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ABSTRACT. We study the solutions of ordinary linear differential equations
whose coefficients are analytic elements. As one application we show
nonexistence of index for certain linear differential operators with rational
function coefficients.

Introduction, This article represents a continuation of previous interdepend-
ent nonjoint work [3], [4], [11], [12], [13] on p-adic differential equations. This
previous work was to a considerable extent restricted to the case of ordinary
differential equations with rational coefficients. The main topics involved -were

1. Growth of solutions at the boundary of disk of convergence.

2. Field of definition of the space of solutions having specified growth.

3. Existence of index.

The basic idea in this work has been the relation between solutions at the
generic point and solutions at an arbitrary point. In particular, we have been
concerned with the reducibility of differential operators corresponding to
filtration of the solution space at the generic point as given by growth
conditions.

We had at one time been of the opinion that a linear differential equation
with rational function coefficients which is irreducible in that ring cannot have
solutions at a generic point with distinct radii of convergence. We are indebted
to Monsky for the counterexample ([11, §4.26.1], also §7 below).- This
phenomenon is the main topic of the present article. Our main result (§4.1) is
that distinct radii of convergence of solutions does imply a strong form of
reducibility (the factors need not have rational coefficients but do have
superadmissible coefficients). §

A natural illustration of this phenomenon is provided by the theory of
elliptic modular functions if we view y = j(pr) as a function of x = j(r). The
modular equation I;,(x, ») is known to have solutions for y with different radii
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2 B. DWORK AND P. ROBBA

of convergence at the generic point. Since algebraic functions certainly satisfy
a differential equation with rational coefficients we may conclude that
“geometric” examples occur.

The clarification achieved on this question has permitted considerable
improvement of earlier articles. For example (as noted in [11, §4.26.3]) we now
know that if L is a linear differential operator with rational coefficients, then
for all but a finite number of residue classes L has index as endomorphism of
the space of functions analytic on a residue class. (For a more complete
statement see §4.2 below.) We are now able to remove the hypothesis of
rational coefficients in the theory [3] of the growth at the circle of convergence
of solutions of ordinary differential equations (cf. §4.2.6 below). In §7 we use
the example of Monsky to disprove earlier conjectures [3] concerning existence
of index. In §6 we give Hensel type lemmas for factorization of differential
operators which lift factorizations of the reduced differential operators. The
precise relation between the results of §4 and §6 is not yet understood.

Our method has been to apply earlier results [11] concerning linear
operators to obtain information concerning a general system of nonlinear
differential equations, (3.1.6). The relation between nonlinear differential
equations and reducibility of differential operators is discussed in §4.1. Further
progress (e.g. Conjecture 9.1.5 below) would result from improvements (such
as Conjecture 3.1.5 below) in the theory of nonlinear differential operators.

Symbols

@, e 1.7 Rlml 6.2.2
2 17 Rl 6.2.2
(&,[D] 4.13 R, 6.1
D(a, b*) 1.2 S, 1.5
D(a,b7) 1.2 t 1.1
E 1.3 W, 1.12
E,, 1.11 W, 1.12
e, 1.9, 1.12 whe 1.8
Eo 1'1 ” ”1' 1.6
Ey 6.1 Il 22
Esad L.11 " “1.0 1.8
| e 1.3 Q 1.1

set 1.11
| f1(r) 1.2 admissible

subset 1.10

H(A4), H(A) 1.5 generic point 1.1
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K gauss norm 1.3

K proper subset of 1.13
special set

am 22 special set 1.12

M(A) 1.5 standard set 1.9

g 6.2 super admissible 1.10, 1.11

R 14 very standard 1.9

R, 1.5

Ro 14

1. Notation.

1.1 Let K be a field of characteristic zero complete under a nonarchimedean
valuation and with residue class field of characteristic p # 0. Let E, = K(x)
be the field of rational functions in one variable. Let £ be an algebraically
closed maximally complete field complete under a valuation extending that of
K and linearly disjoint from E, over K. Let Q have a valuation ring containing
an element ¢ whose image in the residue class field of Q is transcendental over
the residue class field of K. The point ¢ will be called the generic point.

1.2 For each a € @ and each positive real number r, let
Diar)={xeQ|x—a<r, Dart)={xeQ|x—da <.
Forf € Q[[x — d]l, f = 2,2, b,(x — a)’, analytic on D(a,r”), let for p < r

|fla(p) = sup|b, lo”.
14
This is extended to functions f, meromorphic in D(0,7~) by writing

| f1a(0) = gl (0)/ |k, (o) if f=g/h

both g and & being analytic on D(a,r™).
1.3 Let E be the completion of E; under the Gauss norm

f- |f|o(1)

We shall write | f|; for this norm on E. The operator norm on the space of
continuous endomorphisms of E is also denoted by | | .

14 Let ® = E[D] be the noncommutative euclidean ring of finite sums,
(D = dfdx), 3 ¢,,D", c,, € E. Let R be the subring E,[D].

1.5 For each bounded subset 4 of © such that d(4, CA) > 0 (or the union
of such a bounded set with the complement in € U {00} of CD(0, r) for
some r > 0). Let G (A4) be the subspace of E, consisting of rational functions
having no poles in 4 and let H(A) denote the completion of G(A4) under the
topology of uniform convergence. Let M(4) be the quotient field of H(4) and let
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R, = MA)[D], &, = H(4)[D].

H(A) is a banach space under the sup norm, || || ,;, and the operator norm on
the space of continuous endomorphism of H(A) is denoted by the same
symbol.
We define Hy(A) to be the same as H(A) unless A contains the point at
infinity in whijch case we impose the further condition of vanishing at infinity.
1.6 Let 7 = (m,), N be a nonincreasing sequence of positive real numbers
with
(1.6.1) m =1, m/m., monotonically decreasing.

Let W be the banach space of germs of analytic functions at a,
o0
u= Y b(x—a)
y=0
such that
(1.62) lull, = sup =,|b,| < +o0
14

with norm u > [[ul|,.

1.7 We shall use @ to denote the space of functions analytic in D(a,p™)
with topology of uniform convergence on disks D(a, r~) with r < p. We write
@, instead of @},.

If A is an annulus of center q,

A= D(a’pZ—) - D(a,pl—)

where p; < p, then let @, denote the space of functions analytic on A with the
topology of uniform convergence on annuli

A, = D(a,r™) = D(a,py)
where r € (p;,p,).
Similarly if A = D(a,p;) — D(a,p;’) then again @, denotes the space of
functions analytic on A with topology of uniform convergence on annuli
A, = D(a,p3) — D(a,r*)
where r € (p;,p;).
1.8 The ring R may be identified with a subring of the ring of continuous
endomorphisms of W,". The induced norm of R will be denoted R + ||R|,.
In particular if , = 1 for all » € N, we denote 7 by #'* and we write || lh.o

for the corresponding norm and write W' for W,” and W'? for W,".
More generally W,"® denotes W,” where = is the sequence whose general

member is 7, = r’/(v + 1)*.
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1.9 A nonempty subset A of @ U {0} will be called very standard if it is a
union of residue classes. The set 4 will be said to be standard if it is the union
of a very standard set with a finite collection of annuli which lie in D(0,1%)
and have outer radius unity and no outer circumferences. Thus we may define
e, to be the minimum of the inner radii of these annuli and if 4 is very
standard we set e, = 1. The definition of standard set and e, is extended in
an obvious way so as to remove distinctions between finite and infinite
residue classes: Let A be the annulus

= {xle™! >|x|> 1}.

If A is either the empty set or a standard set then we shall say that
A’ = A U Ais also standard and we define e,. to be e if 4 is empty and to be
min(e,, e) otherwise. Thus in all cases e, < 1. If 4 is standard then there
exists a natural identification of H(A4) with H(4 U D(¢,17)) and so we
may view H (A4) as a subring of E. Furthermore we may view D(¢,17) as a
subset of each standard set although it will be convenient not to insist upon
this formulation.

1.10 A standard subset B of a standard set 4 will be said to be an admissible
subset if the difference 4 — B lies in the union of a finite number of residue
classes. An admissible subset will be said to be superadmissible if the two sets
have the same image in the residue class field, extended so as to include the
infinite residue class.

1.11 An element of E is said to be admissible (resp. superadmissible) if it lies
in H(A) for some admissible (resp. superadmissible) subset, 4, of @. We
denote by E,  (resp., Eq4) the set of all admissible (resp. superadmissible)
elements of E. We thus have a field theoretic inclusion

ED Ey D Egy D E,.

1.12 A subset, 4, of & U {oo} will be said to be special if it is either an
uncircumferenced disk D(0,57) or an uncircumferenced annulus D(0,57)
= D(0,c*) (b > ¢). We deﬁne e, in the first case to be Min(b,57!) and in the
second case to be Min(b,5™",¢,c™"). This agrees with the previous notation if
A is also a standard set.

If A is a special set then we shall use W, to denote the subspace of Q[[X]]
(resp. Laurent series with coefficients in Q) which converge and are bounded
in 4. We shall use W, to denote the closure of 2[x] (resp: Q[x,x" '] in W,. The
space W coincides W1th the space of power series (resp. Laurent series) wh1ch
converge in the circumferenced disk (resp. annulus).

1.13 A subset B of a special set A will be said to be proper if it is a special
set which is also a disk (resp. annulus) and if the radius of B (resp. maximal
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radius, resp. minimal radius of B) is strictly less (resp. strictly less, resp. strictly
greater) than that of 4.

The space, @, of analytic functions on 4, i.e. of power series in Q[[X]] (resp.
Laurent series) which converge in 4 is endowed with the topology of uniform
con\;ergence on proper subsets. If A = D(0,67) then @ is precisely the same
as @.

2. Comparison of bounded kernels of a differential operator at a generic point
and at an arbitrary point. Let A be the annulus D(0,17) — D(0,b™) where b is
a fixed real number in the interval (0, 1).

If L is an element of R then we may consider solutions of L at ¢ but it need
not be possible to discuss solutions at points in A. For this reason in [11, §3]
comparisons of solution spaces near different points were made only for
differential operators in ®,. This restriction is unnecessarily restrictive.
Following the same methods we show that such comparisons may be made in
the case of L € R, Clearly

R, C R, C R
2.1 LEMMA. Let L € R, let 7 be a sequence (§1.6) and let R be the monic

generator of the w-closure in R of RL. Let R be of degree k and for each n € N
let R, be monic of degree k in R such that

@2.1.1) IR = Ry, < Vn.

There exists B, € R, such that

(2.1.2) R,=P modR,L,
(2.1.3) B, < 1/n.

In particular if R = 1, then R, = 1 for all n.

ProOF. See [11, §3.1].
2.2 The boundary seminorm. If u is a meromorphic function on 4, i.e. the
ratio of two Laurent series which converge in A, let

ul|, = limsuplulo(r) = lim sup |u|y(s).
(2.2.1) ey rT?I lo() i se(ﬂ)l lo(s)

If L € R, then L acts on endomorphism on the space of functions
meromorphic on A.

