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Abstract. Let/ be a diffeomorphism of a smooth manifold N and M c N

a compact boundaryless submanifold such that it is a hyperbolic set for /.

The diffeomorphism//M is characterized and it is proved that it is Anosov

if and only if M is an invariant isolated set of / (i.e. the maximal invariant

subset of some compact neighborhood). Isomorphisms of vector bundles

with the property that the zero section is an isolated subset are studied

proving that they can be embedded in hyperbolic vector bundle isomor-

phisms.

Let A be a closed C °° manifold /: JV^aC1 diffeomorphism and M c N

a hyperbolic set for/ [1]. When M is a closed C1 submanifold we say that M

is a hyperbolic manifold. In [2] Hirsch posed the following question: If M is a

hyperbolic manifold for/, is//M an Anosov diffeomorphism? To study this

problem we shall give a characterization of the diffeomorphisms that can

arise as a restriction to a hyperbolic manifold. In Theorem A below we shall

prove that these diffeomorphisms are those given by the following definition:

Definition. A C1 diffeomorphism of a closed C00 manifold M is quasi-

Anosov if for all 0 ¥= v E TM the set {||(7/)"ü|| |zz E Z} is unbounded.

In the statement of the next theorem we shall use the following notation: M

will be a closed C°° manifold, Diff(M) the set of C diffeomorphisms of M,

r > 1, T°(TM) the Banach space of continuous sections of TM with the norm

||tj|| = sup{||r)(x)|| |x E M),andf^: Y°(TM)<^> the isomorphism defined by:

/*(rO=r/oT,o/-'.

Moreover, for x E M and/ E DifV(M), the stable and unstable sets of x are

defined as:

W*(x)= {y E M\d{f"(x)-f"(y))^0 when n->+ oo},

W(x) = [y E A/y(/"(x)-/',(y))-+Owhenzz-> -co}

where d(-, •) is the Riemannian distance on M. Recall that when/ satisfies

Axiom A, Ws(x) and W"(x) are immersed submanifolds [1].
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Theorem A. For f E Diff(AT) the following conditions are equivalent:

(a) fis quasi-Anosov.

(b) / satisfies Axiom A and for all x E AT

TxW*(x)nTxW(x)={0}.

(c) There exist a closed C°° manifold N, a C°° embedding i: AT-> N and

g G Diif(N) such that g ° i = i ° f and i(M) is a hyperbolic manifold for g.

(d) If I is the identity map on T°(TM), I — /„ is infective and has closed

range.

Remark. In [3] is proved that the following condition is also equivalent to

(a):

(e) There exists a neighborhood % of / such that g is expansive for all

ge%.
The equivalence between (a) and (c) proves that the question posed at the

beginning is equivalent to the following one: Does quasi-Anosov imply

Anosov? This question has a negative answer as shown by Franks and

Robinson in [4]. They exhibited a quasi-Anosov, non-Anosov diffeomorphism

of a 3-dimensional manifold. Obviously (b) proves that in 2-dimensional

manifolds all quasi-Anosovs are Anosov. However condition (b) proves that

when the non wandering set of/is all of AT a quasi-Anosov is Anosov, a result

also proved by Selgrade [5] and Sacker and Sell [6].

Corollary 1. TheSollowing conditions are equivalent:

(a)S is Anosov.

Çb) S is quasi-Anosov and structurally stable.

(c)Sis quasi-Anosov and Ws (x) has the same dimension Sor all periodic point

x.

If K c N is an invariant set for / G DiffX(N) we say that K is isolated if

there exists a compact neighborhood U of K such that f\ „eZf"(U) = &•

Corollary 2. IS M is a hyperbolic maniSold Sor / G Diff'(TV), //AT is

Anosov // and only // AT is isolated.

A related and still unsolved problem is whether the restriction of an

Anosov diffeomorphism to an invariant compact submanifold is Anosov.

Partial results are given in [7] and [8].

The theorem and its corollaries will be proved in §2. §1 is devoted to

quasi-Anosov isomorphisms of vector bundles. We show that any quasi-

Anosov vector bundle can be embedded in a hyperbolic one (see §1 for

definitions). This property is applied to the proof of the (a) =» (c) part of the

theorem. For related results see [6].

This paper is essentially contained in the author's doctoral thesis at the

IMPA under the guidance of J. Palis. I wish to thank Professor Palis for
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many helpful conversations and general perspective and orientation during

the preparation of this material.

1. Let K be a compact metric space. We shall denote by £(Ä") the set of all

finite dimensional continuous vector bundles on K with a Finsler structure. If

F E t(K), Fx will be the fiber of F over x. We shall always consider K

identified with the zero section of F, and £(F) endowed with the topology

defined by the metric

*<•,, #tf-«*{*(♦,(«). «i(t>))IM<i}
where dQ(-, •) is a metric inducing the topology of F.

Definition 1. 4> E £(F) is hyperbolic if there exist continuous subbundles

Fs, F" of F and constants K > 0, 0 < X < 1, such that
(a) Fs® F" = F,

(b) $(FJ) - Fs, 4>(F") = F",

(c) ||*7F¿|| < KX", ||*""/^,"ll < KX" for all x E K, n E Z+.
Definition 2. If $ E £(F), the stable subspace of $ at x, denoted Fj(4>),

is the set of vectors v E Fx such that the set {||$"(»)|| |zz E Z+} is bounded.

