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ABSTRACT. Let f be a diffeomorphism of a smooth manifold Nand M c N
a compact boundaryless submanifold such that it is a hyperbolic set for f.
The diffeomorphism f/ M is characterized and it is proved that it is Anosov
if and only if M is an invariant isolated set of f (i.e. the maximal invariant
subset of some compact neighborhood). Isomorphisms of vector bundles
with the property that the zero section is an isolated subset are studied
proving that they can be embedded in hyperbolic vector bundle isomor-
phisms.

Let N be a closed C*® manifold f: N «>a C! diffeomorphism and M ¢ N
a hyperbolic set for f [1]. When M is a closed C! submanifold we say that M
is a hyperbolic manifold. In [2] Hirsch posed the following question: If M is a
hyperbolic manifold for f, is f/ M an Anosov diffeomorphism? To study this
problem we shall give a characterization of the diffeomorphisms that can
arise as a restriction to a hyperbolic manifold. In Theorem A below we shall
prove that these diffeomorphisms are those given by the following definition:

DEFINITION. A C! diffeomorphism of a closed C® manifold M is quasi-
Anosov if for all 0 # v € TM the set {||(Tf)"v|| |n € Z} is unbounded.

In the statement of the next theorem we shall use the following notation: M
will be a closed C*® manifold, Diff" (M) the set of C” diffeomorphisms of M,
r > 1, T%TM) the Banach space of continuous sections of TM with the norm
lnll = sup{|[n(x)|| |x € M},and f,: T°(TM) <> the isomorphism defined by:

fem)=TfomofL

Moreover, for x € M and f € Diff"(M), the stable and unstable sets of x are
defined as:

W (x) = {y € MId(f" (x)- " (»)) > O when 1 — + 0},
W (x) = {y € M|d(f"(x)"f"(y)) >0 whenn— — oo}

where d(-, *) is the Riemannian distance on M. Recall that when f satisfies
Axiom A, W*(x) and W*(x) are immersed submanifolds [1].
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THEOREM A. For f € Diff" (M) the following conditions are equivalent:
(a) f is quasi-Anosov.
(b) f satisfies Axiom A and for all x € M

T, W (x)n T, W*(x) = {0}.

(c) There exist a closed C*® manifold N, a C* embedding i: M — N and
g € Diff"(N) such that g o i = i o f and i(M) is a hyperbolic manifold for g.

(d) If I is the identity map on TY(TM), I — S+ is injective and has closed
range.

REMARK. In [3] is proved that the following condition is also equivalent to
(a):

(e) There exists a neighborhood U of f such that g is expansive for all
gE .

The equivalence between (a) and (c) proves that the question posed at the
beginning is equivalent to the following one: Does quasi-Anosov imply
Anosov? This question has a negative answer as shown by Franks and
Robinson in [4]. They exhibited a quasi-Anosov, non-Anosov diffeomorphism
of a 3-dimensional manifold. Obviously (b) proves that in 2-dimensional
manifolds all quasi-Anosovs are Anosov. However condition (b) proves that
when the nonwandering set of f is all of M a quasi-Anosov is Anosov, a result
also proved by Selgrade [5] and Sacker and Sell [6].

COROLLARY 1. The following conditions are equivalent:

(a) f is Anosov.

(b) f is quasi-Anosov and structurally stable.

(c) f is quasi-Anosov and W*(x) has the same dimension for all periodic point
X.
If K C N is an invariant set for f € Diff'(N) we say that K is isolated if
there exists a compact neighborhood U of K such that N o, f"(U) = K.

COROLLARY 2. If M is a hyperbolic manifold for f € Diff'(N), f/M is
Anosov if and only if M is isolated.

A related and still unsolved problem is whether the restriction of an
Anosov diffeomorphism to an invariant compact submanifold is Anosov.
Partial results are given in [7] and [8].

The theorem and its corollaries will be proved in §2. §1 is devoted to
quasi-Anosov isomorphisms of vector bundles. We show that any quasi-
Anosov vector bundle can be embedded in a hyperbolic one (see §1 for
definitions). This property is applied to the proof of the (a) = (c) part of the
theorem. For related results see [6].

This paper is essentially contained in the author’s doctoral thesis at the
IMPA under the guidance of J. Palis. I wish to thank Professor Palis for
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many helpful conversations and general perspective and orientation during
the preparation of this material.

1. Let K be a compact metric space. We shall denote by £(K) the set of all
finite dimensional continuous vector bundles on K with a Finsler structure. If
F € £(K), F, will be the fiber of F over x. We shall always consider K
identified with the zero section of F, and £(F) endowed with the topology
defined by the metric

d(®,, B,) = sup{d, (®,(v), Dx(v))| |lv|| < 1}

where dy(+, +) is a metric inducing the topology of F.

DEFINITION 1. ® € £(F) is hyperbolic if there exist continuous subbundles
F*, F* of F and constants K > 0,0 < A < 1, such that

(@) F*® F* = F,

(b) &(F*) = F*, ®(F*) = F*,

(©) |1®"/F:|| < KA" ||@~"/F¥|| < KA\"forallx € K,n € Z*.

