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Abstract. A set of n + 1 lines in /i-space is said to be associated if every

(n - 2)-flat which meets n of the lines also meets the remaining line. Two

Simplexes are associated if the joins of their corresponding vertices are

associated. Two Simplexes are (skew-)orthologic if the perpendiculars from

the vertices of one on the faces of the other are concurrent (associated); it

follows that the reciprocal relation holds. In an earlier paper, Associated and

Perspective Simplexes, we gave an affine necessary and sufficient condition

for two Simplexes to be associated that was so easy to apply that extensions

to «-dimensions of nearly all known theorems, and a few new ones, were

proved in a few lines of calculations. In this sequel we take a closer look at

some of the results of the earlier paper and prove some new results. Then we

give simple Euclidean necessary and sufficient conditions for two Simplexes

to be orthologic or skew-orthologic which yield as corollaries known results

on altitudes, the Monge point and orthocentric Simplexes. We conclude by

discussing some of the qualitative differences between the geometries of

three and higher dimensions.

1. Introduction. Let & and % be «-simplexes with vertices and faces

A¡, B¡, (£,-, $,., respectively, i Ei, where 3 = {0, 1,..., n). We say that &

and S are associated if the lines A¡B¡ joining corresponding vertices are

associated, i.e. have the property that every secundum ((« — 2)-flat) which

meets n of the lines also meets the remaining line. For n = 2 the last

statement reduces to: any point which lies on two of the lines lies on the third.

Thus the notion of associated simplexes is a generalization of that of perspec-

tive simplexes. In a recent paper [6], we gave an affine necessary and

sufficient condition for two simplexes to be associated and gave a very short

proof of extensions to «-dimensions of many theorems from Neuberg's

famous Memoir sur le Tétraèdre as well as some new results. In §§2 and 3 of

this sequel we examine the significance of certain parameters we introduced

and give a family of constructions which lead to pairs of associated simplexes.
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In §4 we give an extension to «-dimensions of the only known result on

associated lines which is truly affine.

In the same Memoir [15, pp. 12, 27]. Neuberg showed that if the perpendic-

ulars from the vertices of one tetahedron on the faces of a second are

concurrent or associated, the reciprocal relation also holds. He called such

tetrahedra respectively orthologic and skew-orthologic. We give here in §5 new

and simple necessary and sufficient conditions for two simplexes to be

orthologic or skew-orthologic which, though they are Euclidean, bear a

striking resemblance to the earlier affine criteria for associativity. At the same

time these conditions exhibit a duality relation between the cosines of

dihedral angles and the exponentials of the edge-lengths-squared previously

found only in non-Euclidean geometry. In §6 we conclude with some remarks

to the effect that the step from three to n dimensions may hold as many

surprises as the step from two to three dimensions.

We use the same notation as in [6] and Theorem i.j of [6] will be called Fact

i.j here.

2. Composite and semisymmetric matrices. Let the weights (barycentric

coordinates) of B¡ with respect to & be given by B¡ = (b¡0, bn,..., bin) = (by),

i E 5, and let us call the matrix (by) composite if there exist numbers

y¡, z¡, i E i, such that by = y¡z¡ for i j= j, or, for some / E Ü, all elements not

in row i, column i, or the main diagonal, are zero.

The following combination of Facts 3.1 and 4.1 gives the complete

significance of the numbers y¡ and z¡ for perspective simplexes.

Theorem 2.1. Let the weights of B¡ with respect to & be (by) and let

s¡ = 2; bu, i E 5. The following statements are equivalent.

.1. (by) is composite with by = y¡Zj, i # /. If s = 2 Zj is not zero, we may

assume s = 1.

.2. The lines A ¡B¡, i E 5, are concurrent at the point P = (z¡), i.e. & and % are

perspective from the point P.

.3. The secunda &¡ n %, i E 5, lie in the prime % where % = (y¡) with respect

to ® and <5 = (yi/(si — sy/)) with respect to &, i.e. â and ® are perspective from

the prime W.

.4. Ceva's form. For all triples of distinct subscripts,

bifbjkhi = bjibkfbik-

Proof. The equivalence of .1 and .4 is an elementary exercise in algebra.

The equivalence of conditions .1, .2 and .3 is established in Facts 3.1 and 4.1

except for the assertions regarding the weights. (The proof of Fact 3.1 tacitly

assumes that P is distinct from A¡; the additional clause in the definition given



ASSOCIATED AND SKEW-ORTHOLOGIC SIMPLEXES 49

here is easily seen to correspond to the case P = A¡.) In the proof of Fact 3.1

we have computed the weights of P and seen that

», = {Si-syfa;+yjP.

Thus

7yb, - y¡bj = yj{Si - syfa - yfy - syfo

which shows that lines B¡Bj and A¡Aj intersect on the prime <§ with weights as

given. This completes the proof.

The following dual may also be proved.