The unstable subspace of i> at x, denoted E"($), is the set of vectors v E Fx

such that the set {||$""(o)|| |« E Z+} is bounded.

Definition 3. $ E £(F) is a quasi-Anosov vector bundle isomorphism if

££(*) n ££(*) - {0} for all x £ AT.

In this section we shall prove the following results:

Proposition 1.1. If $0 E £(F) z'i a quasi-Anosov vector bundle isomor-

phism, there exist a neighborhood <$L of O0 z'zz £(F) and constants K > 0,

0 < X < 1, jzzc/z /Aaf for allxE K,nE Z+ azzrf $ e %

0) ||*7£?(*)|< *a",

(2) ||*"7£," (*)|| < ^".

Corollary 1.2. $ £ £(F) z's hyperbolic if and only if:

f, = f;(*)0f;($)

/or all xEK.

Let L+($) be the set of w-limit points of <b/K [10] and L~+($) its closure.

Corollary 1.3. //$ E £(F) z'i quasi-Anosov $/(F/L+($)) w hyperbolic.

Proposition 1.4. Le/ $ £ £(F) and A c K a compact invariant (i.e.

$> E £(F0 © F,) such that it is hyperbolic and Í>/F0 = $0. Moreover, given

e > 0, we can find $ satisfying \\(mx ° $)/FliJe|| < e for all x E K, where mx:

F0® Fx-+ Fx is the canonical projection.
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Proposition 1.5. T/í>0 G £(F0) is quasi-Anosov there exists F, G t(K) and

$ G £(F0 © Ft) such that is hyperbolic and <b/F0 = <I>0. Moreover, given

e > 0, we can Sind $ satisfying \\(mx ° &)/FXx\\ < e /or a// x E K, where mx:

F0(B Fx-> F, is the canonical projection.

For the proof of these proposition we shall need the following lemmas.

Lemma 1.6. The set oj quasi-Anosov isomorphisms is open.

Proof. If F G t(K) and <£> G £(F) is quasi-Anosov there exists n0 G Z+

such that for all v E F there exists - n0 < n < n0 such that ||$"(e)|| > 3||t>||.

Hence there exists a neighborhood % of $ in £(F) such that if 0, G % and

v E F there exists — n0 < n < n0 satisfying ||$"(ü)|| > 2||u||. Applying this

property to $,(«) it follows that for all m G Z+ there exists — mnQ < N <

mn0 such that ||*, (u)|| > 2m||t>||.

Lemma 1.7. T/3> G £(F) ¿y quasi-Anosov and v E Ex(<&),

\rminjp"(v)\\=0.

Proof. If lim inf„^+00|4>n(t))|| ¥= 0 there exists c > 0 satisfying ||$n(t3)|| >

c||ü|| for n > 0. Moreover v G Ex($) implies that for some K > 0 we have

|¡í>n(ü)|| < TC||t)|| for all n E Z+. Take a sequence of positive integers {n\j E

Z+} such that n¡-* +oo when/-* +oo and 0^w = lim._,+00$'¡'(t5) exists.

Then for all « G Z:

$"(w) =   lim    *"+*(©).
7-»+ 00

Hence ||0"(w)|| < Tf||u|| for all n G Z contradicting the definition of quasi-

Anosov.

Lemma 1.8. T/í> G £(F) « quasi-Anosov there exist a neighborhood % o/$

a«a* a constant K > 0 /Aar /or a// $, £ 1, c £ F ana" integers 0 < n < m

satisfy:

l«W|<^(W+l«TWI>
Proof. As we observed in the proof of Lemma 1.3 we can find a

neighborhood % of 4> and an integer n0 G Z+ such that for all w G F,

$, G % there exist -n0 < « < «0 satisfying ||$ï(w)|| > 2||w||. Hence if

i)£F,$1£l,m£Z+ and we take 0 < j0 < m defined by:

|*í«(O)||-sup{|*{(ü)||0</<«}

it follows that ||<ï>ï(<ï>{°(u))|| < \\&i°(v)\\ for all -/„ < n < m - j0. Then/0 <

«0 or m — /„ < n0. The definition of j0 implies that for all 0 < n < m

||*ï(»)|| <fl*í°(«)|-
Then if /„ < n0
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¡*î(0)|| < (sup{\\V/Fx\\ |¥ E %, x £ K, 0 < / < n0})||O||

and if m — j0 < n0

ll*î(»)ll <|«r("--4)(*r(«))I
< supdl^-VF,! |* E %,x E AT,0 < / < /i0}||*r(e)||.

Taking

K = supdpyF^I \*E%,xEK,-n0<j< nQ)

the lemma is proved.

Proof of Proposition 1.1. Let % and K be given by Lemma 1.8. We shall

prove only property (1) of the proposition. Property (2) follows in a similar

way. Observe that (1) is equivalent to the existence of zz0 E Z+ such that

\\^/Ex (*,)|< 1

for all i>, E %, x E K. To find n0, take N E Z+ such that for all v £ F,

$, E % (taking a smaller % if necessary)

(3) sup{||*{(i>)|| \-N<j<N}> lOK2\\v\\.

This A exists because <P is quasi-Anosov. Now observe that <!>, E %, by

Lemma 1.7, for all n E Z+, there exists mn> n such that H^WII ^ IMI-

Hence, by Lemma 1.8:

(4) ||*ï(«)|| < 2K\\V\\-

Define n0 = 2N + 1. If there exists «^ E %, x E K, 0 ¥= v £ F^O,) satisfy-

ing ||$"°(ü)|| > j ||o||, by (4) we have for all 0 < / < «0

\\^xo(v)\\=\\^-J(^(v))\\<2K\m(v)\\.