DEFINITION 2. If @ € £(F), the stable subspace of @ at x, denoted Ej(®),
is the set of vectors v € F, such that the set {||®"(v)|| |[n € Z*} is bounded.
The unstable subspace of ® at x, denoted E(®), is the set of vectors v € F,
such that the set {||®~"(v)|| |» € Z*} is bounded.

DEFINITION 3. @ € £(F) is a quasi-Anosov vector bundle isomorphism if
E;(®)n EX(P) = {0} forallx € K.

In this section we shall prove the following results:

ProrosiTiON 1.1. If ®, € £(F) is a quasi-Anosov vector bundle isomor-
Phism, there exist a neighborhood U of ®, in £(F) and constants K > 0,
O0<A< L suchthat forallx € K,n€Z* and® € U

® &/ E2 @)] < K~

@ |@="/E¥(®@)] < KA™
CoROLLARY 1.2. & € £(F) is hyperbolic if and only if:
F, = E;(2) ® E{ (D)
Jor all x € K.
Let L*(®) be the set of w-limit points of ®/K [10] and L *(®) its closure.
COROLLARY 1.3. If ® € £(F) is quasi-Anosov ®/(F/L*(®)) is hyperbolic.

PROPOSITION 14. Let ® € £(F) and A C K a compact invariant (i.e.
® € C(Fy ® F)) such that it is hyperbolic and ®/F, = ®, Moreover, given
€ > 0, we can find @ satisfying ||(m, o @)/ F, || < € for all x € K, where m,:
Fo® F, - F, is the canonical projection.
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PROPOSITION 1.5. If ®, € L£(F,) is quasi-Anosov there exists F, € £(K) and
® € L(F, ® F,) such that is hyperbolic and ®/F,= ®, Moreover, given
e > 0, we can find ® satisfying ||(7, > ®)/F, || < € for all x € K, where m,:
F,® F, - F, is the canonical projection.

For the proof of these proposition we shall need the following lemmas.
LEMMA 1.6. The set of quasi-Anosov isomorphisms is open.

Proor. If F € £(K) and ® € £(F) is quasi-Anosov there exists n, € Z*
such that for all v € F there exists —ny < n < ng such that ||®"(v)]| > 3|0]|.
Hence there exists a neighborhood U of @ in £(F) such that if &, € U and
v € F there exists —ny, < n < n, satisfying ||®](v)|| > 2||v||. Applying this
property to ®@,(v) it follows that for all m € Z* there exists —mny, < N <
mn, such that ||®Y (v)|| > 2™||v]|.

LemMMA 1.7. If ® € £(F) is quasi-Anosov and v € E; (D),
im0 =0
PrOOF. If lim inf, , , ,||@"(v)|| # O there exists ¢ > 0 satisfying |®"(v)|| >
c||v]| for n > 0. Moreover v € E;(®) implies that for some K > 0 we have
|[@"(v)|| < K|lv|| for all n € Z*. Take a sequence of positive integers {n}|j €

Z%} such that n; — +co0 when j —» + o0 and 0 # w = lim,_,, ,,®"(v) exists.
Then foralln € Z:

®"(w) = lim  @"*%(v).

Hence ||®"(w)|| < K||v| for all n € Z contradicting the definition of quasi-
Anosov.

LEMMA 1.8. If ® € R(F) is quasi-Anosov there exist a neighborhood U of ®
and a constant K > 0 that for all ®, € AU, v € F and integers 0 <K n < m
satisfy:

|21 < K(Jlo] + |7 2)])-

ProOOF. As we observed in the proof of Lemma 1.3 we can find a
neighborhood @ of ® and an integer ny € Z* such that for all w € F,
®, € U there exist —ny < n < n, satisfying ||®7(w)|| > 2||w|. Hence if
vEF,® €U, m €Z" and we take 0 < jj, < m defined by:

4] = ssp{|#{(@)] 0 < J < m)

it follows that ||®](®)(v))|| < [|B[(v)|| for all —j, < n < m — j,. Then j, <
nyorm — j, < n,. The definition of j, implies that forall0 < n < m

125 <|[2P)]-
Then if j, < ny
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|®;(0)|| < (sup{||¥//F|| |¥ € U, x € K,0 < j < np})|o|
and if m — j, < n,
LAOI L CHO)
< sup{|[¥//F |¥ € U, x € K,0 < j < ng}||®7(v)]-
Taking
K=suwp{|V/F||¥ €U xEK —n< )< no}
the lemma is proved.
PROOF OF PROPOSITION 1.1. Let U and K be given by Lemma 1.8. We shall

prove only property (1) of the proposition. Property (2) follows in a similar
way. Observe that (1) is equivalent to the existence of ny € Z* such that

@3/ E2 (@) <3
for all &, € AU, x € K. To find n,, take N € Z* such that for all v € F,
®, € A (taking a smaller U if necessary)
A3) sup{[|®{(v)]| |=N < j < N} > 10K?|jo].
This N exists because ® is quasi-Anosov. Now observe that @, € A, by

Lemma 1.7, for all n € Z™, there exists m, > n such that ||®7(v)|| < ||v]l.
Hence, by Lemma 1.8:

“) |12i(e)]| < 2K]jo]-

Define n, = 2N + 1. If there exists &, € U, x € K, 0 # v € E;(®,) satisfy-
ing ||@7(v)]| > 3 |lv]l, by (4) we have forall 0 < j < n,

[9)] = [~ ()] < 2K[ ()]

Hence:
®) ol /4K <|[&{(v)]
forall0 < j < ny. Thenif —N < k by (4)
"@’,‘((I){”' (v))" < 2K]jv||
and by (5)
|2H(2Y ()| < 2K]jo] < 8K2| @Y (0)|

contradicting (3).

