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ON ORDINARY LINEAR p-ADIC
DIFFERENTIAL EQUATIONS

BY

B. DWORK AND P. ROBBA

Abstract. We study the solutions of ordinary linear differential equations

whose coefficients are analytic elements. As one application we show

nonexistence of index for certain linear differential operators with rational

function coefficients.

Introduction. This article represents a continuation of previous interdepend-

ent nonjoint work [3], [4], [11], [12], [13] on/?-adic differential equations. This

previous work was to a considerable extent restricted to the case of ordinary

differential equations with rational coefficients. The main topics involved were

1. Growth of solutions at the boundary of disk of convergence.

2. Field of definition of the space of solutions having specified growth.

3. Existence of index.

The basic idea in this work has been the relation between solutions at the

generic point and solutions at an arbitrary point. In particular, we have been

concerned with the reducibility of differential operators corresponding to

filtration of the solution space at the generic point as given by growth

conditions.

We had at one time been of the opinion that a linear differential equation

with rational function coefficients which is irreducible in that ring cannot have

solutions at a generic point with distinct radii of convergence. We are indebted

to Monsky for the counterexample ([11, §4.26.1], also §7 below). This

phenomenon is the main topic of the present article. Our main result (§4.1) is

that distinct radii of convergence of solutions does imply a strong form of

reducibility (the factors need not have rational coefficients but do have

superadmissible coefficients). *

A natural illustration of this phenomenon is provided by the theory of

elliptic modular functions if we view >> = j(pr) as a function of x = j{r). The

modular equation Fp{x,y) is known to have solutions for y with different radii
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2 B. DWORK AND P. ROBBA

of convergence at the generic point. Since algebraic functions certainly satisfy

a differential equation with rational coefficients we may conclude that

"geometric" examples occur.

The clarification achieved on this question has permitted considerable

improvement of earlier articles. For example (as noted in [11, §4.26.3]) we now

know that if L is a linear differential operator with rational coefficients, then

for all but a finite number of residue classes L has index as endomorphism of

the space of functions analytic on a residue class. (For a more complete

statement see §4.2 below.) We are now able to remove the hypothesis of

rational coefficients in the theory [3] of the growth at the circle of convergence

of solutions of ordinary differential equations (cf. §4.2.6 below). In §7 we use

the example of Monsky to disprove earlier conjectures [3] concerning existence

of index. In §6 we give Hensel type lemmas for factorization of differential

operators which lift factorizations of the reduced differential operators. The

precise relation between the results of §4 and §6 is not yet understood.

Our method has been to apply earlier results [11] concerning linear

operators to obtain information concerning a general system of nonlinear

differential equations, (3.1.6). The relation between nonlinear differential

equations and reducibility of differential operators is discussed in §4.1. Further

progress (e.g. Conjecture 9.1.5 below) would result from improvements (such

as Conjecture 3.1.5 below) in the theory of nonlinear differential operators.

Symbols

&a, &a 1.7 SRW 6.2.2

<£A 1.7 3t"[m] 6.2.2

«2,[Z>])m 4.1.3 3Î0 6.1
D(a,b+) 1.2 <3A 1.5

D(a,b~) 1.2 t 1.1
E 1.3 WA 1.12

Eid 1.11 WA 1.12
eA 1.9,1.12 Wfra 1.8

E_o 1-1 II    IL 1-6

E0 6.1 ||    ||a 2.2

¿sad 1-11 II    II 1,0 1-8

I    \E 1-3 S2 1.1

!set 1.11

subset 1.10

H(A),H0(A) 1.5 generic point 1.1
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K 1.1 gauss norm 1.3

K 6.1 proper subset of 1.13
special set

TI 2.2 special set 1.12

M (A) 1.5 standard set 1.9

£>E 6.2 super admissible 1.10,1.11

9î 1.4 very standard 1.9

^ 1.5

% 1.4

1. Notation.

1.1 Let Â'be a field of characteristic zero complete under a nonarchimedean

valuation and with residue class field of characteristic p # 0. Let E0 = K{x)

be the field of rational functions in one variable. Let Ü be an algebraically

closed maximally complete field complete under a valuation extending that of

K and linearly disjoint from E0 over K. Let ñ have a valuation ring containing

an element t whose image in the residue class field of Q is transcendental over

the residue class field of K. The point t will be called the generic point.

1.2 For each a E Q and each positive real number r, let

D{a,r~) - {x 6 Q\ \x - a\< r),       D{a,r+) = {x E Q\ \x - a\ < r).

For/ E Q,[[x - a]],f = 2^=o b,(x - df, analytic on D{a,r~), let for p < r

l/l» = suplè, |/.
v

This is extended to functions/ meromorphic in D(0,r~) by writing

l/l» = l*l»/|A|»   Vf-g/h

both g and h being analytic on D{a,r~).

1.3 Let E be the completion of EQ under the Gauss norm

/-l/loO).

We shall write |/|£ for this norm on E. The operator norm on the space of

continuous endomorphisms of E is also denoted by | \E.

1.4 Let 9Î = E[D] be the noncommutative euclidean ring of finite sums,

(D = d/dx), *2cmDm,cmE E. Let 9?0 be the subring E0[D].

1.5 For each bounded subset A of ß such that d{A, CA) > 0 (or the union

of such a bounded set with the complement in ñu {oo} of CD{0, r) for

some r > 0). Let G {A) be the subspace of E0 consisting of rational functions

having no poles in A and let H (A) denote the completion of G {A) under the

topology of uniform convergence. Let M {A) be the quotient field of H {A) and let
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XA = M(A)[D],       @4 = H(A)[D].

H (A) is a banach space under the sup norm, || ||^, and the operator norm on

the space of continuous endomorphism of H (A) is denoted by the same

symbol.

We define HQ(A) to be the same as H(A) unless A contains the point at

infinity in which case we impose the further condition of vanishing at infinity.

1.6 Let it = (w„)„eN be a nonincreasing sequence of positive real numbers

with

(1.6.1) 7T0 = 1,       "iAy+i   monotonically decreasing.

Let Wj be the banach space of germs of analytic functions at a,

00

u = 2 b„(x - a)v

such that

(1.6.2) ll«ll = sup wJZ>J <+00

with norm u h» ||m||„..

1.7 We shall use &pa to denote the space of functions analytic in D(a,p~)

with topology of uniform convergence on disks D(a,r~) with r < p. We write

&a instead of &\.

If A is an annulus of center a,

L = D(a,p2)-D(a,px)

where px < p2 then let (£A denote the space of functions analytic on A with the

topology of uniform convergence on annuli

Ar = D(a,r)-D(a,px-)

where r E (px, p2).

Similarly if A = D(a,p2) - D(a,px) then again &A denotes the space of

functions analytic on A with topology of uniform convergence on annuli

A, = Z)(a,p¿)-/)(*,r+)

where r £ (px,p2).

1.8 The ring 9Í may be identified with a subring of the ring of continuous

endomorphisms of Wf. The induced norm of D? will be denoted R i-» ^R\.

In particular if irv = 1 for all v E N, we denote it by ttX' and we write || ||, 0

for the corresponding norm and write Wx'° for Wf and WX,Q for Wj.

More generally Wj'a denotes Wj where tt is the sequence whose general

member is ttv = r"/(v + l)a.
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1.9 A nonempty subset A of fi U {00} will be called very standard if it is a

union of residue classes. The set A will be said to be standard if it is the union

of a very standard set with a finite collection of annuli which lie in D{0, l+)

and have outer radius unity and no outer circumferences. Thus we may define

eA to be the minimum of the inner radii of these annuli and if A is very

standard we set eA = 1. The definition of standard set and eA is extended in

an obvious way so as to remove distinctions between finite and infinite

residue classes: Let A be the annulus

A = {x\e~x >\x\> I).

If A is either the empty set or a standard set then we shall say that

A' = A u A is also standard and we define eA. to be e if A is empty and to be

min(e/), e) otherwise. Thus in all cases eA < 1. If A is standard then there

exists a natural identification of H {A) with H {A u D{t, l~)) and so we

may view H {A) as a subring of E. Furthermore we may view D(t, l~) as a

subset of each standard set although it will be convenient not to insist upon

this formulation.

1.10 A standard subset B of a standard set A will be said to be an admissible

subset if the difference A — B lies in the union of a finite number of residue

classes. An admissible subset will be said to be superadmissible if the two sets

have the same image in the residue class field, extended so as to include the

infinite residue class.

1.11 An element of E is said to be admissible (resp. superadmissible) if it lies

in H (A) for some admissible (resp. superadmissible) subset, A, of fi. We

denote by £ad (resp., £'sad) the set of all admissible (resp. superadmissible)

elements of E. We thus have a field theoretic inclusion

EDE,dD £-sad 3 EQ.

1.12 A subset, A, of fi U {00} will be said to be special if it is either an

uncircumferenced disk D{0,b~) or an uncircumferenced annulus D{0,b~)

- D{0,c+) (b > c). We define eA in the first case to be Min{b,b~x) and in the

second case to be Min(b,b~x,c,c~x). This agrees with the previous notation if

A is also a standard set.

If A is a special set then we shall use WA to denote the subspace of Ü\\X]]

(resp. Laurent series with coefficients in Ü) which converge and are bounded

in .4. We shall use WA to denote the closure of Q[x] (resp: fifx,*-1]) in WA. The

space WA coincides with the space of power series (resp. Laurent series) which

converge in the circumferenced disk (resp. annulus).

1.13 A subset B of a special set A will be said to be proper if it is a special

set which is also a disk (resp. annulus) and if the radius of B (resp. maximal
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radius, resp. minimal radius of B) is strictly less (resp. strictly less, resp. strictly

greater) than that of A.

The space, &A, of analytic functions on A, i.e. of power series in &[[X]] (resp.

Laurent series) which converge in A is endowed with the topology of uniform

convergence on proper subsets. If A = D(0, b~ ) then &A is precisely the same

as<2§.

2- Comparison of bounded kernels of a differential operator at a generic point

and at an arbitrary point. Let A be the annulus D(0, l~) — D(0,b~) where b is

a fixed real number in the interval (0, 1).

If L is an element of 9Í then we may consider solutions of L at t but it need

not be possible to discuss solutions at points in A. For this reason in [11, §3]

comparisons of solution spaces near different points were made only for

differential operators in 9i0. This restriction is unnecessarily restrictive.

Following the same methods we show that such comparisons may be made in

the case of L E DxA. Clearly

9t0 C 3ÍA C m.

2.1 Lemma. Let L E 9rA, let m be a sequence (§1.6) and let R be the monk

generator of the ir-closure in 3Í ofñL. Let R be of degree k and for each n E N

let Rn be monk of degree k in 9i0 such that

(2.1.1) \\R-RH\\,<Vn.

There exists Pn E 9îA such that

(2.1.2) Rn = Pn   modDÍAL,

(2.1.3) \\Pnl<Vn.

In particular if R = 1, then Rn = 1 for all n.

Proof. See [11, §3.1].

2.2 The boundary seminorm. If « is a meromorphic function on A, i.e. the

ratio of two Laurent series which converge in A, let

(2 2 0 ""Ha = limsupMoM = lim  sup |n|0(j).

If L E 9ÎA then L acts on endomorphism on the space of functions

meromorphic on A.