Let M be the space of meromorphic functions on A of the form g/h where
g and A are functions analytic and bounded on A. Then || ||, is a norm on M
and in particular for each u € M we have
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(222) lul, < +0,  flul, = 0 u = 0.

We define the bounded meromorphic kernel of L on A, written, bdd mer ker, L,
to be the space of elements of I annihilated by L.

2.3 LEMMA. Let L be an element of R . If u is meromorphic on A, then

(2.3.1) llu™ Lull, < |ILo-
If u € M then
(2.3.2) (| Lull, < (L1 g lluell, -

ProoF. See [11, §3.3].
2.4 We define the bounded kernel of L at ¢ to be the kernel of L in M{"O,
i.e. the space of those solutions of Lu = 0 such that u is bounded on D(¢,17).

THEOREM 2.4. (i) Let L be a monic element of R, . Then
(24.1) dim bdd Ker, L > dim bdd mer Ker, L.
(ii) Let M be the monic element of R defined by
Ker, M = bdd Ker, L.

If equality holds in (2.4.1), then the coefficients of M are analytic functions on
A" U D(t,17) where A’ is the complement in A of a countable set.

(iii) Let A = D(0,17). If either M € &, orbothM € R, and L € &, then
equality holds in (2.4.1).

Proor. For the proof of (i) see [11, §3.4]. For the proof of (iii) one simply
follows the proof of [11, Lemma 4.25] replacing k by 1 in equation (4.25.5) of
that article. In the proof of (ii) we will use Proposition 2.6 whose statement
and proof will be given at the end of this section. Let k be the order of M. By
hypothesis this is the same as the dimension of the bounded meromorphic
kernel of L on A. Let uj, ..., u, be a basis of this kernel. Note that M does
not a priori operate on u;. We may normalize so that

(2.42) lul, =1, i=12...,k
Let N be the monic differential operator, N € M[D], of order k, such that
(24.3) Nu;=0, i=12..,k

By Lemma 2.1, for each n € N there exists M, € R, P € R, such that M,
is monic of degree k and such that
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(2.44.1) M,= B mod®,L,
(24.4.2) M, = Ml o < 1/n,
(2.4.4.3) 1Bl < 1/n.

Forne N,i=1,2,..., k, define

(2.4.5) M,u; =9,

By equation (2.4.4.1), M, u; = P,u; while by (2.4.4.3),
and thus

(2.4.6) 16,:1l, < 1/n.

From equations (2.4.3), (2.4.5) we have
(2.4.7) M,—Nyu; =86, i=12... k

Now M, — N is a differential operator of order not greater than k — 1, with
coefficients in M. Solving (2.4.7) for these k coefficients, and using (2.4.6) we
find a constant ¢, independent of # such that

(2.4.8) M, — N|, < ¢/n,

where the symbol on the left is the maximal boundary norm of the coefficients
of the indicated differential operator (i.e. if 3 b,D' = ¢ € M[D] then llpll, is
by definition Max; ||g;]|;). Now, M, N, M, being all monic of the same order,
equations (2.4.8) and (2.4.4.2) together with Proposition 2.6 below show that
the coefficients of M extend to A as meromorphic functions and coincide on
A with the coefficients of N. This completes the proof of the theorem.

2.5 THEOREM. Let L € R,. If there exists u # O and meromorphic in A such
that Lu = 0, then the bounded kernel of L at t is nontrivial.

PrOOF. See [11, §3.5].

2.6 To complete the proof of Theorem 2.4 above, we need the proof of the
following proposition. The annulus A, the set I and the boundary norm o are
defined in §2.2.

Clearly I? contains E, and the boundary seminorm (2.2.1) induces a norm
on Ik which in turn induces the gauss norm on E,. In this section we shall
consider an element f of M which is the limit of elements of Ej, In this
situation there is a unique element, F, of E which is the limit in E of the
elements in E; which have f as limit in .
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Our object is to determine a sense in which f is the “analytic continuation”
of F. For this purpose, we need some new symbols. Let f = g/h where g and
h are bounded functions analytic on A. For each ¢ € (0, 1), let

Z, = {x € A |n(x)|> c|hly(1x])}
Y, =2Z UD@T),

(2.6.1) Y= UX

c>0 ¢
A = D(0,17),
D, =Z, U CA.

It has been shown by Motzkin [8] that Y, is an analytic set and hence the
same holds for Y.

PROPOSITION 2.6. Let g, h be bounded elements cf @, whose quotient f = g/h
lies in the closure of Ey in M. Then f € H(Y,) for each ¢ € (0, 1). The
continuation of f to D (t, 17) is given by F and f is an analytic function on Y.

Proor. The group G of continuous automorphisms of £ over K is stable
on A and hence (§8) acts as group of automorphisms of 2. In this sense, the
action of G on Ej is trivial and hence f is invariant under G.

Let (g), (h) denote the divisors of g and 4 as functions on A in the sense of
Lazard (cf. Van der Put [15, Theorem 4.3]). Since © is maximally complete,
there exists ¢ € W,, such that (£) is the greatest common divisor of (g) and (k).
We may replace g (resp. h) by g/¢ (resp. h/¢) and may assume that g and h are
bounded analytic functions on A with no common zeros. There is no loss in
generality as Z_ is replaced by a larger set.

We know that f = g/h is invariant under G but do not know whether the
same holds for A. However it is now clear that (1") = (k) for each 7 € G and
hence

K =h-m

where 7, is an element of W, which has no zeros in A. Thus, for x € A we have

I, Gl = Im,lo(Ix])-

But 7 induces a permutation of {x| |x|= r} and hence

|Klo(r) = |Alo(r)

for each r € [b, 1). From these relations, we deduce that |7, |o(r) = 1 and that
In,(x)] =1 for all x € A. This shows that the sets Z,, Y, D, are all stable
under G.
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The set Z, has D(0,b™) as a trou and there exists f; analytic element on
CD(0,67) vanishing at co such that f— f; has analytic continuation to
D(0,57). Since f; is uniquely specified by these properties, it is invariant under
G and using the representation of f, as element of ©((1/x)) it follows from
Theorem 8 that f, € Hy(CD (0, b7)). The other trous of Z, lie on circumfer-
ences

L= {x[ [x]= 1}

where h has zeros. The sequence {r,} if infinite is monotonic with 1 as limit.
For each zero a of & let £, (€ Q(x)) be the singular part of f at a. For each
n 2> 1, we define

(2.6.2) L=2¢,

the sum being over all & €T, such that z(a) = 0. Clearly f,, is an element of Q(x)
which is invariant under G and hence f, € K(x). Clearly f, € Hy(D,) for
n20.

Our first object is to prove

(2.6.3) £ lp, = O.

Given ¢ > 0, there exists Q € E such that

(2.6.4) |F — QIE < cg, ILf - Q||a < ce.

We may choose r € (b, 1) such that r # r, for any m and such that
(2.6.5) If = Qo) <ce Vp € (r,1),

(2.6.5) Q has no pole B such that | B8] € [r, 1).

Let r, € (r,1). Choose r},, ry € (0,1) such that
Max(r,r,_y) <rp <, <1y <y -
Thus Q has no poles in the annulus
{xlry <Ix|<r}

and the poles of fin this annulus lie on T},. Let V be the intersection of this
annulus with Z . Corresponding to each trou T of ¥ on I, the singular part of

f—Qis
(2.6.6) (f-Qr=fr= a§7‘ &

From the Mittag-Leffler theorem [6],
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(2.6.7) I(f = Qrller < If = Qlly-

To estimate the right-hand side of (2.6.7), we consider two cases
1°.Forx € V, x & T, by (2.6.5), we have

I(f = Q) < [f = Qlo((x]) < e <
2°. For x € V N I, by definition of Z,
|hGe)| > clhly(r,)
while the analyticity of g — 2Q on T, shows that
(g — hQ)(x)| < |g = hQly(5,)-
Thus again by (2.6.5),

I(f= Q)X < |f= Qlo(r)/c < e.
This shows that

(2.68) If - ol <.
By (2.6.6), (2.6.7), (2.6.8), we see that
269) Ifrler < e
Since CT D D,, we conclude that
(2.6.10) Ifrllp, < e
The trous of ¥ on I, contain all the zeros of 4 on T, and thus by (2.6.2),
(2.6.6),
(2.6.11) L=2fr

the sum on the right being over all trous T of ¥ on T,. It now follows from
(2.6.10) that

(2.6.12) I4lp, <& Vr € ().

This completes the proof of (2.6.3).
We now define

2.6.13) I = éof,,,

an element of H(D,). Let F, be the singular part of F corresponding to the
trou, A, of D(t,17). Thus
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(2.6.14) F, € HCA), F-F, € HA U D(t17)).
Our second object is to show that

(2.6.15) E =i

as elements of H(CA).

Let O be an element of E, and r € (b, 1) as chosen above. Let 0, be the
singular part of Q corresponding to poles of Q in A. Viewing A4 as a trou of
D(t,17), we conclude from (2.6.4) and the Mittag-Leffler theorem that

(2.6.16) 18 = Qullcs < IF = Qlip1-) <&

Now, consider the restriction of f and of Q to the circumference T
= {x| |x|= r}. Since all the poles of Q in A4 lie in D(0,r~), the singular part
of (f — Q)[T relative to the trou D(0,7~) of T is

(2.6.17) (f= Qoo = rm2<rfm - Q4

it being understood that f; is the first term in the sum on the right. By the
Mittag-Leffler theorem and equation (2.6.5),

2.6.18)  lI(f = Qo) lepo,~) < If = Qllr = |f = Qo) <e.

Since €D(0,7~) O CA, the last two equations give

2 fm“QA

(2.6.19) =,

<eg
c4

and since D, D CA, it follows from (2.6.12) that

(2.6.20) flles <e Vr,>r

We conclude that

(2.6.21) Iy = Qullcs <e

Equation (2.6.15) now follows from (2.6.16) and (2.6.21), which completes the
proof of our second object.

We note that f— f; is an analytic function on Z, which has a unique
extension to a bounded analytic function on 4. As noted in (2.6.14), F — F,
has continuation into 4. Our third object is to show that

(2.6.22) F-F=f-f

as functions on 4. With Q as chosen above, we use
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"(f_f,:t) -(@- QA)"A = ”(f“f4) -(Q- QA)“o
”.7:4 - QA "., = “f:q - QA IICA’
and equations (2.6.4) and (2.6.21) to conclude that

(2.6.23) If-f) —(@-0)l, <&

we also use

IF=E)—-(Q-Q)ly =I(F-E) - (-2l
and equations (2.6.4) and (2.6.16) to conclude that

(2'624) "(F— F;,) - (Q - QA)”A <e

Equation 2.6.22 is a consequence of (2.6.23) and (2.6.24). For x € Z,, we have
by (2.6.22)

(2.6.25) f(x) = f,(x) + (F = E)(x).

Since f, € H(D,) and F— F; € H(A U D(1,17)), it follows that f is the
restriction to Z, of an element of H(Y,) and this element is unique since Y, is
an analytic set. Denoting this extended function again by f, equation (2.6.25)
extends to Y, and in particular is valid for x € D(z,17). But for such x, we
have by (2.6.15) f,(x) = F,(x) and hence f(x) = F(x).