Theorem 2.2. IfS>¡ = (by) and by = y¡Zj, i =£ j, then the (y¡) may be chosen

to be the weights of the center- and the z¡ the weights of the prime of perspectivity.

We call the matrix (by) semisymmetric if we can find parameters x¡, i G 5,

not all zero such that x,by = x,bß, i,j G 5. It is easily seen that a composite

matrix is semisymmetric with parameters x¡ = zjyi. It is an exercise in algebra

to show that for n > 3, (by) is semisymmetric if and only if

bijbkl = bubkJ for all quadruples of distinct subscripts.

We recall

Fact 3.2. The simplexes 62 and $ are associated if and only if the matrix (by)

is semisymmetric.

To interpret the parameters x¡ we introduce the equicenter [16] of two

simplexes & and $: the point (in general unique) whose weights with respect

to & and © are equal. The equicenter may also be viewed as the invariant point

of the affinity which maps éBinto 6&. There are also, in general, n vectors, which

we shall call equivectors, with the same property.

Theorem 2.3. Let & and $ be associated simplexes such that x¡by «■ Xjb¡,for

constants x¡, i E 5. Iffy is proper then the x¡ are proportional to the weights of

the equicenter of & and ©.

Proof. Let P be the point whose weights with respect to <& are (proportion-

al to) (*,). Then

P = 2 *,A = 2 x, 2 b„*j = 2 *,(2 bj^j = 2 xj»j

so the weights of P with respect to & are also (x X

3. Some special pairs of associated simplexes. The diagonal elements of a

matrix B are of no concern in deciding if B is semisymmetric or composite,

and they are often of a special form, e.g. the z'th weight of 5, is zero if B¡ E &¡.
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In such a case we shall place them after a colon so that, for example,

A. = (0: 1) means that the ith weight is 1 and the remaining weights are zero.

The following result gathers the representations we shall need for our first

theorem. Let vk denote the fc-dimensional volume function and let v — vn(&).

For i E i, let f¡ = vn_x(&¡), ctJ = cos(fi,,Ôy) = Cj¡. Let í' - 9 - {0} and let

2, 2', 2    have ranges 5, 5' and á - {/'}, respectively.

Lemma 3.1. Let & be an n-simplex.

.1. The centroid of âis given by G = (l/(n + I)).

.2. The centroid of the face &¡ is given by G¡ = (l/n: 0), i E i.

.3. The foot of the altitude from A¡ is given by H¡ = (ffxf,Cy: 0), and

2-^/c- = /.
A. The altitude A¡É¡ = iffXfjCy: -1). _
.5. A unit vector n¡ normal to &¡ is given by nvh¡ = f¡AiH¡ = iffy'. - f¡).

.6. The vector hyperarea of&¡ is given by f¡ = f¡n¡ = (l/nv)(f¡f,Cy: -f¡ ).

.7. The incenter of âis given by T = (f,/f) where f = 2 f¡ and the inradius, r,

is given by rf = 2 rf¡ = nv.

.8. The incenter of &¡ is given by (fy/f: 0) where fy = vn_2(&y) and f

= 2]■   fy,and its inradius r' is given by r'f = (n — l)f¡.

.9. The center of the ith exsphere (the sphere tangent to @.¡ externally and to &¡

internally, j j= i) is given by T¡ = (f¡/(f— 2f¡): -fj(f- 2f¡)) and its radius r¡ is
given by r¡{f- 2f) = 2J;i^ - JjjJ = nv.

.10. The point of contact of the ith exsphere with &¡ is given by t¡ — r¡n¡

= (fj(l-cy)/(f-2fi):0).  '
.11. The Lemoine point of & is given by K = (f2/f") where f" = 2/-2.

Proof. Projecting A¡ orthogonally on ®¡ gives .3 immediately. Proofs of .7,

.8, and .9 are found in [5]. Result .11 is Fact 7.1 and the remaining results are

easily seen to be true.

Theorem 3.2. Let & be an n-simplex. For i E 5, let the points B¡ be determined

by CjBj = xv¡ where x is an arbitrary number and C¡ and v¡ are the points and

vectors given by any one of conditions .1-.8 below. Then & and iß are associated.

.1. C is the centroid G of & and v, is the hyperarea f(..

is the centroid of &¡ and \¡ is the hyperarea f¡.

is the incenter of & and v¡ is the unit normal n¡.

is the incenter of&¡ and \¡ = r'a¡.

is the ith excenter and \¡ = r¡ n¡.

is the point of contact of the insphere with &¡, andv¡ = n¡.

is the point of contact of the ith exsphere with &¡, and v¡ = r¡n¡.

is the Lemoine point of & and v, = A¡H¡.

Proof. We shall assume that the constant nv is absorbed in x.

.2.C,

.3. C,

.4. C,

.5. Ct

.6.q

J.q

.8. c,
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In .1 we have b, - g + xt¡ so B¡ = ((1/« + 1) + xffjCy-. (l/n + I) - xf2)
and b„ = b¡; for / ¥= j, so & and $ are associated from Fact 3.2.