Hence:

(5) ||f,||/4tf<|*{(t;)|

for all 0 < / < zz0. Then if - N < zc by (4)

|*ÎK(c))|| < 2A>||

and by (5)

||**«(c))|<2A:||0||<8A:2|*r(0)||

contradicting (3).

Proof of Corollary 1.2. Define Fs and F" as the subbundle with fibers

Fx = E¿($), F" = E"($). If we prove that these subbundles are continuous

we are done because the inequalities of Definition 1 will follow from Proposi-

tion 1.1. To prove the continuity consider a sequence {xJzzEZ+}cAT, with

x„ -» x when zz -» + oo and such that there exist subspaces Es and E" of Fx
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satisfying E^($) -» Es, Fx" ($) -» E" when « -► + co. Then, applying Lemma

1.6

||*7£*|| < TC,Xn,       \\$-"/Eu\\ < T^a"

for all« G Z+. Therefore

£Zc £?(*»),    f;cf;($)

but:

dim £; + dim Fx" = dim F¿ ($) + dim F£ (<&)

= dim F* ($) © ££ ($) = dim Fx;

hence £-,'(*) = ££ ££(*) = £,".

Proof of Corollary 1.3. Let v G L+($). By Corollary 1.2 it is sufficient

to prove F/(4>) © £/($) = Fy. Let {xn|/i G Z+} be a sequence in L+($)

such that x„ -» v and ££($), ^£($) converge to subspaces Fs, F" of Fy. By

Proposition 1.1 Fs c F;($), F" c £/($). Moreover dim F' = dim E^Q),

dim F" = dim £,"($). Hence if we prove £/($) © £/($) = Fy for all v G

L+($) we are done. Let x E K andy E u(x). Let [nk\k G Z+} be a sequence

of positive integers, limA_+00 nk = +oo, limA_+0O Í>"*(a:) =>». Let x* =

$"*(.*). Let E" be a subspace of Fx satisfying:

0) £"D£;($),

(2) Ê" © F; ($) = F,.

We claim that there exists C > 0 such that for all nx > n2 > 0 we have:

(3) ||*-"V*"'(^")| < C-

If this is false for all C > 0 there exist nx = nx(C) > n2 = n2(C) > 0 and

v = o(C) G $"'(£") such that:

(4) O*""1^)!! > c.
By Lemma 1.8

(5) ||$- i(f,)| = ||*».-.(*".(0))| < (||*-.(0)|| + flefl);
hence:

(6) ||$-"'(t>)|| >||*-n2(ü)||/Ts: - 1 > C/K - 1.

Applying Lemma 1.8 again, if 0 < n < nx - n2

||*"(*-"'(f))|| < ^(||*-"'(o)|| +||*-B'(t>)||)

by (5) and (6)
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||*"(*-'(o))| <(K+ K2)\\$-">(v)\\ +K2

(?) < ((K + K2) + K2/ (C/K - l))||*-(o)||

for all 0 < n < nx — n2.

For some positive sequence (C}|/ G Z+} such that lim/W+00 C} = 0 we can

suppose that if Vj = v(Cj), Uj = $~"l(í5)(ü(Cy)) the sequence m,/||W;|| converges

to « G Ê" and

lim  (/iI(C,)-H2(Cy))«+oo.
7-*+ 00

By (7) {^"(m)!! \n E Z+} is bounded thus contradicting (2) and proving the

claim. Now suppose that the sequences 0"*(£j($)) and $"*(£") converge to

subspaces G' and Gu of Fy when k -* + oo. By Proposition 1.1 and (3)

g'c £;(*),    c"cf;($);

hence

dim Eß ($) + dim Eyu ($) > dim G' + dim G"

= dim E'x ($) + dim Ê" = dim Fx = dim Fy.

Proof of Proposition 1.4. Let F/A = Fs © F" be the hyperbolic splitting

of $/(F/A). Take a neighborhood 1/ of A and continuous subbundles F,, F2

of F/ Í/ satisfying F, © F2 - F/ Í/, F,/A - F', F2/A = Fu. Let m¡: F/U^>
F¡ be the canonical projections associated to this splitting. For x E U let

Ct(x)={vEFx\\\m2v\\<e\\mxv\\),

Sc(x)={vEFx\\\mxv\\<z\\m2v\\).

By [1, Lemma 3.7], we can suppose that there exists 0 < X < 1 satisfying

US/Fill < A, \\$-x/Fx'\\_< X for all x G A. It follows that if e is small

enough we can take X < X < 1 such that for all x E A, v E Cc(x), w E Se(x)

satisfies:

S*"(°)ll < *"M.    Il*"»ll < VM*
*-l(C,ix)) c C-xhi*-\x)),       *(S,(*)) C $*,(*(*)).

By continuity we can take U such that there exists X < p < 1 with the

following properties:

(1) \\*"(v)\\ < p"\\v\\,

(2) ||*-»|| < M"|K||.

