [*V°«K-
A redex (a¡-, ß-, or combinatory) is the left-hand side of an axiom, and the

right-hand side is the redex's contractum. (See [4, pp. 6ff.] for any further

details.)

If a redex occurs several times in a term X, we shall need to distinguish

between the different occurrences. This will be done by means of position

indices, which are finite (perhaps empty) sequences of integers, as follows

(from [4, p. 5, Definitions 2 and 3], slightly modified following Rosen [7]):

(i) X occurs in X at position 0 (the empty sequence);

(ii) iS (UV) occurs in X at position («,,..., n,), then U occurs in X at

position (nx,...,«,, 1) and V occurs in X at position (nx,...,«,, 2);

(iii) iS (Xx • U) occurs in X at position («,,..., n¡), then U occurs in X at

position (nx,..., nt, 3).

The reason that positions are best defined in this way, and not, for

example, as the distance from U to the left-hand end of X, is that with the

above definition, contracting a redex which does not overlap U, or lies

entirely inside U, will not change U's position. The position of U in X shows

the branch of the construction-tree of X that U is on, and how far up that

branch U is.
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An occurrence of U in X will be defined to be a triple (U,p, X) such that U

occurs at position p in X. Occurrences in X may also be called components of

X. Two components of X are disjoint iff they are on different branches of the

construction-tree of X, i.e. iff neither of their positions is an initial segment of

the other. A component (U,p, X) contains a component (V, q, X) iff p is an

initial segment of q (cf. [4, p. 5]). In future when components are discussed,

their positions will be omitted whenever possible.

Lemma 0 (cf. [4, p. 5, Lemma 13]). Let P, Q occur at positions p, q

respectively in X, and let X* be the result of replacing Q at position q by another

term Q*:

(i) if (P,p, X) is disjoint from (Q, q, X), then P will occur in X* at position

Pi
(ii) if (P,p, X) contains (Q, q, X), then q is p followed by a sequence which

we may call q — p, and Q occurs in P at position q — p, and the term at

position p in X* is the result P* of replacing Q in P.

Continuing now with the notation for redexes: a contraction will be the act

of replacing one occurrence of a redex in a term by its contractum. Contrac-

tions can therefore be identified with occurrences of redexes. And from now

on, the word 'redex' will be used almost always to mean 'occurrence of a

redex'; for example, 'all redexes in X' will mean 'all occurrences of all redexes

in A", and 'let £ be a redex in A" will mean 'let £ be an occurrence of a redex

in A".

Assumptions. The following assumptions will be made throughout the

present section. They are taken from [4, pp. 9 and 11], and they can easily be

seen to be satisfied by the recursion, iterator and pairing operators of Curry

et al. [8, pp. 216-229], also by the generalized o-operators of Curry and Feys

[l,p.93].

(Dl) If the terms are restricted by type-restrictions or any other restrictions;

replacements by axioms (a) do not change types or violate the restrictions.

(D2) A redex cannot be an instance of the left side of two schemes (a).

(D3) Each meta-variable in Mf on the right of (a) also occurs on the left of

(a).

(D4) No meta-variable occurs twice on the left side of (a).

(D5) If an ak-redex P is a proper part of an arredex Q, then P is in one of

the components Uj that were substituted for meta-variables in forming Q from its

axiom-scheme.

(D6) No meta-variable occurs in function position^) on the left side of (a),

and (X-case): no Xß-redex occurs in the left side of (a); (combinatory case): no

(') Function position is the position of the v in a component (vZ); that is, any position whose
last number is 1.
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combinatory redex occurs in the leSt side of (a) and no a, is an atomic

combinator.

(D7) (A-case only): no scheme (a) contains free variables other than meta-

variables; and if (a) contains a part with form Xx • Y, then Y contains no

meta-variables, and the result of making any change of bound variables in (a) is

also an axiom-scheme.

Motivation of (D1)-(D7). Condition (Dl) is needed only in systems

whose terms are restricted by type-restrictions, to make reduction definable.

Conditions (D2) and (D3) together are equivalent to saying that each

a,-redex has a unique contractum. And (D3) says that contraction introduces

no new concepts.

(D5) says that if an a,-redex P is a proper part of an a,-redex Q, then P

must be in one of the U's (cf. (2) above). Suppose P is in Uy, then by (D4)

there is only one substituted occurrence of Uj in Q, so the result Q' of

contracting P will still be a redex from the same scheme as Q.

(D6) is just a 'structural' way of saying that (D5) still holds when P is a A/3-

(or combinatory) redex.