This shows that the extension of fto D(t,17) is given by F as asserted. This
completes the proof of the theorem.

3. Nonlinear differential equations with a solution in E. The object of this
section is the study of nonlinear differential equations having coefficients
which are analytic elements on a standard set A.

3.1 Let s, m be fixed positive integers (in the applications s = m) and let p
be a fixed positive real number. Let F be an analytic map of 4 X (D(0,p*))*
into Q™ defined over K, i.e. letting X = (X;,...,X,), Y = (¥,...,¥,) then

(3.1.1) F(X,Y) = Fzy C,, X"’

the sum being over all p and » in Z,, it being understood that for p € Z3, X*
represents the monomial X/ - - - X*. Furthermore each C,, € (H )", ie.
is an m-vector whose components lie in H(4) and which are all functions of
the same independent variable x. It is assumed that the series converges
whenever x € A and each X; and each Y, lies in D(0, p"). In particular then
there exists a real number M such that

(3.12) oM, I < M
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for all (u,7) € Z%° where |(u,v)| = Z;_; i, + =;_, »and [|C,,, ||, denotes the
maximum of the norms of the components of CM as elements of H(A4).
Letu = (u;,...,u,) be a solution in E* of the system

(3.13) F(X,dX/dx) = 0

such that |u|p = sup, <, |l g < p.
We define the tangential map of F at u to be the map of E* into E™ given
explicitly by

s 9F, . & F,
(3.1.4) L(z,...,2) = El z,.a—Xi(u,u )+ igl zia—};(u,u )

where z; = dz,/dx, W' = du/dx.

3.1.5 CoNJECTURE. If the mapping z - L, (z) has kernel of finite dimension
(over Q) in the space of s-tuples of germs of analytic functions at ¢ then
u € H(B)' for some admissible subset B of A.

This conjecture is known only in very special cases (cf. (3.7), (9.2) below).

The object of this section is to prove a stronger conclusion starting from a
stronger premise.

3.1.6 THEOREM. If L, is injective on (@)°, then u € H (B)’ for some
superadmissible subset B of A.

The proof will be completed in §3.6 below.

3.2 Generalities concerning power series. Let A, F be as in the preceding
paragraph. Let B be a standard subset of 4. For X € H(B)®, let G(X)
= F(X,dX/dx). If now || X||z < peg then [|dX/dx| z < p and we may consider
the Taylor expansion of G about X in the banach space (H(B))° and hence we
may write for £ € H(B)’, ¢ small,

(3.2.1) G(X + &)= G(X)+ Ly(¢) + Ny(¢)

where Ly(¢) (as given by (3.1.4)) gives the linear terms in (£, d£/dx) and Ny (£)
give the sum of the nonlinear terms.

LEMMA. For ¢, £ in H(B)®

Max([|£ll 5, IEll5) < peg

we have

M
2

(PeB)

15 = &l gsup(lléll g, 1] 5)-

M
ILx @)l < so-llls INx(@)lg < 13,

M

INg®) = Ny®)llp < L
(PeB)
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Proor. Similar inequalities for F(X, Y') are well known consequences of the
Cauchy inequality. The present relations are now a consequence of the
estimate

ld¢/dx|| < lI¢llg/ep-

3.3 LEMMA. Let C be a standard set, let L € & (i.e. L is a linear differential
operator with coefficients in H(C)). For each real ¢ > 0 there exists e € (0,1)
such that for each standard subset B of C for which eg > e we have

(3.3.1) ILlip < Ll + &

ProoF. L = 3 ¢,,D™/m!, let d = d(B,CB), then

(332) ILlls < Max d™"llc,y |5 < Max e5™ lc,,Ip.

Let @ be an arbitrary residue class of £ which intersects C. If @ C C then for
each x € @ we have

lew ()| < lepl g

If on the contrary @ ¢ C then@ N CCis a disk. If @ # & (resp. @ = ©) let
a be an element of this disk (resp. let a = 0). Since |c,, |,(r) approaches |c,,| ¢
as r11 (resp. r| 1) there exists y, € (0, 1) such that

Icmla(r) < |cmlE + 8/2

forallmand allr € (y,,1) (resp. (1, 'x;'] ). Since there are only a finite number
of residue classes @ of this second type (i.e. such thata N C # &, @ ¢ C) we
may conclude that there exists ¢ € (0, 1) such that if B is a standard subset
of Cand ey € (¢, 1) then

(3.3.3) le, )| < eyl +€/2
for all x € B. We now choose e € (¢, 1) such that
e < 1+ee,lp+ ¢! -4

for all m such that c,, # 0.If e; > e then equation (3.3.1) follows from (3.3.2),
(3.3.3) and this last inequality since

ILly,0 = M"?'xlchE'

3.3.4 COROLLARY. Let C be a standard set and let L be an n X n matrix with
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coefficients in S.. For each ¢ > O there exists e € (0,1) such that if B is a
standard subset of C with eg > e then

“L”B < "L"Lo + &

3.4 LeMMA. Let L be an n X n matrix with coefficients in R. Let L be injective
as endomorphism of (@,)”. Then there exists an n X n matrix Q with coefficients
in Ry such that

(34.1) oL — Il o < 1.
Furthermore Q is also injective on (@,)".

ProoF. By the theory of elementary divisors there exist invertible n X n
matrices U, V with coefficients in R such that

(34.2) ULV = J,

where J is a diagonal matrix. Let o; € R denote the ith diagonal entry. As L
is injective in (&,)" the same must hold for J and hence each a; must be
injective on @,. Certainly &; must be injective on W,'? and hence by [11, §2.6]
there exists 8; € R such that for each i,

(343) 18;e; — 1o < VIVl ol V_l”|,0-

Let J' be diagonal n X n matrix with B, as ith diagonal entry, and put
Q' = VJ'U. Then

QL-I1=VQ'ULV-IW'=yvuJs-1)wv!

and J'J — I is diagonal with B;a; — 1 as ith diagonal entry. Thus

1
3.4.4) lo'L - 1”1,0 < ”V”LQSQPHB,'C"; - 1|||,o|| vl ”l,o <L
]
We now choose Q an n X n matrix with coefficients in R, such that

(34.5) 12 = Qllo < VLl o-

Equation (3.4.1) follows from (3.4.4) and (3.4.5). Thus QL is invertible on
(W{l’o)" and hence Q is surjective. Again Q is equivalent to a diagonal matrix,
i.e. Q = ®I'O where ® and O are invertible n X n matrices with coefficients in
R and T is diagonal. Thus T is also surjective on (H{"o)" and hence by [11,
4.10] each of the diagonal coefficients of T is injective on VI{"O. Thus T' and
therefore Q are also injective on (VI{I’O)". This completes the proof of the
Lemma.
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3.4.6 PrROPOSITION. Let V be a topological vector space, let 0 and ¢ be
endomorphisms of V such that

(i) 8 is injective.

(ii) 8¢ is automorphism of V.

Then ¢ (and ) are automorphisms of V.

PRrOOF. By (ii) 4 is surjective and hence by (i), 8 is an automorphism of the
algebraic structure of V. But I = #¢(#p)~' shows that the continuous
mapping, ¢(f¢) ", is the inverse of §. This completes the proof.

3.5 We now return to the notation of Theorem 3.1.6. Since L,, is an injection
of (@,)° into (,)" it follows from the theory of elementary divisors that
m 2 s. If m > s then by discarding suitably chosen m — s components of F
we may reduce to the case in which s = m. Thus we may assume that m = s.

Since L, is injective on (€,)" we know from Lemma 3.4 that there exists Q,
an m X m matrix with coefficients in R, such that

(3:5.1) ||QLu - 1"1,0 <L

We choose real numbers o, g, w such that

(3.5.2) o > [|Qlo»
(3.5.3) g < p Min(1,p/s M),
(3.5.49) w < ¢ Min(1,p/c M).

(In fact p/(eM) < 1 since by (3.5.1), 1 = |QL, [l o < ollL, ||} o While by 3.2,
IL,ll o < M/p.) We choose n € Ey" such that

(3:5.5) = nlp < w,

(3.5.6) IL, = L,lho < V.

LEMMA 3.5. There exists a superadmissible subset B of A such that L is
invertible as endomorphism of H (B)" and such that (with G as defined in §3.2)

(3.5.7) I1L; Iz < o,
(3.5.8) Gz < wM/p,
and such that
g < peg Min(l, peg/o M), |lu||g < pes,

(3.59)
w < g Min(1, peg/o M).
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Proor. QL, — I = (QL, — I) + Q(L, — L,) and hence by (3.5.1), (3.5.2)
and (3.5.6) we have

(3.5.10) loL, — I|g < QL = Il o < 1.

As noted in Lemma 3.4, Q is injective in (VI{"O)'" and hence is injective as
endomorphism of E™. Equation (3.5.10) shows that QL, is invertible on E™
and hence by Proposition 3.4.6 L, is also invertible on E™. Writing oL,
= I + J then |J|g < 1 and hence

(3.5.11) 1L =10+ D)0l < 10lg < 12l < o.

By hypothesis |u|; < p and so by (3.5.3), (3.5.4), (3.5.5), |0l < p. Applying
Corollary 3.34 to Q, to QL, -1 and to 1 we conclude that if B is a
superadmissible subset of A containing no pole of either i or of any of the
coefficients of Q and if ey is sufficiently close to unity then

(35.12) lollz <o,
(3.5.13) lleL, - 1l < 1,
(3.5.14) Imllz < peg.

Once again equation (3.5.13) shows that QL, is invertible as endomorphism
of H(B)™. But Q is also injective on this space as H(B) C W', and hence
by Proposition 3.4.6 is invertible on H(B)™. Furthermore with J asin (3.5.11),
we now know that [|[J||z < 1 and hence by (3.5.12),

1L = I+ 7Y 0lly < Nl < o,

which proves equation (3.5.7). Equation (3.5.9) follows from (3.5.3), (3.5.4) if
ep is sufficiently close to unity. Finally in the notation of §3.2,

(3.5.15) 0=G() + L,(u—n)+ N,u—n)
and hence by Lemma 3.2

1G()|g < sup(M|u =l /o, Mlu — u[*/p?).
Since
(3.5.16) u—mlp<w<g<op

it is clear that

(3.5.17) 16l = 1GM)I g < Mw/p.
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Equation (3.5.8) now follows from Corollary 3.3.4 provided e is sufficiently
close to unity. This completes the proof of the lemma.

Note. Equation (3.5.17) is based on the fact that the natural inclusion of E
in VI{"O is an isometry. A corresponding result for differential operators will be
proven in §5 below.

3.6 PROOF OF THEOREM 3.1.6. Let A\ = G(n). Let B be the superadmissible
subset of A whose existence has been demonstrated in Lemma 3.5. Let

U= eEm|d;<q) U= HB)| el < a).