Let Wl be the space of meromorphic functions on A of the form g/h where

g and h are functions analytic and bounded on A. Then || 1^ is a norm on 3JÎ

and in particular for each «ESKwe have
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(2.2.2) ||M||a < +00,       ||«||„ - 0 o u = 0.

We define the bounded meromorphic kernel of L on A, written, bdd mer kerA L,

to be the space of elements of 2JJ annihilated by L.

2.3 Lemma. Let L be an element of 9iA. If u is meromorphic on A, then

(2.3.1) \\u-xLu\\a < \\L\\Xfi.

Ifu E TI then

(2.3.2) \\Lu\l < \\L\Ju\l.

Proof. See [11, §3.3].

2.4 We define the bounded kernel of L at t to be the kernel of L in Wtx'°,

i.e. the space of those solutions of Lu = 0 such that u is bounded on D(t, l~).

Theorem 2.4. (i) Let L be a monic element of 9îA. Then

(2.4.1) dim bdd Ker, L > dim bdd mer KerA L.

(ii) Let M be the monic element of 9i defined by

Ker, M = bdd Ker, L.

If equality holds in (2.4.1), then the coefficients of M are analytic functions on

A' U D{t, 1~ ) where A' is the complement in à of a countable set.

(iii) Let A = D{0, r). If either M G <BA or both M E l>RA and L E <&A,then

equality holds in (2.4.1).

Proof. For the proof of (i) see [11, §3.4]. For the proof of (iii) one simply

follows the proof of [11, Lemma 4.25] replacing k by 1 in equation (4.25.5) of

that article. In the proof of (ii) we will use Proposition 2.6 whose statement

and proof will be given at the end of this section. Let k be the order of M. By

hypothesis this is the same as the dimension of the bounded meromorphic

kernel of L on A. Let ux, ..., uk he a basis of this kernel. Note that M does

not a priori operate on u¡. We may normalize so that

(2.4.2) IMff=l,       i =1,2,...,*.

Let N be the monic differential operator, N G Wl[D], of order k, such that

(2.4.3) Nut = 0,       / - 1, 2,..., k.

By Lemma 2.1, for each n G N there exists Mn G 3t0, Pn G 9rA such that Mn

is monic of degree k and such that
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(2.4.4.1) Mn~pn   modlRAL,

(2.4.4.2) \\Mn - M\a < l/n,

(2.4.4.3) \\PH\\s> < !/«•

For n G N, / = 1, 2,..., k, define

(2.4.5) M„u¡ = 9n<¡.

By equation (2.4.4.1), Mnu¡ = Pnu¡ while by (2.4.4.3),

fella < xln

and thus

(2.4.6) K/llo < l/n.

From equations (2.4.3), (2.4.5) we have

(2.4.7) (M„ - N)u¡ = enJ,       i=l,2,...,k.

Now Mn — N is a differential operator of order not greater than k — 1, with

coefficients in 2JJ. Solving (2.4.7) for these k coefficients, and using (2.4.6) we

find a constant c, independent of n such that

(2.4.8) \\Mn - A||a < c/n,

where the symbol on the left is the maximal boundary norm of the coefficients

of the indicated differential operator (i.e. if 2 b¡D' = <> E Tl[D] then H^ is

by definition Max,- \\a¡ ||0). Now, M, N, Mn being all monic of the same order,

equations (2.4.8) and (2.4.4.2) together with Proposition 2.6 below show that

the coefficients of M extend to A as meromorphic functions and coincide on

A with the coefficients of N. This completes the proof of the theorem.

2.5 Theorem. Let L E 9ÎA. // there exists u ¥= 0 and meromorphic in A such

that Lu = 0, then the bounded kernel of L at t is nontrivial.

Proof. See [11, §3.5].

2.6 To complete the proof of Theorem 2.4 above, we need the proof of the

following proposition. The annulus A, the set 9JÎ and the boundary norm o are

defined in §2.2.

Clearly Wl contains E0 and the boundary seminorm (2.2.1) induces a norm

on 2JÎ which in turn induces the gauss norm on E0. In this section we shall

consider an element / of 9Jc which is the limit of elements of EQ. In this

situation there is a unique element, F, of E which is the limit in E of the

elements in E0 which have / as limit in Tt.
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Our object is to determine a sense in which/is the "analytic continuation"

of F. For this purpose, we need some new symbols. Let/ = g/h where g and

h are bounded functions analytic on A. For each c E (0,1), let

Zc = {xE A| \h{x)\> c\h\0(\x\)},

YC = ZCU D(t, r),

(2.6.1) Y=UQYe,

A = D(0, r),

Dc = Zc U CA.

It has been shown by Motzkin [8] that Yc is an analytic set and hence the

same holds for Y.

Proposition 2.6. Let g, h be bounded elements cf (£A whose quotient f = g/h

lies in the closure of E0 in Wl. Then f E H(YC) for each c E (0, 1). The

continuation of f to D (t, 1 ~) is given by F and f is an analytic function on Y.

Proof. The group G of continuous automorphisms of Q over K is stable

on A and hence (§8) acts as group of automorphisms of Wl. In this sense, the

action of G on E0 is trivial and hence / is invariant under G.

Let (g), {h) denote the divisors of g and h as functions on A in the sense of

Lazard (cf. Van der Put [15, Theorem 4.3]). Since ß is maximally complete,

there exists 1- G WA, such that (£) is the greatest common divisor of ig) and {h).

We may replace g (resp. h) by g/£ (resp. /z/£) and may assume that g and h are

bounded analytic functions on A with no common zeros. There is no loss in

generality as Zc is replaced by a larger set.

We know that / = g/h is invariant under G but do not know whether the

same holds for h. However it is now clear that {hT) = {h) for each t G G and

hence

hT = h ■ TL.

where r/T is an element of Wà which has no zeros in A. Thus, for x G A we have

\%(x)\ = kl0(M).

But t induces a permutation of {x\ \x\= r) and hence

|ATloW = NoM

for each r G [b, 1). From these relations, we deduce that |r/T|0(/) = 1 and that

\%(x)\ = 1 f°r all x E A. This shows that the sets Zc, Yc, Dc are all stable

under G.
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The set Zc has D(0,b~) as a trou and there exists/0 analytic element on

CD(0,b~) vanishing at co such that / —/0 has analytic continuation to

D(0,b~). Since/0 is uniquely specified by these properties, it is invariant under

G and using the representation of /0 as element of ti((l/x)) it follows from

Theorem 8 that/0 E H0(CD(0, b~)). The other trous of Zc lie on circumfer-

ences

r„ = [x\ \x\= rn)

where h has zeros. The sequence {rn} if infinite is monotonie with 1 as limit.

For each zero a of h let £a (E ü(x)) be the singular part of/at a. For each

n > 1, we define

(2.6.2) /„ = 2 !„

the sum being over all a E Tn such that h(a) = 0. Clearly/n is an element of Q,(x)

which is invariant under G and hence fn E K(x). Clearly fn E Hq(Dc) for

n > 0.

Our first object is to prove

(2.6.3) ll/JU^O.

Given e > 0, there exists Q E E0 such that

(2.6.4) \F-Q\E<ce,       \\f - Q\\a < ce.

We may choose r E (b, 1) such that r # rm for any m and such that

(2.6.5) \f-Q\0(p)<ce   Vpe(r,l),

(2.6.5')                   ß has no pole /? such that | ß\ E [r, 1).

Let rn E (r, 1). Choose r'n, r"n E (0,1) such that

Max(r,r„_x) < r'n < rn < r"n < rn+x.

Thus Q has no poles in the annulus

{x\r'„ <\x\< r"n}

and the poles of/in this annulus lie on Tn. Let V be the intersection of this

annulus with Zc. Corresponding to each trou T of V on Tn the singular part of

f-Qis

(2.6.6) (f-Q)T = fT=   \^
v ' a&T

From the Mittag-Leffier theorem [6],
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(2.6.7) Il(/-c2)r|lcr< llZ-öll-

To estimate the right-hand side of (2.6.7), we consider two cases

Io. For x E V, x $ Tn, by (2.6.5), we have

l(/-ß)(*)l< l/-ßlo(M)<«<«-

2°. For x G V n Tn, by definition of Zc

\h(x)\ > c\h\0(r„)

while the analyticity of g - hQ on Tn shows that

\(g-hQ)(x)\<\g-hQ\0(rH).

Thus again by (2.6.5),

K/-ß)WK|/-ßloWA<e-

This shows that

(2.6.8) \\f-Q\\v<e.

By (2.6.6), (2.6.7), (2.6.8), we see that

(2.6.9) ||/r||cr < c.

Since CT D Dc,we conclude that

(2.6.10) ||/r||flc < e.

The trous of V on Tn contain all the zeros of h on Tn and thus by (2.6.2),

(2.6.6),

(2.6.11) A-2/r

the sum on the right being over all trous T of V on Tn. It now follows from

(2.6.10) that

(2.6.12) U,K<*   ^e^1)-

This completes the proof of (2.6.3).

We now define

(2.6.13) fA = I /„,

an element of H{DC). Let FA be the singular part of F corresponding to the

trou, A, of D(t, r). Thus
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(2.6.14) FA E H(CA),       F- FA E H(A U D(t, F)).

Our second object is to show that

(2.6.15) FA=fA

as elements of H(CA).

Let Q be an element of E0 and r E (b, 1) as chosen above. Let QA be the

singular part of Q corresponding to poles of Q in A. Viewing A as a trou of

D(t, 1~), we conclude from (2.6.4) and the Mittag-Leffier theorem that

(2.6.16) \\FA - QA \\CA < \\F - Q\\D{lX) < e.

Now, consider the restriction of / and of Q to the circumference T

= {x\ \x\= r). Since all the poles of Q in A lie in D(0,r~), the singular part

of (/- <2)|r relative to the trou D(0,r~) of T is

(2.6.17) (/- ÖW.O =   2 fm - QA

it being understood that /0 is the first term in the sum on the right. By the

Mittag-Leffier theorem and equation (2.6.5),

(2.6.18) ll(/- Ô)z)(0,r-)HcZ)(0,r-) <  II/" Ölt  H/" Ö loW < *•

Since CZ)(0,r_) D C^4, the last two equations give

2 /„ - QA
rm<r C/l

(2.6.19)

and since Dc D C^, it follows from (2.6.12) that

(2.6.20) \\fJcA<*   Vrn>r.

We conclude that

(2.6.21) Itó - Ojio* < e.

Equation (2.6.15) now follows from (2.6.16) and (2.6.21), which completes the

proof of our second object.

We note that j' — fA is an analytic function on Zc which has a unique

extension to a bounded analytic function on A. As noted in (2.6.14), F — FA

has continuation into A. Our third object is to show that

(2.6.22) F-F=j-fi

as functions on A. With Q as chosen above, we use



LINEAR /7-ADIC DIFFERENTIAL EQUATIONS 13

IK/-/J - (Q - Qa)Wa =  W(f-fA) - (ß - ßJH,

IIA - ÖJIa =  HA - Qa\\ca>

and equations (2.6.4) and (2.6.21) to conclude that

(2.6.23) \\(f-fA)-(Q-QA)\\A<e;

we also use

\\(F-FA) - (Q - QA)\\A = \\(F-FA) - (Q - QA)\\E

and equations (2.6.4) and (2.6.16) to conclude that

(2.6.24) \\(F- FA) - (Q - QA)\\A < e.

Equation 2.6.22 is a consequence of (2.6.23) and (2.6.24). For x E Zc, we have

by (2.6.22)

(2.6.25) f(x)=fA(x) + (F-FA)(x).