In the remaining parts we give b¡¡ for / ¥^j and the value of x¡ so that

X;by   =   Xjbjf.

.2.  by  =   (1/«)   + XfifjCy, X¡=   1.

•3- by  = fj/f + XfjCy, X¡   =f¡.
A.by=fy/fÍ  +  x(fJfÍ)fjCy,Xi=fÍ.
•5. by = fj/(f - 2f) + XfjCy/U - 2f/), X¡ = JJJ - If,).
.7.  by=fj(l   -   Cy)/(f-   2f)   +  XfCy/(f-2f¡),  X¡   - /¡(f ~  2f).
.s.by-ff/r + xfr'fjfyx,-/?.
To prove .6 we need only apply .3 with x increased by the inradius r, which

completes the proof. Theorem 3.2.2 is a generalization of the theorem [23,

Theorem 5] that the outer or inner Napoleon triangle of triangle & (the centers

of equilateral triangles constructed outward or inward on the sides of (Î) is

perspective with &. The three dimensional version of Theorem 3.2.4 is [18, p.

61]. Applying the remark after Theorem 2.2, the following is clear.

Corollary 3.3. The pairs of simplexes in parts .1 and .2 above have a common

centroid. The equicenter of the simplexes of parts .3 and .6 is the incenter of & and

the equicenter of the simplexes of part .8 is the Lemoine point of &.

By setting x = 0 in various parts of Theorem 3.2, we obtain:

Corollary 3.4.

.1. [Fact 6.7] The lines joining each vertex A¡ to the incenter of &¡,iEÍ, are

associated.

.2. [Fact 6.6] The lines joining each vertex A¡ to the point of contact of the

insphere with (£,, / G 5, are associated.

.3. [15, p. 26] 77îc? lines joining each vertex A¡ to the point of contact of the ith

exsphere with (£,, i E i, are associated.

The perpendiculars to the faces of â at their centroids are the images of the

altitudes in the dilation with center at the centroid and constant -l/n so they

are associated. Thus the simplexes constructed in Theorem 3.2.2 are skew-

orthologic as well as associated.

4. An affine property. The first part of the next result is obvious; the second

part, of which a strictly three dimensional proof is given in [4], is quite

surprising.

Theorem 4.1. Let '»and § be two parallel primes, let the line £0 meet '»and §

in B0 and Aq respectively, and, for i E $', let the lines £,. meet f and § in A¡ and

B¡ respectively. The weights of BQ with respect to &0 are the same as the weights
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of Aq with respect to <$>0 if either of the following conditions hold.

.1. The lines t¡ concur at a point P.

.2. The lines t¡ are merely associated.

Proof. Condition .1 implies that the points of fare related to the points of

S by a dilation with center P and the result is immediate.

Suppose we have only condition .2. With respect to the simplex &, let

B¡ = (by), i E 5. Then since B0 lies in AQ, and for i E í', B¡ lies in a prime

through A0 parallel to A¡ and since the sum of the weights of a proper point is

1, we have

(4.1) ¿oo = 0.   2' b0J = 1,   bi0 = 1   and   2' fy = 0   for i E §'.

Since the lines are associated there exist numbers x¡, i E 5, not all zero such

that x¡by = Xjbß, i #/. In particular, x0b0j = Xjbj0 = x},j E §', so x0 ¥=■ 0

and we may take x0 = 1. Thus

(4.2) b0Jbß = b0iby.

Now using (4.1) and (4.2) we find

= (j ^)«o + ?' (j hfàji)*,

= a0 + :po,-(V *</)», = «o

which proves the result.

Corollary 4.2. For i E i, let t¡ and ^ya¡, be two sets of associated lines such

that £,- is parallel to 511,.. Let the prime % meet £,- in A¡ and Vl¡ in B¡, i E i. If

a0 = 2' w,a,-, then b0 = 2' w,b(..

Proof. Let the prime §, distinct from and parallel to §, meet £,■ in A\ and

% in 5U E g.Thenl^it= a¿ - a0^' ^aj - 2^8,. = 2' MiAt-
Since B~B) = A¡A'¡, i E Í, we have 50^ = 2' w¡B~a¡ and hence b0

= 2'w,.b,..
This theorem and corollary are remarkable in that all other results on

associated lines that we have seen which are not strictly projective require

Euclidean notions, whereas these results are truly affine.

5. Orthologic and skew-orthologic simplexes. It was established in the proof

of Fact 5.2 that & and % are orthologic or skew-orthologic according as the
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matrix (cos(^,-, ©•)) is composite or semisymmetric. We shall derive here some

other characterizations in terms of the squares of the distances between the

vertices. One of these is particularly easy to apply viz: 6B and % are

orthologic or skew-orthologic according as the matrix (exo(A¡Bj-)) is compo-

site or semisymmetric. In the orthologic case this condition was discovered by

Darboux [19] but in the skew-orthologic case the characterization is believed

to be new.