Clearly Uy C Uy and since g < peg we conclude that Nn(z) takes values in
E™ (resp. H(B)™) for z € Uy (resp. Up). Thus the mapping

(3.6.1) ¢$: 2> =L (A + N,(2))

is well defined on Uy and on Uj.
It follows from (3.5.7), (3.5.8), (3.5.9) and Lemma 3.2 that

(36.2) IL; Ml < owM/o < q
and that
(363) 1L Ny @lp < oMa*/efp? < q

for all z € Up. This shows that ¢ is stable on Up. Similar estimates based
upon 3.5.11, 3.5.17, 3.5.9, Lemma 3.2 show that ¢ is also stable on Ug. Let

0 =oMgq/ (peB)z. By (3.5.9), 8 < 1.1f z, { are elements of Uj then by Lemma
32

(364) o) — o®)lp = IIL; N, (&) = N, @)llg < 8llz = ¢llp-

Thus ¢ is contractive on Uy and by the same argument ¢ is contractive on Ug.
Thus ¢ has a unique fixed point, zg, in Uy and a unique fixed point, z gin Ug.
As Up C Ug the uniqueness implies that zp = z5. Now equation (3.5.15)
shows that u — 7 is a fixed point of ¢ which by (3.5.16) lies in Ug. This shows
that u — = zp = zp lies in Uy and hence in H(B)™. Since 1 € EJ" and B
contains no pole of n, it follows that 7 lies in H(B)™ and thus u lies in H(B)".
This completes the proof of the theorem.

3.6.5 Note. If @ is a residue class contained by 4 then @ is contained by B
unless @ contains a pole of either 7 or of one of the coefficients of Q.

3.7 We may deduce the verification of a special case of Conjecture 3.1.5.
Suppose in (3.1.1), F(X, Y) is independent of Y. Then u in (3.1.3) is a solution
of a finite set of analytic equations. In this case the hypotheses of Conjecture
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3.1.5 and Theorem 3.1.6 coincide and thus the conjecture in this case may be
deduced from the theorem.

4. Comparison of radii of convergence of solutions of a linear differential
operator at the generic point and at an arbitrary point. We now generalize
results of an earlier article [3] which were available only for elements of R,.

4.1 Let A be a standard set. Let L € R, and let r be a real number,
r € (0,1]. Let ker, L denote the kernel of L operating on germs of analytic
functions at ¢. The intersection of ker, L with @; determines a monic factor M
of L and by Theorem 2.6 [11] we have

@4.1.1) L=N-M,
(4.12) ker, M = @; N ker, L
M and N lie in R.

THEOREM. There exists a superadmissible subset B of A such that M € Rp.

Proor. Equation (4.1.1) is equivalent to the assertion that the coefficients of
M and N satisfy a system of nonlinear differential equations. Let m be the
order of M and n the order of N. We may assume that M and N are both
monic. The tangential map is

(4.1.3) (P,O)»N-Q+P-M

where P (resp. Q) denotes a linear differential operator of order not greater
than n — 1 (resp. m — 1). We assert that this mapping is an injective on
(@,[D]),-, % (&,[D]),,—; the subscripts indicating the bounds on the orders.
Suppose otherwise. Then there exist Q, P # 0 in @,[D] with degrees bounded
as indicated such that

(4.14) NQ = —PM.

Now the right side annihilates ker, M, a space of dimension m. Hence N Q
annihilates this space. But Q is of degree strictly less than m and hence cannot
annihilate this space. Thus there exists a nonzero germ v at ¢ such that

(4.1.5) Nv =0,
(4.1.6) v = 0w,
(4.1.7) w € ker, M.

By (4.1.7) w € @] and since the coefficients of Q lie in @, equation (4.1.6)
shows that v also lies in @;. Since M has a full set of independent solutions in
this space, it follows that we may solve the equation My = v and find a
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solution y in @;. Thus by (4.1.5), y € @ N ker,L = ker, M and hence
v= My = 0, a contradiction which proves the injectivity of (4.1.3) as
asserted. The theorem now follows from Theorem 3.1.6.

4.2 Let b be a real number, b € (0, 1) and let A be the annulus D(0, 17) —
D©,b7). Let L € R,. Let M be a monic element of R defined by

(4.2.1) ke M = @, N ker, L.

We have shown in 4.1 that M € R, where A’ is the annulus D(0,17)
— D(0,b'") for some b’ € [b,1).

COMPARISON THEOREM.
(422) dim(ker,L N &,) > dim(kerL N @,) > dim(kerL N @).

If equality holds then M € R, where 4 = D(0,17). Conversely if either
M €&, orboth M € R, and L € &, then equality holds.

Note. “Equality” is used in the sense of both inequalities being replaced by
equalities.

Proor. If u € @,, Lu = 0 then Mu is certainly a meromorphic function on
A’ which lies in the kernel of N. If Mu # 0 then by Theorem 2.5, N has
nontrivial kernel in @, which contradicts the definition of M. This shows that
the right side of equation (4.2.2) is bounded by the order of M which
completes the proof of equation (4.2.2).

If equality holds in (4.2.2) then trivially the coefficients of M are meromor-
phic functions on D(0, 17) as well as being analytic elements on A’. It follows
that there exists a polynomial P with coefficients in K such that P M has
coefficients in H(4), i.e. M € R ,.

Conversely if M (which is by hypothesis monic) has coefficients in H(A)
then letting s be the order of M, we have for each integer m > 0,

s—1 .
(4.2.3) D"/m! = .20 B, ;D modRM

j=
where each B, ; € H(A). Since ker,M C &, it is clear that for 0 < j <,
andr <1

(4.2.4) lim |B,, ;|pr™ = 0.

m—oo

Hence by the maximum modulus theorem
(4.2.5) Jim B, ;0)|r™ = 0.

This shows that the kernel of M at zero lies in @, and this proves the first part
of the converse. If L € &, and M € R then M can have only removable
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singularities. By definition ker, M lies in @, and hence by Lemma 4.2.7 below
the germs at zero annihilated by M lie in &, which proves the second part of
the converse.

4.2.6 COROLLARY. If L € Ry, L of order n and the equation Lu = 0 has n
independent solutions in @ then these solutions lie in %"”'1 .

(This confirms Conjecture 2 of [3].)

42.7 LemMA. If A = D(0,17), L € R, and L has only removable singulari-
ties in A (in the strict sense that for each a € A there exist n linearly independent
germs of holomorphic functions at o in the kernel of L) and if ker, L lies in @, then

Kery L C w1,

PROOF OF 4.2.6 AND 4.2.7. The theorem shows that the hypothesis of 4.2.6
implies the hypothesis of Lemma 4.2.7. The proof of Lemma 4.2.7 for L € &
may be found in Lemma 4.25 of [11]. The same proof is valid under the
weaker hypothesis that L € R ,. This completes the proofs of 4.2.6 and 4.2.7.

4.2.8 The statement of the comparison theorem may be sharpened by
replacing the right hand side of (4.2.2) by dimmerker, L. We omit the proof
which merely repeats the proof of the given assertion.

4.2.9 Let A be a standard set, let L be an element of R, with factorization
in R given by equation (4.1.1) where

ke, M C @, ke, N N @, # {0}.

Then the tangential map (4.1.3) is not injective on (&,[D]),_; X (&,[D]),,—-
(And so the technique of this section gives no information if say ker, L C &,,
ke, M = (ker,L) N VI{I’O )

ProOF. Let m be the order of M, let u;, ..., u,, be basis of ker, M and let v
be a nonzero element of ker, N N @,. The wronskian of (u,...,u,,) is
nonzero in D(t,17) and clearly lies in &,. Hence we may choose Q in
(@,[D]),,—; such that Q(u;) =0,1=1,2,...,m— 1, Qu,) = v. Clearly
N o Q annihilates ker, M and hence there exists P € (€,[D]),_; such that
(P, Q) lies in the kernel of mapping (4.1.3).

4.3 Index on special sets. It was shown previously [11, §4.16] that if L € R,
is injective on @,, then it has index on @, for each a € D(0, 1*). The object of
this section is to extend this result in two directions. We eliminate the
hypothesis that the coefficients of the differential operator be rational and we
extend the results to the case of annuli.

43.1 LEMMA. Let p be an element of Q[X] then for each special set A,
multiplication by b is an injective endomorphism of W, (resp. WA) which has a
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continuous left inverse o, (resp. 8,). The index is the negative of the number of
zeros of p in A (resp. union of A with its circumference). Given ¢ there exists e
depending upon p such that if e(4) > e then

Max(lloA "’

o) < Ip7'g + e

PrOOF. If b has no zero in 4 then 1/p is stable on W,. It is also stable on
W, if b has no zero on the circumference of 4. If « € 4 (@ € AU (circumfer-
ence of A)) then u = (u — u(a))/(x — a) is stable on W, (resp. W,). As in [12]
in the first case one estimates Inf, . , |p(x)| and in the second case one uses
the local Taylor expansion of u(x) — u(x) at a to estimate the norm of g, and
6A .

4.3.2 PROPOSITION. Let C be a special set. Let {B;} be a sequence of proper
subsets of C such that B; is a proper subset of B; , for each i € N, and such that
C = U B,. Let 0 be a continuous endomorphism of & such that for each i € N,
the restriction of 9 to Viﬁi is a continuous endomorphism with index x, which is
independent of i. Then 8 has index as endomorphism of & - which is equal to x.

ProoF. The proof is the same as that of [11, §4.7] since, for j > i, W,% is
dense in Wj, and @ = proj lim W .

4.3.3 THEOREM. Let A be a standard set, let L be an element of &, which is
injective on &,. Then there exists e € (0,1) such that for each special set B
contained by A with e(B) > e we may conclude that L is injective on @ g and has
index as endomorphism of @p.

Proor. With no loss in generality we may assume that B does not lie in the
infinite residue class and hence we may assume that 4 has zero intersection
with that class. By hypothesis there exists 0 € % such that |QL — 1], < 1.
There exists b € K[x], [p|z = 1 such that P = pQ has coefficients in K[x].
Thus [|PL — pl}; o < 1 and hence by Lemma 3.3 there exists e > 0, ¢ € (0, 1)
such that if B is a special set with ez > ¢’, we have

IPL = ply, < 1/(1 +e).

On the other hand by Lemma 4.3.1 there exists e” € (¢’, 1) such that e; > e”,
B special, implies that ||65]] < 1 + e. Hence by [11, §4.4] PL is injective and
has index on W, equal to the negative of the number of zeros of p in the
union of B with its circumference.

We now choose e” so close to 1 that if C is a special set with e, > e” then
there exists a sequence of proper subsets B, as in the first sentence of 4.3.2 such
that the number of zeros of p in B; is independent of i. We now let
e = max(e”, e’”). If C is a special set contained by A4 with e, > e then we



24 B. DWORK AND P. ROBBA

choose the sequence { B;} as in 4.3.2, conclude that the index of PL in WB‘ is

independent of i which shows that PL has index as endomorphism of @.. By
the same argument PL is injective on @.. Since P is a differential operator, P
has finite dimensional kernel in @ and so P has index on @, and thus the
same holds for L as asserted. Finally since PL is injective the same holds for
L.