Since fA E H(DC) and F- FA E H(A U D(t, 1")), it follows that / is the

restriction to Zc of an element of H(YC) and this element is unique since Yc is

an analytic set. Denoting this extended function again by / equation (2.6.25)

extends to Yc and in particular is valid for x E D(t, 1~). But for such x, we

have by (2.6.15) fA(x) = FA(x) and hence f(x) = F(x).

This shows that the extension off to D(t, l~) is given by Fas asserted. This

completes the proof of the theorem.

3. Nonlinear differential equations with a solution in E. The object of this

section is the study of nonlinear differential equations having coefficients

which are analytic elements on a standard set A.

3.1 Let s, m be fixed positive integers (in the applications s = m) and let p

be a fixed positive real number. Let F be an analytic map of A X (D(0, p+)) s

into Qw defined over K, i.e. letting X = (Xx,... ,XS), Y = (Yx,..., Ys) then

(3.1.1) F(*,y) = 2 vr

the sum being over all ¡i and v in Z+, it being understood that for ¡i E Z+, X^

represents the monomial Xf1 • • •Xf'. Furthermore each C „ E (H(A))m, i.e.

is an m-vector whose components lie in H (A) and which are all functions of

the same independent variable x. It is assumed that the series converges

whenever x E A and each X¡ and each Y¡ lies in D(0,p+). In particular then

there exists a real number M such that

(3.1.2) PlMl\\C\\A<M
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for ail (/i, y) G Z2+s where \{p,v)\ = 2/-i M,- + 2/-i "/and HC^X denotes the

maximum of the norms of the components of C    as elements of H(A).

Let w = (»j,..., us) be a solution in Es of the system

(3.1.3) F(X,dX/dx) = 0

such that \u\E = su-px<i<s\u-^E < p.

We define the tangential map of F at w to be the map of Es into Em given

explicitly by

dF,     „     J,   ,3F.

/-      ÖA, /=l    —,
(3.1.4) L„(zi,. ..,*,) == 2 zij^(u,u') + 2 <g^(«,«')

where z'¡ = dzjdx, u' = du/dx.

3.1.5 Conjecture. If the mapping z h> Lu(z) has kernel of finite dimension

(over ñ) in the space of s-tuples of germs of analytic functions at t then

u G H(B)S for some admissible subset B of A.

This conjecture is known only in very special cases (cf. (3.7), (9.2) below).

The object of this section is to prove a stronger conclusion starting from a

stronger premise.

3.1.6 Theorem. // Lu is injective on {â,)s, then u E H{B)S for some

superadmissible subset B of A.

The proof will be completed in §3.6 below.

3.2 Generalities concerning power series. Let A, F be as in the preceding

paragraph. Let B be a standard subset of A. For X G H{B)S, let G{X)

— F{X,dX/dx). If now ||^f||s < peB then \\dX/dx\\B < p and we may consider

the Taylor expansion of G about X in the banach space {H{B))S and hence we

may write for £ G H{B)S, £ small,

(3.2.1) G(X + i) - G(X) + Lx(i) + Nx(i)

where Lx(i) (as given by (3.1.4)) gives the linear terms in (£,d£/dx) and Nx(£)

give the sum of the nonlinear terms.

Lemma. For £, \ in H{B)S

Max(||||Uliy < pg|,

we have

IMOIU < ¿r 11*11*.     IWOIU < 7^2 tó«

\\Nx{t) - Nx{l)\\B < -^-2U - ÉIIAsup(||i||a,||{!|B).
\peB)
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Proof. Similar inequalities for F(X, Y) are well known consequences of the

Cauchy inequality. The present relations are now a consequence of the

estimate

\\di/dx\\ < U\\B/eB.

3.3 Lemma. Let C be a standard set, let L E @c (i.e. L is a linear differential

operator with coefficients in H(C)). For each real e > 0 there exists e E (0,1)

such that for each standard subset B of C for which eB > e we have

(3.3.1) \\L\\B < \\L\\U0 + e.

Proof. L = 2 cmDm/m\, let d - d(B,CB), then

(3.3.2) WlWb < Max d-m\\cJB < Max eBm\\cJB.
,m m

Let a be an arbitrary residue class of fl which intersects C. If 5 C C then for

each x E a we have

kmWI < KIe-

If on the contrary a <£ C then a n CC is a disk. If a # ôô (resp. a = ôô~) let

a be an element of this disk (resp. let a = 0). Since |cw|0(r) approaches \cm\E

as rf 1 (resp. rjl) there exists y0 E (0, 1) such that

U» < lcJ£ + £/2

for all w and all r E (ya, 1) (resp. (1,-y^1 )). Since there are only a finite number

of residue classes a of this second type (i.e. such that a n C # 0, a C C) we

may conclude that there exists e' E (0,1) such that if £ is a standard subset

of C and eB E (é, 1) then

(3.3.3) \cm(x)X\cm\E + s/2

for all x E B. We now choose e E (e\ 1) such that

e-m<l+e(\cm\E + £fX-x2

for all m such that cm ¥" 0. If eB > e then equation (3.3.1) follows from (3.3.2),

(3.3.3) and this last inequality since

||L||lj0 = Mmax|cJ£.

3.3.4 Corollary. Let C be a standard set and let L be annXn matrix with
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coefficients in @c. For each e > 0 there exists e G (0,1) such that if B is a

standard subset of C with eB > e then

\\L\\B < \\L\\xfi + e.

3.4 Lemma. Let L be an nXn matrix with coefficients in 9?. Let L be injective

as endomorphism of(&t)n. Then there exists an nXn matrix Q with coefficients

in Ct0 such that

(3.4.1) HßL - /||,,o < 1.

Furthermore Q is also injective on (&,)"•

Proof. By the theory of elementary divisors there exist invertible nX n

matrices U, V with coefficients in 9r. such that

(3.4.2) ULV = J,

where J is a diagonal matrix. Let a¡ G 9t denote the ith diagonal entry. As L

is injective in ($,)" the same must hold for J and hence each a¡ must be

injective on &t. Certainly a, must be injective on W/'° and hence by [11, §2.6]

there exists /?, G 9Í such that for each i,

(3.4.3) ll/31a/-l||1,o<l/l|K||1,ol|K-1||1;0.

Let J' be diagonal nXn matrix with ßi as /th diagonal entry, and put

Q' = VJ'U. Then

Q'L- I = V(J'ULV - I)V'X = V(J'J - I)V~l

and J'J — I is diagonal with /?, a¡ — 1 as ith diagonal entry. Thus

(3.4.4) WQ'L - /||,,o < liniinsupll/?,.«,. - HIloII^"1 ll,,o < 1-

We now choose Q an n X n matrix with coefficients in SR0 such that

(3.4.5) \\Q - ß||1>0 < l/ll¿ll1>0.

Equation (3.4.1) follows from (3.4.4) and (3.4.5). Thus QL is invertible on

{Wx'Q)n and hence Q is surjective. Again Q is equivalent to a diagonal matrix,

i.e. Q = 4>T0 where $ and 0 are invertible nXn matrices with coefficients in

91 and T is diagonal. Thus T is also surjective on {Wxa)n and hence by [11,

4.10] each of the diagonal coefficients of T is injective on W,1' . Thus T and

therefore Q are also injective on (Wx'°)n. This completes the proof of the

Lemma.
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3.4.6 Proposition. Let V be a topological vector space, let 9 and <b be

endomorphisms of V such that

(i) 9 is injective.

(ii) 9<p is automorphism of V.

Then <p (and 9) are automorphisms of V.

Proof. By (ii) 9 is surjective and hence by (i), 9 is an automorphism of the

algebraic structure of V. But I = 9<p(9<p)~l shows that the continuous

mapping, <p(9<p)~x, is the inverse of 9. This completes the proof.

3.5 We now return to the notation of Theorem 3.1.6. Since Lu is an injection

of (&,)s into (&,)m it follows from the theory of elementary divisors that

m > s. If m > í then by discarding suitably chosen m — s components of F

we may reduce to the case in which s = m. Thus we may assume that m = s.

Since Lu is injective on (&,)m we know from Lemma 3.4 that there exists Q,

anmXm matrix with coefficients in 9x0 such that

(3.5.1) ||ßL„ - 4,0 < I.

We choose real numbers a, q, w such that

(3.5.2) o > ||Q||li0,

(3.5.3) q <pMin(l,p/oM),

(3.5.4) w <qMin(l, p/o M).

(In fact p/{oM) < 1 since by (3.5.1), 1 = ||ßLu||li0 < a||Lu||10 while by 3.2,

H-Í-Jli 0 < M/p.) We choose tj E E™ such that

(3.5.5) \u - r¡\E < w,

(3.5.6) HL, - LJ|1(0 < I/o.

Lemma 3.5. There exists a superadmissible subset B of A such that L is

invertible as endomorphism of H(B)m and such that (with G as defined in §3.2)

(3.5.7) \\L-X\\B<o,

(3.5.8) ||G(7,)||5 < wM/p,

and such that

q<peBMin(l,peB/oM),     \\u\\E < peB,

(3.5.9)
w < q Min(l,peB/oM).
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Proof. QLn - I = (QLU -I) + Q(LV- Lu) and hence by (3.5.1), (3.5.2)
and (3.5.6) we have

(3.5.10) \QLV-I\E< ||ßL,-/||1>o<l.

As noted in Lemma 3.4, Q is injective in {Wtx,Q)m and hence is injective as

endomorphism of Em. Equation (3.5.10) shows that QLn is invertible on Em

and hence by Proposition 3.4.6 Lv is also invertible on Em. Writing QLV

= I + J then \J\E < 1 and hence

(3.5.11) \L-x\E=\{I + JrlQ\E<\Q\E<\\Q\\l0<a.

By hypothesis \u\E < p and so by (3.5.3), (3.5.4), (3.5.5), |r/|£ < p. Applying

Corollary 3.3.4 to Q, to QL — I and to rj we conclude that if B is a

superadmissible subset of A containing no pole of either tj or of any of the

coefficients of Q and if eB is sufficiently close to unity then

(3.5.12) \\Q\\B < a,

(3.5.13) HßZ,, - I\\B < 1,

(3.5.14) h\\B<f*B-

Once again equation (3.5.13) shows that QLV is invertible as endomorphism

of H{B)m. But Q is also injective on this space as H{B) C Wtx,°, and hence

by Proposition 3.4.6 is invertible on H{B)m. Furthermore with J as in (3.5.11),

we now know that ||/||B < 1 and hence by (3.5.12),

iii;1iij-ii(/+/r1ßiiÄ< iißiiÄ<o.

which proves equation (3.5.7). Equation (3.5.9) follows from (3.5.3), (3.5.4) if

eB is sufficiently close to unity. Finally in the notation of §3.2,

(3.5.15) 0 = G{ii) + Lv{u - t,) + Nv(u - tj)

and hence by Lemma 3.2

\G(r,)\E < sup(M|M - ri\/p,M\u - r,|2/p2).

Since

(3.5.16) \u - t,|£ < w < q < p

it is clear that

(3.5.17) ||G(r,)||1|0 = \G{t\)\e < Mw/p.
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Equation (3.5.8) now follows from Corollary 3.3.4 provided eB is sufficiently

close to unity. This completes the proof of the lemma.