(D7) says that the A/'s in (a) are just applicative combinations of meta-vari-

ables, atomic constants, and A-terms without free variables, and that (a) are

invariant with respect to change of bound variables. This keeps substitution

properties tidy in the A-calculus(2).

Finally, (D1)-(D7) were shown in [4, Theorems 5 and 7] to imply

(A1)-(A8) and hence the Church-Rosser theorem. Essentially equivalent

conditions were also proposed by B. K. Rosen in his abstract generalization

of the original Rosser proof of the theorem for combinators (see [7]).

Definition of residuals. The purpose of residuals is to get (A7), and this

makes the required definition fairly obvious. But for ease of reference I shall

set it out here in detail. Let £ and tj be occurrences of redexes in a term X.

Case 1. £ = tj. Define £/tj = 0.

Case 2. £ is disjoint from tj. Define £/tj to be the redex which is at the same

position as £ when tj is contracted.

(2) Here is an interesting example, due to G. Mitschke, showing the need for (D7) in the

X-calculus. Add to the A/3-calculus a constant D with axioms DMN > htv • u if M =£ N,

DMN > \uv ■ v, where M and N are arbitrary /3-normal forms, possibly containing free vari-

ables. (Such a D would be a discriminator for /}-normal forms.) These axioms can be regarded as

special cases of (a) if we take ax — a2 = a3 = • • • = D and we view each axiom as an

axiom-scheme containing no meta-variables. But then (D7) fails, because M and N may contain

free variables. And the Church-Rosser property also fails. For example the term (Xx • Dxx) W,

where W = (\y -yy)(\y -yy), reduces to two distinct terms \uv • v, Xx • DWW which cannot be

reduced to a common term. This failure is caused by the substitution of W (with no normal form)

for x (a normal form). Furthermore, in this system all terms can be proved equal. In contrast, if

we add the above D to combinatory reduction instead of X-reduction the result will then have the

Church-Rosser property (because (D1)-(D6) are all satisfied).
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Case 3. £ properly contains r/. Define £/tj to be the component which is at

the same position as £ when tj is contracted. This will be the result of

replacing tj in £; it will be a redex by (D4)-(D6) (see motivation above).

Case 4. £ is a proper part oft\. If 17 = (Ax • U) V, then £ must be in U or in V.

If £ is in U, define the residual of £ as usual to be the component of [V/x]U

with the same position as £ had in U. (This will be [ V/x]£ if no free variable

of V is bound in U.) If £ is in V, then in each substituted V in [ V/x] U there

will be a corresponding occurrence of £; these are taken for the residuals of £.

If 7] is a combinatory redex SUX U2U3 or KUX U2, or an (a)-redex

[£/./»>]••• [Uk/vk](aMx,...,Mn),

then £ must be in a Up and the contractum of tj will have a corresponding £ in

each substituted occurrence of Uy, these are taken for the residuals of £.

Proof of (E+). By [4, §§7, 8], (D1)-(D7) imply (A1)-(A8). So in order to
prove (E+), by §5 we need only prove (D+). This will now be done.

Proof of (D+). Let T be any term, and £, tj, f be any three contractions

(redexes) in T. We must show that

(3) iV(! + rj//£W/(T, + £//7,).

We already know by (A7) that £ + tj//£ has the same end-term, say W, as

tj + £//tj; and two distinct components of W cannot occupy the same

position, so we only need prove that the residuals f/(£ + tj//£) occur at the

same positions as the residuals f/(tj + £//tj) in W.

If f is not in £ and not in tj, then contracting £, tj in any order will leave one

single residual of f, with the same position in W as f originally had in T. This

gives (3).

If I is in one of £, 17 (say £), and tj is disjoint from £, then the residuals of f

will be unaffected by when tj is contracted, so (3) is easy.

From now on, suppose that one of £, tj is in the other (say tj in £), and that

£ is in the larger one (I in £). Suppose also that £, tj, ? are distinct, otherwise

(3) would be trivial. There are two possibilités for £:

£=(ax-A/)/V   or   {-[£/,/*,]••• [Uk/vk](aMx-• ■ Mn),

and tj and f will be in M, N, or Ux,..., UkQ). By change of bound variables,

we may assume that no variable is both free and bound in £.

Case 1. f is not in tj. Part of this case, the case that no residual f/£ is in any

residual tj/£, has already been covered in the proof of (A8)(ii) in [4], but for

future reference I shall give the full proof again here.