We first derive an intermediate condition. Let ( ), ( )', and ( ) denote row,

column or square matrices, depending on context, with subscripts in 5, i',

and i+ = {0,1,...,«+ 1} respectively. Define

A0B2"-A0B2n    1

^•••AnB2n    1

1---1 0

and let dy be the minor of A¡BJ, i,j G if.

Theorem 5.1. & and % are orthologic or skew-orthologic according as (dy) is

composite or symmetric.

Proof. It is clear that dy = dn_x (&¡,$,-) and it follows from [19, p. 361] that

dy = (~l)"[(n - l)!]22^Vl(®>«-l(%)c^i.%)

so that {dy) has the same property as (cos(éE,-, $,-)). We shall see later that in

the skew-orthologic case (dy) is in fact symmetric.

The next theorem collects the main characterization of orthologic simplex-

es; conditions .3 and .4 are found in [19, pp. 362-363]; condition .4 is also

found in [20].

Theorem 5.2. Let &and9> be n-simplexes. The following are equivalent.

.1. & and % are orthologic.

.2. There exist constants y¡, z¡, i G 5, such that cos(C?j, $■) = y¡z¡, i ¥=j, i.e.

(cos((2,-, <$,■)) is composite.

.3. There exist constants a¡, b¡, i G í, such that A¡Bf = a¡ + bj, i j^j, i.e.

(exp(A¡Bf)) is composite.

.4. {For n > 3.) For all quadruples of distinct subscripts, A¡Aj is perpendicular

to BkBx, i.e. A¡BX2 - A¡B¿ + AjB¿ - AjB2 = 0.

Proof. The equivalence of. 1 and .2 was recalled in the preceding proof. If

.1 is true, let A+ be the intersection of the perpendiculars from the vertices of

& to the faces of %. Then

(5.1)0 = 2AiA>+ • BjB\ = A,B% - A^B2 + A+B2 - A+B2k,   i, j, k distinct.

dni&,% =
(1)

(1)

0
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For i E J, let b¡ = B¡A2+ and a¡ = A¡B2+X - bi+x, where bn+x = b0. Clearly,

Ai^f+ï = ai + bi+\ -H k ¥= i or i + I, using/ = / + 1 in (5.1) we have

AtB2 = AtB2+x - A+B2+x + A + B2 = (at + bi+x) - bM + bk = a, + bk.

A simple calculation will show that .3 implies

dv = -  ¡I  (AkB\-ak-bk)
k¥=i,j

= -(AtB2 - at - bif^AjB] - aj - bjfX U (AkB2 - ak - bk)

which is clearly composite and implies .1. It is easily seen that .3 is equivalent

to .4 which concludes the proof. For n = 2 the appropriate equivalent of .4 is

given by Theorem 5.7.2.

It is useful to regard an orthocentric simplex & as the special case of

orthologic simplexes & and % where $ coincides with &. If we denote the

orthocenter by A+ and accept "+" as an abbreviation for "n + I" it is clear

that any n + 1 points of the « + 2 points A¡, i E <j+ may be regarded as an

orthocentric simplex with the remaining point as orthocenter. Such a set of

n + 2 points may be called an orthocentric dupoint.

Similarly for orthologic simplexes & and % let B+ be the point of

intersection of the perpendiculars from B¡ on &¡, i E í.

It is clear that any n + 1 pairs of points from the n + 2 pairs A¡, B¡, i E 5+,

are the vertices of orthologic simplexes with the remaining points as centers.

We shall call these sets of « + 2 points orthologic dupoints. If we choose

a+ = 0 and b+ = Ar)B2+ — a0, it is also clear that the equations in .3 and .4

are valid with subscripts in 5+. The parameters are not unique since .3 remains

valid if all the a¡ are increased and the b¡ decreased by the same amount. We

observe the following properties of the parameters.

Theorem 5.3. Let A¡, B¡, a¡, b¡, / E í+, be the points and parameters of two

orthologic dupoints in n-space. Then

.2. The weights of A+ with respect to &+ equal those of B+ with respect to

%+ and are proportional to ((A¡B2 — a¡ — b¡)~x).

Proof. Since each set of n + 2 points lies in «-space we have

0 = dn+x(A0---A+,B0---B+) =

(0:AiB}-ai-bi)+   (1)+

(D+ 0   '

(ai + by.Atff   (if

(if 0
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after subtracting a¡ (respectively bj) times the last row (column) from row /'

(column j). After dividing row i by AtBf - a¡ - b¡ and subtracting from the

last row we obtain

(0: Atf - 4 - bf (1)+

(0)+ - 2+ (Atf - a, - h,)'1

= - n+ (AiB2 - a,- - b¡) 2+ (AtB2 - a, - bt)-\

and the first result [19, p. 363] is immediate. To prove the second result, let &'

denote the simplex & with the vertex A¡ replaced by A+, i E 5. Then the ith

weight of A + with respect to 6E is

%(®)      «n(6B'K(@)      dn{@,%)

vn{&)       vn{â)vn{%)       dK(&,%)

via [19, p. 356]. Substituting and manipulating as before shows the numerator

to be —W^iAfB? - a, - b¡) which is symmetric in éE and % and the proof is

complete.