Note. Equation (3.5.17) is based on the fact that the natural inclusion of E

in rVtx'° is an isometry. A corresponding result for differential operators will be

proven in §5 below.

3.6 Proof of Theorem 3.1.6. Let X = G(t¡). Let B be the superadmissible

subset of A whose existence has been demonstrated in Lemma 3.5. Let

UE = [z E Em\ \z\E < q),        UB = {zE H(B)m\ \\z\\B < q).

Clearly UB C UE and since q < peB we conclude that Nv(z) takes values in

Em (resp. H(B)m) for z E UE (resp. UB). Thus the mapping

(3.6.1) frz^-L-^X + N^z))

is well defined on UE and on UB.

It follows from (3.5.7), (3.5.8), (3.5.9) and Lemma 3.2 that

(3.6.2) \\L-x(X)\\B<owM/p<q

and that

(3.6.3) \\L~XNv(z)\\B < oMq2/e2Bp2 < q

for all z E UB. This shows that <p is stable on UB. Similar estimates based

upon 3.5.11, 3.5.17, 3.5.9, Lemma 3.2 show that <p is also stable on UE. Let

9 = oMq/(peB) . By (3.5.9), 9 < 1. If z, f are elements of UB then by Lemma
3.2

(3.6.4)   u(z) - <¡>(n\\B = K'ovn - %to)ii* < ñz - *v

Thus <p is contractive on UB and by the same argument cj> is contractive on UE.

Thus <|> has a unique fixed point, zB, in UB and a unique fixed point, zE in UE.

As UB C UE the uniqueness implies that zE = zB. Now equation (3.5.15)

shows that u — n is a fixed point of <#> which by (3.5.16) lies in UE. This shows

that u — n = zE = zB lies in UB and hence in H(B)m. Since r; E E™ and 5

contains no pole of r¡, it follows that r¡ lies in H(B)m and thus m lies in H(B)m.

This completes the proof of the theorem.

3.6.5 Note. If a is a residue class contained by A then a is contained by B

unless a contains a pole of either tj or of one of the coefficients of Q.

3.7 We may deduce the verification of a special case of Conjecture 3.1.5.

Suppose in (3.1.1), F(X, Y) is independent of Y. Then u in (3.1.3) is a solution

of a finite set of analytic equations. In this case the hypotheses of Conjecture
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3.1.5 and Theorem 3.1.6 coincide and thus the conjecture in this case may be

deduced from the theorem.

4. Comparison of radii of convergence of solutions of a linear differential

operator at the generic point and at an arbitrary point. We now generalize

results of an earlier article [3] which were available only for elements of 9r0.

4.1 Let A be a standard set. Let L E <¡RA and let r be a real number,

r E (0,1]. Let ker,L denote the kernel of L operating on germs of analytic

functions at t. The intersection of ker,L with &rt determines a monic factor M

of L and by Theorem 2.6 [11] we have

(4.1.1) L = N-M,

(4.1.2) ker,M = &r n ker,L

M and N lie in 9Î.

Theorem. There exists a superadmissible subset B of A such that M G 9Î5.

Proof. Equation (4.1.1) is equivalent to the assertion that the coefficients of

M and 7Y satisfy a system of nonlinear differential equations. Let m be the

order of M and n the order of N. We may assume that M and N are both

monic. The tangential map is

(4.1.3) (P, Q) h* N ■ Q + P ■ M

where P (resp. Q) denotes a linear differential operator of order not greater

than n — 1 (resp. m — 1). We assert that this mapping is an injective on

(a,[D])n_x X (&t[D])m_x, the subscripts indicating the bounds on the orders.

Suppose otherwise. Then there exist Q, P =£ 0 in &,[D] with degrees bounded

as indicated such that

(4.1.4) NQ = -PM.

Now the right side annihilates ker,M, a space of dimension m. Hence N Q

annihilates this space. But Q is of degree strictly less than m and hence cannot

annihilate this space. Thus there exists a nonzero germ v at t such that

(4.1.5) Nv = 0,

(4.1.6) v - Qw,

(4.1.7) w G ker, M.

By (4.1.7) w G &rt and since the coefficients of Q lie in (£,, equation (4.1.6)

shows that v also lies in &rt. Since M has a full set of independent solutions in

this space, it follows that we may solve the equation My = v and find a
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solution y in <$,'. Thus by (4.1.5), y E &rt n ker,L = ker(Af and hence

v = My = 0, a contradiction which proves the injectivity of (4.1.3) as

asserted. The theorem now follows from Theorem 3.1.6.

4.2 Let b be a real number, b E (0, 1) and let A be the annulus D (0, 1 ") -

D(0, b~). Let L E 9tA. Let M be a monic element of Dî defined by

(4.2.1) ker,A/ = &t n ker,L.

We have shown in 4.1 that M E SRA< where A' is the annulus D(0, l~)

- D(0,b'~) for some V E [6,1).

Comparison theorem.

(4.2.2) dimmer, L ("I &t) > dim(kerL D #A) > dim(kerL D &0).

If equality holds then M E^A where A '= D(0,1~). Conversely if either

M E <3A or both M E Si^ and LE^, then equality holds.

Note. "Equality" is used in the sense of both inequalities being replaced by

equalities.

Proof. If « E éEA, Lu = 0 then Mm is certainly a meromorphic function on

A' which lies in the kernel of N. If Mu =£ 0 then by Theorem 2.5, A has

nontrivial kernel in &t which contradicts the definition of M. This shows that

the right side of equation (4.2.2) is bounded by the order of M which

completes the proof of equation (4.2.2).

If equality holds in (4.2.2) then trivially the coefficients of M are meromor-

phic functions on D(0,1~) as well as being analytic elements on A'. It follows

that there exists a polynomial P with coefficients in À' such that P M has

coefficients in H(A), i.e. M E <¡ñ.A .

Conversely if M (which is by hypothesis monic) has coefficients in H(A)

then letting s be the order of M, we have for each integer m > 0,

s-\

(4.2.3) Dm/m\ s 2 BmjDJ   modSRM

where each BmJ E H (A). Since ker,M c a, it is clear that for 0 < j < s,

and r < 1

(4-2.4) ■Äl*«J*r" = °-

Hence by the maximum modulus theorem

(4.2.5) hm |*M,,(0)|r'" = 0.

This shows that the kernel of M at zero lies in <£Q, and this proves the first part

of the converse. If L E <SA and M E 9lA then M can have only removable
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singularities. By definition ker, M lies in (£, and hence by Lemma 4.2.7 below

the germs at zero annihilated by M lie in &0 which proves the second part of

the converse.

4.2.6 Corollary. If L E 3iA, L of order n and the equation Lu = 0 has n

independent solutions in &0 then these solutions lie in W0 '"~ .

(This confirms Conjecture 2 of [3].)

4.2.7 Lemma. If A = D{0, l~ ), L G <¡RA and L has only removable singulari-

ties in A {in the strict sense that for each a G A there exist n linearly independent

germs of holomorphic functions at a in the kernel of L) and //ker, L lies in a,, then

Ker0 L C WQX'"~X.

Proof of 4.2.6 and 4.2.7. The theorem shows that the hypothesis of 4.2.6

implies the hypothesis of Lemma 4.2.7. The proof of Lemma 4.2.7 for L E 9Î0

may be found in Lemma 4.25 of [11]. The same proof is valid under the

weaker hypothesis that L G <¡RA. This completes the proofs of 4.2.6 and 4.2.7.

4.2.8 The statement of the comparison theorem may be sharpened by

replacing the right hand side of (4.2.2) by dimmerker^L. We omit the proof

which merely repeats the proof of the given assertion.

4.2.9 Let A be a standard set, let L be an element of ÏHA with factorization

in 9Í given by equation (4.1.1) where

ker,M C &t,       kertN n«(# {0}.

Then the tangential map (4.1.3) is not injective on {&í[D])n_x x (($,[£)])m_,.

(And so the technique of this section gives no information if say ker,L C #,,

ker,M = (ker,L) n Wtl'°.)

Proof. Let m he the order of M, let w,, ..., um be basis of ker, M and let v

be a nonzero element of kertN n <£,. The wronskian of (ux,...,um) is

nonzero in D(t,l~) and clearly lies in &,. Hence we may choose Q in

(&t[D])m_x such that Q(u,) = 0, 1 = 1, 2, ...', m - 1, Q(um) = v. Clearly

N o Q annihilates ker,M and hence there exists P G (&t[D])n_x such that

(P, Q) lies in the kernel of mapping (4.1.3).

4.3 Index on special sets. It was shown previously [11, §4.16] that if L E 9i0

is injective on &,, then it has index on &a for each a G D{0,1+). The object of

this section is to extend this result in two directions. We eliminate the

hypothesis that the coefficients of the differential operator be rational and we

extend the results to the case of annuli.

4.3.1 Lemma. Let p be an element of Ü[X] then for each special set A,

multiplication by £ ¿J an injective endomorphism of WA {resp. WA) which has a
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continuous left inverse oA (resp. oA). The index is the negative of the number of

zeros of p in A (resp. union of A with its circumference). Given e there exists e

depending upon p such that if e(A) > e then

Max(|]aJ,||oJ)< \P~l\E + e.

Proof. If p has no zero in A then l/p is stable on WA. It is also stable on

\VA if p has no zero on the circumference of A. If a E A (a E A u (circumfer-

ence of A)) then «-»(«- u(a))/(x - a) is stable on WA (resp. WA). As in [12]

in the first case one estimates Infxe/j \x>(x)\ and in the second case one uses

the local Taylor expansion of u(x) - u(x) at a to estimate the norm of oA and

<>a-

4.3.2 Proposition. Let C be a special set. Let {B¡} be a sequence of proper

subsets of C such that B¡ is a proper subset of Bi+X for each i E N, and such that

C = U B¡. Let 9 be a continuous endomorphism of&c such that for each i E N,

the restriction of 9 to \VB. is a continuous endomorphism with index x> which is

independent of i. Then 9 has index as endomorphism of &c which is equal to \-

Proof. The proof is the same as that of [11, §4.7] since, for/ > /, WB is

dense in \VB and &c = proj lim WB,.

4.3.3 Theorem. Let A be a standard set, let L be an element of <SA which is

injective on &t. Then there exists e E (0,1) such that for each special set B

contained by A with e(B) > ewe may conclude that L is injective on &B and has

index as endomorphism of &B.

Proof. With no loss in generality we may assume that B does not lie in the

infinite residue class and hence we may assume that A has zero intersection

with that class. By hypothesis there exists Q E 9Î0 such that \\QL — 1||, 0 < 1.

There exists p E K[x], \p\E = 1 such that P = pQ has coefficients in K[x].

Thus 11PL — to||] 0 < 1 and hence by Lemma 3.3 there exists e > 0, e' E (0,1)

such that if B is a special set with eB > e', we have

||PL - p\\^ < 1/(1 + e).

On the other hand by Lemma 4.3.1 there exists e" E (e', 1) such that eB > e",

B special, implies that ||âa|| < 1 + e. Hence by [11, §4.4] PL is injective and

has index on WB equal to the negative of the number of zeros of p in the

union of B with its circumference.