(3) The case that 7| is a combinatory redex will be included in the case that ij is an a,-redex. The

combinatory axiom-schemes can be regarded as special axiom-schemes of the type (a), namely

Svlv2v3 > i),t>3(u2t!3), Kvtv2 > ü,, where rj,, o2, u3 are meta-variables. When we do this,
(D1)-(D6) will remain true, as can easily be checked.
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Subcase la. £ is (Xx ■ M)N with f in M. Contracting £ first will produce

[N/x]M, containing a residual [N/x]Ç. And the residuals of tj cannot

contain this [N/x]Ç; because if tj is in M, it does not contain f, and if tj is in

N, its residuals are in the substituted TV's in [N/x]M. Hence, reducing the

Tj-residuals will not change the position of the ¿"-residual.

On the other hand, contracting tj first will change £ to a term (Xx • M')N or

(Ax • M)N', and since tj does not contain f the position of f will be

unchanged. Then contracting the whole term to [N/x]M' or [N'/x]M will

leave a residual of f at the same position as f originally had relative to M (cf.

Lemma 0).

Subcase lb. £ is (Xx • M)N with f in TV. By the condition of Case 1, if tj is in

TV, then tj does not contain f ; hence the positions of the residuals of f will be

independent of whether tj is contracted, and will depend only on the original

position of f in TV, and the positions of the free x's in M.

Now suppose tj is in M. As above, the positions of the residuals of f will

depend on the positions of the free x's in M. If none of these free x's are in tj,

then the positions of the f-residuals will be independent of whether tj is

contracted.

Now suppose tj contains some of the free x's in M. Then contracting tj first

will give

£' = (Ax • M')N,

with AT containing the contractum C, of tj. Let xx,... ,xk be the free

occurrences of x (if any) in C,. Then contracting £' will produce

(4) [N/x]M\

with an N substituted for each of xx,..., xk, and a residual of f inside each

TV.
On the other hand, if £ was contracted before tj we would get the term

[N/x]M, and the residual of tj would have the form

(5) [A7*]tj = (Xy[N/x]P)[N/x]Q   or   (b[N/x]Px ■ ■ ■ [N/x]Pm],

since tj must have the form (Ay • P)Q (y ^ x), or (bPx • • • Pm). Then

contracting this residual of tj would produce either

[[N/x]Q/y][N/x]P-[N/x][Q/y]P,

or

(6) [N/X]cv       [4> P- 12> Lemma 17].

The positions of the substituted TV's, and hence the positions of the residuals

of f, would be the same as in (4) above.

Subcase lc. £ is an arredex. Let tj be in some Uh and f be in Uy If h ¥=j,

then the residuals tj/£ are disjoint from the residuals f/£, and so the
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f-residuals will be independent of when tj is contracted. If A = j, then since £

is not in tj, no residual tj/£ will contain a residual £/£, so again the residuals

of f will have the same positions independently of when tj is contracted.

Case 2. f is in tj. As above, £ is a redex with one of the following forms:

£ = (Ax • M)N   or   aMx ■ - ■ Mn,

and tj is in one of M,N,MX,..., Mn. Now tj must have form

r, = (Xy-P)Q   or   bPx- - - Pm,

and ? must be in one of P, Q, Px,..., Pm.

Subcase 2a. tj is in M. Contracting tj first will change M to a term M', and £

to
£' = (Ax • M')N,

and f will have certain residuals in the contractum Cn of tj, in M'. Then

contracting £' will produce

(7) [N/x]M',

and the substitution will not change the positions of the f -residuals relative to

A/'.

On the other hand, contracting £ first will produce

(8) [N/x]M

containing [N/x]t], and contracting [N/x]r¡ will change (8) to a term which

by (A7) must be [N/x]M'. The residual of f in (8) will be [N/x]Ç in [N/x]r¡.

Claim. The residuals of [N/x]Ç after contracting [N/x]r¡ will have the

same positions as the residuals of f after contracting tj (and hence the same

positions as the f-residuals in (7)).

Proof of claim. If tj is (Ay • P)Q with £ in Q, then the residuals of f are in

the substituted Q's in [Q/y]P. These ß's occur at the positions of the free

occurrences of v, sayyp ..., yk, in P. In [N/x]t\ these v's will occur at the

same positions in [N/x]P (since x ¥= y). Hence the residuals of [N/x]Ç in

[[N/x]Q/y][N/x]P will have the same positions as the f-residuals in

[Q/y]P-
If 77 = (Ay - P)Q with £ in P, then the residual of f in [Q/y]P will have the

same position as f has in P. On the other hand, in [N/x]P the position of

[N/x]Ç will be the same as the position of £ in P, and this position will not be

changed by substituting [N/x]Q fory.

