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W. M. DEEB AND D. R. WILKEN

Abstract. Let D be a bounded domain in the complex plane C. Let

HK(D) denote the usual Banach algebra of bounded analytic functions on

D. The Corona Conjecture asserts that D is weak* dense in the space 91t(D)

of maximal ideals of H°°(D). In [2] Carleson proved that the unit disk Aq is

dense in 91t(A0). In [7] Stout extended Carleson's result to finitely connected

domains. In [4] Gamelin showed that the problem is local. In [I] Behrens

reduced the problem to very special types of infinitely connected domains

and established the conjecture for a large class of such domains.

In this paper we extract some of the crucial ingredients of Behrens'

methods and extend his results to a broader class of infinitely connected

domains.

1. Introduction. By a A-domain we mean a domain obtained from the open

unit disc A0 by deleting the origin and a sequence of disjoint closed discs

An = A(cn,rn) — {z: \z — cn\ < rn) with cn -* 0. Behrens [1] indicated that if

the Corona Conjecture fails for some bounded domain, then it fails for a A-

domain. Moreover, he established if the excised discs are "hyperbolically rare"

(see §3), then the Corona Conjecture obtains. Zalcman [8] imposed the

additional requirement that 2 rJ\cn\ < °° and used it to describe a distin-

guished homomorphism in the fiber of the maximal ideal space at the origin.

This homomorphism plays an important (but not essential) role in Behrens'

techniques. His proof employs a continuous linear isomorphism of

Hco(D) into Ha3(A0 XN), the Banach algebra of uniformly bounded func-

tions which are analytic on each "slice" of the product of the unit disk A0 with

the set N of nonnegative integers. We will follow the general scheme employed

by Behrens in [1] and extend his results to a broader class of A-domains. The

precise description of the fiber algebra and the Gleason parts in the fiber at

the origin given by Behrens in the "hyperbolically rare" case extend to the

setting of Theorem 1 below. In particualr, the fiber algebra at the origin is

isometrically isomorphic to a restriction algebra of ZHCO(A0 X N) + C (see

Lemma 5). We also utilize a number of the basic ideas in [3]. The examples in

§3 illustrate the broader generality of the results.
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2. Main results.

Theorem 1. Let D be a A-domain. Suppose

00    r        le. I
(*) lim 2 rïi-ï = 0-
V   ' *-oo n=)  \C„\ \Ck- Cn\

n^k

Then D is dense in %(/)).

Preliminary to the proof of the theorem consider the following definitions,

notation and lemmas. Note that (*) implies 2 rJ\cn\ < °°-

Definition. The distinguished homomorphism cf>0 is

*^>-á¿JL^*(see[8])-

Notation. 91L0(.D) denotes the fiber in 9t(Z)) at the origin;

AQ denotes the restriction function algebra //°°(.D)L ;

fl(/) = -Lf    -I^Ldw,      fEHx(D).
"yj '      2mJdA„w — cn J v   '

PJ(z) = ±(    ^-dw,
nJ v '      2m Jdà„ w — z

where z E A0, if n = 0 and z E Acn = C\A„, if n = 1, 2, 3, ... ;

Dn = {z: |z - cn\ < Rn), where Rn is chosen larger than rn but such that the

discs {Dn} are still pairwise disjoint. For notational convenience take c0 = 0,

r0 = R0 = 1.

For/ E #°°(L>), write

/(z) = /¿/(z) + Fn(z) + an(f),   for z E Z>„\A„,

where ^ is analytic in Dn and Fn(cn) = 0.

Define *: HCC(D) -» HK(A0 X AT) by

*f(z,n) = (PJ°En-x)(z) + an(f),

with ¿'„(z) = rn/(z - cn) if « = 1,2,... and £0(z) = z.

Observe that for/ E H<a(D),

/(z) =  i P„/(z),
n=0

where the integration defining each Pn is appropriately oriented and the

convergence is uniform on compact sets in D.

Let
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X = 9Rif7°°(A0 X N)]\ U 9H[H"(Ao X {«})]

(see [1]) and let B = HCO(A0 X N)\x.

The scheme of things is to study the map ty with reference to the existence

of an induced map from A0 into B, to obtain an isomorphic copy B0 of AQ in

B, to identify the maximal ideal space of B0 as a quotient space of X, and to

transfer the positive Corona result for HCO(A0 X N) [1] back to the domain D.

Initially the critical factor is the choice of the discs {Dn}-the bigger the better.

The following lemma and proposition appear in [3] as Proposition 1 and

Proposition 2, respectively.