We now choose e'" so close to 1 that if C is a special set with ec > e'" then

there exists a sequence of proper subsets B¡ as in the first sentence of 4.3.2 such

that the number of zeros of p in B¡ is independent of /. We now let

e = max(e", e'"). If C is a special set contained by A with ec > e then we
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choose the sequence {B¡} as in 4.3.2, conclude that the index of PL in WB¡ is

independent of / which shows that PL has index as endomorphism of &c. By

the same argument PL is injective on &c. Since P is a differential operator, P

has finite dimensional kernel in &c and so P has index on £EC and thus the

same holds for L as asserted. Finally since PL is injective the same holds for

L.

4.4 Index theorem. Let A = D(0, l~), let L E '¡ftA. To discuss the index of

L as endomorphism of &$ we must insist that the coefficients of L have no

poles in A. Thus we impose the condition that L E<SA.

Theorem. If L E <Sa and (4.2.2) is an equality then L has index as

endomorphism of 6?0.

Proof. Let M be defined by equation (4.2.1) so M G @A for some

superadmissible subset A of A, i.e. A is an annulus with center at zero and

outer radius unity. It follows from Theorem 4.2 that 3R G ÍRA. Thus again

putting L = N ■ M, N is an element of í*lA and

(4.4.1) &, D ker,AT = {0}.

Since M need not be an element of <BA we first choose a polynomial P with

coefficients in K such that P • M G <3A and then putting M' = P ■ M we

choose Q G K[x] such that

(4.4.2) QL = N' ■ M'

where 7Y' = QN • (l/P) G <3A . Clearly M' annihilates a full set of independ-

ent elements of Sq and N' is injective on &,. Thus M' is a surjective mapping

of $(, into itself and by Theorem 4.3.3 N' has index as endomorphism of GLq.

This shows that QL and hence L has index as asserted.

4.4.3 Corollary. Let B be a very standard set and L an element of <SB. Then

for all but a finite number of residue classes D(a, 1~ ) lying in B, L has index as

endomorphism of &a.

Proof. Let M be defined by (4.2.1). We know that M G <SB, for some

superadmissible subset B' of B. Hence M C @c where C is an admissible very

standard subset of B. If A = D{a, 1~) is a residue class lying in C then by

Theorem 4.2 equality holds in (4.2.2) and hence by the present theorem L has

index as endomorphism of &a. This completes the proof of the corollary.

5. Approximate rational solutions of linear differential equations. The object

of this section is to show that if L G 9t. then L has kernel in WX'Q if and only

if the equation Lu = 0 has approximate solutions in E. This may be useful in

understanding the limitations of Theorem 3.1.6.
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5.1 Lemma. If L E dt then ||L||10 = |L|£.

Proof. Clearly W¡x'° C E which gives the inequality in one direction but in

fact by [11, §1.11.5] there exists a polynomial u such that IlLl^o

= |Lm|£/|m|£. This gives the inequality in the other direction.

5.2 It is known that if L is injective on Wtl'° then L is invertible [11,

Proposition 4.20].

Lemma. Let L be injective on Wtx'°. Then L is invertible on both Wtx'° and E

and \\L-l\\xfi = \L~X\E.

Proof. Since L is injective on Wtx'° we know by [11, Theorem 2.6] that there

exists Q G 9Î0 such that ||gL - 1||10 < 1. Thus |<2L - 1|£ < 1. This shows

that QL is invertible as endomorphism of E and as endomorphism of Wx'° and

hence Q is surjective on E and on Wtx'°. It follows from [11, 4.10] that Q is

injective on w}' and hence on E. Thus by Proposition 3.4.6, L is invertible on

E and on Wt . Now E being a subspace of Wx' with the induced norm,

\L~X\E< HIT1 IL,. Now

and hence

since

lß-^1|£=l(ßZ.-l)L-1|£<|L-1|£

\l~X — leu - llßiU- U1--1 IU

IIÔ-^-,||1>o=||(ôL-l)L-1||10<||L-,||1>0.

This completes the proof.

5.3 Lemma. Let L be monic element of 9î of order n. Then given e < 0 there

exists M monic element of 9Î of order n such that

(5.3.1) ||L - A/||li0 < e

and such that M is injective on W,l'°.

Proof. If n = 1 then we may suppose that L = D - a where a = u'/u, u

G Wxs>, ||h||i>0 = 1. We choose s G N such that \ps\ < e and let

M = D-a-psxpS-x.

The kernel of M at / is spanned by u exp{xp' - ip') which does not lie in &t.

This proves the assertion for n = I and we now proceed by induction on n.

If n > 1, let
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L - D" + an_xDn~x + --- + a0.

We may by the case « = 1 choose b E E such that

|*-ö„_,| <e

but the wronskian at / of

R = D" + bD"~x + an_2D"~2 + ■ ■ ■ + a0

does not lie in &r Thus the kernel at t of 9Í does not lie in &r Thus by [11,

Theorem 2.6],

R = N ■ Mx,       ker,Mx = &, O Ker, R,       order M, < n.

By induction on n there exists Q E 9Í of the same order as A/, such that

Wi - Clli,o < */IIMIi,o

and such that Q is injective on Wx'°. We now put M = N • Q which certainly

satisfies (5.3.1). If now u E W(x'°, Mu = 0, then Qu is not zero but does lie in

Wx' which shows that N is not injective in WX,Q and hence contradicting the

definition of Mx. This completes the proof of the lemma.

5.4 Theorem. Let L E ÍR. Then L has nontrivial kernel in Wtx'° (or in &¡) if

and only if there exists a sequence {vn), vn E Eq, such that \vn \ = 1 for all n but

(5.4.1) Lvn -> 0

in E.

Proof. If L is injective on W,x'° then by 5.2, L is invertible in E and thus

equation (5.4.1) implies

(5.4.2) 1 = \vn\E = \Ux(Lvn)\E < \L7l\E\LvH\E-*0

which is impossible. Thus the existence of the sequence implies that L is not

injective on Wx'°.

Conversely let L have a nontrivial kernel in Wx'°. Then by Lemma 5.3 there

exists a sequence {L„} of elements of Sft which are injective on Wt • and such

that

(5.4.3) ||L-LJ1;0^0.

By Lemma 5.2, Ln is invertible on both W,x'° and E. We assert that

(5-4.4) IIL^IU"*00-
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Otherwise there exists c such that for all «EN, ||L„  ||10 < c. Hence

||1 - L-xL\q = \\L-nx(Ln - L)||1>0 < c\\Ln - L0||lj0

which by (5.4.3) shows that there exists n such that ||1 - L~x L\a < 1 and

hence there exists B, continuous endomorphism of rVtx,° such that BL~X L = /,

and hence L is injective, contrary to hypothesis.

This proves (5.4.4). This means by Lemma 5.2 that there exists a sequence

{un) in E such that \u„\E = l,Lnun^>0. If now {i>„} is a sequence in E0 such

that \un — vn\E-* 0, then for all n large, we have \vn\E = 1 while clearly

Lvn -* 0. This completes the proof of the theorem.

6. Differential equations over the residue class field. Let A be a standard set

and let SñA be the ring of linear differential operators whose coefficients are

ratios of elements of H (A). Our object is to study factorization in ^RA by

passing to the residue class field. We therefore first recall some well-known

results for characteristic p.

6.1 Let K be the residue class field of K, E0 = K(X), let *R0 = ËJD], the
ring of differential operators with coefficients in E0. Elements of 9?0 act as

(but are not identified with) linear transformations of E0 as vector space over

K(XP). The element Dp annihilates E0 and also lies in the center of 9Î0. The

ring 9t0 has both right and left division algorithm and in particular left ideals

are principal.

6.1.1 Let w,, ..., um be elements of EQ linearly independent over K(XP);

then by a classical proof [9, p. 10], the wronskian W(ux,..., un) is a nonzero

element of £0. An immediate consequence is that if L is an element of iR0 of

order m, then ker L, the kernel of L in EQ, has dimension at most m over
K(X").

6.1.2 Lemma. Let L be an element ofiR0 of order m. Then

dim^,) ker L = m

if and only if Dp lies in the ideal 9t0L.

Proof. By the division algorithm there exist elements A, B of 3r0 such that

order B < m - 1 and such that Dp = AL + B. Since Dp annihilates £0, B

must annihilate kerL. Hence by 6.1.1 if kerL has dimension m over K(XP)

then B = 0. Conversely if B = 0, then AL annihilates E0 and hence LE0 lies
in the kernel of A. Thus

dim^Yy^LLQ < ordere = p — m

which shows that
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dim^^pjkerL > m.

Equality now follows from 6.1.1 which completes the proof.

6.1.2.1 Corollary. Let M be the generator of the left ideal generated by Dp

and L, i.e.

Vt0Dp + m0L = I0M,

then ker L = ker M and the dimension of ker M coincides with the order of M.

Proof. Since Dp E 9t0M, the dimension of ker M is equal to its order.

Since L is a left multiple of M, kerL contains kerAL Since there exist

A, B £l0 such that ADP + BL = M, ker M contains kerL.

6.1.2.2 Corollary. //kerL = {0} then lR0Dp + 9t0L = 10 and conversely.

6.1.2.3 Corollary. If L,N G M0 then kerL C ker A7 if and only if

N E%Dp + m0L.

Proof. Let M he the generator of the ideal on the right. If N = BM then

kerVV D kerAf = kerL. Conversely given N E 9t0 we may choose A, B

G9t0, order B < order M such that N = AM + B. Hence ker N D ker L =

ker M implies that ker B contains ker M and hence by 6.1.1, B = 0.

6.1.3 Now let L be an « X « matrix with coefficients in 9r0. Hence L acts on

E¡¡, the K(XP) space of «-tuples with coefficients in E0.

Lemma. If L is injective as endomorphism ojEq then there exist nXn matrices,

Q, H with coefficients in 9î0 such that

(6.1.3.1) QL + HDP = /.

Proof. By the theory of elementary divisors there exist V, U, invertible

nXn matrices with coefficients in Ift0 such that VLU is diagonal matrix with

coefficients e,,..., en. By hypothesis L is injective and hence each e,- is

injective on EQ. Thus by 6.1.2.2 there exist^., B} G 10 such that/!,.£,. + B¡DP

= 1, / = 1,2,...,«. Let now A (resp. B) he the n X « diagonal matrix whose

diagonal entries are (Ax, ..., An) (resp. (Bx,..., Bn)). Then AVLU + BDP

= /. The assertion follows by multiplying on the left by U, on right by U~x

and setting Q = UAV, H = UBU~X. This completes the proof.

6.1.3.1 Corollary. An injective differential endomorphism of Eq has inverse

which is also a differential endomorphism.

(Explanation: By a differential endomorphism of Ëq , we mean an endomor-
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phism of Eq as K(XP) space given by an n X « matrix with coefficients in 9r0.)

6.2 The residue class field of E coincides with £0 = K(X). The natural

mapping of the valuation ring, £>£, of E into E may be extended to a map

of £>£[i>] into E0[D] = 9Î0. We intend to obtain information about factoriza-

tion of elements, L, of 9Î from corresponding information about L. We first

consider an analogue of Theorem 3.1.6.

6.2.1 Let F be given by equation (3.1.1) and be subject to the further

condition that m = s and that eachC   maps A into D(0,1+), i.e.

(6.2.1.1) KJE< l   Vy.ji

and furthermore we insist that

(6.2.1.2) |C,Jfi-*0   as   (v,n) -» oo.

Then we define F to be the image of F in the ring of sXs matrices with

coefficients in E0[X, Y]. If u = (üx,.. ,,üs) E E0S then we define L\, the

reduced tangential mapping at w, to be the differential operator (on z

= (z,,...,zi)) obtained from equation (3.1.4) by mapping coefficients into

E0.