4.4 Index theorem. Let A = D (0, 17), let L € R ,. To discuss the index of
L as endomorphism of &, we must insist that the coefficients of L have no
poles in 4. Thus we impose the condition that L € &,,.

THEOREM. If L € &, and (42.2) is an equality ther L has index as
endomorphism of &.

Proor. Let M be defined by equation (4.2.1) so M € &, for some
superadmissible subset A of 4, i.e. A is an annulus with center at zero and
outer radius unity. It follows from Theorem 4.2 that M € R,. Thus again
putting L = N- M, N is an element of R, and

4.4.1) @, N ker,N = {0}.

Since M need not be an element of &, we first choose a polynomial P with
coefficients in K such that P- M € &, and then putting M’ = P- M we
choose Q € K[x] such that

(442) OL=N'-M

where N’ = QN - (1/P) € &,. Clearly M’ annihilates a full set of independ-
ent elements of &, and N’ is injective on &,. Thus M’ is a surjective mapping
of @, into itself and by Theorem 4.3.3 N’ has index as endomorphism of @,.
This shows that QL and hence L has index as asserted.

4.4.3 COROLLARY. Let B be a very standard set and L an element of &y. Then
for all but a finite number of residue classes D(a,1”) lying in B, L has index as
endomorphism of & ,.

PrOOF. Let M be defined by (4.2.1). We know that M € &, for some
superadmissible subset B’ of B. Hence M C &, where C is an admissible very
standard subset of B. If A = D(a,17) is a residue class lying in C then by
Theorem 4.2 equality holds in (4.2.2) and hence by the present theorem L has
index as endomorphism of @,. This completes the proof of the corollary.

5. Approximate rational solutions of linear differential equations. The object
of this section is to show that if L € # then L has kernel in VI{"O if and only
if the equation Lu = 0 has approximate solutions in E. This may be useful in
understanding the limitations of Theorem 3.1.6.
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51 LemMA. If L € R then ||L| o = |L|g.

ProoOF. Clearly VI{"Q C E which gives the inequality in one direction but in
fact by [11, §1.I15] there exists a polynomial u such that ||Lll0
= |Lu|g/|u| g. This gives the inequality in the other direction.

5.2 1t is known that if L is injective on VI{"o then L is invertible [11,
Proposition 4.20].

LemMa. Let L be injective on W,"°. Then L is invertible on both W° and E
and "L_l "1,0 = |L_llE~

ProoF. Since L is injective on W{"o we know by [11, Theorem 2.6] that there
exists 0 € R such that ||QL — 1|} < 1. Thus |QL — 1| < 1. This shows
that QL is invertible as endomorphism of E and as endomorphism of I’I{l’o and
hence Q is surjective on E and on H{]’o. It follows from [11, 4.10] that Q is
injective on W*° and hence on E. Thus by Proposition 3.4.6, L is invertible on
E and on W,'{’O. Now E being a subspace of VI{"O with the induced norm,
IL7 g < L7 o- Now

lo-Lg=leL- Lt <L

and hence

IL—1|E = IQ'E = ”Q”lo = ”L_l "1,oa

since

10 = LMo = QL = DL o < 1L}

This completes the proof.

5.3 LEMMA. Let L be monic element of R of order n. Then given ¢ < O there
exists M monic element of R of order n such that

(5-3'1) ”L - M”LO <e

and such that M is injective on VI{"O.

PrROOF. If n = 1 then we may suppose that L = D — a where a = u//u, u
e w'o, llulh o = 1. We choose s € N such that |p°| < e and let

M=D—a-p'xP 1,

The kernel of M at ¢ is spanned by u exp(x?* — #*) which does not lie in @,.
This proves the assertion for n = 1 and we now proceed by induction on a.
Ifn>1,let
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L=D"+a,_ D" '+-- +a,.
We may by the case n = 1 choose b € E such that
b—a, | <e
but the wronskian at ¢ of
R=D"+bD""'+4a, ,D" 2+ +q,

does not lie in @,. Thus the kernel at ¢ of R does not lie in @,. Thus by [11,
Theorem 2.6],

R=N-M, kerM =@ N Ker,R, orderM, <n.

By induction on n there exists Q € R of the same order as M, such that

M, — Qllo < &/lINlho

and such that Q is injective on Wl 0. We now put M = N - Q which certainly
satisfies (5.3.1). f now u € W1 Muy = 0, then Qu is not zero but does lie in
Wl 0 which shows that N is not mJectlve in Wl and hence contradicting the
deﬁmtlon of M,. This completes the proof of the lemma.

5.4 THEOREM. Let L € R. Then L has nontrivial kernel in WI 0 (or in Q) if
and only if there exists a sequence {u,}, v, € E,, such that |y,| = 1 for all n but

(54.1) Ly, -0
in E.

Proor. If L is injective on VI{”O then by 5.2, L is invertible in E and thus
equation (5.4.1) implies

(54.2) 1=yl =Lyl < 1LY g | Ly, | g > 0

which is impossible. Thus the existence of the sequence implies that L is not
injective on W0,

Conversely let L have a nontrivial kernel in Wl 0. Then by Lemma 5.3 there
exists a sequence {L,} of elements of ® which are injective on wh 0 and such
that

(5.4.3) "L - Lnlll’o - 0.

By Lemma 5.2, L, is invertible on both VI{"O and E. We assert that

(5.4.4) 1L, o = oo
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Otherwise there exists ¢ such that for all n € N, IIL,:l lho < c. Hence

It =L Lo = ;' (L, = D)l o < cllL, = Lolho

which by (5.4.3) shows that there exists n such that ||1 — L-! Lljo < 1 and
hence there exists B, continuous endomorphism of W" such that BL, 'L =1,
and hence L is injective, contrary to hypothesis.

This proves (5.4.4). This means by Lemma 5.2 that there exists a sequence
{u,} in E such that |u,|z = 1, L,u, = 0. If now {y,} is a sequence in E; such

that [u, — v,|z — 0, then for all n large, we have |y,|; = 1 while clearly
Ly, — 0. This completes the proof of the theorem.

6. Differential equations over the residue class field. Let 4 be a standard set
and let R, be the ring of linear differential operators whose coefficients are
ratios of elements of H(A4). Our object is to study factorization in , by
passing to the residue class field. We therefore first recall some well-known
results for characteristic p.

6.1 Let K be the residue class field of K, E, = K. K(X), let R, = EO[D], the
ring of differential operators with coefficients in E, Elements of R, act as
(but are not identified with) linear transformations of E0 as vector space over
K (X?). The element D” annihilates E, and also lies in the center of R, The
ring ERO has both right and left division algorithm and in particular left ideals
are principal.

6.1.1 Let u), ..., u, be elements of E linearly independent over K(X?);
then by a classical proof [9, p. 10], the wronskian W (u,, ..., u ) is a nonzero
element of E,. An immediate consequence is that if L is an element of R, of
order m, then ker L, the kernel of L in E, has dimension at most m over
K(XP).

6.1.2 LEMMA. Let L be an element of R, of order m. Then
dimk(xp) kerL = m
if and only if DP lies in the ideal R, L.

PrOOF. By the division algorithm there exist elements 4, B of R, such that
order B < m — 1 and such that D? = AL + B. Since D annihilates Ey,, B
must anmhllate ker L. Hence by 6.1.1 if ker L has dimension m over K(X?)
then B = 0. Conversely if B = 0, then AL annihilates E; and hence LEj lies
in the kernel of A. Thus

dlmK(X,,)LEO orderd = p—m

which shows that
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dimz(xp)kerL > m.

Equality now follows from 6.1.1 which completes the proof.

6.1.2.1 COROLLARY. Let M be the generator of the left ideal generated by D?
and L, i.e.

then ker L = ker M and the dimension of ker M coincides with the order of M.

Proor. Since D? € Ry M, the dimension of ker M is equal to its order.
Since L is a left multiple of M, ker L contains ker M. Since there exist
A,B € -ﬁo such that AD? + BL = M, ker M contains ker L.

6.1.2.2 CorOLLARY. If ker L = {0} then Ry D? + R L = R and conversely.
6.1.2.3 COROLLARY. If L, N € R, then ker L C ker N if and only if

N € ®,D? + R L.

ProOF. Let M be the generator of the ideal on the right. If N = BM then
ker N D ker M = ker L. Conversely given N € R, we may choose 4, B
E&]—‘to, order B < order M such that N = AM + B. Hence ker ND ker L =
ker M implies that ker B contains ker M and hence by 6.1.1, B = 0.

6.1.3 Now let L be an n X n matrix with coefficients in R,. Hence L acts on
Ej, the K(X”) space of n-tuples with coefficients in E,.

LEMMA. If L is injective as endomorphism of Eg then there exist n X n matrices,
Q, H with coefficients in R such that

(6.1.3.1) OL + HD? = I.

ProOF. By the theory of elementary divisors there exist ¥, U, invertible
n X n matrices with coefficients in R, such that VLU is diagonal matrix with
coefficients ¢, ..., ¢,. By hypothesis L is injective and hence each ¢; is
injective on E;. Thus by 6.1.2.2 there exist 4;, B; € R, such that 4;¢; + B; D?

=1,i=1,2,..., n Letnow 4 (resp. B) be the n X n diagonal matrix whose
diagonal entries are (4,,...,4,) (resp. (B,, ..., B,)). Then AVLU + BD?
= I. The assertion follows by multiplying on the left by U, on right by U™
and setting Q = UAV, H = UBU™!. This completes the proof.

6.1.3.1 COROLLARY. An injective differential endomorphism of E_(;' has inverse
which is also a differential endomorphism.

(Explanation: By a differential endomorphism of E(',' , we mean an endomor-
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phism of E; as K(X?) space given by an n X n matrix with coefficients in ®,.)
6.2 The residue class field of E coincides with E, = K(X). The natural
mapping of the valuation ring, O, of E into E may be extended to a map

L—L
of Og[D] into Ey[D] = R,. We intend to obtain information about factoriza-
tion of elements, L, of R from corresponding information about L. We first
consider an analogue of Theorem 3.1.6.

6.2.1 Let F be given by equation (3.1.1) and be subject to the further
condition that m = s and that each C,,, maps 4 into D(0, 11), i.e.

(62.1.1) IC,le <1 Vnp

and furthermore we insist that

(6.2.1.2) |C, e =0 as (v,p) > o0.

Then we define F to be the image of F in the ring of s X s matrices with
coefficients in Eg[X,Y]. If u = (4,...,u,) € E; then we define L, the
reduced tangential mapping at #, to be the differential operator (on z
= (2,...,2,;)) obtained from equation (3.1.4) by mapping coefficients into
E,.

6.2.1 THEOREM. Let F be given by equation (3.1.1) subject to conditions
(6.2.1.1) and (6.2.1.2). Let u € E; be a solution of the reduced system

(6.2.1.3) F(@,da/dx) = 0

and suppose that the reduced tangential mapping, L, is injective on E’O’ . Thenu
lifts uniquely to a solution, u, in E° of equation (3.1.3) (and hence (by Theorem
5.4) u satisfies the conditions of Theorem 3.1.6 and therefore u € H(B)® for some
superadmissible subset B of A).