Lemma I. If Rn can be chosen so that rn/Rn -* 0, then ^ induces a continuous

algebra isomorphism p ofA0 onto a closed subalgebra B0 ofB, as indicated by the

following diagram:

H°°(D)--->H°°(A0 xAO

restriction

An

restriction

Proposition. Let D be a A-domain. Suppose

(1) Rn can be chosen so that rn/Rn -> 0, and

(2) 91t(.B0) is the quotient space of X obtained by identifying points not
separated by B0.

Then D is dense in 9R(£>).

We will prove Theorem 1 as a corollary to this proposition.

Lemma 2. Rn can be chosen so that rn/Rn -> 0 // and only if rj\cn - ck\

-* 0 as n, k -* oo.

Proof. Let tn = inf¿{|c„ - ck\: k =£ n). Then Rn can be chosen compara-

ble in magnitude to tn. Now rj\cn - ck\ -* 0 as n, k -> oo means given

e > 0 3N such that n, k (n ¥= k) > A^ => rn/\cn - ck\< e. Since c„ -> 0, for

sufficiently large n, tn is attained only by \cn - ck \ where k > N. Hence

rjtn < e and rn/Rn -» 0. The "only if" proof is obvious.

Corollary. If D is a A-domain satisfying (*) in Theorem 1, then Rn can be

chosen so that rn/Rn -» 0.

Proof. Suppose

Y      rn Vk\ k.rs

«-j kJ \c„-ck\
n¥=k

n '
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Let e > 0 be given. Choose N so that

(i)

(ü)

k> N=* 2 it
ck\     si.

n-l\cHWCH-ck\
n¥^k

n>N^rn/\cn\<e/2.

Suppose n,k>N,n¥=k.If \ck\ < ||c„|, then rj\cn - ck\ < 2rJ\cn\ < e, by

(ii). If \ck\ > i|cj, it follows from (i) that rj\cn - ck\ < (e/2)\c„/ck\ < e.

Thus rj\cn - ck\ -* 0 as n, k -* oo.

Lemma 3. If D is a A-domain as in Theorem 1, íAe« a¿ -* d>0 in norm.

Proof. For fixed k, f(z)/(z - ck) is analytic in D and

fdDf(w)/(w-ck)dw«0,

i.e.

#&-*>-0,
oo      i      -

with appropriate orientation in the integrals. Thus

k(/) - *o(/)l < „t'n 277/ Ja¿¡„f 0 277/ ̂ 9AB W(W - Ck)
n*k

dw
fM

2m JdAk   w
dw

n#fc

<

=  11/11

CO y

(d denotes distance function)

h
n-o(\c„\-r„) (\cn - ckI - rn)     \ck\-rk
n¥=k

n=0\cn\\cn-Ck\\ \C„\J     \ \cn-Ck\)
n=tk

jl(\  jlV1
+ k*IV   h\)

Since rn/|c„| -» 0, r„/\c„ - ck\ -» 0 as n, k -> oo and

0,2 J.      Icfcl      k.

n=o\cn\\cn-ck\
n¥=k

the lemma follows.



A-DOMAINS AND THE CORONA m

Let c denote the space of convergent sequences. Let Z denote the "coordi-

nate" function in -r7°°(A0 X N) defined by Z(X,n) = X. Lemma 3 and the

definition of ^ yield that whenever H°°(D) satisfies (*), then ¥ maps into

Zi/°°(A0 x N) + £ and B0 C (ZH°° + C)\x. We actually have

Lemma 4. If D is a A-domain as in Theorem 1, then BQ = (Z//°° + C)!^.

Proof. It suffices to show that if fn is a sequence of functions such that

fnEH(Acn),   /„(oo) = 0,and||/J|<A/,« = l,2,3,...,    then    2£.,/B
E H°°(D). Now

and |/„(0)| < \\fn\\rj(\cn\ - rn). Thus 2„°°=i |/„(0)| < oo. Also

\m-fn(o)\< hL&,*>/3A„ (w — z)w

<\\fn\U*\
]d(z,dAn)(\cn\-rnY

Suppose z G dAk. Then

2 \m-/„(o)i<m i ^^It*?  v
«=i „=ií/(3A¿,aA„)(|cn|-rJ
n¥=k n^k

By(*),

äJ.IW-/»(o)I-o.

Kence^=xfnEHx'(D).

Assuming rn/Rn -* 0, it seems that (*) should characterize when BQ =

(Z//00 + C)\x.

Proof of Theorem 1. According to the proposition and the corollary to

Lemma 2, all that remains is to identify 51L(50). But since

BQ = (ZH°> + C)\x,

91L(.B0) is the quotient space of X obtained by identifying the zero set of Z on

A' to a point. This is immediate since J = ZH°° \x is an ideal in HM \x whose

hull is the zero set of Z and 9ltCr7°° |^) = X.