Since the medians of a simplex concur at the centroid we have the

following result [25].

Corollary 5.3. If the medians of simplex & are perpendicular to the

corresponding faces of simplex %, then the medians of © are perpendicular to

the corresponding faces of â.

If <$ coincides with & we have the following well-known result [19, p. 331],

[17, p. 358], [31 [7].

Corollary 5.4. Let â be an orthocentric simplex with orthocenter A+. Then

there exist parameters a¡, i G 5+, such that A¡AJ = a¡ + a¡, i *£ j, and 2+ aj"1
= 0.

In fact, to within an isometry, an orthocentric simplex has n + 1 degrees of

freedom (d.f.) and is determined by its parameters. However a pair of

orthologic dupoints can be obtained by starting with an arbitrary «-simplex

(| n{n + 1) d.f.), choosing the point B+ arbitrarily in its space (n d.f.) and

locating B¡ arbitrarily on the perpendiculars from B+ to tí,-, 1 G 5, (n + 1

d.f.), so that the 2n + 2 parameters cannot determine the dupoints.

We now extend the concept of orthologic simplexes to m-simplexes in «-

space. The (n — m + l)-flats perpendicular to the w-flat of an m-simplex have

an improper (n - m - l)-flat in common. If, in addition they have a proper

point in common, then they have a proper (n — m)-flat in common and are

coaxial. Two w-simplexes & and ÇB in «-space are said to be orthologic if the

(n - m + l)-flats through A¡ and perpendicular to <&,-, 1 G $m, are coaxial; if
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m = n this reduces to the original definition.

Theorem 5.2 is true in this more general setting once condition .2 is deleted.

The proof that .1 implies .3 remains valid and it is not difficult to obtain a

direct proof that .3 implies .1 using techniques similar to those used in the

theorem below. In this result we consider conditions which turn out to yield a

characterization of skew-orthologic simplexes.

Theorem 5.5. Let & and © be m-simplexes in n-space with centroids A and B.

For 0 < i <j < m let %j and ^?J be primes perpendicular to edge B¡Bj and

passing through the midpoint of A¡Aj and the centroid of the opposite (m — 2)-

face (Hy respectively, and let §y and §'J be the primes perpendicular to AtAj and

passing through the midpoint of B¡Bj and centroid of iß,-,- respectively. The

following conditions are equivalent.

.1. One of the four sets of primes is coaxial, i.e. has an (n — m)-flat in common.

.2. All four sets of primes are coaxial.

.3. For all triples of distinct subscripts,

tijk - (AtB2 - AjB2) + (AjB2 - AkB2) + (AkB2 - AtB2) = 0.

// the common flats are <3\ <3", S and &', then <3" = ^D(A, - 2/(m - 1))

and 2/ = âD(5, - 2/(w - 1)).

Proof. There is a proper point common to the % if and only if the

following system of (m2 x) equations has a solution:

(5.2)       ey = [x-2-(ai + aj)]'(bi-bj) = 0,       0 < / <j < m.

Now, choosing any point as origin and using the identity (5.1) we see that

H + ejk + eki = i(8/ • bj - *j ■ b(.) + ¿(a,- • bk - ak ■ by)

+l(»k ■ bi -a, • M

= ~4tifk>

so the vanishing of t¡¡k is necessary for the solution of (5.2). It is also sufficient.

In fact, (5.2) clearly has a solution if we restrict / to the value zero. Since

e0J, ek0 = eok and tiJk vanish, it follows that eJk vanishes.

Further, tijk is (skew-) symmetric in & and ÍB so .3 also implies that the @y are

coaxial. Finally, the dilation D(A,—2/(m — 1)) sends the midpoint of A¡A¡

into the centroid of &¡¡ and hence % into %i}, 0 < / </ < m, and so 9 into

9'. The result for S and S' is immediate which concludes the proof.

Some special cases of this result are known. For m = 2we have the case of

orthologic triangles which in 3-space was considered by Mantel [13]. Interest-
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ingly, instead of the condition í0i2 = ^' Mantel chose the origin on the

common line and derived the multiplicative condition

(a2 • b,)(a0 • b2)(a, • b0) - (a, • b2)(a2 • b0)(a0 • b,) = 0.

The case m = n for n = 3 is given in [18, p. 3] and & and ?S are said to be

orthologic by the midpoints of the edges. The case when m = n and $

coincides with & yields the well-known Monge Theorem [18, p. 6].

Corollary 5.6. Let & be an n-simplex with centroid G and circumcenter C.