PROOF. Let 0 be an arbitrary lifting of # to @E By Theorem 5.4, L,is
injective on (Wl 0) and hence by Lemma 3.4 there exists an s X § matnx 0
with coefficients in %, such that

(6:2.1.4) loL, = fllg = 0L, — Ilho < 1.

It follows from this relation, from [11, §4.10] and from Proposition 3.4.6 that
L, is invertible in E. We assert that

(6.2.1.5) 1L g =

The inequality in one direction is given by 1= |1 = [L; e Ll
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IIL_’II The inequality in the other direction is obtained by supposing
otherw15e then there would exist w, z € E* such that |w|g = 1, |z|z < I for
which L z = w. Hence z = Lq_w which would imply that L, = L annihi-
lates the nontr1v1al element w of Eo contrary to hypothesis. Thxs completes the
verification of 6.2.1.5.

We now let A = F(n, dn/dx), so by equation (6.2.1.3), there exists & such
that
ANg<e<l

Let U= {z € E°| |z|g < €}. Let ¢ be given by equation (3.6.1); then ¢ is a
contractive map of U into itself and hence has a unique fixed point, z,. Thus
u =1 + z, is a solution of equation (3.1.3) and u lies above u since z, € U.
If o is any other solution of equation (3.1.3) above u, then

b—n=¢ <L

Replacing ¢ by Max(e,€'), it is clear that v = u. This completes the proof of
the theorem.

6.2.2 (i) We now formulate a Hensel lemma for elements of R. For this
purpose let 9%5 (resp. R denote (for each 2 € N) the set of all elements of
R, (resp. R) of order not greater than A.

THEOREM 6.2.2. (i) Let L be an element of Og[D] of order n + m and have
image, L, in R, which has a right monic factor, M, of order m, i.e.

(6.2.2.1) L=NoM
(so n > order N). Let Ly 37 be the mapping

(6222) Lyw: (P,Q) > PM+NQ

of ﬁg"—l] X ﬁ},’"‘” into ﬁﬁ"*""”. If this mapping is injective then M lifts to a
unique monic right divisor, M, of L of order m in R and hence L = N o M where
N is also in R and of order n.

(ii) Under the hypothesis of (i) if L € R, then N and M lie in Ry for some
super admissible subset B of A.

(ili) Under the hypothesis of (i) we consider the explicit description of Ly y7. As
E, space Ry Uy ?RE) W has basis consisting of all pairs (D',0) and (0, D)
where 0 < i< n0<j<m and Rl+m=1 pas  basis consisting  of
{D' }0<, i<n+m- NOW LN iz is a linear mapping of K (XP?) space, not of E0 space,
but using the indicated bases, L 7 may be represented by an (n + m) X (n +
m) matrix, (LN i) With coejfzczents in SRO and by Lemma 6.1.3 and the
hypothesis of injectivity there exists an “inverse” matrix, J, with coefficients in
R, such that
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(6.2.2.3) J o Lﬁ’ﬂ) =] mod fRo D?.

We assert that under hypothesis (ii), the set B contains all residue classes lying in
A except possible for poles of L, of M and of the coefficients in the differential
operators appearing as coefficients of J.

Proor. Equation (6.2.2.3) may be interpreted as a nonlinear differential
equation in the coefficients of N and M, (6.2.2.1) is then the reduced equation
and Ly j7 is the reduced tangential map. Parts (i) and (ii) then follow from
Theorem 6.2.1.

For the proof of (iii) let N, M, be liftings of N and M to R such that M,
is monic of order m with coefficients having poles only in the residue classes
corresponding to poles of M and let N, be of order not greater than n and with
poles corresponding to the poles of N. We lift (Ly M) to (Ly, »,) the matrix
of Ly, », viewed as mapping of 9‘}[" B SR["' Uinto Ry [r+m= ]Nusmg “bases” as
above Let J be a lifting of Jto an (n + m) X (n+ m) matrix with coefficients
in R, having poles only in the residue classes of poles of coefficients of J. Since
D7} o < 1 we conclude from (6.2.2.3) that

(6.2.2.4) I - (Lyy,pg) = 2l < 1.

Thus J plays the role of Q in equation (3.4.1) and the assertion now follows
from (3.6.5).
(6.2.3) We examine the main hypothesis of the previous theorem.

6.2.3.1 LEMMA. Let m, n be integers, let M (resp. N) be element of R,y of order
m (resp. of order not greater than n). The mapping Ly 3 defined by (6.2.2.2) is

(i) not injective if ker N is not trivial while ker M is of dimension m over K(X?)
(in particular then if M = D™ while N has nontrivial kernel);

(ii) injective if ker N = {0}, dimker M = m;

(iii) injective if N is of zero order.

The proofs are self evident (the proof of (i) being a minor modification of
the argument of §4.2.9), and hence are omitted.

THEOREM 6.2.3. Let A be a standard set and let L be an element of
R, N Og[D] of order n + m whose image, L, in R, is monic of order m. Then L
has unique monic lifting M of order m in R which divides L on the left, i.e.
L= NoMand M € Ry where B is a superadmissible subset of A containing
all residue classes in A except those containing poles of the coefficients of L.

ProoF. We apply Theorem 6.2.2 with N=1,M=L. In the preceding
lemma we noted that mapping (6.2.2.2) is injective. Thus it only remains to
consider the matrix of the inverse of Ly 37. The mapping L i7 is of the form
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(P.Q) > PM + Q.

The inverse mapping,

(6.2.32) S=PM+ Q0w (P,0)

is given by division of § by M, a process which introduces no poles (other than
those occuring in M) since M is monic. This completes the proof of the
theorem.

6.2.3.3 We may associate a Newton polygon with each element of L of R by
viewing L as a polynomial in D with coefficients in the valued field E. The
previous lemma asserts that there is a factor of L in R of order equal to the
length of the projection of the first side of the Newton polygon of L provided
that side has negative or zero slope and provided that the second side has
strictly positive slope. Similar results may be obtained if both the first side
and the second side have strictly positive slopes. No assertion is made if the
first side has strictly negative slope and the second side has zero slope (cf. (i)
Lemma 6.2.3.1).

6.2.4 We now consider a second order differential equation. In view of the
previous section we may assume that the leading term has maximal coefficient.
Thus let

(6.24.1) L=D>+aD+b

be an element of ®, N O[D] where 4 is a standard set. Let
(624.1) L=D*+aD+5b
be the reduced operator and let the Riccati equation be written
(6.24.2) P4+ +an+b=0
and the reduced form is
(6.2.4.2) W+ +ag+b=0.
We know that L has a right factor, D — g
(6.24.3) L=[D+a+7)D-1)

if and only if 7 is a solution of (6.2.4.2).
If L has a solution % in E, then

(6.2.4.4) 7= w/a
is a solution of (6.2.4.2").
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If however, 7 is a solution of (6.2.4.2) as will now be assumed, no element
u in E, satisfying (6.2.4.4) need exist. Viewing (6.2.4.2") as a nonlinear
differential equation, the tangential mapping is

(6.2.4.5) z> (D + @+ 2%)):
and if this is injective then by 6.2.2, the factorization
(6.24.3") L=D+a+n)(D-7)

lifts to a factorization in & and indeed in Rz where B is a superadmissible
subset of 4. The injectivity of (6.2.4.5) is determined by division,

D?=Qo(D+a+2m)+b,

where l;p € Eo and é € ﬁo.'lnjectivity is equivalent to the nonvanishing of
b,. Summarizing and using 6.2.2 we obtain:

LemMMmA 6.2.4. If Bp # 0 then there exists a unique lifting n of 7 which satisfies
(6.2.4.2) and which lies in H(B) where B is a superadmissible subset of A
containing all residue classes of A except for the poles of @, b and the zeros of Tnp .

The calculation of Ep can be achieved by setting ¢ = @ + 27 and using the
formula,

~b, = c? + D"'c.

If there exists u satisfying (6.2.4.4), then we may replace (6.2.4.5) by D + a4,
the differential operator for the wronskian of L. In particular this section
(6.2.4) gives no information if for example @ = 0 and there exists u satisfying
(6.2.4.4).

7. Nonexistence of index. It has been conjectured [11, §4.27] that if L € R,
and has say polynomial coefficients and if for each y € D(0,17) there exists
r > 0 such that L has index as endomorphism of @; then we may conclude
that L has index as endomorphism of &, (= éB(',). Thus it was conjectured that
if L has index on small disks then it has index on large disks.

In this section we give a counterexample to this conjecture. In our
counterexample there is a lower bound for r independent of y € D(0,17).

The confluent hypergeometric function

¢(a,c,x) = 2 (a)sxs

s=0 (C)SS!

which was brought to our attention by Monsky has been discussed in [11,
§4.26]. In particular it was noted (cf. [5]) that for ¢ = 1/p,a € Z,a & -N,
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this function satisfies a second order differential equation irreducible in ®.
Furthermore ¢(a, /p, x/p) lies in @, while the wronskian at ¢ of the correspond-
ing differential equation has radius of convergence strictly less than unity.
Thus Theorem 4.1 shows the existence of a factorization of that differential
equation in R, where 4 is a superadmissible subset of Q.

For further discussion we find it conveneint to replace x by 1 — x, and to
assume that a & Z. Letting D = d/dx, we know that ¢(a, 1/p,(1 — x)/p), is
annihilated by

7.1) L,=p(1- x)D? = xD - a.

The counterexample will be given by L, where a is a p-adic Liouville number
satisfying condition (7.20) below.
In the following let C be the special set

(7.2) C = D(0,67) — D(0,8%)
whose radii will be chosen later. Thus
C=D0,b")Nn C’

where C’ = {x| |x|> B}. In particular letting @F. denote the elements of @.
which vanish at infinity,

(1.3) Cc = @ ® &%

which simply expresses the decomposition of Laurent series into elements of
Q[[x]] and of Q[[1/x]]/x. We observe that L, is stable on &, on @Zg and on @F..
We propose to choose a so that L, has index on @Z-, but not on @. This then
will show that L, does not have index on @3 .

7.4 PROPOSITION. (i) A formal solution for L, is given by
(71.5) v =x"V

where

the generating function, u(¢) = 3°_ B,,£™, for the B,, being

(7.6) u(€) = (1 + p&)~'"%xp[—¢ + p~'log(l + p&)).

(ii) The function V converges for
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%(1 + I/(p - l))’ p 25,
(7.7) ordx < < 4+, =3,
i, p=2
The function V™' is holomorphic (i.e. V is nonzero) for
(7.8) ordx < g,
where
Wa-yY@p-1), p>5
1
6 p=

and ey, > 0.
(iii) V cannot be continued analytically into the region

{xlordx >} +2/(p - 1)}.