6.2.1 Theorem. Let F be given by equation (3.1.1) subject to conditions

(6.2.1.1) and (6.2.1.2). Let û E Eq be a solution of the reduced system

(6.2.1.3) F(ü,dü/dx) = 0

and suppose that the reduced tangential mapping, L^, is injective on EQS. Then w

lifts uniquely to a solution, u, in Es of equation (3.1.3) (and hence (by Theorem

5.4) u satisfies the conditions of Theorem 3.1.6 and therefore u E H(B)S for some

superadmissible subset B of A).

Proof. Let n be an arbitrary lifting of U to £)£ . By Theorem 5.4, L is

injective on (rVtx'°)s and hence by Lemma 3.4 there exists an s X s matrix Q

with coefficients in 9r0 such that

(6.2.1.4) ||ÔL,-/||£-||gL,-/||1>0<l.

It follows from this relation, from [11, §4.10] and from Proposition 3.4.6 that

Lv is invertible in E. We assert that

(6.2.1.5) HVIU=L

The  inequality  in  one  direction  is  given  by   1 = ||/|| = ||L~' ° Lj|
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< ||L~ ||. The inequality in the other direction is obtained by supposing

otherwise then there would exist w, z G Es such that \w\E = 1, \z\E < 1 for

which L~xz = w. Hence z = L w which would imply that L\ = L annihi-

lates the nontrivial element w of ¿q contrary to hypothesis. This completes the

verification of 6.2.1.5.

We now let X = F(tj, dr\/dx), so by equation (6.2.1.3), there exists e such

that

IM*<e<l.

Let U = {z G Es\ \z\E < e). Let <f> be given by equation (3.6.1); then <f> is a

contractive map of U into itself and hence has a unique fixed point, z^. Thus

u = tj + Zç is a solution of equation (3.1.3) and u lies above û since z^ G U.

If v is any other solution of equation (3.1.3) above it, then

\v - tj| = e' < 1.

Replacing e by Max(e,£'), it is clear that v = u. This completes the proof of

the theorem.

6.2.2 (i) We now formulate a Hensel lemma for elements of 91. For this

purpose let 9x0 (resp. 9r>A') denote (for each « G N) the set of all elements of

9v0 (resp. 9t) of order not greater than h.

Theorem 6.2.2. (i) Let L be an element of 0£[L>] of order n + m and have

image, L, in 9î0 which has a right monic factor, M, of order m, i.e.

(6.2.2.1) L = Ñ°M

(so n > order A7). Let L^jjbe the mapping

(6.2.2.2) ZNJg: (P,Q)->PM + ÑQ

of "¡Rq X 9tq into Wq m .If this mapping is injective then M lifts to a

unique monic right divisor, M, of L of order m in 9Î and hence L = N ° M where

N is also in dt and of order n.

(ii) Under the hypothesis of (i) if L E dtA then N and M lie in 9tfl for some

super admissible subset B of A.

(iii) Under the hypothesis of if) we consider the explicit description ofLjfrjf.As

E0 space SRg X 9Íq has basis consisting of all pairs (D',0) and (0,DJ)

where 0 < / < «, 0 < j < m and 9t[)n+'"-^ has basis consisting of

{D' }o</<n+m- Now L^j¡7 is a linear mapping of K(XP) space, not of E0 space,

but using the indicated bases, L^ may be_represented by an (n + m) X (n +

m) matrix, (L^¡¡f), with coefficients in 9t0 and by Lemma 6.1.3 and the

hypothesis of injectivity there exists an "inverse" matrix, J, with coefficients in

9t0 such that
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(6.2.2.3) / ° (L~ñ,m) - I   rnod^Dp.

We cwser? r/zar under hypothesis (ii), r/te ser B contains all residue classes lying in

A except possible for poles of L, of M and of the coefficients in the differential

operators appearing as coefficients of J.

Proof. Equation (6.2.2.3) may be interpreted as a nonlinear differential

equation in the coefficients of A and M, (6.2.2.1) is then the reduced equation

and TfT ̂  is the reduced tangential map. Parts (i) and (ii) then follow from

Theorem 6.2.1.

For the proof of (iii) let A0, M0 be liftings of N and Ä7 to $R0 such that MQ

is monic of order m with coefficients having poles only in the residue classes

corresponding to poles of Ä7 and let A0 be of order not greater than n and with

poles corresponding to the poles of A. We lift (L^- jfi) to (L» M ) the matrix

of LNq¡Mq viewed as mapping of ^[0n~x] X 9t|,m_l1 into 3ï0n+m~^using "bases" as

above. Let J be a lifting of / to an (n + m) X (n + m) matrix with coefficients

in 9?0 having poles only in the residue classes of poles of coefficients of /. Since

llallio ^ 1 we conchide from (6.2.2.3) that

(6.2.2.4) ||/-(LAro>Wo)-4>0<l.

Thus / plays the role of Q in equation (3.4.1) and the assertion now follows

from (3.6.5).

(6.2.3) We examine the main hypothesis of the previous theorem.

6.2.3.1 Lemma. Let m, n be integers, let M (resp. Ñ) be element o/ÍRq of order

m (resp. of order not greater than n). The mapping Ljj ^ defined by (6.2.2.2) is

(i) not injective if ker N is not trivial while ker M is of dimension m over K(XP)

(in particular then if M = Dm while N has nontrivial kernel);

(ii) injective if ker Ñ = (0}, dim ker M = m;

(iii) injective if N is of zero order.

The proofs are self evident (the proof of (i) being a minor modification of

the argument of §4.2.9), and hence are omitted.

Theorem 6.2.3. Let A be a standard set and let L be an element of

íñA D €)E[D] of order n + m whose image, L, in 9t0 is monic of order m. Then L

has unique monic lifting M of order m in Sí which divides L on the left, i.e.

L = N ° M and M E <¡RB where B is a superadmissible subset of A containing

all residue classes in A except those containing poles of the coefficients of L.

Proof. We apply Theorem 6.2.2 with A = 1, M = L. In the preceding

lemma we noted that mapping (6.2.22) is injective. Thus_it only remains to

consider the matrix of the inverse of L^^. The mapping L^j^ is of the form
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(F,Q)h>FM+Q.

The inverse mapping,

(6.2.3.2) S = FM + Q i-» (P, Q )

is given by division of S by M, a process which introduces no poles (other than

those occuring in M) since M is monic. This completes the proof of the

theorem.

6.2.3.3 We may associate a Newton polygon with each element of L of 9Í by

viewing L as a polynomial in D with coefficients in the valued field E. The

previous lemma asserts that there is a factor of L in 9Î of order equal to the

length of the projection of the first side of the Newton polygon of L provided

that side has negative or zero slope and provided that the second side has

strictly positive slope. Similar results may be obtained if both the first side

and the second side have strictly positive slopes. No assertion is made if the

first side has strictly negative slope and the second side has zero slope (cf. (i)

Lemma 6.2.3.1).

6.2.4 We now consider a second order differential equation. In view of the

previous section we may assume that the leading term has maximal coefficient.

Thus let

(6.2.4.1) L = D2 + aD + b

be an element of íftA n £)£[Z)] where A is a standard set. Let

(6.2.4.1') I = D2 + 3D + b

be the reduced operator and let the Riccati equation be written

(6.2.4.2) tj2 + tj' + atj + b = 0

and the reduced form is

(6.2.4.2') Tj2 + V + â7j + 6 = 0.

We know that L has a right factor, D - tj

(6.2.4.3) L = (D + a + tj)(D - tj)

if and only if tj is a solution of (6.2.4.2).

If L has a solution w in EQ then

(6.2.4.4) tj = í7/B

is a solution of (6.2.4.2').
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If however, tj is a solution of (6.2.4.2') as will now be assumed, no element

ü in E0 satisfying (6.2.4.4) need exist. Viewing (6.2.4.2') as a nonlinear

differential equation, the tangential mapping is

(6.2.4.5) 2H(fl + (a + 2rj))z

and if this is injective then by 6.2.2, the factorization

(6.2.4.3') Z = (D + a + T¡)(D-T¡)

lifts to a factorization in 9Î and indeed in ïftB where B is a superadmissible

subset of A. The injectivity of (6.2.4.5) is determined by division,

D" = Q o {D + ïï + 2tj) + bp,

where bp G E0 and Q G 9î0-'Injectivity is equivalent to the nonvanishing of

bp. Summarizing and using 6.2.2 we obtain:

Lemma 6.2.4. If b ¥= 0 then there exists a unique lifting tj o/tj which satisfies

(6.2.4.2) and which lies in H{B) where B is a superadmissible subset of A

containing all residue classes of A except for the poles of ïï, b and the zeros ofbp.

The calculation of b can be achieved by setting c = a + 2tj and using the

formula,

-bp = cp + Dp~xc.

If there exists ¿7 satisfying (6.2.4.4), then we may replace (6.2.4.5) by D + ä,

the differential operator for the wronskian of L. In particular this section

(6.2.4) gives no information if for example ä = 0 and there exists w satisfying

(6.2.4.4).

7. Nonexistence of index. It has been conjectured [11, §4.27] that if L G 9í0

and has say polynomial coefficients and if for each 7 G D{0, l~) there exists

r > 0 such that L has index as endomorphism of £Eq then we may conclude

that L has index as endomorphism of &0 (= £E¿). Thus it was conjectured that

if L has index on small disks then it has index on large disks.

In this section we give a counterexample to this conjecture. In our

counterexample there is a lower bound for r independent of y G D(0,1~).

The confluent hypergeometric function

4ia,c,x) = 2 j^-r
s=0 (C)SS\

which was brought to our attention by Monsky has been discussed in [11,

§4.26]. In particular it was noted (cf. [5]) that for c = l/p, a G Z , a <£ -N,
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this function satisfies a second order differential equation irreducible in 9r0.

Furthermore $(a, l/p, x/p) lies in &0 while the wronskian at t of the correspond-

ing differential equation has radius of convergence strictly less than unity.

Thus Theorem 4.1 shows the existence of a factorization of that differential

equation in ÍRA where A is a superadmissible subset of ñ.

For further discussion we find it conveneint to replace x by 1 - x, and to

assume that a E Z. Letting D = d/dx, we know that <p(a, l/p,(l — x)/p), is

annihilated by

(7.1) La = p(l - x)D2 -xD-a.

The counterexample will be given by La where a is a /?-adic Liouville number

satisfying condition (7.20) below.

In the following let C be the special set

(7.2) C = D(0,b~)-D(0,ß+)

whose radii will be chosen later. Thus

C = D(0,b~) n c

where C = [x\ \x\> ß). In particular letting &*, denote the elements of &c

which vanish at infinity,

(7.3) &c = &l @ fij,

which simply expresses the decomposition of Laurent series into elements of

iï[[x]] and of ß[[l/x]]/x. We observe that La is stable on &c, on 6Eq and on &*..

We propose to choose a so that La has index on <£*, but not on 6LC. This then

will show that La does not have index on &q .

7.4 Proposition, (i) A formal solution for La is given by

(7.5) v = x-"V

where
00 J

V=   '2n-¡—fñBm(a)m,
m=0 \—X)

the generating function, m(|) = 2^=0 ^m^m^for tne &m being

(7.6) ufe) = (i +pC)-'-°exp[-í + p-xlog(l +pQ].