PROOF OF COROLLARY 1.2. Define F* and F* as the subbundle with fibers
F; = E;(®), F; = E}(®). If we prove that these subbundles are continuous
we are done because the inequalities of Definition 1 will follow from Proposi-

tion 1.1. To prove the continuity consider a sequence {x,|n € Z*} C K, with
x, = x when n — +co and such that there exist subspaces E* and E* of F,
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satisfying E; (®) —» E°, E;(®) - E* when n — + co. Then, applying Lemma
1.6
|®"/E’| < KA, |J@7"/EY||< KA"
for alln € Z*. Therefore
E; CE;(®), ECE/N(D)
but:
dim E; + dim E; = dim E; (®) + dim E; (®)
= dim E; () ® E; (P) = dim F,;

hence E;(®) = E;, EX(®) = E}.

PROOF OF COROLLARY 1.3. Lety € L’ *+(®). By Corollary 1.2 it is sufficient
to prove E;(®) ® E'(®) = F,. Let {x,|Jn €Z"} be a sequence in L*(®)
such that x, — y and E; (®), E; (P) converge to subspaces F*, F* of F,. By
Proposition 1.1 F* C Ej(®), F* C E;/(®). Moreover dim F* = dim E; (®),
dim F* = dim E;(®). Hence if we prove E;(®)® E}(®) = F, for all y €
L*(®) we are done. Let x € K andy € w(x). Let {n,|k € Z*} be a sequence
of positive integers, lim,_, . 1, = +o0, lim,_ , ®*(x) =y. Let x, =
®™(x). Let E* be a subspace of F, satisfying:

¢y E* > EX(®),

V)] E“® E; (D) = F..

We claim that there exists C > 0 such that for all n; > n, > 0 we have:
3) |@="/@m(E¥)| < C.

If this is false for all C > 0 there exist n; = n,(C) > n, = n(C) > 0 and
v = p(C) € ®"(E") such that:

@ [@="(v)|| > C.

By Lemma 1.8

©) |27 )] =] o=@~ @) < (I~ @] +]el);
hence:

© [@~" ()] >|®~"(v)|/K — 1> C/K — 1.

Applying Lemma 1.8 again,if 0 < n < n, — n,

[e"(@=" )] < K(j@~" ()] +[|@~"(2)|))
by (5) and (6)
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. ||<I>"(<I>""'(o))|| < (K + K)o ()| +K?
<((K+ K?*) + K*/(C/K = 1))|@~"(v)|

forall0 < n < n — n,
For some positive sequence {C}|j € Z*} such that lim, ,, ,, C; = 0 we can

suppose that if o, = v(C), 4, = ®~"(9(v(C)) the sequence u;/||u|| converges
tou € E* and

lim (n,(C) — ny(G))) = +oo.

J>+o0

By (7) {||®"(u)|| |n € Z*} is bounded thus contradicting (2) aAnd proving the
claim. Now suppose that the sequences ®"(E; (P)) and &™*(E*) converge to
subspaces G* and G* of F, when k — + c0. By Proposition 1.1 and (3)

G'C E/(®), G"CE(D):
hence
dim E} (®) + dim E (®?) > dim G* + dim G*
= dim E; (®) + dim E* = dim F, = dim F,.
PROOF OF PROPOSITION 1.4. Let F/A = F° & F* be the hyperbolic splitting
of ®/(F/A). Take a neighborhood U of A and continuous subbundles F,, F,

of F/ U satisfying F, ® F, = F/U, F|/A = F*, F,/A = F*. Letw;: F/U >
F, be the canonical projections associated to this splitting. For x € U let

C.(x) = {v € F| |jr0] < e|mo]},

S, (x) = {v € F| |m || < g|my0]}.
By [1, Lemma 3.7), we can suppose that there exists 0 < A < 1 satisfying
I®/F:|l <A, |®7!/F¥|| < X for all x € A. It follows that if & is small
enough we can take A < A < 1 such that for all x € A, v € C,(x), w € S,(x)
satisfies:

@l <Kol @70 < X,
®7H(C,(x) € Cu(271X)),  (S,(x) C S ().