If tj = bPx • - ' Pm with £ in a P., then tj must have been obtained from the

left-hand side of an axiom-scheme

(9) bLx---Lm> L*

by substituting some terms Wx,..., Wq for the meta-variables vx,..., vq in

(9). And f must be in some Wp by (D5) and (D6). The contractum C of tj

will be
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Cr,=[Wx/vx]--- [Wq/vq}L*,

and the residuals of f will be in the substituted occurrences of Wy On the

other hand, [TV/x]tj will be the result of substituting

[N/x]Wx,..., [N/x]Wq for vx, ... ,vq in the left side of (9), and its con-

tractum will be

[[N/x]Wx/vx]--- [[N/x]Wq/vq]L*.

In this term, the residuals of [N/x]Ç will have the same positions as the

residuals of f in C,,, since the position of [N/x]Ç in [N/x] W} is the same as

that of f in Wr
This proves the above claim, and completes Subcase 2a.

Subcase 2b. tj is in N. We have £ = (Xx • M)N; contracting tj first will

change Af to a term TV' and £ to (Xx • M)N', with some residuals of £ in the

contractum Cv of tj in TV'. Then contracting (Ax • M)N' will produce

[N'/x]M, with the residuals of £ being a set £/tj in the Cv in each substitute

TV'.
On the other hand, contracting £ first will produce [N/x]M, and contract-

ing the tj in each substituted TV will change this to [N'/x]M with residuals of

f in each C, the same as above.

Subcase 2c. tj is in a IL. We have

k=[Ux/vx}[U2/v2] ■ ■ ■ [Uk/vk](aMx- ■ ■ Mn)

for some terms Ux,..., Uk, meta-variables «,,..., vk, and some axiom-

scheme aMx • ■ • M„ > M*. One of Ux, . .., Uk must contain tj; say it is Ux.

Contracting tj first will change Ux to a term U'x; and then contracting £/tj will

produce

(10) [U'x/vx][U2/v2]---[Uk/vk]M*,

with residuals of £ in each substituted U{, in positions determined by the

positions of f /tj relative to the contractum of tj in U{.

On the other hand, contracting £ first will give

[Ux/vx][U2/v2]---[Uk/vk]M*,

and contracting the residual of tj in each substituted Ux will give (10) again,

with the same residuals of f.

This completes the proof of (D+), and hence of (E+).

Remark 1. Is there a slicker proof of (D+) than the above tedious

case-checking? Here is one possible candidate.

Let T contain redexes £, tj, f. The first step is to prove (A7); then as above,

we shall know that £ + tj//£ has the same end-term, say W, as tj + £//tj,

and to prove

(3) ?/(£ + V/£) = r/(T? + £//Tj)
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it will be enough to show that the two sets of residuals have the same

positions in W.

Now assume £, tj, $ are distinct (otherwise the result will be trivial).

Let T ~ be the result of replacing f in T by a new variable z not already in

T. Let £ - and tj- be the 'residuals' of £ and tj in T~. (If £ or tj is inside f,

define £ ~ or tj ~ to be the null reduction, 0.)

Let W~ be the end-term of the reduction

r+ (n-//r).
By (A7), W~ will also be the end-term of the reduction

T + (r//Tj-).
The next step is to prove that the residuals f /(£ + tj//£) in W have exactly

the same positions as the occurrences of z in W~. This result, and the

corresponding one for tj + £//tj, together imply (3).

Unfortunately, when the details are filled in this proof is no shorter than

the original one, and it is less straightforward. But the result in italics gives a

nice 'reason' for why (D+) is true.

Remark 2. The above deduction of (E+) from (D1)-(D7) generalizes [1,

Chapter 4], where (E+) was proved for ^-reductions with extra 'ô-axioms' of

the form
aMx • • • M„ > M*       (n > 0),

where Mx,..., M„ contained no redexes, free variables or meta-variables,

and for no k < n was aMx • • • Mk the left-hand side of another axiom.

The proof in [1] proceeded by first showing that these /?5-reductions

satisfied (D+) and certain abstract conditions (H0)-(H7); see p. 124 of [1].

Then (E+) was deduced in the abstract from (D+), (Ho)-(H7), and an implicit

assumption that all sets of residuals were finite. The corresponding abstract

deduction here, §5, is slightly more general than [1] because Curry's (Hj) and

(H5) were slightly more restrictive than (A1)-(A8); as mentioned rather

imprecisely at the end of [3], the H's (together with (D+) and the finiteness of

residual-sets) imply the A's but the A's with (D+) and finiteness do not quite

imply the H's(4).