(ii) The function V converges for
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Kl + l/{p - D),      P>5,

U + h P - 3,

v i, P = 2.

The function V    is holomorphic (i.e. V is nonzero) for

(7.8) ordx < ep

where

-{ i(l - l/(/> - OX      P > 5,' U P = 3,

and e2 > 0.

(iii) V cannot be continued analytically into the region

{x\ordx>\ + 2/(p- 1)}.

Proof. Assertion (i) is purely algebraic and may be checked by direct

substitution. An alternate method is to restrict our attention to the case in

which a is real and positive. The differential equation satisfied by 4>(a, c, x) has

[6, p. 255] a solution valid for Rex > 0, Rea > 0,

(7.9) «**«) = j^/0°° e-xHa(l + truant

Replacing x by x/p and i by pi- gives

Í°-c-í)-é>£'-*w+*)—,aM

and thus for Rex < 1, c = l/p,

alo)        4'c;Lr9 = r^f '"^«i«'«/*
The asserted formula then follows by replacing m by its power series expansion

and using (say for x real negative)

nu)        _L r e-^h^di/z = —!_r(a + m)
V-U) T(a)Jo   e        *      Afe/è     (-x)fl+,M    r(a)    •

Since the assertion is algebraic we may now ignore explicit and implicit

hypotheses concerning the real parts of a and x.

(ii) The domain of convergence of V is deduced from the formula
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(7.12) _£ + Il0g(,  +;,£)=   £   H^iÄ
P 7=2       P J

which converges for ord£ > — 1. This  shows  that the argument in the

exponential function in (7.6) has ordinal exceeding l/(p — 1) if

P * 2,

P = 2,

and thus w(£) converges and is bounded by 1 in this region. Thus by the

Cauchy inequality

(7.13) X-ordBm>{*>\        P*X
m \-l      P = 2,

which demonstrates (7.8) for p ¥= 2.

Since (a)m/m\ = (— l)m(~°) and since the binomial coefficient lies in Z , we

conclude that

(7.14) ord(a)m > m/(p - I) + O(logm).

Equation (7.7) follows from this estimate and (7.13).

To verify (7.8) for p = 2 we use an argument which could also be used to

prove a slightly weaker form of (7.8) for all p. Hence there will be no reference

to any particular value for p. The image of x~xLa in 3i0 is D + (a/x) and hence

by Theorem 6.2.3, this first order operator lifts uniquely to an element M

(7.15) M = D-r¡

which is a one sided divisor of x~xLa in 9î^ where A is a superadmissible

subset of ß U {oo} containing all residue classes (including öö) except for the

zero class. The differential equation

(7.16) dy/dx = vy

has at worst a regular singularity at infinity and hence there exists a formal

solution of M in xaß[[l/x]] for some constant a. This solution is of necessity

a formal solution of La. The indicial polynomial of La at infinity is of degree

one and hence (7.5) gives a solution of (7.15). Thus V'/V is holomorphic in a

disk (x|ordx < e }, where e > 0 is chosen so that the disk lies in the set A.

This completes the proof of (7.8) for p = 2, explicit estimates for e being

given by equation (7.13) for^ # 2.

(iii) By the method of Clark [2], the power series solutions for La at x — 0

converge for ordx > \ + 2/(p — 1). If assertion (iii) were false then xa would
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be a meromorphic function on an annulus with center at the origin. This

contradiction completes the proof of the proposition.

We impose on ß in (7.2) the condition that

(7.17) b > ß > |/>*|.

Thus

(7.18) M = D-Ç + l=Vo(D + <L)o^

lies in 9tc as well as in 9ic- and is stable on both &c and on &*, (but not on &q).

7.19 Lemma. Let

A, = lim inf\a + m\     ,       X_ = lim inf\a - m\    ,
m-*+co m-»+co

in both cases the limit being over m G N. If

(7.20) X+ < 1,       X_ = 1,

then M has index on &*. but does not have index on &c.

Proof. Multiplication by V is an automorphism of both &c and of &*, and

hence by (7.18) the index of M on these spaces is the same as that of D + a/x.

As shown in [11, §4.19] the index of xD + a on éE*. (resp. &%) 1S independent

of the radius and depends only on X_ (resp. X+). Thus by (7.20), xD + a has

index on @,¿. but not on (5$ and hence by (7.3) xD + a does not have index

on &c as asserted. This completes the proof of the lemma.

Replacing x~a by an appropriate branch at x = t, equation (7.5) represents

the unique solution of La in (£, and so

La = N ■ M

where N is injective on &t. Thus Proposition 7.4 gives an illustration of

Theorem 4.1. Explicitly

N = p(l - x)D - x - p(l - x){a/x - V'/V)

which shows that N is stable on &c. While N is not stable on &*,, N/x is stable

on both &c and &*, and is injective on a,. Thus by §4.3 (with a fixed) N/x

has index on both &c and &g. for all b, ß close enough to 1.

Let now a be chosen satisfying (7.20), let b = 1, let ß satisfy (7.17) and be

close enough to but strictly less than 1. Then by 7.19, Ljx has index on &*.

but not on &c and hence La has index on the first but not on the second. We

conclude: La does not have index on &0. Furthermore for each b real and
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close to unity L fails to have index on éEq • By the same methods we can show

that (£0 D La&Q has infinite codimension in &0 for all b < 1 such that b is

close enough to unity.

It only remains to verify that there exists a E Zp satisfying (7.20). As in [7]

we put px = l,pn+x = pn + pPn for all « > 1 and let a = -limnpn. Here

A+ = l/p. We compute a = ^Lr)yxp' where

y¡ = p - 2      if / = pn for some n > 2,

= p — 1       if otherwise,

and so if m E N, m < />*, then ord(a — m) < s + 1, i.e. ord(a — m)

= O(logwj). This shows that X_ = 1.

7.21 In the construction of the above example we could have discarded the

demonstration of holomorphy of 1/V (equation (7.8)).

It follows from (7.7) that if y0 E (\\/p |, 1) then V is holomorphic in the

complement of D(0, y^) and hence there exists a polynomial P, such that V/P

is analytic element without zeros on that complement. Let n = I + degree P.

We define L' by

¡f = (l/xn) o La o P = A' o M'

where

1 1 V    l        a\    P
N' = ±oNoP,       M> = -oMoP = -o\D + -)o-p.

Thus for ß > y0 we may conclude that A' and M' are stable on both &c and

on &*> and the proof of Lemma 7.19 shows that under condition (7.20), A/'

has index on &*, but does not have index on &c. Thus if a satisfies condition

(7.20) and b = 1 and ß is strictly less than but sufficiently close to 1 then L'

also has index on &*, but not on &c and hence the same holds for La. This

shows that La does not have index as endomorphism of (£0.

7.22 Modifying slightly the notation of Clark [2], we say that a E Zp is non-

Liouville if

ord(a - n) = 0(log|«|)

as n -* ±co in Z. (Here |«| and log are in the archimedean sense.)

In our example La has exponent at infinity which fails to satisfy this

condition. We therefore ask if a counterexample to [11, §4.27] may be

constructed with rational function coefficients and non-Liouville exponents.

7.23 E. Calabi has observed that the operator

La<v=pv(l-x)D2-XD-a
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with v integral, v > 1, could also be used to demonstrate the nonexistence of

index. The advantage is that with large values of v the computations

corresponding to Proposition 7.4. are greatly simplified.

8. Galois theory of fi over K. Let ñ be an algebraically closed field of

characteristic zero which is maximally complete (and hence complete) under

a rank one valuation. Let A" be a complete subfield and let K be the closure in

ß of the algebraic closure of K. Let G be the group of continuous automor-

phisms of ß over K and let GK be the continuous automorphisms of K over K.

By a well-known theorem of Täte (extended to the nondiscrete case by Ax

[ID:
The elements of K fixed under all elements of GK are precisely the elements

of a:.
We demonstrate a related result.

Theorem. The elements of Q fixed under all elements of G are precisely the

elements of K.

Note. We do not know if this result is valid without the hypothesis that Ü is

maximally complete. Thus this theorem does not imply the result of Täte.

Furthermore Tate's theorem is used in the proof of Lemma 8.1 below and so

there is no assertion of a new proof of that result.

We shall need several preliminary results.

8.1 Lemma. Let a be an element of ß not in K. There exists a continuous

automorphism a of K{a) which leaves K pointwise fixed but does not leave a fixed.

Proof. If a lies in K, then this assertion is equivalent to Tate's theorem.

Thus, we may assume that a & K and hence the distance of a from

K, d{a, K) = y > 0. Since a is transcendental over K we may for each b G K

define an automorphism, ob, of K{a) over K by setting aba = a + b. To

complete the proof it is enough to show that ab is continuous for some b ¥= 0.

We assert that this is the case if |6| < y. We note that ob is continuous if and

only if it is an isometry of K{a). It is enough to consider the action of ob on

K[a] and since K is algebraically closed it is enough to show that

(8.1.1) \a + a + b\ = \a + a\

for all a G K. By hypothesis

\a + a\>y> \b\,       \a + (a + b)\ > y > \b\,

and so (8.1.1) follows since the valuation is ultrametric.

Theorem 8 is a direct consequence of Lemma 8.1 and the following lemma.

8.2 Lemma. Let ñ be maximally complete, let K be a closed subfield. Then each
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continuous automorphism of K may be extended to a continuous automorphism of

Q.

This lemma is the consequence of the following slight generalization which

is better adapted to transfinite induction arguments.

8.3 Lemma. Let ß and K be as above. Let r be a continuous isomorphism of K

into ß. (Of course, K and its image KT have residue class fields which are subfields

of ß, the residue class field of ß.) Suppose that the residue class fields of K and of

KT are equal. Then t may be extended to a continuous automorphism of ß.

Proof. We consider pairs, (tr, L), of fields, L, intermediate between K and

ß and continuous automorphisms, a, of L into ß such that L and L° have the

same residue class fields. Such pairs are ordered in the obvious way and by

Zorn's lemma there exists a maximal element (a, L) such that (o,L) > (t,K).

By a lengthy but conventional argument, we will show that L = Ü = L°.

There are several steps.

8.3.1 L is complete (by maximality).

8.3.2 We assert that L is algebraically closed. If z is algebraic over L then o

may be extended to an isomorphism of L(z) into ß which must be an isometry

since the valuation of L(z) which extends the given valuation of L is unique.

Thus, by another application of Zorn's lemma, o may be extended to a

continuous isomorphism, jr, of L into ß. The residue class field of L is the

algebraic closure in ß of L ( = La) and hence is the same as the residue class

field of L". This completes the proof since (o, L) is maximal.

8.3.3 We assert that L and ß have the same value group. Otherwise there

exists Y E ß such that | Yj does not lie in the value group of L (which is the

same as the value group of L°). Then Y is transcendental over both L and Ü.

We may thus extend a to an isomorphism of L(Y) with L"(Y) by setting

oY = Y. For ß E L we have |Y| # \ß\ = \ß°\ and hence

\Y-ß\ = Sup(\Y\,\ß\) = \Y - ß°\

and then the extension of o is isometric and hence continuous. Trivially L(Y)

has the same residue class field as L and hence L(Y) and L"(Y) have the same

residue class fields. This contradicts the maximality of (o, L) and completes

the proof of 8.3.3.