By continuity we can take U such that there exists A< p <1 with the
following properties:

()] 12" < #lo»
@ 127"l < w7,

3 27(C, (%)) € Ca(27'(x))
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(€ B(S, (%)) C Sz ((x)),
for all x EU, v € C,(x), wE S,(x). Let A*= N,,,® "(VU) and F® =

~"(F,)/A°. By Tichonoff’s theorem there exists a sequence {n|j € Z*} C

Z"' and a (possibly not continuous) subbundle F, of F/A* such that for all
x EA:

F,,= lim F®
Jjo+o

for all x € A°®. Observe that pointwise:
EY= i -n+1 s
O(F)) = lim @V(F)/A

but:
e~*I(F)/N c U C(x);
xEAS
hence:
o(F)c U C,(x)
xEAN°
and by (1):

12" )| < 7ol
for all v € F,, n € Z*. Therefore E:(®) C F,x forall x e A*. If 0# v €

E;(®) and v £ F,x we can write v = v, + v, where v, € F, x 03 € S,(x)
and v, # 0. By (1) and (2)

Q [o" @] > 12"@] ="l [> /8 loi]| = # 2]

Since v, # 0 this implies ||®”"(v)|| - + c0 when n — + oo contradicting v €
E;(®). Therefore for all x € A°

(©) Fy, = E{(®).

To prove the continuity of the map x — E;(®) in A° consider a sequence
x,—x € A° when n— +oo, such that E; () converges to a subspace
E C F,. By (5) and (6) it follows that ||®"/ E|| < p" for all n € Z*. Hence
E c E;(®). But dim Ej(®) = dlmF,’x = dim F,,x" = dim E. Hence E =
E} (D).

For the proof of Proposition 1.5 we shall need the following lemma that
proves the existence of certain invariant extension of the unstable subbundle.

LeMMA 1.9. Let F, A and ® be as in Proposition 1.6. Moreover let us suppose
that there exists a neighborhood U, of A such that

0) N @"(Up) =A

nez
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and a continuous subbundle G of F/(Ay — A) where Ay = N ,5@~"(Uy), with
®(G) C G, G, ® E;(®) = F, for all x € Ay — A and satisfying the following
property: If {x,|n € Z*} is a sequence of A§ — A such that x, — x € A when
n— +o and G, converges to a subspace G C F,, then G C EX(®). Then
there exists a contmuous subbundle E* of F/ A such that E¥ = E < (®) for all
x €A, ®(E*) c E, E“ @ E;(®) = F, for all x € A} and E;‘ D G, for all
x €Ay — A.

Proor. If A ¢ U c U, is a compact neighborhood of A, it follows from (0)
that A = N,cz®"(U). Let A’ = N,,,@ " (V). If we find a continuous
subbundle E* of F/A’ satisfying the desired properties for x € A’, then,
observing that there exists ny € Z* such that Aj C ®~"o(A®), the subbundle
defined in A by E; = ®~"(E)*), y = ®"(x) satisfies the lemma. Take U, F,,
F,, S,(x), C,(x) and p as in the previous proof. Taking U small enough we
can suppose G, C S, 5(x) forall x € A° — A. Let N = A° — ®(A®) and N its
closure. We leave to the reader the verification of the following relations:

1) U ®(N)=A — A,
n>0
@ NnA=g,
3) NN®(N)=@ forj>2.
Now take a continuous subbundle E* of F/ (Nno '(17 )) such that
@ S2(x)D> E!2G, E'®E()=

forallx € N n ®~'(N). Define for x € ®(N 0 &~ (N)) = ®(N) 1 N:

EY = ®(Ey-iy).
By (3) (®(N' YA N YN (NN @ N )) is empty, hence this definition is cor-
rect. Now we claim that there exists an extension of ¥ to N satlsfymg
®) S.()2E!>G, Er®E:(®)=
for all x € N. To prove this claim take a continuous extension E of E* to a
neighborhood V of P = (N N ®(N)) in N and a continuous vector bundle
homomorphism a: F,/P — F*, where F* is the subbundle of F/A® defined
by the map x — E;(®), covering the identity and such that
©) graph(a/F ) = E,,  |la/Fy,|<e
for all x € V. Condition (6) follows from (4) if ¥ is small enough. Take a

continuous function ¥: N — R such that ¥(x) = 1 for x € P, ¥(x) = 0 for
x € N — Vand Y(x) < lforallx € N. Define for x € N:

@) E¢ = graph(¥Yx/F, ).
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This defines a subbundle satisfying (5) and (6). Finally, define (recalling (2))
forxe A*—A

Er = w(E)
where y = ®~"(x) € N and E¥ = E¥(®) for x EA. I m €Z, m > n and
P~ "(x) = z € N we have:

yEN NI "(N).
By(3)m—-n=1,y € N n ®N) and then
(pn(E"yu ) = (I)n(q)(E"u )) = q,n+l(E"‘u ) = (I)m(E.z“ );
hence our definition is correct. The continuity of E* at points of A* — A is
easy to verify. At points of A it is continuous because if {x,|n €Z*} is a
sequence in A’ such that x, -» x € A when n— + 00 and E; converges to a
subspace E C F,, then, observing that M ,,,®"(A*) = A, we can find a
sequence {m,|n € Z*} c Z*, m, — oo when n— + 0, and x, € ®"™(A%).
Hence, if y, = ®~"™(x,) € A’, from (1) and (2) in the proof of Proposition 1.4
follows that EY = ®™(E’) C S, (x,) where p, = u*™. Therefore E C
E}(®). Butdim E = dim E}(®). Hence E = E}(®).
PROOF OF PROPOSITION 1.5. Define
2= {x € K|E;(®)® E} (D)= F,},
3, = {x € Z|dim E; (®) =/},
w* () = {» € Klo(») C ),
w*(Z) = {y € Kla(y) T},