112 W. M. DEEB AND D. R. WILKEN

3. Examples and applications. First let us deduce Behrens' result.

Corollary. Suppose Rn can be chosen so that 2^L i fn/R„ <C oo ("hyperboli-

cally rare"). Then D is dense in 91t(Z)).

Proof.

rn h\ CO

»-1 \Cn\ \cn - ck\       »-1
n¥=k n¥=k

oo

< 2
n=l

rn_i   _n_

Ct, -c.

rji

C.

ÜL + Ä
Rn    lc

<00.

Let

/*(«) =
h\

\cn-dk\

Then^.(n) < rn/Rn + rj\cn\. By dominated convergence, (*) obtains.

We introduce a class of examples where cn = l/n. In this case, no matter

what rn is, Rn can be chosen at most comparable in size to l/n2. Thus, for

hyperbolical rareness, one needs 2^Li n2fn < oo- Zalcman's condition be-

comes 2^=i nrn < oo.

Theorem 1 allows the following:

Theorem 2. Let cn = l/n. Suppose 2^Li nrn < oo. If

(A) n2rn \ 0, or

(B) «2(log n)rn -» 0, or

(C) for some p > 0, 2 («2r„)/' < oo,

then D is dense in 91t(Z)).

Remark. In condition (C), 0 </> < 1, the conclusion is immediate from

Behrens, or the above corollary. Moreover, 2^L i nrn < oo is not necessary in

(C). Indeed, as the proof below indicates, (C) implies 2£Li nrn < oo.

Proof of Theorem 2.

h\2 —
n=x\cn\\cn-ck\      n=\\n-k\

oo       „2
= 2    —

(A) follows from the following:

Lemma A. Suppose bn \ 0 and 2^=1 bjn < oo. Then 2^Li-„#A: bj\n - k\
-¿»0.

Proof. By monotone convergence, 2/11 bN+j/j ~^ 0. Let e > 0. Choose

tf so that 2jli ¿V+/// < e. Let A: > TV. Then 2„1. VI" " *l "*♦ °> and
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°° b k~X        b °° b
y        n    =   y       "   +   y      n

„=n+\ \n - k\     n=N+i k - n    n=k+i n-k
n^k

^ bN+\   ,   bN+2 _l. . bk-\ ,   bk + \ ..   bk+2   ,

< __ + -T-+ ... +w—r-^ + -r + -T-+ ...

<2 2^<2,
y-i  J

To prove (B), we break the sum 2^Lo;*#fc "^/l" - ^1 mt0 f°ur pieces, as

follows: Let Mk = greatest integer in y/k~. Then

oo       „2 Mk k-\ k2-\ oo

2 7^1= 2 +    2    +   2   + 2 •

Now

oo        „2 oo „ oo

„=Jt2  |« — /C| „=*2      »«-* „ = fc2

Af*     n2r Mk   n2r -,      Mk      1
2 i-Vf =  2 7—^ <    max  {n2r„) 2 yr"1—

„f o |« -k\      „=0k- n     o<n<w/    "J „=o k - n

<(  max  {„Mj-V^J^O;

k-\ n2r / \   fc-1        j / \

=Kvín<^í"!r"))iosVF-í*01

and

Äi v^k\ < Css.^)10« *2 = 2CÄ>2'«})log * ̂  °-

For the proof of (C) we only need consider p > 1. Choose 47 so that

l/p + l/q = 1. Fix N < ¿. Then

"     «2'„     . , ,  .    N

2 tt-^4 <   max {^rj-r-^— -*» 0,
„=o \k - n\      0<«<Afl    n'k- N

and
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00 n2r r     °° ~\x

2    r^T<       2    {n\Y\
n=N+\ \n - k\        Ln=JV+l J

oo i

n=N+i \n - k\q
n¥=k

1 I" - k\        \_n=N+\
n*k

2   («V      2 2 i     -
B=/V+l J      L   n=l » J

Since 2~=i V«?< oo,

W

n2r.
2    i-ri < «   for large JV.

„=n+ï \n - k\
n*k

Hence in ail cases (*) obtains and the Corona follows.

Remark. It is not difficult to construct an example which indicates that

condition (B) is, in a sense, sharp. In particular, in the above case with

cn = l/n, it is not sufficient to obtain (*) under the hypothesis that n rn -» 0,

i.e. rn/Rn -> 0.

A further elementary consequence of Theorem 1 is the following:

Theorem 3. Suppose (*) obtains for a sequence cn on the positive real axis and

radii r„.

Let bn = e cn. Let An = {z: \z — bn\ < rn), and let D be the corresponding

A-domain. Then D is dense in fyilfD).

Proof.

<2¿Kg HI»,-HI   i7i'.K-^\'

We would like to thank Professors Richard Hornblower and Richard O'Neil

for several productive conversations in the construction of the examples in

Theorem 3.
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