(3) *-'(C.(x))cCiA(*-,(x)),
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(4) *(S.(*))cS,a (*(*)),

for all xE U, vE Ct(x), w E 5£(x). Let As = n/,>0*~"(£0 and F<"> =

<è~n(Fx)/As. By Tichonoff's theorem there exists a sequence {nj\j E Z+} c

Z+ and a (possibly not continuous) subbundle F, of F/A* such that for all

x 6A':

Fu=   lim    F<">

for all x E A*. Observe that pointwise:

$(F,)=   lim   *-'»+,(FI)/A*
,/-> + CO

but:

$-", + '(F,)/AJ c  U Ce(x);
x£As

hence:

*(^i)c   U  C£(x)

and by (1):

l*"(u)|| < m"H
for all v E Fx, n E Z+. Therefore ££($) c F,^ for all x E A*. If 0 ¥= v E

££($) and v £ F, x we can write v = u, + v2 where u, E F, x, v2 E 5e(x)

and v2 ¥= 0. By (1) and (2)

(5) ||*»(„)|| >| \\*»(v)\\ -\\W(vx)\\ |>(l/M)"|hl-M"N|.

Since v2 i= 0 this implies ||$n(t>)|| -* + co when n -» + oo contradicting u £

F¿($). Therefore for all x E AJ

(6) fu = f;(í>).

To prove the continuity of the map x->F¿($) in A* consider a sequence

x„-»xEAJ when zi->+co, such that Ex(<b) converges to a subspace

F c Fx. By (5) and (6) it follows that ||*"/¿|| < p" for all zz £ Z+. Hence

E c F¿($). But dim F;($) - dimF, x = dimFXx = dim F. Hence F =

£/(*).
For the proof of Proposition 1.5 we shall need the following lemma that

proves the existence of certain invariant extension of the unstable subbundle.

Lemma 1.9. Let F, A and 4> be as in Proposition 1.6. Moreover let us suppose

that there exists a neighborhood U0 of A such that

(0) n<E>n(£/0) = A
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and a continuous subbundle G of F/(AS0 - A) where As0 = fl n>o®~n(Uo)> witn

0(G) CG,GX® Esx(<&) = Fx for all x E As0 - A and satisfying the following

property: If {xn\n E Z+} is a sequence of As0 — A such that xn -» x E A when

«-» +00 and G converges to a subspace G C Fx, then G c E"(<$>). Then

there exists a continuous subbundle É" of F/As0 such that E" = E"($)for all

x E A, 0(F>) c£", 4" © ££(*) = ^x /0/" a// * E A0 azz¿ 4" D G^ /or a//

x £ AJ - A.

Proof. If A c U c i/0 is a compact neighborhood of A, it follows from (0)

that A= n„ez$"(£/). Let As = n„>0®~n(U)- If we find a continuous

subbundle E" of F/A* satisfying the desired properties for x £ As, then,

observing that there exists zz0 £ Z+ such that A*0 c $~"°(AS), the subbundle

defined in A* by ££ = 0_',»(F>"),y = 0"°(x) satisfies the lemma. Take U, F„

F2, 5e(x), C£(x) and p as in the previous proof. Taking U small enough_we

can suppose Gx c Se/2(x) for all x E As - A.Let N = As - 0(A*) and A its

closure. We leave to the reader the verification of the following relations:

(1) U *(#) = A' - A,
n>0

® Ñ n A = 0,

(3) Ñ n&{N) = 0   for/> 2.

Now take a continuous subbundle F" of F/(A n 0~'(A)) such that

(4) 5e/2 (x) D 4- D G,,       4"_© E>x (•)- Fx

for all x £ A n 0_I(A). Define for x E 0(A n 0_,(A)) = 0(A) n N:

4» = 0(££-(jc)).

By (3) (0(A) n A) n (A n 0~'(A)) is empty, hence this_ definition is cor-

rect. Now we claim that there exists an extension of Ê " to A satisfying

(5) 5e (x) D 4" D <?,>       4" © Ei (*) = £,

for all x E A. To prove this claim_take a continuous extension F of E " to a

neighborhood V of F = (A n 0(A)) in A and a continuous vector bundle

homomorphism a: F2/P^>FS, where F* is the subbundle of F/A' defined

by the map x -> F^(0), covering the identity and such that

(6) graph(a/F2>je) = F„       \\a/FXx\\ < e

for all x £ V. Condition_(6) follows from (4) if V is small enough. Take a

continuous function ¥: A->R such that ^(x) = 1 for x £ F, ^(x) = 0 for

x E N - V and *(x) < 1 for all x £ A. Define for x E Ñ:

(7) 4 = graph(^x/F2i;t).
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This defines a subbundle satisfying (5) and (6). Finally, define (recalling (2))

f or x E A* - A

where y = $"nÇx) G Ñ and ££ = £*(<!>) for x G A. If m E Z, m > n and

$~m(x) = z G A/ we have:

v£/7n «"-"(t?).

By (3) m - n = 1, v G T7 n $(A/) and then

$"(£/) = $"($(£/)) - $n+,(£;) = $m(F/);

hence our definition is correct. The continuity of F" at points of A* — A is

easy to verify. At points of A it is continuous because if {xn\n G Z+} is a

sequence in A* such that xn -» x E A when n -» + oo and ££ converges to a

subspace E c Fx, then, observing that Ç\ n>QW(As) — A, we can find a

sequence [mn\n G Z+} c Z+, m„ -> oo when « -» +co, and x„ E ^"»(A*).

Hence, if yn = $_"^(xn) G A', from (1) and (2) in the proof of Proposition 1.4

follows that ££ = ^(Éy") c S^(xn) where p„ = p2m". Therefore £ c

£XM($). But dim £ = dim £¿(<3>). Hence £ = £?($).