The primes ^perpendicular to the edge A ¡Aj and passing through the centroid of

the oppposite face <£,--, i ¥= j, concur in a point M such that

G~M = ^^rGa
n - 1

Proof. The primes % perpendicular to the edge A¡Aj and passing through

the midpoint of A¡Aj obviously concur at C.

We are now ready for our criteria for skew-orthologic simplexes.

Theorem 5.7. Let & be an n-simplex and © a (possibly degenerate) n-simplex

in its space. The following are equivalent.

.1. & and ÇB are skew-orthologic.

.2. There exist constants x¡, i G 5, such that x¡cos(&¡,%j) = x-cos(eE•,$,);

i.e. {cosië,:, *$>:)) is semisymmetric.

.3. There exist constants x¡, i G í, such that x¡ + A¡B¡ = jc, + A¡B¡, i, i
' '        '  j        j       j   > '  ,J

E 5; i.e. {exp{A¡Bj )) is semisymmetric.

.4. For all triples of distinct subscripts,

(AtB2 - AjB2) + (AjB2 - AkB2) + {AkB2 - AtB\) = 0.

.5. The corresponding 2-faces of & and 9> are orthologic.

.6. & and $ are orthologic by the midpoints of the edges.

Proof. We have seen that .1 and .2 are equivalent and by the preceding

theorem it is clear that .4, .5 and .6 are equivalent. Clearly .3 implies .4.

Suppose .4 is true and let x0 = 0, x¡ = A0B2 - A¡Bq. lfj =£ 0,

AjB? - Atf = (A}Bl - A0Bf) + (A0B? - Atf) = - Xj + xt,

so .3 and .4 are equivalent. A simple calculation shows that .3 implies that

(dy) is symmetric, completing the proof of Theorem 5.1, which in turn implies

.1.

To complete the proof we show that .1 implies .5. Let %,%, ^2 respectively

be primes through B0, Bx, B2 perpendicular to edges AXA2, A2A0, AqAx, and
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for /Ei, let <3'¡ be the line from B¡ perpendicular the face of eB,- of &. It

follows that the prime % contains the line (3'/, / = 0, 1, 2. Now the (n - 2)-

flat £ = % n % which meets ^P0 and <$x, is completely perpendicular to

AqAxA2 and therefore meets ty3,... ,tyn (in improper points). By .1, the

$„ i G á, are associated so £ also meets <ÍP2 in the point P E <éP2 c %. P

must be proper since the improper (n — 3)-flat of £ cannot contain the n — 2

independent improper points of ?P3.®}n and ^P2- Thus %, %, ^2 are

coaxial with axis £, and the same is true for any triple of distinct subscripts

and we are done.

The following analog of Theorem 2.3 was given by J. Bilo [24]: ¿Eand ÍB are

skew-orthologic if and only if their equivectors are mutually orthogonal.

If % coincides with &, condition .4 is trivially satisfied so we have

Corollary 5.8 [Fact 5.1]. The altitudes of a simplex are associated.

Combining Theorems 5.2 and 5.7 we obtain the following non-Euclidean-

type result.

Corollary 5.9. Let & and *■$ be n-simplexes in the same space. Then

(cos(iE(-, $ •)) is composite or semisymmetric according as (exp(AiBJ2)) is.

Our next application will be a generalization of the orthopole theorem: Let

& be a triangle, £ a line, and B¡ the orthogonal projection of A¡ on £, /' £ i2.

Then the perpendiculars from B¡ on &¡, i E 52 are concurrent.

Theorem 5.10 ([10], [14]). Let & be a simplex, <3 aprime, and for i E 5, let

B¡ be the orthogonal projection of A¡ on S', and C¡ the circumcenter of %¡.

.1. The perpendiculars from B¡ on &¡, i E í, are associated.

.2. The perpendiculars from C¡ on &¡, i E 5, are concurrent.

Proof. A¡B2 = A¡B2 + B¡B2, i ¥>j. Clearly tijk = 0 for all triples of

distinct integers. To prove .2, let R¡ be the circumradius of ®;, so A¡C¡

= A¡B2 + RJ, i ¥= j, and the result is immediate via Theorem 5.2.3.

The following result is believed to be new even for n — 2 or 3.

Theorem 5.11. Let & and S be n-simplexes, f a prime, and let " denote

orthogonal projection on 'S. The following are equivalent.

.1. The perpendiculars from A'\ on $,-, i E Í, are concurrent (associated).

.2. The perpendiculars from B"¡ on &¡, i E 5, are concurrent (associated).

.3. If n > 3, the (n — l)-dimensional dupoints A"¡, i E 5, and B"¡, i E í, are

orthologic (skew-orthologic).

Proof. We have A'^B2 = A'^B"2 + B"jB2 a.nd A¡B"j2 = A¡A"? + A"¡B"j2.