A= U W (3).
i<j

By Corollary 1.3 a(x) U w(x) C = for all x € K. Follows from Proposition
1.1 that the set Z; are closed and obviously they are disjoint. Using the
well-known fact that limit sets of points cannot be decomposed in invariant
closed disjoint sets it follows that for all x € K, a(x) € 2, w(x) € Z; for
somei > 0,j > 0. The set A; can be defined by:

A; = {x € K|dim E} (®) > n - j}

because if x € A; then a(x) C £, i < j, and by Proposition 1.4 this implies
dmE@®)=n—i>» n—j If dim E¥(®) > n—j, by Proposition 1.1
dim E)(®) > n —j for all y € a(x). Hence x € A;. This definition of A,

proves that it is closed. We claim that for all j such that 3; # @ there exists a
compact neighborhood M; of A; with the following properties:

Y o(M;) c Int(M)),
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¥)] N @"(M;) = A;,

n>0

@ N e7"(A, — M,) =2,

n>0

where k is such that k > j, 2, # @ and 2, = @ for all j < i < k. To prove
this take a compact neighborhood U of A; such that foralli > j, U N Z, =
@. Such a neighborhood exists because A; is closed and disjoint of =, for all
i>j. If x € N,5e®" (V) it follows that a(x) C U. But a(x) C ®) C =
and since 2N U= U;¢;Z; we have x EA;. If x € A; obviously x €
N 450" (V). Then by [10, Lemma 3.5] there exists M; satisfying (1) and (2).
To prove (3) take x € N,5¢®7"(A, — M)). Then w(x) C A, — M;. But
w(x) C Q(®). Hence w(x) C (A, — M) N 2 = Z,. Moreover ®~'(A, — M)
= ®~!(A,) — ®"Y(M) C A, — M,. Therefore a(x) C A, — M;. Again a(x)
C 2(®) and then a(x) C Z,. By Proposition 1.2, dim F; > k because w(x) C
2, and dim F} 3> n — k because a(x) C Z,. Then x € Z,. Conversely it is
immediate that £, C N,5,®7"(A; — M;). Moreover, it is easy to see that we
can suppose M; C Int(M,) for k > j. Let 0 < j; <j, <+ < jj such that
2, # @if and only if j € {jy, . . ., ji}. We shall change the subindex denot-
ing 2;, A;, M,, the sets 2, AJ‘,’ M, Clearly M, = K. Define forj = 2,...,k:

g
F=F®: -+ ®F
where ¢, = 1, ¢, = 2¢;,;. We shall construct by recurrence a family of

compact neighborhoods U, V,j =1, ..., k of A; such that V; c Int(U)) C
U, C Int(M,) and continuous isomorphisms:

o (F ® F)/ U~ (F ® F)/%(U})
such that
@) 9,/(F/U) = @.
(b) ®,/((F ® F)/ U)) is hyperbolic.
(c) Forj < k,

o/ (FOF)/ (K-V)=26 " ©0.

(d) If #;: F @ F;— F is the canonical projection, (7, ¢ ®,)/F,|| < ¢ for
allx € U,

Taking @ = @, the theorem will be proved. For the construction of these
isomorphisms we shall use the following lemma.

LeMMA. Let K, be a compact metric space, F, € £(K,), ®, € L(F,) and
T C K, a closed subset such that ®T) =T, ®,/(F,/T) is quasi-Anosov and
there exists a closed subset S C K, satisfying

(1) @(S) C Int(S).
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@) IfTo=Npo®(S ND), Ty =N,500"T — (S NT)) the isomor-
phisms ®,/(F,/T,) and ®,/(F,/T,) are hyperbolic.

Then given a closed neighborhood U of T and € > 0, there exists a quasi-
Anosov isomorphism ® € £(F @ F) such that (identifying F © {0} with F):

3 D/ Fy= @,

@ @/ ((Fy® Fo)/K—U) =3, @,
O] @/ ((Fo® F,)/T) is hyperbolic,
© (72 © @)/ Fo < e,

for all x € K, where m,: Fy @ Fy— F,® {0} is the canonical projection.
Let us suppose that we have defined U, V, ®; satisfying (a), (b), (c). Take a

continuous function A: K — R such thatj )\(;c) ; Oforall x € K, A(x) = 1if
x € K — W, where W is a compact neighborhood of 2, such that W n U,
=@ and W, C Int(M,, ), and A(x) > C when x € Z,;,, where C satisfies
Cl(THo|| > 2||v|] for all v € F. Let 7: F © F; > K be the canonical projec-

tion. Define &, ,+1 € E(F ® F) by:

U] (i’j+|(”o» Opy v vy O) = (2(v0): M(P)2(v)), - - - » A(P)q’('-’q))

whenp = 7(vp, 0}, ...,0,) € K — U, and ®,, ,(v) = &,(v) when 7(v) € U,
D\ /(_F ® F;/A;,,) is quasi-Anosov because if for v € (F @ F)/A;,, the
set {||27, (v)|| |» € Z} is bounded then 7(v) & A; because
(f)j+l/ ((F ® F})/‘AJ) =9,

is quasi-Anosov. Hence 7(v) € A, — A; and a(7(v)) C Z;,,. But by (6)
and the property A(p) > C for p € T, it follows that v = (v, 0, ..., 0).
Since @,/ F = @ is quasi-Anosov we obtain v, = 0. Now define U, being
a compact neighborhood of U; U A;,, U W satisfying U, C Int(M;, ) and
as V,,, take a compact nelghborhood of UA L UW contalned in
Int(U;, ). Apply the lemma putting K, = X, Fo F © F, &, s =@ I' =
AJ"'I’ S M ro A rl = J+” U U +1° If Q G E(Foe Fo) lS the 18O~
morphism ngen by the lemma define @;,, = ®/(F, ® F)/ U;,, and identify
Fhb®@Ffp=F®F®F®F with F 69 F;,,. Properties (a), (b), (c), (d) of

@, follows from propertles 3), (5), 4, (6) of the lemma respectively.

PrOOF OF THE LEMMA. By Proposition 1.4 the map x — E;(®) defines a
continuous subbundle of Fy/(T' N ®5%(S)) that we shall call E°. Applying
Lemma 19 to A=T,, Uy=Tn ®;%S), G, = EX(®P) (the semicontinuity
property of G follows from Proposition 1.1) we obtain a subbundle G * on
T' N ®;%(S) satisfying:

@ E* ® G* = Fy/(T n 5%(S)),
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() O(E°) C EY,

©®(G*) C G*,

(d) E° /T, is the stable subbundle of ®,/(F,/T),),

(e) G * /T, is the unstable subbundle of ®,/(F,/T),),

(f) Gt D E*(®,) for all x € (D5%(S) — ®YSHNT
and subbundles E¥, G~ of F,/(T — ®3(S)) satisfying:

@) E" ® G~ = Fo/(T — ®(S)),

(®) @5 (E*) C E*,

© & (G)C G,

(d) E¥/T, is the unstable subbundle of ®,/(F,/T),

(¢') G~ is the unstable subbundle of ®,/(F,/Ty),

() G D E:(®,) for all x € (B5XS) — ®YS) N T;
hence if G°=G* N G™:

(1) E:®G)=G/,
@ E'®GY=G,
3 E;®E®G) =F,,

for all x € (@5 %(S) — ®3(S)) N T. We can suppose that there exists a com-
pact neighborhood U, of T' contained in Int(U) and such that E°, G* are
defined in Uy N ®5%(S) and E¥, G~ in U, N (K, — ©*(S)) satisfying (1), (2),
(3) in (@5 X(S) — D3(S)) N U,. Take another compact neighborhood ¥ of T
contained in Int(U,) and constants 0 < C; < C, satisfying

Cill2(M)]| <Jlo]l < G| 2o(0)]

for allv € F. Let A;: K — R be positive continuous functions such that:

@ A(x) <icy, x EPYS)N V,

®) A (x) > 2GC,, x €®YS)Nn V,

(©) ME) =) =1, x€Ky— (D(S) N V),
Q)] A3(x) <3Gy, x €V —-&5YS),

® ME)=Mh(H)=1  x€K,- (U,- S).

Define @, € £(F,) by:
D(v) = A1 (x)®g(v+) + Ay (x)Do(v,)
form(v)=x€ SN Ujandv =0, + 0,0, €EG', v, € E},
Dy(0) = Ay (x¥)@(v-) + Ay (x)®y(,)
form(v) = x € Uy — ®(S),v=v_+v,,0_ € G ,v, € E, and
@,(v) = By(v)
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when 7(v) € K, — U,. Then, if x € &5 '(S) N I:

©) E{(®) =G}
andif x € T — ®¥(S)

(10 E*(®) =G .
Finally define ® € £(F, ® F,) by:

aan B(v), 1) = (Po(v,), P1(v3))

(@S) — DYS)) N Uy, m(v) = x and v = (v, v, + vy + v,) Where v, € F,,
v, € ES, v, € EX vy, € G define:

(12) B(v) = (o(v1) + ¥(x)00, ®,(0, + v, + v5))
being ¥: K, — R a continuous positive function such that
@13 Y(x)=1 x€E8—9S),

19 ¥(x)=0, x&o'(S)— OYS).