Proof of Proposition 1.5. Define

2 = {x E K\E*X (*)©£; (*) = FX),

2,-{xeZ|dim £'(*)-/},

IF*(2,)={vGtf|<o(v)c:2,},

WÇ2J) = {yEK\a(y)c^j),

A,= UIF«(2,.).
• <j

By Corollary 1.3 a(x) u <o(x) c 2 for all x E K. Follows from Proposition

1.1 that the set 2y- are closed and obviously they are disjoint. Using the

well-known fact that limit sets of points cannot be decomposed in invariant

closed disjoint sets it follows that for all x E K, a(x) E 2,-, u(x) G 2, for

some / > 0J > 0. The set A, can be defined by:

Aj = {x E K\dim Eux ($)>«- j)

because if x E Aj then a(x) c 2,, / < /, and by Proposition 1.4 this implies

dim £*($) = n- i > n -j. If dim £?($) > n - j, by Proposition 1.1

dim E"($) > n — j for all y G a(x). Hence x E Ay. This definition of A^

proves that it is closed. We claim that for all/ such that 2,- =£ 0 there exists a

compact neighborhood AT- of A, with the following properties:

(1) $(Mj) c MAT,),
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(2) n^w-A,,
n>0

(3)K H *-(AA - Mj) = 2,

n>0

where k is such that k>j,2k¥=0 and 2,- = 0 for all/ < i < k. To prove

this take a compact neighborhood U of Ay such that for all i > j, U n 2,- =

0. Such a neighborhood exists because Ay is closed and disjoint of 2, for all

/' >/. If x £ nn>o$"(£/) it follows that a(x) c U. But a(x) c ß(O) c 2

and since 2 n U = U ;< À we have x E Ay. If x E Ay obviously x E

nH>rfin(U). Then by [10, Lemma 3.5] there exists Mj satisfying (1) and (2).

To prove (3) take x E n„>0*-"(Afc - Mj). Then co(x) cAt- My But

w(x) c fi(O). Hence <o(x) c (A* - Mj) n 2 - 2k. Moreover 0_I(AA - MJ)

= 0-1(A¿) - 0-1(M7) cAt- My Therefore a(x) cAt- A/y. Again a(x)

C ß(O) and then a(x) c 2¿. By Proposition 1.2, dim Fx > k because co(x) c

2k and dim F" > n - k because a(x) c 2A. Then x E 2A. Conversely it is

immediate that 2¿ c nn>0í>~',(A¿ — MJ). Moreover, it is easy to see that we

can suppose Mj c lnt(Mk) for k > j. Let 0 < /, < j2 < • • - <jk such that

2y ¥* 0 if and only if/ E {/j,... ,jk). We shall change the subindex denot-

ing 2,, A,-, M¡, the sets 2¿, A,, M}¡. Clearly Mk — K. Define for/ = 2,..., k:

Fj = F© -C-'•  ©F

where c2 = 1, ^+l «■ 2tfy+t. We shall construct by recurrence a family of

compact neighborhoods U}, Vj,j — 1,..., k of A,- such that Vj c Int(lf) c

Uj C IntiAfy) and continuous isomorphisms:

*,: (F © £,)/£/, -> (F © £,)/*(£/,)

such that

(a)0,/(F/t/,) = 0.
(b) 0,/((F © /;)/ I£) is hyperbolic.

(c) For/ < k,

O,/ ((F © Fy)/ (K- Vj)) = <!>® ■'■■ © 0.

(d) If ir,: F © /}-» F is the canonical projection, ||(7r, ° $j)/Fx\\ < e for

all x E Uj.

Taking O = 0¿ the theorem will be proved. For the construction of these

isomorphisms we shall use the following lemma.

Lemma. Let K0 be a compact metric space, F0 E £(K0), 00 £ £(F0) and

r C K0 a closed subset such that O0(r) = T, O0/(F0/r) is quasi-Anosov and

there exists a closed subset S C K0 satisfying

(l)O0(5)cInt(5).
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(2) is r0 = nn>o$u(s n r), r, = r\n>0%n(v - (s n r)) the isomor-
phisms O0/(F0/r0) and %/(FQ/Yx) are hyperbolic.

Then given a closed neighborhood U of T and e > 0, there exists a quasi-

Anosov isomorphism $ G £(F © F) such that (identifying F © {0} with F):

(3) $/F0 = %,

(4) $/ ((F0 © F0)/K - U) = % © $0,

(5) $/ ((F0 © F0 )/T) is hyperbolic,

(6) 11(^2 » *)/^owx|| < e.

Sor all x G K0, where m2: F0® F0^> F0(B {0} is the canonical projection.

Let us suppose that we have defined Up Vj, <&j satisfying (a), (b), (c). Take a

continuous function X: K^> R such that X(x) > 0 for all x E K, X(x) = 1 if

x E K — W, where IF is a compact neighborhood of 2,+, such that W \~\ Uj

= 0 and Wj c Int(AT,+1), and X(x) > C when x G 2,+1 where C satisfies

C\\(Tf)v\\ > 2\\v\\ for all v E F. Let m: F © Fy -» K be the canonical projec-

tion. Define Ö,.+ 1 G £(F © /}) by:

(7) %+,(% «„..., «,) = (*(%>, a(/0*(o,), • • • » A(p)i>(cc;)

whenp = 77-(ü0, t>„ ..., cl) G AT - UJt and $,+ ,(») = $,-(«) when 7r(u) G Cf..