8.3.4 We assert that L and ß have the same residue class field. Otherwise

there exists Y E ß, | Yj = 1 such that Y E L = 2?. Then, Fis transcendental

over L. By putting o(Y) — Y we extend a to a continuous isomorphism of

L(Y) into L°(Y) and the residue class fields coincide with L(Y) and are thus

identical. This contradicts the maximality of (o, L).

8.3.5 We assert that L is maximally complete. Suppose otherwise and let
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{D(a¡,y,)}/eN be a sequence of imbedded disks with centers in L and no

common point in L. Since ß is maximally complete, let x be a common point

in ß. Clearly x is transcendental over L.

We observe that {D{aa¡,y¡)}¡elS( is again a sequence of imbedded disks and

hence has a common point, y, in ß. This point cannot lie in L" as otherwise

a~ y would lie in L n Dia^y/) for each / G N which is impossible. Since L"

is also algebraically closed, a may be extended to an isomorphism of L(x) with

L°{y) by setting ox = y. To verify continuity it is enough to show that

(8.3.5.1) \x-a\ = \y- aa\

for all a E L. We know that

\x - a\ > d{x,L) = infy,-

and hence there exists / G N such that \x — a¡\ < y¡ < |x - a|. Hence

|x - a| = \a - a¡\ > y¡ huty G D{aa¡,y¡) and so

|.y - oa| = \{y - aa¡) + a{a¡ - a)\ = \a¡ - a\ = \x - a|,

which completes the verification of (8.3.5.1). Furthermore, L = If = ß shows

that L{x) and L°{y) have the same residue class field. This contradicts the

maximality of (o, L).

We have shown that L (resp. L") has the same value group and the same

residue class field as ß. Thus ß is an immediate extension of L (resp. If).

Furthermore, L (resp. L°) is maximally complete. Hence [14, Chapter 2]

L = ß = L?'. This completes the proof of Lemma 8.3.

Proof of Theorem 8. Let a be element of ß not in K. Let o be the

continuous automorphism of K(a) over K whose existence is assured by

Lemma 8.1. This automorphism may be extended by continuity to the

completion of K(a) and by Lemma 8.2 to a continuous automorphism of ß.

This completes the proof of the theorem.

8.4 As preparation for the application of the above theorem, we consider the

orbit of a disk under the action of G.

Lemma. // a disk T = D{a, r~) contains no element of K, then T has an

infinite set of distinct images under the action of G.

Proof. Let y = d(a,K). Clearly, y > r. We consider two possibilities:

8.4.1 Case 1. Either the real number r lies in the value group of K or y > r.

We know from the proof of Lemma 8.1 that if b E K, \b\ < y, then

ob: a i-» a + b defines a continuous automorphism of K(a), which by Lemma

8.2 can be extended to an element of G (which we will denote by the same

symbol). The image ab T of T is in one to one correspondence with the class
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of b modulo D(0,r~) which demonstrates the lemma in this case.

8.4.2 Case 2. r does not lie in the value group of K, and y = r.

If ßx and ß2 are elements of D(a,r+) whose difference does not lie in

D(0, r~), then at most one of the two disks D(ßi, r~) (i = 1,2) can contain an

element of K (as otherwise r = \ßx - ß2\ would lie in the value group of K).

Thus there exist an infinite set of distinct disks D(ß,r~) which lie in D(a,r+)

and contain no element of K. Such a ß must also be transcendental over K and

hence a\->ß defines an isomorphism, a, of K(a) with K(ß).

8.4.2.1 We assert that o is continuous. That is we assert that for each c E K

we have \a — c\ = \ß - c\. This follows from the relations

\a- c\ > r,    \ß - c\> r,    \a - ß\ = r

if we consider the two possibilities, \a — c\ > r and \a — c\ = r. This com-

pletes the verification of 8.4.2.1. To be able to apply Lemma 8.3, we must show

that K(a) and K(ß) have the same residue class fields.

8.4.2.2 We assert that K(a) (resp. K(ß)) has the same residue class field as K.

Here again we consider two possibilities.

8.4.2.2.1 The value of d(a, K)is assumed. Thus there exists c E K such that

\c — a\ = r. Thus replacing a by a — c we may assume that |a| = r. If/is any

element of K[X] then by hypothesis 8.4.2 the newton polygon of/has no side

of slope corresponding to r and that a line of support of that slope which

passes through the origin can have no contact with the polygon except at the

origin itself. This shows that if /(a) is a unit, then it is in the same residue class

as/(0). This completes the proof of 8.4.2.2 in this case.

8.4.2.2.2 The value of d(a,K) is not assumed. In this case a is pseudolimit

of a transcendental pseudo convergent sequence of K and hence [14, Chapter

2] lies in an immediate extension of K. This completes the proof of 8.4.2.2.

It now follows from Lemma 8.3 that o may be extended to an element of

G and clearly oD(a,r~) = D(ß,r~). This completes the treatment of 8.4.2

and hence of the lemma.

8.5 Application. Let A be an infra connected subset of ß which is stable

under G. Let HK(A) (resp. Ha(A)) be the set of analytic elements of A defined

over K (resp. ß), i.e. uniform limits on A of elements of K(X) (resp. ß(A")),

having no poles in A. The group G operates on Hq(A) by Hq(A) 3 /h»/0

where

(8.5.1) f(ox) = o(f(x))

for all x E A.

Theorem. The elements of Hq(A) fixed under G are precisely the elements of

HJA).



LINEAR p-ADIC DIFFERENTIAL EQUATIONS 43

Proof. Let/be an element of Ha(T) and let 9" be the set of all trous of the

set A. By the generalized Mittag-Leffler Theorem [10],

(8.5.2) / =  2 fT,

a unique decomposition into elements fT G HÜ(CT) such that fT vanishes at

infinity (if oo £ T) and such that / - fT extends analytically to A U T. If

o G G, then

(8-53) (fTy = (f°)T.

and hence if / = fa then

(8.5.4) (/rr=/r°

for all ISS

We now consider an element/of HÜ{A) which is invariant under G. We

assert that fT¥=0 implies

(8.5.5) T n K^ 0.

Indeed, fT¥=0 implies  H/j-llcr = a > 0 and hence by equation (8.5.4),

H/t-" Her» = a f°r au a E G.
Thus T can have only a finite set of distinct conjugates under the action of

G and hence (8.5.5) is a consequence of Lemma 8.4. Thus if fT # 0 we may

put T= D{a,r~) with a algebraic over K. Let then M be a finite galois

extension of K which contains a. We may write

(8.5.6) fT = 2 A/(X - a)J

with A, E ß for all/ and

(8.5.7) \Aj\ -> 0   as/ -* 00.

However, T is stable under the group, GM, of continuous automorphisms of ß

over M. Thus by (8.5.4), fT is invariant under GM and thus by Theorem 8, each

Aj lies in M. It follows from (8.5.7) that fT is uniform limit on A of elements

of M {X) having pole only at a.

We have shown that the galois group © of M over K operates on fT. Let

§ = {a £ ©I |aa - a\ < r}. Clearly $ is a subgroup of ® and for a, r E ®

we have {fT)a = (fT)T if and only if o~xt G £>. Thus let

(8.5.8) ® = U a,$
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be the coset decomposition of @ corresponding to íp. Then the full set of

conjugates of T under G is {T)}*_„ where for each i (= 1,2,... ,s) T¡ =

D(o¡, a, r~). Thus in the Mittag-Leffier decomposition of/, the component

corresponding to T and its conjugates is precisely

(8.5.9) 2 4= 2 (/r)a' = A_I  2  (fT)a
i=l    '      i=l oe©

where h = card(iç). The left side of this equation may be written as

l\mh-xSM/KtAj/(X-a)j
7 = 1

where SMiK is the mapping of M(X ) onto K(X ) which extends in the obvious

way the trace mapping of M into A". It is now easy to verify that / lies in

HK(A) as asserted.

9. Problems and special results.

9.1 Supersingularity. Let A be a standard set. Let L E <¡RA have kernel at t

which lies in &,. Then by 4.2.7 for each disk D(a, 1~) in A (\a\ < 1) in which

L has at worst removable singularities, we may associate a newton polygon as

outlined in an earlier article [3]. Namely for each positive real number ß let

ga(ß) be the dimension of the kernel of L in Wx'^. Let ßx, ..., ßs be the

points of discontinuity of ga (ßx = 0 if ga(0) > 0) and let c, be the jump of

ga at ßj (i = 1,2,..., s). The newton polygon is constructed so that the/th

side has slope /?• with projected length c¡.

9.1.1 Conjecture [4]. The polygon for L at / lies on or below the polygon

for L at any other point.

A special case of this conjecture is given by Theorem 2.4 above.

9.1.2 Definition. We say that L is supersingular at those residue classes for

which the newton polygon of L does not coincide with the polygon at t.

9.1.3 Conjecture. L is supersingular at only a finite number of residue

classes in A.

In particular [4],

9.1.4 Conjecture. In (2.4.1) (above) equality holds at all but a finite number

of residue classes in A.

While known for many cases ([11, §4.26.2]) this conjecture is still open for

operators of order 2 with rational coefficients. By Theorem 2.4 this conjecture

is equivalent to the following conjecture.

9.1.5 Conjecture. If A is standard set, L E 91A, M, N E 9t, and L

== N • M then M E 9tfi for some admissible subset B of A.

This conjecture is implied by Conjecture 3.1.5 above.

9.2 A special case of Conjecture 3.1.5 is the linear case. Thus
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9.2.1 Conjecture. Let A be a standard set, L G 91,,; let u E E, Lu = 0,

then u G H(B) for some admissible subset 5 of /I.

For the case in which L G 9t0, [13], Conjecture 9.2.1 is now known to be a

direct consequence of the Mittag-Leffler theorem and indeed the same

conclusion holds if Lu = v, L G 9î0, u G E and v G H (A).

Without the hypothesis L G 9î0, Conjecture 9.2.1 has been verified only in

the case of order one. This was done by Motzkin [7] by means of his theory

of singular factors.

Note that in 9.2.1 it may be assumed that L has a full set of solutions in &t

as if M, N are defined by equation (4.2.1) then Mu lies in Wtl'° and hence must

be zero as N has no solutions in that space.

9.3 We now give an application of Conjecture 9.2.1. We assume L G 9î0

since the conjecture is known in that case.

Lemma. Let L E 9Î0 be of order 2 and have Riccati equation with two distinct

solutions in E. Then these two solutions lie in Eàd.

Proof. Let L — D2 + aD + b and let tj, , tj2 be distinct solutions in E of

the Riccati equation

(9.3.1) tj2 + tj' + ÖTJ + b = 0.

Now let ux, u2 be germs of analytic functions at t such that

(9.3.2) «;/M/ = 17/,       t = 1, 2.

Thus ux, «2 are independent elements of ker,L. Thus

(9.3.3) Tj! - tj2 = w/ux u2

where w is the wronskian of L. We observe that uxu2 is a solution of the third

order linear differential equation (in 9t0) whose other two solutions are ux,u\.

Furthermore twisting this third order linear differential operator by w, we

obtain N, a third order linear differential operator, N G 9Î0 such that w, u2/w

lies in ker,JV. By (9.3.3), 1/(tj, - tj2) G E n ker,A/ and therefore by [13], we

conclude that

Vi ~v2 e £ad.

The Riccati equation shows that

(Vi - V2)(v\ + V2) + Oil - V2)' + "ill - V2) = 0

and hence tj, + tj2 G Ead. Then r¡x and tj2 G Ead as asserted.
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