ProOF. Assertion (i) is purely algebraic and may be checked by direct
substitution. An alternate method is to restrict our attention to the case in
which a is real and positive. The differential equation satisfied by ¢(a, c, x) has
[6, p. 255] a solution valid for Rex > 0, Rea > 0,

(7.9) Ya,c;x) = _I%fo“ e‘xega(l + g)c—a—ldg/g.
Replacing x by x/p and £ by p¢ gives
X _i ® _xtsa c—a—1
Waoss) = & )7 e+ )~ aese
and thus for Rex < 1, ¢ = 1/p,
(7.10) ap(a,c, ) @ f —0gu(g) dt 5.

The asserted formula then follows by replacing u by its power series expansion
and using (say for x real negative)

_l__ ® _x(~£)pa+m _ 1 I(a + m)
(7.11) RO 7 e 0gmmag g = S T@

Since the assertion is algebraic we may now ignore explicit and implicit
hypotheses concerning the real parts of a and x.
(ii) The domain of convergence of V is deduced from the formula
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! V(94
7.12 —-£+ = log(l + = e
(.12) £+ logll +p8) = 3 =L
which converges for ord§{ > —1. This shows that the argument in the
exponential function in (7.6) has ordinal exceeding 1/(p — 1) if

-€_, #* 2,
ord.*§>{l P P
2 P=2,

and thus u(¢) converges and is bounded by 1 in this region. Thus by the
Cauchy inequality

1 €, pP#*2,
7.13 —ordB, >1 °
(1.13) L “/{—a s
which demonstrates (7.8) for p # 2.
Since (a),,/m! = (—1)"(37) and since the binomial coefficient lies in Z,, we
conclude that

(7.14) ord(a),, > m/(p — 1) + O(logm).

Equation (7.7) follows from this estimate and (7.13).

To verify (7.8) for p = 2 we use an argument which could also be used to
prove a slightly weaker form of (7.8) for all p. Hence there will be no reference
to any particular value for p. The image of x7! L,inRyis D + (a/x) and hence
by Theorem 6.2.3, this first order operator lifts uniquely to an element M

(1.15) M=D-nq

which is a one sided divisor of x™'L, in %, where 4 is a superadmissible
subset of € U {co} containing all residue classes (including &) except for the
zero class. The differential equation

(7.16) dy/dx = ny

has at worst a regular singularity at infinity and hence there exists a formal
solution of M in x*Q[[1/x]] for some constant a. This solution is of necessity
a formal solution of L,. The indicial polynomial of L, at infinity is of degree
one and hence (7.5) gives a solution of (7.15). Thus V’/V is holomorphic in a
disk {xlordx < ¢,}, where &, > 0 is chosen so that the disk lies in the set A.
This completes the proof of (7.8) for p = 2, explicit estimates for g being
given by equation (7.13) for p # 2.

(iii) By the method of Clark [2], the power series solutions for L, at x = 0
converge for ordx > 1 + 2/(p — 1). If assertion (iii) were false then x? would
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be a meromorphic function on an annulus with center at the origin. This
contradiction completes the proof of the proposition.
We impose on 8 in (7.2) the condition that

(7.17) b> B > |p%l.
Thus

V' a a 1
(7.18) M=D——V—+;=V°(D+})°I_/

lies in R as well as in R, and is stable on both @ and on @¢. (but not on d).
7.19 LEMMA. Let

. 1 . 1
A, = lim infla + m| /m, A_ = lim infla — m| /m
m—+o00 m—+o0

in both cases the limit being over m € N. If

(7.20) A<, A_=1,
then M has index on @z-, but does not have index on @.

PrOOF. Multiplication by ¥ is an automorphism of both @ and of @Z" and
hence by (7.18) the index of M on these spaces is the same as that of D + a/x.
As shown in [11, §4.19] the index of xD + a on @2 (resp. @) is independent
of the radius and depends only on A_ (resp. A,). Thus by (7.20), xD + a has
index on @2 but not on @ and hence by (7.3) xD + a does not have index
on @ as asserted. This completes the proof of the lemma.

Replacing x ™ by an appropriate branch at x = ¢, equation (7.5) represents
the unique solution of L, in &, and so

L,=N-M

where N is injective on @,. Thus Proposition 7.4 gives an illustration of
Theorem 4.1. Explicitly

N=p(1 -x)D - x—p(1 — x)(a/x — V'/V)

which shows that N is stable on @.. While N is not stable on @¢., N/x is stable
on both @, and @2 and is injective on @,. Thus by §4.3 (with a fixed) N/x
Las index on both &, and @2 for all b, B close enough to 1.

Let now a be chosen satisfying (7.20), let b = 1, let B satisfy (7.17) and be
close enough to but strictly less than 1. Then by 7.19, L,/x has index on @2.,
but not on @ and hence L, has index on the first but not on the second. We
conclude: L, does not have index on &,. Furthermore for each b real and
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close to unity L  fails to have index on (i’g . By the same methods we can show
that &, N L,&; has infinite codimension in &; for all b5 < 1 such that b is
close enough to unity.

It only remains to verify that there exists a € Z, satisfying (7.20). As in [7]
we put p, = 1,p,., = p, +pP" for all n > 1 and let a = —lim,p,. Here
A, = 1/p. We compute a = 32 y, p' where

y=p—2 ifi=p, forsomen > 2,
=p-1 if otherwise,

and so if m € N,m<p®, then ordla—m) <s+ 1, ie. ord(a — m)
= O(logm). This shows that A_ = 1.

7.21 In the construction of the above example we could have discarded the
demonstration of holomorphy of 1/V (equation (7.8)).

It follows from (7.7) that if v, € (|\/p|,1) then V¥ is holomorphic in the
complement of D(0, vy ) and hence there exists a polynomial P, such that V/P
is analytic element without zeros on that complement. Let n = 1 + degree P.
We define L' by

L'=(/x"YoL,oP=N oM

where

N'=$oNoP, M’=—1150M0P=%0(D+§)0§.
Thus for 8 > y, we may conclude that N” and M’ are stable on both €. and
on @% and the proof of Lemma 7.19 shows that under condition (7.20), M’
has index on @¢. but does not have index on @.. Thus if a satisfies condition
(7.20) and b = 1 and B is strictly less than but sufficiently close to 1 then L’
also has index on @F. but not on & and hence the same holds for L,. This
shows that L, does not have index as endomorphism of @;.
7.22 Modifying slightly the notation of Clark [2], we say thata € Z, is non-
Liouville if

ord(a — n) = O(log|n|)

as n = *oo in Z. (Here |n| and log are in the archimedean sense.)

In our example L, has exponent at infinity which fails to satisfy this
condition. We therefore ask if a counterexample to [11, §4.27] may be
constructed with rational function coefficients and non-Liouville exponents.

7.23 E. Calabi has observed that the operator

L,=p(1- x)D*— XD —a



LINEAR p-ADIC DIFFERENTIAL EQUATIONS 39

with » integral, » > 1, could also be used to demonstrate the nonexistence of
index. The advantage is that with large values of » the computations
corresponding to Proposition 7.4. are greatly simplified.

8. Galois theory of Q over K. Let Q@ be an algebraically closed field of
characteristic zero which is maximally complete (and hence complete) under
a rank one valuation. Let K be a complete subfield and let K be the closure in
Q of the algebraic closure of K. Let G be the group of continuous automor-
phisms of © over K and let Gy be the continuous automorphisms of K over K.

By a well-known theorem of Tate (extended to the nondiscrete case by Ax
(1))

The elements of K fixed under all elements of Gy are precisely the elements
of K.

We demonstrate a related result.

THEOREM. The elements of Q fixed under all elements of G are precisely the
elements of K.

Note. We do not know if this result is valid without the hypothesis that Q is
maximally complete. Thus this theorem does not imply the result of Tate.
Furthermore Tate’s theorem is used in the proof of Lemma 8.1 below and so
there is no assertion of a new proof of that result.

We shall need several preliminary results.

8.1 LEMMA. Let a be an element of Q not in K. There exists a continuous
automorphism o of K(a) which leaves K pointwise fixed but does not leave o fixed.

PROOF. If a lies in K, then this assertion is equivalent to Tate’s theorem.
Thus, we may assume that @« € K and hence the distance of a from
K, d(a,K) = v > 0. Since a is transcendental over K we may for each b € K
define an automorphism, g,, of K(a) over K by setting o,a = a + b. To
complete the proof it is enough to show that g, is continuous for some b # 0.
We assert that this is the case if || < y. We note that g, is continuous if and
only if it is an isometry of K(a). It is enough to consider the action of 0, On
K][a] and since K is algebraically closed it is enough to show that

(8.1.1) la +a+ b| = |a + q
for all a € K. By hypothesis
lat+a >y>1b, la+@+d)|>7y> bl

and so (8.1.1) follows since the valuation is ultrametric.
Theorem 8 is a direct consequence of Lemma 8.1 and the following lemma.

8.2 LEMMA. Let Q be maximally complete, let K be a closed subfield. Then each
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continuous automorphism of K may be extended to a continuous automorphism of
Q.

This lemma is the consequence of the following slight generalization which
is better adapted to transfinite induction arguments.

8.3 LEMMA. Let Q and K be as above. Let T be a continuous isomorphism of K
into Q. (Of course, K and its image K" have residue class fields which are subfields
of Q, the residue class field of Q.) Suppose that the residue class fields of K and of
K" are equal. Then T may be extended to a continuous automorphism of Q.

ProOF. We consider pairs, (o, L), of fields, L, intermediate between K and
Q and continuous automorphisms, ¢, of L into @ such that L and L° have the
same residue class fields. Such pairs are ordered in the obvious way and by
Zorn’s lemma there exists a maximal element (o, L) such that (o, L) > (7, K).

By a lengthy but conventional argument, we will show that L = @ = L°.
There are several steps.

8.3.1 L is complete (by maximality).

8.3.2 We assert that L is algebraically closed. If z is algebraic over L then o
may be extended to an isomorphism of L(z) into € which must be an isometry
since the valuation of L(z) which extends the given valuation of L is unique.
Thus, by another application of Zorn’s lemma, ¢ may be extended to a
continuous isomorphism, &, of L into ©. The residue class field of L is the
algebraic closure in Qof L (=L°) and hence is the same as the residue class
field of £7. This completes the proof since (o, L) is maximal.

8.3.3 We assert that L and @ have the same value group. Otherwise there
exists Y € Q such that |Y| does not lie in the value group of L (which is the
same as the value group of L’). Then Y is transcendental over both L and L°.
We may thus extend o to an isomorphism of L(Y) with L°(Y) by setting
oY = Y. For B € L we have |Y| 5 |B| = |8°| and hence

|Y — Bl = Sup(|Y],18)) = |¥ - £°|

and then the extension of ¢ is isometric and hence continuous. Trivially L(Y)
has the same residue class field as L and hence L(Y) and L°(Y) have the same
residue class fields. This contradicts the maximality of (¢, L) and completes
the proof of 8.3.3.