$j+x/(F © Fj/Aj+X) is quasi-Anosov because if for u G (F © Fj)/Aj+X the

set {||$7+i(ü)|| |n G Z) is bounded then m(v) G A, because

W((f®WA/)-*t
is quasi-Anosov. Hence 7r(u) G A-+1 — A, and a(m(v)) c 2y+1. But by (6)

and the property X(p) > C for p E 2J+X it follows that v = (u0, 0,..., 0).

Since $J+X/F = $ is quasi-Anosov we obtain ü0 = 0. Now define UJ+X being

a compact neighborhood of Uj U A,.,., u W satisfying Uj+X c Int(AT,+ 1) and

as VJ+X take a compact neighborhood of Uj \j AJ+xu W contained in

lnt(UJ+x). Apply the lemma putting K0 = K, F0 = F © F,-, $,.+ , = %, V =
Ay+1, 5 = AT,, T0 = A, T, = 2,+ „ f7 = UJ+X. If $ G £(Fg © F0) is the iso-

morphism given by the lemma define $J+X = $/(F0 © F0)/Uj+X and identify

/•„©Fo-F©^©/7©/} with F © Fj+X. Properties (a), (b), (c), (d) of

$y+1 follows from properties (3), (5), (4), (6) of the lemma respectively.

Proof of the Lemma. By Proposition 1.4 the map x-*Ex($) defines a

continuous subbundle of F0/(T n <&Ö2(S)) that we shall call E*. Applying

Lemma 1.9 to A = T„ U0 = T n $¿2(S), Gx = £;($) (the semicontinuity

property of G follows from Proposition 1.1) we obtain a subbundle G+ on

T n ^>Ö2(S) satisfying:

(a)£*©G + = F0/(T n %2(S)),
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(b) 00(F') C Es,

(c)O0(G+)cG+,

(d) FVr, is the stable subbundle of O0/(F0/r,),

(e) G +/r, is the unstable subbundle of O0/(F0/r,),

(f) G; D Fx"(O0) for all x £ (0¿"2(5) - 0¿(5)) n T

and subbundles F", G " of F0/(r - 0^(5)) satisfying:

(a')Fu©G- = F0/(T-OS(5)),
0>')%\Eu)gEu,

(c')O0-'(G-)cG-,

(d') F"/r0 is the unstable subbundle of 00/(F0/ro),

(e') G ~ is the unstable subbundle of O0/(F0/r0),

(f) G' D F;(Oo) for ail x £ (0¿-2(5) - 0¿(5)) n T;

hence if G0 = G+ n G":

(D Fx © Gx° = G/,

(2) f; © G? = g-,

(3) Ex © F; © G,0 = F0tX,

for ail x E (0¿"2(5) — 0q(5)) n T. We can suppose that there exists a com-

pact neighborhood U0 of T contained in lnt(U) and such that Es, G+ are

defined in U0 n 0¿"2(5) and F", G " in U0 n (#„ - 03(5)) satisfying (1), (2),

(3) in (O0~2(5) - 0¿(5)) n UQ. Take another compact neighborhood V of V

contained in Int( U0) and constants 0 < C, < C2 satisfying

C1||O0(F)||<||t;||<C2|O0(t;)l

for all v £ F. Let X¡: A'-» R be positive continuous functions such that:

(4) Xx(x)<{-Cx, x£02(5)nF,

(5) A2(x)>2C2, x£02(5)n V,

(6) a,(x) = A2(x) = 1,       x E Ä-0 - (00(5) n V),

(7) A3(x)<iC.> XEF-Oo-'ÍS),

(8) A4(x) = A3(x) =1,       x E K0 - (U0 - S).

Define 0, E £(F0) by:

O1(ü) = X1(x)O0(ü+) + A2(x)O0(t;í)

for m(v) = x £ 5 n U0andv = v+ + vs,v+ E Gx+, vs £ F¿

O1(ü) = A4(x)O0(ü_) + A3(x)O0K)

for m(v) = x E UQ - O0(5), ü = v_ + v+, v_ £ G~, vu £ F^", and

0,(u) = 00(ü)
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when m(v) E K0 - U0. Then, if x E $xJi(S) n T:

(9) £■;(*,) -C7X+

and if x G T - ^(5)

(10) £?(•,)-(?,-.

Finally define $ G £(F0 © F0) by:

01) *Kt>2)-(*0(o,),*,(t>2))

when w(t>„ t>2) G AT0 - ($0-I(5') ~ ®l(S)) n i/0, o, G F0, o2 G F0 and if x E

($-1(S) - $l(S)) n t/0, tt(o) = x and o = (o,, «, + »„ + oj where o, G Fu,

o, G £* vu G £?, u0 G G° define:

(12) *(„) = (*„(„,) + *(x)v0, *,(„, + „„ + o0))

being ¥: K0 -» R a continuous positive function such that

(13) *(x)-l,       xGS-4>0(5),

(14) *(*) = 0,       x G *0-'(S) - $„(5).

We shall prove that $ satisfies the lemma. To avoid confusion, in what

follows if x E K and £ c Fx is a subspace we shall denote by £ the subspace

{0} © £ c F0x © F0x. If x G T0 we have by (4), (5), (7), (8) and (9):

El (*) = El (%) © El (*,) = 2?,' (*o) © G/,

f; (*) = ei (%) © ei (*,) = £; ($0) © 4 (*)

then, using (a)

(15) EIWQEIW-F^QF^.