The present section could have used the H's instead of the A's, because the

assumptions of the section can be shown to imply the H's when the 'R a S" of

[1] is read as 'R is a proper part of S ' in the case that S is an a,--redex.

Remark 3. If we were proving (E+) for ß — a-réduction directly, without

assuming any abstract lemmas, the quickest way would be to first prove (D+)

and then use the original method Church and Rosser used for the pure

A-calculus [2, pp. 20-25].

(4) The statement in [3, §4] of these facts wrongly omitted all mention of (D+) and finiteness.

It also claimed that any system satisfying the H's could be made to satisfy the A's by defining -<

to be Curry's relation f ; the T should have been 'a'.
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7. The lemma of parallel moves. If a system has property (E+), then it has

the Church-Rosser property; but it also has the slightly stronger property that

the constructions used in the usual proofs of the Church-Rosser theorem

preserve strong equivalence. (All these proofs use complete developments of

sets of residuals, implicitly if not explicitly; even in Martin-Löf's proof in [5,

§2.4.3] the 'one-step reductions' are actually MCDs.)

The following special case of this property has been used by P. Welch in

his analysis of 'inside-out' reductions in [6, Chapter 6], also by J. H. Morris in

his doctoral thesis [9].

Parallel-moves Lemma. If a reduction p = £, + •• ■ + £„ and a contrac-

tion tj are coinitial, and we define a reduction p* by

p* = ax + • • • + o-„,

where ox is any CD of £t/Tj, and o, + 1 is any CD of the residuals of £i+1 with

respect to any CD of-r\/(£x + - • • + £,-), then (E+) implies that tj + p* — p +

any CD o/Tj/p(4a).

Figure 4

(4t) The lemma as stated above is true for any system satisfying (E+), including of course

X/J-reduction.
But an important fact, which was realized too late to include in the text above, is that the

lemma's conclusion also extends with only slight modification to /ÎTj-reduction, which only

satisfies a weak form of (E+). To be precise, suppose reduction is defined as in §9 by the

^-axioms and a (possibly empty) set of schemes (a) satisfying (D1)-(D9). Let a contraction tj

and a reduction p = £, + • ■ • + £n be coinitial. Then for each » from 1 to n — 1 there is a set

a,+1 which is well separated (see §9) and coinitial with £i+1, and such that if we define ax,..., a„

by setting ax = any CD of £,/t) and al+, = any CD of (£i+ i/(any CD of ai+ ¡)), then

(tj + <j, + • • • + o„) <s(p + any CD of Tj/p).

The set ai+ x takes the place of r]/{ix + • • • + {,) in the lemma in the main text. In fact, if tj is

a /3-redex, these two sets will be identical. But this need not be so if tj is an tj-redex.

Proofs of these facts will be included, it is hoped, in a future paper.



EQUIVALENCE OF COMPLETE REDUCTIONS 243

Proof (from [1, p. 114]). Induction on zz. For the induction-step, apply

(E+) to the two reductions

£n+, +CD of t,/(£, + ••• + £n+I),    (CD of t,/(£, + ••• + £„)) + on+x,

which are both CDs of the set {£„+,} U tj/(£j + •••+£„).

8. Pairs of arbitrary ^-reductions. In §4 there was a pair of reductions

that were weakly but not strongly equivalent (namely 1 + 3//1 and 3 +

1 //3). In contrast, we have seen that in the A/?-calculus no pairs of complete

developments have this property.

But there exist pairs of less restricted ^-reductions that are weakly but not

strongly equivalent. For example, let p = 0 and a be the reduction

(Ax • xx)(Xx • xx) > (Ax • xx)(Ax • xx).

Then p and a have the same start and end, but if f is the redex (X - xx)(Xx •

xx), then f/p = {f}> U° = 0- (I do not know if there is an example which

does not rely on the destruction of residuals by a reduction whose end is the

same as its start(5).)

9. AjßTj-reduction. It is well known that (D+), (E) and (E+) all fail for

A/?T}-reduction [1, p. 119]. But this failure is not the whole story. In fact,

/fy-reduction satisfies a restricted form of (E+) which will be proved in the

present section, and this property will actually be useful in a later paper.

For good measure, the result will be stated and proved for ßt] -reduction

extended by extra axiom-schemes (a). It will be assumed that

(D1)-(D7) all hold.

(D8). In aiMiX - - • Min¡ the last M is not a single meta-variable or variable.