To prove the concurrent case, note that for all quadruples of distinct

subscripts,
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A'/B2 - A'/Bl + AJB2 - AJB/

- A'/Bl'2 - A¡'Bk"2 + Aj'Bk"2 - Aj'B/'2

= Aft'2 - AM2 + AjB¿2 - AjB¡'2,

and the result follows from Theorem 5.3.

To prove the associated case, note that for all triples of distinct subscripts

(A"tB2 - A"jB2) + (A"jB2 - A"kB2) + (A"kB2 - A"tB2)

= (A"¡B"2 - A"jB"2) + (A"jB"k2 -A"kB"2) + (A"kB"f - A"¡Bf)

= (AtB"2 - AjB"2) + (AjB"k2 - AkB"2) + (AkB"2 - A^"2),

and the result follows from Theorem 5.7. Similary we may prove

Theorem 5.12. If © is the reflection of & in some flat, then & and <$> are

skew-orthologic.

We conclude this section by examining what can be said if the matrix (A¡B)

is composite or skew-symmetric. A corner A0 — Ax • • -An, the «-dimensional

analog of an angle, is what remains of the simplex & when the face &0 is

deleted. An isoclinal prime of a corner is a prime which makes equal angles

with the edges of the corner and hence cuts equal segments on the edges.

Theorem 5.13. Let & and % be n-simplexes. For i G 5, let S, and % be the

primes through B¡ respectively tangent to the circumsphere of

B¡A¡+i ' ' ' AnA0 • • • A¡_x

and isoclinal with the corner

Br^i+i - • • AnA0 • • • A¡_x

and let §¡ and %¡ be the primes through A¡ respectively tangent to the

circumsphere of AtBi+x • • • B¡_x and isoclinal with the corner   ArBi+x - • •

B¡_x. Then the following statements are equivalent.

.1. land the simplex with faces S¡, i G i, are perspective (associated).

.2. (land the simplex with faces 9¡,i E 5, are perspective (associated).

.3. © and the simplex with faces S,-, i G 5, are perspective (associated).

A. % and the simplex with faces %¡, i E if, are perspective (associated).

.5. The matrix of distances (A¡B) is composite (semisymmetric).

Proof. Since a face of the tangential simplex is parallel to an antiparallel

section for the corresponding corner, it follows from the proof of Fact 6.9 that

the weights of S¡ with respect to B¡A¡+X • • -A¡_x are (B¡Áj: 0). It follows that

the weights of S,- with respect to & are also B¡A2,j ¥= i, and the equivalence of
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.1 and .5 is immediate, and similarly for .3 and .5. Again, from the proof of

Fact 6.8 it follows that the weights of ^ with respect to BtAi+x •••Ai_x are

(BjAj'. 0) and the equivalence of .2, .4, and .5 follows as before.

The primes tangent to the circumsphere of a simplex & are the faces of the

tangential simplex of &. The primes isoclinal to the corners of 6B at the

vertices contain the (2) external bisecting lines of the plane angles at the

vertices and are the faces of the isoclinal simplex of &. If we let & and %

coincide in the preceding theorem we have the following known results.

Corollary 5.14 [Fact 6.5]. A simplex and its tangential simplex are

associated.

Corollary 5.15 [21]. A simplex and its isoclinal simplex are associated.

6. Three dimensions versus higher dimensions. The reader is already aware

of the considerable differences between the geometry of two dimensions and

that of three dimensions. In this section we discuss some qualitative differen-

ces between the geometry of three dimensions and that of higher dimensions.

We recall our extensions of Pappus' theorem. Let p be a permutation on 5

and let <$ be the simplex with vertices B0 , ..., B   .

Fact 4.3. If & and © are perspective and & and ÍJ are perspective, then &

and <$> k are perspective for every integer k.

Fact 4.4. If & and <® are associated and & and ÍB are associated, then & and

% k are associated for every integer k.

We first observe that the proof of Facts 4.3 and 4.4 can be equally well

applied to any of the matrices of Theorems 5.2 and 5.7 to yield

Theorem 6.1. If & and © are (skew-) orthologic and & and "35 are (skew-)

orthologic, then & and <$)pk are (skew-) orthologic for every integer k.

A 2-dimensional version of Fact 4.3 and Theorem 6.1 is found in [22]. A

close examination of our proof of Fact 4.3 shows that the following stronger

result was actually proved.

Theorem 6.2. If & and © are merely associated, and & and % are perspective,

then & and © * are perspective for every integer k.

As strong as this result is, the full power of these seemingly mild hypotheses

is not displayed for « = 2 or 3. In dimensions greater than the third, Berzolari

[1] has shown that multiple perspectivity implies that # and % have some edges

or vertices in common.

In the last result we had the help of a perspectivity. What can be done with

associative relations alone? Let p and q be arbitrary permutations on if, / the

identity, and let {p} denote the proposition: & and ^>p are associated. Fact 4.4

may be abbreviated to: {/} and {p) imply {pk) for all integers k. It follows that
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{p) and {q) do not imply {pq) but rather {pq   p} and {qp   q). Berzolari [2,

p. 246] has shown the following.