The same argument proves (15) for x G T,. Observing that the orbit of a

point in T - (T0 u T,) always intersects (<¡>l(S) - $l(S)) n V, we can

suppose, if we want to verify the condition Ex($) © £"(<&) = F0x © F0x for

x G T - (T0 U T,), that x G (*g(S) - &0(S)) n T. Moreover, from (?) and

(14) it follows, for x G $g(S) n T

(16) £j (*) = £* ($0) © £J (*,) = El © G/ = El © 4" © G°
and from (10) and (14):

(17) El (*) = £; (*) © £; (*,) = El © Gx" = El © 4 © G°
for x G T — 5. Since the stable and unstable subspaces are invariant under $

we obtain

dim El (*) + dim J5£ (S>) = 2 dim F0>JC

for all x E T — (T0 u T,). Then it is sufficient to prove:

£¿($)n£;(*) = {0}
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in (02(5) - 03(5)) n T.  Let x £ (0¿(5) - 03(5)) n T and y = 00"3(x)-

From (17) follows that

eux (0) = o3(f/ (0)) = o3(f; © f; © g°) = f; © 4 © $3(^,°).

Hence, by (16):

Fi(0)nF;(0) = G;no3(G;).

Let us calculate G° n 03(G/). If O ̂  o E G? vie have

O(o) = (^(y)ü,X4(y)O0(ü)),

02(o) = (*(y), O0(o) + À4(y)*(O0(y))O0(t>), X4(y)02(t;)),

*3(») = (*(>0$o(t>) + A4(y)*(0(y))Oo(t;)

+ A4(y)^(02(o))02(ü),A4(y)03(ü)).

If 03(t>) £ G° we obtain

*(y) + A4( v)^(O0(y)) + A4(y)*(02(y)) = 0

thus contradicting the fact that X4'(y) > 0, and ^(O0(y)) = 1 because O0(y)

£ (5 - O0(5)) n r.

2. Quasi-Anosov diffeomorphisms. In this section we shall apply the results in

§ 1 to prove Theorem A and its corollaries.

Proof of Theorem A. (a) => (b). By Corollary 1.3 the closure of the set of

a-limit points of/, L~(f), is a hyperbolic set. Let L~(f) = L, u • • • U Lk

be the spectral decompositon given in [11], and using the notation in [11] let

y(LJ) = dim Ws(x), x E Lj. If z E IVs (xj n W(xJ), x, E L¡, Xj E Lj we
have

E'^Tf) = TXW>(X¡),       E»(Tf) = TxW"(xj)

by the definition of quasi-Anosov diffeomorphism:

(1) TxW*(x)nTXjW«(xJ) = {0)

hence:

y(Lj) < y(Lt).

If L,,..., L, is a cycle, i.e. if

W (LJ n W (LUJ *0,       Kn<k-l,

W'(Lk)n rV»(Lit)*0

it follows that:

y(L„) < y(L,2) < • • • < y(L,) < y(L,)
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and this together with (1) implies that all the intersections of the stable and

unstable manifolds of basic sets of the cycle are transversal. Therefore these

points of intersection are also in L~(f). This proves that / satisfies the no

cycles condition. By [11] it follows Axiom A and L~(f) = ß(/).

(b) =>(a). Follows easily from the property: Esx(Tf) = TxW'(x), Eux(Tf) =

TxWu(x)ioxal\x EM.

(a) => (c). By Proposition 1.5 there exists a continuous vector bundle F on

AT and a hyperbolic isomorphism $: FAT ffi F-* FAT © F such that

$(u, w) = ((Tf)v + Pw, d>,w)

where $x is a continuous isomorphism and P: F ^> TM a continuous homo-

morphism, both covering/. Moreover we can suppose that P/Fx is near to

the zero map for all x G AT, and that F is a C°° vector bundle because any

continuous vector bundle on a C°° manifold is isomorphic to a smooth one.

Take $': FAT © F-> FAT © F defined by:

V(v,w) = ((TS)v + P'(w),Vx(w))

where 3>i and P' are C00 approximations of <3>, and P. Then $' is hyperbolic

because it is near in the topology of £(FAT © F) to a hyperbolic isomor-

phism. Moreover there exists a C °° sphere bundle TV on AT with a C °° section

/: AT -» TV and a C diffeomorphism g,: TV -> TV such that gx° i = i ° S and,

identifying FA///(AT) with FAT © F,

(Fg)(i>,vv) = ((F/)ü, $',(*))

for (c, w) G TN/i(M). Then it is easy to find a C diffeomorphism g: TV such

that g ° i = i °/and:

(Fg)(ü,>v) = ((F/)ü + F'(w),$'1(w))

for (v, w) G TN/i(M).

(c)=>(d). Let AT' = /(AT) and /„: r°(FAT)^r°(FAT'), g,: r°(FTV/AT')^

T°(TN/M') defined as

''»C1?) = F/ o Tj o r1,       g^T)) = Fg o 77 ° g-1.

Since AT' is a hyperbolic set T - g+ is an isomorphism, hence (T - S*)V°(TM)

= i*l(I - g*)V°(TM') is a closed subspace.

(d) => (a). We claim that (d) implies that the set of periodic points of /,

Per(/), has empty interior. If U is an open set, U c Per(/), and Sn is the set

of fixed points of/", we have

u = U (s„ n U).
n>0

Hence there exists n0 such that S„ni/ has nonemtpy interior Int(S'„o n U).