(D9). No M¡j contains an r¡-redex.

The last two assumptions ensure that if we have an a,-redex

£ = [£/,/«,]••• [Uk/vk]{aiMiX---Mint),

and an tj-redex tj = Ax • Mx, then £ can only be in tj if £ is in M, and tj can

only be in £ if tj is in a substituted U,. These assumptions were needed in [4, p.

15] to deduce the Church-Rosser theorem.

Residuals. These are defined in a natural way. Namely, for ß- and

iz,-redexes we use the definition in §6, and for /?Tj-redexes we use [1> PP-

116-119]; the definition for tj- and a,-redexes is as follows. Let £ be an

(5) An example which does not rely on a 'circular' reduction has recently been pointed out to

me. It is I{Ix) > Ix, where / is \y -y. The term I(Ix) can be reduced to Ix in two different

ways; either by contracting the redex I{Ix), or by contracting the smaller redex Ix. The first

reduction will leave no residual of I(Ix) but one of Ix, whereas the second will leave none of Ix

but one of I(Ix).
This example was originally proposed by J.-J. Levy for a slightly different purpose. It seems

likely that further examples of arbitrary complexity exist.
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a,-redex as above, and tj be an Tj-redex as above.

If £ and tj are disjoint, the definition of residuals is obvious. If £ is in tj,

then £ must be in M. Contracting Ax • Mx to M will leave £ unchanged

relative to M. Take this £ as £/tj. On the other hand, contracting £ in Ax • Mx

will change it to a term Ax • A/'x. Take this as tj/£.

If tj is in £, then tj must be in a £/,-. Contracting £ will produce

[Uy/^]---[Uk/vk]Mr,

and we take tj/£ to consist of the occurrences of tj in the substituted

occurrences of Uj. On the other hand, contracting tj will change Uj to a term

UJ, and since ü, only occurs once (by (D4)), this will change £ to a redex £'.

Take £' as £/tj.

Definition. Two redexes in a A-term X are said to be too close together iff

one is a part of the other, and they have form either (Ax • Mx)N, Xx • Mx, or

(Ax • (Ay • M)x), (Ay • M)x. A set of redexes in X is called well separated iff no

two of its members are too close together.

Note that if £, tj are too close together, then contracting one leaves the

other without any residuals. Also, the end-result of contracting £ is the same

as contracting tj.

Lemma 3. If a is a well separated set of ß — tj — a¡-redexes in a term X, and

p is any reduction starting at X, then the residuals a/p form a well separated

set.

Proof. It is enough to show that if a term X contains three redexes £, tj, f,

with £, tj well separated, then the residuals £/f, tj/£ will form a (perhaps

empty) well separated set.

First of all, if f = £ or f = tj, then £/£ or Tj/f will be empty. The same will

be true if f is too close to £ or tj. In both these cases, the residuals of the other

redex will consist of at most a set of disjoint redexes. Hence £/£ u Tj/f will

be a well separated set.

From now on, assume that £, tj, f are distinct and well separated.

Case 1. Neither o/£, tj is in £. Then £, tj have single residuals in the same

relative positions as £, tj themselves. Hence the residuals are well separated.

Case 2. One of £, tj is in £ and the other is disjoint from f. In this case all the

residuals will be disjoint, and hence well separated.

Case 3. Both o/£, tj are in f. If £ is Ax • Mx, then £ and tj must be in M, and

when f is contracted their residuals will have the same relative positions, so

they will be well separated because £ and tj are.

If £ is (Ax • M)N, then £ and tj must be in M or N. If they are both in M,

then their residuals in [N/x]M will have the same relative positions, and

hence will be well separated. If they are both in A^, their residuals will consist

of disjoint well separated pairs. Now suppose one (say £) is in M and the
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other is in N. Let £' = [N/x]£ be the residual of £ in [N/x]M. (We are

ignoring changes of bound variables here.) If a residual tj' of tj was too close

to £', we would have to have either

£' = (Ay • Uy)V,       tj' = Ay • Uy

or

i' = {Xy(Xz-U)y),       r,' = (Xz-U)y.

But these are both impossible, because they could only happen if N = tj' and

£ had form (xW) or (Ay ■ x), and neither of these is a redex.

If f is an a,-redex, then £ must have form

[i/,/«,]--. [Uk/vk](a¡M¡x. • ■ Min),

and £, tj must be in substituted C/'s, say Uj and Uh (possibly with A = j). Their

residuals will be corresponding occurrences in substituted t/'s, and since all

such t/'s are disjoint, separation is obvious.