We shall prove that ® satisfies the lemma. To avoid confllsion, in what
follows if x € K and E C F, is a subspace we shall denote by E the subspace
{0} ® E C F,, ® F,,. If x € T, we have by (4), (5), (7), (8) and (9):

E; (D) = EJ (Do) @ E; () = E;(Dg) © G,
E{ (D) = E; (D5) © E () = E{ (D) © E; (D)
then, using (a)
(15) E; () O E/ (D) = Fo, © Fy,.
The same argument proves (15) for x € T',. Observing that the orbit of a
point in ' — ([, UT,) always intersects (®3(S) — ®X(S) NT, we can
suppose, if we want to verify the condition ES(®) ® E¥(®) = F,, ® F,, for

x €T — (Tou T)), that x € (PY(S) — ®3(S)) N T. Moreover, from (9) and
(14) it follows, for x € ®}(S) N T

(16)  E{(®)=E{ (D) ®E;(®) = E; DG} =E;®E'® G
and from (10) and (14):
a7  E¥(®)=E; (D)@ E;(®)=E; G, =E} ® E; G
for x €T — §. Since the stable and unstable subspaces are invariant under ®
we obtain
dim EZ () + dim E} (®) = 2dim F,,,
forallx €T — (T, U T,). Then it is sufficient to prove:
E(®) n EX(®) = {0)
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in (®YS)— BYS) NT. Let x € (DYS) - BYS) N T and y = &53(x).
From (17) follows that
E! (D) = ®*(Er (®)) = ¥*(E ® E; © G) = E} ® E: ® 9*(G)).
Hence, by (16):
E:(®) N EX(®) = G n &(G)).

Let us calculate G’ N $%(GY). If 0 # v € G? we have
®(v) = (¥ ()0, A4 (7)24(v)),

By(v) = (¥(2), Po(v) + Ag(¥)¥(Pe())Po(0), Ao (»)P3(v)),

@3(v) = (¥(»)P(v) + Aa(»)¥(2(»))0¥(0)

+ A () ¥(D(0))23(0), As(») B(0)).
If ®*(v) € G we obtain
Y(») + A () ¥(Do(»)) + Ay(»)¥(25()) = 0
thus contradicting the fact that A(y) > 0, and ¥(®y(»)) = 1 because Dy(y)
ElS —0(S)NT.

2. Quasi-Anosov diffeomorphisms. In this section we shall apply the results in
§1 to prove Theorem A and its corollaries.

PROOF OF THEOREM A. (a) = (b). By Corollary 1.3 the closure of the set of
a-limit points of f, L~(f), is a hyperbolic set. Let L~(f)=L,u -+ U L,
be the spectral decompositon given in [11], and using the notation in [11] let
Y(L) = dim W*(x), x € L. If ze W (x)n wi(x), x;, € L, x; € L, we
have

EL(TN) =T, W (x), Ey(Tf) = T,W"(x)
by the definition of quasi-Anosov diffeomorphism:
o TW* (x) n T,W*(x) = {0}
hence:

Y(L) < y(L).

IfL;,..., L, is acycle, ie. if

w(L)nw'(L, )+9, 1<n<k-l,

we (L,.k) nweL)+ao
it follows that:
Y(L‘]) < Y(Liz) <---< Y(Lik) < Y(L"l)
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and this together with (1) implies that all the intersections of the stable and
unstable manifolds of basic sets of the cycle are transversal. Therefore these
points of intersection are also in L~(f). This proves that f satisfies the no
cycles condition. By [11] it follows Axiom A and L™(f) = Q(f).

(b) = (a). Follows easily from the property: EJ(Tf) = T, W*(x), E{(Tf) =
T W"(x)forallx € M.

(a) = (c). By Proposition 1.5 there exists a continuous vector bundle F on
M and a hyperbolic isomorphism &: TM © F — TM @ F such that

@(v, w) = ((Tf)v + Pw, B\w)

where ®, is a continuous isomorphism and P: F — TM a continuous homo-
morphism, both covering f. Moreover we can suppose that P/F, is near to
the zero map for all x € M, and that F is a C* vector bundle because any
continuous vector bundle on a C* manifold is isomorphic to a smooth one.
Take &': TM © F —» TM @ F defined by:

@'(v, w) = ((Tf)o + P'(w), ®i(w))
where @] and P’ are C* approximations of ®, and P. Then @’ is hyperbolic
because it is near in the topology of £(TM @ F) to a hyperbolic isomor-
phism. Moreover there exists a C* sphere bundle N on M with a C* section

i: M - N and a C’ diffeomorphism g,;: N — N such that g, i = i o f and,
identifying TN /i(M) with TM © F,
(Tg)(v, w) = ((Tf)v, B}(w))
for (v, w) € TN /i(M). Then it is easy to find a C” diffeomorphism g: N such
thatg o i = i o fand:
(Tg)(v, w) = {((Tf)v + P'(w), B(w))

for (v, w) € TN /i(M).

(€)= (d). Let M’ = i(M) and i,: TY(TM) - TY(TM’), g,: TATN/M’) >
T%TN/M’) defined as

ifm)=Tienei™!, g m=Tgenog "

Since M’ is a hyperbolic set I — g, is an isomorphism, hence (I — FITU(TM)
=i (I - g, )T%(TM’)is a closed subspace.