But:
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«o-l

Int(5„o n U) « U (5„+1 - sn) n Int(5„o n U)
n=\

therefore there exists 1 < m < n0 - 1 such that

(Sm+1-5m)nint(5„on U)

has nonempty interior. Choose an open set V c (5m+] - 5m) n Int(S„o n CO

such that fJ(V) n V = 0 for 1 < / < m and /m+1(x) = x for all x E V.

Take tj E I^TAf) with support in V. Define £ E r°(7W) as

¿(x) = 0,       xEU/W.
7 = 0

£(x) = (7/)^(/-^(x)),        xE/(F).

It is easy to see that (7 — /„,)£ = 0 contradicting (d). Now let us suppose that

there exists K > 0, p E M and 0 ¥* v £ TpM such that sup{||(7yyü|| |zz £

Z} < AT. Given e > 0 take A E Z+ such that:

A + 1 > 3ATII 'eu

Take a nonperiodic point o near to p (recall that Per(/) has empty interior)

and O^we TqM with ||w|| = ||u|| and ||(F/)V|| < 2A for |zz| < A. It

follows that there exists a neighborhood U of q such that fJ'(U) n Í/ = 0 for

l/l < A and 0 ¥= t\ E r°(FA/) with support in U and satisfying tj(o) = w,

||(r/)"Tj(x)|| < 3* for all x E U, \n\ < A. Define £ E T°(TM) by:

{(x) = 0,        x £ t/,

¿(x) = (] " NTl)<f~J^)'     x GfJ{u)' W<N-

Then ||£|| > ||¿(9)|| = ||w|| = ||o||. Moreover, if x 6/(17),  -N + 1 < j <

N,

|«*) - (/*¿)«|| = (i - Jf~¡ ){Tf)\{H (x))

-fl-'-1'('"ä + iK^W)
< 3*

A+ 1

ifx EfN+\U)



368 RICARDO MANÉ

|iW-(/*€)W|-|(/^)W|

*4M
TV+ 1

iíxEf~N(U)
3K1éW-(/.{)W|<|íW| -

in all other points \\£(x) - (/*£)(*) || = 0. Hence

|(7-/.)«|<l^íl/.|<«M<«Wí
(recall that for all diffeomorphisms ||/J| > 1) and this implies that T —/„ is

not an isomorphism into.

Proof of Corollary 1. (a) => (b) is trivial.

(b) => (c). By the previous theorem/satisfies Axiom A. A structurally stable

Axiom A diffeomorphism satisfies also the strong transversality condition [13]

that together with property (a) of the theorem gives:

(1) Tx Ws (x) © Tx W (x) = TXM

for all x E AT (see the introduction for definitions of Ws(x), W"(x)). To

prove (c) it is enough to prove that if Q,, ß2 are basic sets of / [9] and

W'(tix) n WÇIJ ¥■ 0 then dim W'(x) = dim Ws(y) for some x E Qx,y E

ß2. Take x E ß„ y G ß2 such that Ws(x) n Wu(y) =?= 0.

If z G Ws(x) n W(y) we have by (1)

dim Ws (x) = dim IVs (z) = dim AT - dim Wu (z)

= dim - W" (y) = dim W" (y).

(c) => (a). By Corollary 1.2 to prove that/ is Anosov it is enough to prove

(using the notation of §1):

El(Tf)<BEl(Tf)-TxM
for all x E AT. By Theorem A this is true for all x E Q(f). For x G ß(/)

observe that

El(TS) = TxW'(x),      El(TS) = TxW(x);

therefore Esx(Tf) n £X"(F/) = (0). If we prove dim Esx(Tf) + dim El(Tf) =

dim AT we are done. But if xx and x2 are periodic points in the basic sets

containing the a and <o limits of x respectively we have

dim£i(F/) = dim£;i(F/),

dim El (Tf) = dim ££ (Tf) = dim AT - dim £*, (Tf).

Proof of Corollary 2. To prove that AT is isolated it is sufficient, by [11],

to verify that there exists e > 0 such that W*t(x) n IV" (y) C AT for all x,
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y E M (see [11] for notation). Let 50 > 0 be such that for all x, y E M,

0 < s < ô0 the set W*(x) n W"(y) contains at most one point. Let, for

x E M, W¿(x), IV"(x) be the local stable and unstable manifolds of f/M at

x [1]. We can suppose that Wst(x) = Wst(x) n M, Wtu(x) = Wcu(x) n M.

Take c > 0 such that if d(x, y) < c then Wss(x) n Wsu(y) is exactly one

point. Choice S0 > e > 0 such that Wcs(x) n rVeu(y) ̂  0 implies ¿(x,y) <

c. Hence if W¡(x) n »^"(y) ^ 0, the intersection is one point because

e < 80 and must be the unique point in the intersection W¡(x) n Ws"(y).

Conversely, let us suppose that there exists a compact neighborhood U of M

such that

nfn(u) = M.

By Corollary 1 it is enough to show that f/M is structurally stable. Let

g E Diff(M) be C near to /. We can suppose that g = gjM where

g E Diff'(M) is C1 near to /. By [1] there exists a homeomorphism h:

A/-> n„BZgS(u) sucn that (£o ° A)(*) = (A °/)W for aU x E M. But

g(Af) = M implies M c r\aezgo(U)>tXAen 9 ~ h~x/M is injective and C°

near to the identity, therefore is surjective. Then

h(M) = h(<p(M )) = M

and/is structurally stable.
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