Caye 4. Ozze of £, tj (say £) is in £ and the other contains £. Since £, tj, £ are

well separated, contracting f will produce exactly one residual tj' of tj, and the

contractum of ? will be a proper part of tj'. Also, the residuals of £ will be in

the contractum of f. Suppose some residual £' of £ is too close to tj'. Then we

must have one of two cases:

(i)tj' - (Ay • Uy)V, £'= Ay- Uy;
(ii) tj' = Ay • (Xz ■ U)y, £' = (Xz ■ U)y.

And (i) can only happen if tj is a ß-redex and £ is an ij-redex, and (ii) can only

happen if tj is an Tj-redex and £ is a /?-redex.

Subcase 4a. tj is (Ay • P)Q with f in Q. Let Q' be the result of contracting f

in Q. Then tj' = (Ay • P)Q'. But all the residuals of £ will be in the contrac-

tum of f which is in Q', so (Ay • P) cannot be a residual of £. Hence (i) above

cannot happen in this case.

Subcase 4b. tj is (Ay • P)Q with f in P. Let P' be the result of contracting ?

in P. Then we have

■n'= (Xy ■ P')Q,

and the residuals of £ must all be inside P', so none of them can be Xy • P'.

Hence (i) is impossible.

Subcase 4c. tj is an t\-redex Xy • Py, with I in P. Let P' be the result of

contracting f in P. Then we have tj' = Ay • P'y, and all the residuals of £ must

be inside P'. So no £-residual can be P'y, and hence (ii) is impossible. This

proves the lemma.

Lemma 4. //"£, tj, are any ß — tj — a¡-redexes in a term T, then tj + £//tj =

£ + tj//£, and if the two are well separated, then for any £ z'zz T,

Í/(t, + £//tj) = £/(£+,,//£).
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Proof. We shall use the proof of (D+) for /^-reduction in §6, inserting

more cases as necessary. First note that the weak equivalence of tj + £//tj

and £ + tj//£ follows from the definition of residuals, even when £, tj are too

close together.

One of the key properties used in §6 was that contracting a redex inside

(and distinct from) £ leaves exactly one residual of f, with unchanged

position.

If J is well separated from £ and tj, then by (D8) and (D9), this property

also holds here. The other key property was that substituting into a ß- or

a,-redex produces another redex of the same kind. This property also holds

for Tj-redexes. Now let T be any term, and £, tj, £ be any three redexes in T,

with £ well separated from tj. We must show that

£/(£+Tj//£W/(TJ-r-£//Tj).

As in §6, it will be enough to show that the positions of the f-residuals are the

same after both reductions. If £, tj, f are not all distinct, the result is easy, so

we shall assume they are all distinct.

Suppose first that £, tj, f are all well separated.

If f is not in £ and not in tj, or f is in one of £, tj and £ is disjoint from tj,

then the argument of §6 still applies, thanks to separatedness. From now on,

assume that both J and tj are in £.

Case 1. f is not in tj. If £ is a ß- or a,-redex, the proof is the same as in

Subcases la-c in §6. Note that in those proofs the exact structure of tj and f

played no part, except for the two key properties mentioned above. Even in

(5), where we seemed to use the fact that tj was a ß — a,-redex, we did not

actually use any particular properties of the contractum of tj, so the Tj-redex

case will be the same as the a,-case.

Subcase Id. £ is an -q-redex Xx • Mx. In this case, by separatedness tj and f

must both be in M. Contracting tj first will change £ to a term Ax • M'x, with

one residual of f, unchanged in position. Then contracting Ax • M'x will

produce A/', with the f-residual at the same position in M' as £ originally had

relative to M.

On the other hand, contracting £ first will produce M, and then contracting

tj will change this to A/', with the position of the £ -residual unchanged.

Case 2. f is in tj. If £ is an a,-redex, we use the proof of §6, Subcase 2c.

If £ is an Tj-redex Ax • Mx, then f and tj are both in M, and the positions of

the residuals of f will be determined entirely by the structure of tj and the

position of f in tj, and hence will be independent of whether tj is contracted

first or last.

Now suppose £ is a /3-redex, £ = (Ax • M)N. If tj is in TV, argue as in §6,

Subcase 2b. If tj is in M and is a ß — a(-redex, argue as in Subcase 2a.

Finally, suppose that tj is in M and is an Tj-redex:
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tj = Xy - Py.

By separatedness, £ must be in P. Contracting tj to F will change £ to a term

£' = (Ax • M')N, and the residual of f will be the f in P in M'. Then

contracting £' will produce

(11) [N/x]M',

containing [N/x]P with [N/x]Ç at the same position as f originally had in P.