(d) = (a). We claim that (d) implies that the set of periodic points of f,

Per(f), has empty interior. If U is an open set, U C Per(f), and S, is the set
of fixed points of f", we have

U= U (S,n V).
n>0

Hence there exists n, such that S, N U has nonemtpy interior Int(S, N U).
But:
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ng— 1
Int(S, N U)= U (S41 — S,) N Int(S, N U)
n=1
therefore there exists 1 < m < ny — 1 such that
(Sm+l - Sm) N Int(sno N U)
has nonempty interior. Choose an openset V' C (S, .; — S,) N Int(S,,o k%))

such that (V)N V=0 for 1 < j < m and f"*!(x) = x for all x € V.
Take n € T%TM) with support in V. Define ¢ € TYTM) as

(x)=0, xgU F (V)

Jj=0

§x) = (N7 (x), xef (V)
It is easy to see that (I — f,) = O contradicting (d). Now let us suppose that

there exists K > 0, p € M and 0 % v € T,M such that sup{||(Tf)"|| |n €
Z)} < K. Givene > 0 take N € Z* such that:

N + 1> 3K||f,|/¢|]-

Take a nonperiodic point ¢ near to p (recall that Per(f) has empty interior)
and 0+ w € T,M with |w|| = |lv]| and [[(Tf)w]| < 2K for |n| < N. It
follows that there exists a neighborhood U of ¢ such that f(U) n U = @ for
|jl € N and 0 5 n € T%TM) with support in U and satisfying n(q) = w,
I(TH™(x)|| < 3K for all x € U, |n| < N. Define ¢ € T%(TM) by:

{x)=0, xgU,
§(x) = (1 - Nlil i )n(f'j(U)), x € f(U), |j|< N.
Then [|€]| > ||&(g)ll = ||w]l = ||v||. Moreover, if x € f(U), =N +1< <
N,

TRE (T

o
- (1- Y )i )

3K .
N+1’

<

if x € fNFI(U)
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le) = (70| =[|(££) )|
N
(l TN+

&) - (£ <IN < 72
in all other points ||§(x) — ( f,,&)(x)n = (. Hence

[ = 206 < K= 1l < ol < el

(recall that for all diffeomorphisms || f,|| > 1) and this implies that I — f, is
not an isomorphism into.

ProOOF OF COROLLARY 1. (a) = (b) is trivial.

(b) = (c). By the previous theorem f satisfies Axiom A. A structurally stable
Axiom A diffeomorphism satisfies also the strong transversality condition [13]
that together with property (a) of the theorem gives:

6)) T .W*(x)® T.W"(x)=TM
for all x € M (see the introduction for definitions of W*(x), W*(x)). To
prove (c) it is enough to prove that if ©, €, are basic sets of f [9] and
w:(Q,) N W*(Q,) # O then dim W*(x) = dim W*(y) for some x € Q,,y €
Q,. Take x € Q,,y € Q, such that W*(x) N W*(y) # @.

If z € W*(x) n W¥“(y) we have by (1)

dim W* (x) = dim W*(z) = dim M — dim W*" (z)
= dim — W (y) = dim W*(y).

(c) = (a). By Corollary 1.2 to prove that f is Anosov it is enough to prove

(using the notation of §1):
E(T) ® E{(TS) =
for all x € M. By Theorem A this is true for all x € Q(f). For x & Q(f)
observe that
E(Tf)= T, W (x), EZ(Tf) =T, W"(x);

therefore EX(Tf) N E¥(Tf) = {0}. If we prove dim EJ(Tf) + dim EZ(Tf) =
dim M we are done. But if x, and x, are periodic points in the basic sets
containing the a and w limits of x respectively we have

dim EZ (Tf) = dim E}, (TY),
dim E¥ (Tf) = dim EX (Tf) = dim M — dim ES, (T¥).

)@y )| < iviﬁ :

<[]

if x € f~¥(U)

Proor oF CoROLLARY 2. To prove that M is isolated it is sufficient, by [11],
to verify that there exists ¢ > 0 such that W (x) n W} (y) C M for all x,
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y € M (see [11] for notation). Let §, > 0 be such that for all x, y € M,
0 < e < §, the set W;(x) N W}'(y) contains at most one point. Let, for
XEM, W," (x), W,“ (x) be the local stable and unstable manifolds of f/ M at
x [1). We can suppose that W:(x) = W;(x)n M, W,"(x) = W}(x) N M.
Take ¢ > 0 such that if d(x, y) € ¢ then Wgo(x) N Wg;( ») is exactly one
point. Choice §, > &€ > 0 such that W;(x) N W¥(y) # @ implies d(x, y) <
c. Hence if W (x)n W}!(y) # @, the intersection is one point because
€ < §, and must be the unique point in the intersection Wgo(x) N Ws‘;( »).
Conversely, let us suppose that there exists a compact neighborhood U of M
such that

N f"(U) = M.

nez

By Corollary 1 it is enough to show that f/M is structurally stable. Let
g € Diff'(M) be C" near to f. We can suppose that g = g,/M where
g € Diff (M) is C! near to f. By [1] there exists a homeomorphism h:
M- N,ez8 (U) such that (g ° h)(x) = (h o f)(x) for all x € M. But
g(M) = M implies M C N ,cz85(U), then ¢ = h~'/M is injective and C°
near to the identity, therefore is surjective. Then

h(M) = h(p(M)) = M
and f is structurally stable.
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