8.3.4 We assert that L and Q have the same residue class field. Otherwise
there exists Y € @, |[Y| = 1suchthat ¥ & L = I°. Then, Y is transcendental
over L. By putting o(Y) = Y we extend o to a continuous isomorphism of
L(Y) into L°(Y) and the residue class fields coincide with Z(Y) and are thus
identical. This contradicts the maximality of (s, L).

8.3.5 We assert that L is maximally complete. Suppose otherwise and let
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{D(a;,7;)};en be a sequence of imbedded disks with centers in L and no
common point in L. Since @ is maximally complete, let x be a common point
in . Clearly x is transcendental over L.

We observe that {D(oq;,v;)};en i again a sequence of imbedded disks and
hence has a common point, y, in €. This point cannot lie in L° as otherwise
o'y would lie in L N D(a;,¥;) for each i € N which is impossible. Since L’
is also algebraically closed, o may be extended to an isomorphism of L(x) with
L°(y) by setting ox = y. To verify continuity it is enough to show that

(8.3.5.1) |x —a| = |y - oa

for all @ € L. We know that
|x — a| > d(x,L) = infy,

and hence there exists i € N such that |x —q;| < y; <|x — . Hence
|x — a| = |a = ;| > y; buty € D(oa;,v;) and so

|y = oal = |(y — 0a;) + o(a; — o) = la; = o] = |x = o,

which completes the verification of (8.3.5.1). Furthermore, L = L’ = @ shows
that L(x) and L°(y) have the same residue class field. This contradicts the
maximality of (o, L).

We have shown that L (resp. L°) has the same value group and the same
residue class field as Q. Thus € is an immediate extension of L (resp. L°).
Furthermore, L (resp. L°) is maximally complete. Hence [14, Chapter 2]

L = Q = I°. This completes the proof of Lemma 8.3.

ProoF OF THEOREM 8. Let a be element of £ not in K. Let ¢ be the
continuous automorphism of K(a) over K whose existence is assured by
Lemma 8.1. This automorphism may be extended by continuity to the
completion of K(a) and by Lemma 8.2 to a continuous automorphism of .
This completes the proof of the theorem.

8.4 As preparation for the application of the above theorem, we consider the
orbit of a disk under the action of G.

LeMMA. If a disk T = D(a, r~) contains no element of K, then T has an
infinite set of distinct images under the action of G.

PROOF. Let y = d(a,K). Clearly, y > r. We consider two possibilities:

8.4.1 Case 1. Either the real number r lies in the value group of Kory > r.

We know from the proof of Lemma 8.1 that if b € K, |b| < v, then
0,: @ > a + b defines a continuous automorphism of K(a), which by Lemma
8.2 can be extended to an element of G (which we will denote by the same
symbol). The image g, T of T is in one to one correspondence with the class
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of b modulo D(0,r™) which demonstrates the lemma in this case.

8.4.2 Case 2. r does not lie in the value group of K, and y = r.

If B, and B, are elements of D(a,r™) whose difference does not lie in
D(0,r7), then at most one of the two disks D(B;,r~) (i = 1,2) can contain an
element of K (as otherwise r = |B, — B,| would lie in the value group of K).
Thus there exist an infinite set of distinct disks D(8,r~) which lie in D(a,r ™)
and contain no element of K. Such a 8 must also be transcendental over K and
hence a > B defines an isomorphism, o, of K(a) with K(B).

8.4.2.1 We assert that o is continuous. That is we assert that for each ¢ € K
we have |a — ¢| = |8 — c|. This follows from the relations

la—cl>r |B=c>r la=Bl=r

if we consider the two possibilities, |« — ¢| > r and |a — ¢| = r. This com-
pletes the verification of 8.4.2.1. To be able to apply Lemma 8.3, we must show
that K(a) and K(B) have the same residue class fields.

8.4.2.2 We assert that K(a) (resp. K(B)) has the same residue class field as K.

Here again we consider two possibilities.

8.4.2.2.1 The value of d(a, K) is assumed. Thus there exists ¢ € K such that
|c — a| = r. Thus replacing a by @ — ¢ we may assume that |a| = r. If fis any
element of K[X] then by hypothesis 8.4.2 the newton polygon of f has no side
of slope corresponding to r and that a line of support of that slope which
passes through the origin can have no contact with the polygon except at the
origin itself. This shows that if f(«) is a unit, then it is in the same residue class
as f(0). This completes the proof of 8.4.2.2 in this case.

8.4.2.2.2 The value of d(a, K) is not assumed. In this case a is pseudolimit
of a transcendental pseudo convergent sequence of K and hence [14, Chapter
2] lies in an immediate extension of K. This completes the proof of 8.4.2.2.

It now follows from Lemma 8.3 that ¢ may be extended to an element of
G and clearly o D(a,r~) = D(B,r”). This completes the treatment of 8.4.2
and hence of the lemma.

8.5 APPLICATION. Let 4 be an infra connected subset of € which is stable
under G. Let Hy(4) (resp. Hy(4)) be the set of analytic elements of 4 defined
over K (resp. Q), i.e. uniform limits on 4 of elements of K(X) (resp. (X)),
having no poles in 4. The group G operates on Hy(A) by Hy(4) 3 f f°
where

(8.5.1) fox) = o(f(x))
for all x € A.

THEOREM. The elements of Hy(A) fixed under G are precisely the elements of
H(A).



LINEAR p-ADIC DIFFERENTIAL EQUATIONS 43

PROOF. Let fbe an element of Hy(7') and let J be the set of all trous of the
set A. By the generalized Mittag-Leffler Theorem [10],

(8.52) f= T%J_fr’

a unique decomposition into elements f € Hy(CT) such that f. vanishes at
infinity (if co & T) and such that f — f;. extends analytically to 4 U T. If
o € G, then

(8.5.3) () =)o
and hence if f = f° then
(8.5.4) (f7)" = fre

forall T € 9.
We now consider an element f of Hy(4) which is invariant under G. We
assert that f. # 0 implies

(8.5.5) TNK#@.

Indeed, fr # O implies ||frllcy = @ > 0 and hence by equation (8.5.4),
| frollere = aforallo € G.

Thus T can have only a finite set of distinct conjugates under the action of
G and hence (8.5.5) is a consequence of Lemma 8.4. Thus if f # 0 we may
put T = D(a,r~) with a algebraic over K. Let then M be a finite galois
extension of K which contains a. We may write

o0 .
(8.5.6) fr= ‘21 Aj/ X - a)’
J=
with 4; € Q for all j and

(8.5.7) |4,/ >0 asj— co.

However, T is stable under the group, G,,, of continuous automorphisms of Q
over M. Thus by (8.5.4), f-is invariant under G,, and thus by Theorem 8, each
A; lies in M. It follows from (8.5.7) that f- is uniform limit on 4 of elements
of M (X) having pole only at a.

We have shown that the galois group ® of M over K operates on f;. Let
9 = {0 € G| |oa — a| < r}. Clearly § is a subgroup of & and for 5,7 €S
we have (f;)° = (fp)" if and only if 0 'r € §. Thus let

(8.5.8) ® = ,LSJ] 0.9
i=
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be the coset decomposition of & corresponding to . Then the full set of
conjugates of T under G is {T;}}.,, where foreachi (=1,2,...,5) T; =
D (o;, a, r~). Thus in the Mittag-Leffler decomposition of f, the component
corresponding to T and its conjugates is precisely

(8.5.9) S = S U =K S G
i= i=1 0cEY®

where h = card(9). The left side of this equation may be written as
Jlim A7'S), /"En A/ (X — a)

where S,/ is the mapping of M (X) onto K(X) which extends in the obvious
way the trace mapping of M into K. It is now easy to verify that f lies in
H,(A) as asserted.

9. Problems and special results.

9.1 Supersingularity. Let A be a standard set. Let L € R, have kernel at ¢
which lies in @,. Then by 4.2.7 for each disk D(a,17) in 4 (|la| < 1) in which
L has at worst removable singularities, we may associate a newton polygon as
outlined in an earlier article [3]. Namely for each positive real number S let
g,(B) be the dimension of the kernel of L in Vl{,"ﬁ . Let B, ..., B, be the
points of discontinuity of g, (8, = 0 if g,(0) > 0) and let ¢; be the jump of
g,atB;(i=1,2,...,s). The newton polygon is constructed so that the jth
side has slope g; with projected length ;.

9.1.1 CoNJECTURE [4]. The polygon for L at ¢ lies on or below the polygon
for L at any other point.

A special case of this conjecture is given by Theorem 2.4 above.

9.1.2 DEFINITION. We say that L is supersingular at those residue classes for
which the newton polygon of L does not coincide with the polygon at .

9.1.3 CONJECTURE. L is supersingular at only a finite number of residue
classes in 4.

In particular [4],

9.1.4 CoNJECTURE. In (2.4.1) (above) equality holds at all but a finite number
of residue classes in 4.

While known for many cases ([11, §4.26.2]) this conjecture is still open for
operators of order 2 with rational coefficients. By Theorem 2.4 this conjecture
is equivalent to the following conjecture.

9.1.5 CoNJECTURE. If A is standard set, L€ R, M,N € R, and L
= N - M then M € R for some admissible subset B of 4.

This conjecture is implied by Conjecture 3.1.5 above.

9.2 A special case of Conjecture 3.1.5 is the linear case. Thus
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9.2.1 CONJECTURE. Let 4 be a standard set, L € R,; let u € E, Lu =0,
then u € H(B) for some admissible subset B of 4.

For the case in which L € R, [13], Conjecture 9.2.1 is now known to be a
direct consequence of the Mittag-Leffler theorem and indeed the same
conclusion holds if Lu = v, L € Ry, u € Eand v € H(A).

Without the hypothesis L € R, Conjecture 9.2.1 has been verified only in
the case of order one. This was done by Motzkin [7] by means of his theory
of singular factors.

Note that in 9.2.1 it may be assumed that L has a full set of solutions in @,
as if M, N are defined by equation (4.2.1) then Mu lies in VI{"O and hence must
be zero as N has no solutions in that space.

9.3 We now give an application of Conjecture 9.2.1. We assume L € R,
since the conjecture is known in that case.

LEMMA. Let L € R, be of order 2 and have Riccati equation with two distinct
solutions in E. Then these two solutions lie in E, .

PROOF. Let L = D? + aD + b and let n;, 1, be distinct solutions in E of
the Riccati equation

(9.3.1) ”+n +an+b=0.
Now let u;, u, be germs of analytic functions at ¢ such that
(9.3.2) wfu,=m, i=12

Thus u, u, are independent elements of ker, L. Thus
(9.3.3) =My = W,

where w is the wronskian of L. We observe that uu, is a solution of the third
. . . . . . 2 2
order linear differential equation (in R,) whose other two solutions are u;, u5.
Furthermore twisting this third order linear differential operator by w, we
obtain N, a third order linear differential operator, N € R, such that u, u,/w
lies in ker, N. By (9.3.3), 1/(n; — m,) € E N ker,N and therefore by [13], we

conclude that
m—m € Ey.
The Riccati equation shows that

(= m)(ny +mp) + (o — mp) + a(y —my) =0
and hence n; + n, € E,y. Then n; and n, € E, 4 as asserted.
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