On the other hand, contracting £ first will produce

(12) [N/x]M

containing the residual of tj, namely

[N/x]t] = Xy{[N/x}P)y,

and [N/x]P will contain [N/x]Ç at the same position as £ had in P. Then

contracting the 17-residual to [N/x]P will change (12) to (11), and leave the

position of the f-residual unchanged, relative to [N/x]P.

This completes the proof for the case that f, £, tj are all well separated.

Now suppose f is too close to both £ and tj. Then f /£ and £/tj are both

empty, and so

f/(£+T,//£) = 0 = f/(T,+£//Tj).

Finally, suppose £ is too close to one of £, t; (say £), but not to the other

(and that £ is well separated from tj). Then f/£ = 0, so

y (£ + tj//£) = 0.

We must show that ¿"/(tj + £//tj) = 0; it will be enough to show that every

residual £/tj is too close to a residual £/tj, so that when the residuals £/tj are

contracted, all the residuals of f will disappear.

Now the pair f, £ has one of the two forms

(Xx-Mx)N,       (Xx-Mx);

Xx-(Xy-P)x,       (Xy-P)x.

If tj is in M, N or P, or tj is disjoint from £ and £, then contracting tj leaves f,

£ too close together; hence as above,

f/(TJ + £//T,) = 0.

The only other possibility is that tj contains both of f, £. The possible forms

of tj are

Xz- Wz,       (XzU)V,       [Ujvx] ■ ■ ■ [Uk/vk](aMx ■ ■ ■ Mn).

Since tj is well separated from both £ and f, the pair £, f must be in one of W,

U, V, Ux,..., Uk, and when tj is contracted to

W,       [V/z]U,       [Ux/vx]---[Uk/vk]M*,

the residuals of £, £ occur in too-close pairs as required above. Hence
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y (t, + £//tj) = 0.

This completes the proof of Lemma 4.

Theorem 9.1. For Xß-q-reduction with extra axiom-schemes oS Sorm (a),

satisfying (D1)-(D9); every well separated set a of redexes in a term T has a

complete development, and all complete developments oS a are strongly equiv-

alent.

Proof. First, a complete development of a does exist; just take the MCD.

Second, to prove (E+) for well separated a we can either use the direct

Church-Rosser method, with Lemmas 3 and 4 at appropriate places, or use

the abstract method in §5. Following §5: checking the proof of [3] Lemma 8

shows that all MCDs of a finite well separated set a of redexes are strongly

equivalent. (Of course this needs Lemmas 3 and 4.) Then, again using

Lemmas 3 and 4, Lemma 9(ii) on [3, p. 552] can be strengthened to say that if

the set of redexes given in the lemma is well separated, then the reductions in

the lemma's conclusion will be strongly equivalent. Finally, the proof of (1) in

§3 above will also give strong equivalence. This completes the proof.

References

1. H. B. Curry and R. Feys, Combinatory logic. Vol. I, North-Holland, Amsterdam, 1958. MR

20 #817.
2. A. Church, The calculi of lambda-conversion, Princeton Univ. Press, Princeton, N. J., 1941.

MR 3, 129.
3. R. Hindley, An abstract form of the Church-Rosser theorem. I, J. Symbolic Logic 34 (1969),

545-560. MR 46 #1578.
4. R. Hindley, An abstract Church-Rosser theorem. Il, J. Symbolic Logic 39 (1974), 1-21. MR

50 #61.
5. P. Martin-Löf, An intuitionistic theory of types, Univ. of Stockholm, 1972 (manuscript).

6. P. Welch, Doctoral thesis, Univ. of Warwick, 1975.
7. B. K. Rosen, Tree-manipulating systems and Church-Rosser theorems, J. Assoc. Comput.

Mach. 20 (1973), 160-187. MR 48 # 10182.
8. H. B. Curry, R. Hindley, J. P. Seldin, Combinatory logic. Vol. II, North-Holland, Amster-

dam, 1972.
9. J. H. Morris, Lambda-calculus models of programming languages, Ph. D. Thesis, Massachu-

setts Institute of Technology, Boston, 1968.

10. H. P. Barendregt, J. Bergstra, J. W. Klop, H. Volken, Degrees, reductions, and representabil-

ity in the lambda-calculus, Math. Inst., Univ. of Utrecht 22 (1976) (preprint).

Department of Pure Mathematics, University of Swansea, Swansea, Wales, United

Kingdom