Theorem. Let A0 and B0 be distinct and suppose we have {I}, {p) and {q},

where p is the cycle (01 • • • n) and q is the cycle (1 • • • n).

1. The number of associative relations generated is n .

2. If n > 3, then & and <$> are perspective (in n ways).

3. If n = 3, then & and $ are mutually inscribed and circumscribed and for

some numbers a, b, c, d, e, the vertices of $ are respectively proportional to

(0, a, b, c), (-a, 0, d, ce/a), (-b, - d, 0, cd/a), (-c, - ce/'a, - cd/a, 0).

For tetrahedra & and $ which satisfy the weaker four-fold associative

relations {/}, {(01)(23)}, {(02)(13)}, {(03)(12)},Jahnke [11] has shown that for

some numbers a, b, c, d, x, y, z the vertices of <3J are respectively proportional

to (a,b,c,d), (b,za,yzd,c), (xc,xzd,za,yd), (xyd,xc,yb,a). The special case of

mutually self-polar tetahedra is obtained by taking a = b = c — d, x = —y

= z = -1.

Another difference between three and higher dimensions is given in [6, p.

44] where we remark that for n = 3 there is a 1-parameter family of lines each

of which is associated with three given lines, while for n = 4 there is, in

general, a unique line associated with four given lines, and for n > 4 there is,

in general, no line associated with n given lines.

The proof of Fact 3.1 showed that if n + 1 lines are associated, then there

is an (n — 2)-parameter family of secunda which meets them. For n = 3 the

lines of the one-parameter family are the rulers of a quadric surface and in

1827 Gergonne, Bobillier, Garbinsky and Steiner [8] showed that to prove four

lines are associated it is sufficient to show that they are met by three lines.

Because of this situation, many theorems have simple proof in three dimen-

sions, such as those given in the references, which do not extend to higher

dimensions. For n > 3, Mandan [12] has shown that a necessary and sufficient

condition for n + 1 lines to be associated, i.e. that each point of each line has

the property that through it passes an (n - 3)-parameter family of secunda

meeting all the lines, is that one point of each line have this property.

Sometimes the difference between three and higher dimensions are of an as

yet unexplained nature. Call an «-simplex "special" if the lines from the

vertices of & to the circumcenter of the opposite faces are associated. Every

triangle is special but for « > 3, not every «-simplex is special. We pose the

problem of finding an alternate characterization of such simplexes.

Since the orthocentric simplex is very often the correct generalization of the

triangle to «-space, one may conjecture that "special" means orthocentric.

However, even for « = 3, this is only partially true for here "special" means

"orthocentric, equifacial, or bisymmetric (A0AX = AXA2 = A2A3 = A3A0)".
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(See [9] which missed the bisymmetric case SA = AB = BC = CS corre-

sponding to L = N, U = W = 0 in his system on p. 272.)

Now the proper analog of an equifacial tetrahedron is known only when «

is of the form 2k - 1. In these dimensions a subset of the vertices of the analog

of a cube can be the vertices of a regular simplex; the corresponding vertex

subset of the analog of a rectangular parallelepiped is the vertex set of a

special simplex. Our final theorem will show that it is a quirk of dimension 3

that an orthocentric simplex is special.

It is known [17, §27] [3] that the (kX\) centroids of the fc-dimensional faces

of an orthocentric simplex 61 lie on a sphere, which we shall call the ¿-sphere.

The 0-sphere is the circumsphere; the center of the (\(n — l))-sphere is the

centroid of &.

Theorem 6.3. The lines joining each vertex A¡ of an orthocentric simplex 6E to

the center C, of the k-sphere of the opposite face concur if k = \(n — 2) (for C¡

is the centroid of the face) and are associated if k = \(n — 3). Unless & is

regular, these statements are false for any other value of k.

Proof. The weights of C,- are given, in terms of the parameters of Corollary

5.4 (see the references), by

2(k + l)cy =l + (n-2k- 2)y-xa-x,    j * i,

where y¡ = a~x — 2fli-1-

Clearly if k = \(n — 2) the matrix (cy) is composite and if k = \(n — 3) then

2(k + l)y¡Cy = a;1 + ajx - 2 axx = 2(k + i)yjCß1       i # j,

while for other values of k no multipliers exist unless the a¡ are equal.

We add that the representation in (6.1) admits the possibility of allowing k

to approach oo. In this case the limiting sphere in the polar sphere of the face

with its center C,- = (y¡ajx : 0) at the orthocenter and the lines A¡C¡ concur.

The author wishes to express his thanks to S. R. Mandan and Arun Sanyal

for sharing with him their valuable insights in the form of personal corre-

spondence and unpublished manuscripts, and to Donald McCarthy for

suggesting improvements in the presentation.
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