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Abstract. We study an initial boundary value problem for the wave

equation in the exterior of a straight strip. We assume the initial data has

compact support and that the solution vanishes on the strip. We then show

that at any point in space the solution is 0(1/1) as t -» oo. This is the same

rate of decay as obtains for the solution of the initial boundary value

problem posed in the exterior of a smooth star shaped region. Our method is

to use a Laplace transform. This reduces the problem to a consideration of

a boundary value problem for the Helmholtz equation. We derive estimates

for the solution of the Helmholtz equation for both high and low frequencies

which enable us to obtain our results by estimating the Laplace inversion

integral asymptotically.

0. Introduction. We consider an initial boundary value problem for the two

dimensional wave equation in the exterior of a straight strip. We assume that

the initial data have compact support and that the solution vanishes on the

strip. Our object is to obtain the rate of decay of the solution to this problem

as / -* oo. In a recent paper [10] we considered the problem of diffraction of

a plane pulse by a strip. Here we shall proceed much as in [10] and will use

some results from that paper. We use the method of Laplace transformation.

Our results are obtained by evaluating the inversion integral asymptotically.

We show that the contour of the inversion integral can be deformed into the

left half plane. Then by considering separately the integrals over the portions

of the contour near the origin and far away from it we show that the solution

decays at any point in space like 1//.

Most of the work of the paper goes into proving estimates for solutions of

the reduced wave equation. To obtain these estimates we study the integral

equation
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-H¿%[(s-x)2+/f2)

(0.1) ,
= j_x p(s',x,y,K)H¡x)(K\s - s'\)ds',       \s\ < 1.

Two cases must be considered. First we treat the "high frequency" case in

which k = K[ + ík2 with k, » 0 and k2 < 0. Here we use a modification of the

technique developed in [8] and [9] and used in [10]. We must also consider the

"low frequency" case: k small and positive. Here we use the method of

Sologub [6]. However we find it desirable to recast his method in terms of

function spaces previously introduced by the author in order to obtain useful

estimates.

In [3] it was shown that the solution of the initial boundary value problem

in the exterior of a smooth star shaped region decays like \/t. (It is now known

that in three dimensions the solution decays exponentially [2]. Although in [3]

the author considers the three dimensional case she remarks that the result is

also true in two dimensions. See also [4] for a related result.) The result is

obtained in [3] by using an energy integral technique (i.e., clever use of the

divergence theorem). So far attempts to apply this method to the present

problem have been unsuccessful. One basic difficulty is that the derivatives of

the solution are unbounded near the edge of the strip. Also the (one sided)

normal derivative of U is not square integrable over the strip. Thus we proceed

here in a different manner.

Our result is of interest for it seems to show that the phenomenon of edge

diffraction which is present here does not play a significant role in energy

decay.

The plan of the paper is as follows: In § 1 we will obtain the decay theorem

modulo the results on the asymptotic behaviour of the solution of (0.1). In §2

we will derive the high frequency result while in §3 we will derive the low

frequency result.

1. The theorem on the rate of decay. We consider here the wave equation in

two spaces variables

(1.1) Kx+Yyy=Kr

We look for a solution V(x,y, t) of (1.1) for t > 0 which vanishes on the strip

y = 0, |x| < 1. The initial conditions are

(1.2) V(x,y,0) = f(x,y),       V,(x,y,0) = g(x,y).

We assume that/ G C3(R2), g E C2(R2) and that the supports of /and g are

contained in a compact set K which does not meet the strip.

The free space solution to the problem (1.1), (1.2) is given by
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W(x,y,t) - ^jj -{t2_x,2_y2f2-dx b

2l7 ÔtJJ tt2_x'2_'2^/2

In (1.3) i/(x) is the Heaviside function and the integration is taken over the

whole (x',y') plane. We let U = V - W. Then Í/ will satisfy (1.1) and have

the initial and boundary values

U(x,y,0) = t/,(x,y,0) = 0,
(1.4)

U(x,0,t) = -W(x,0,t),       t > 0, U| < 1.

We will construct U as follows: we formally apply a Laplace transform to

(1.1) (for U) and (1.4). If we define u(x,y,a) to be the (formal) Laplace

transform of U(x,y, /),

u(x,y, o) = f    e~ot U(x,y, t) dt,

then u must satisfy the reduced wave equation

(1.5) uxx + uyy - o2u = 0

with the boundary condition

(1.6) u(x,0,o) = —w(x,0,o),       \x\ < 1,

where tc(x,y, a) is the Laplace transform of W. The function w is given by

w(x,y,o) = ffg(x + x',y + y')K0(o[x'2 + y'2]X/2)dx' dy'

+offf(x + x',y+y')K0(o[x'2+y'2]X/2)dx'dy'.

Hence

w(x,0,o) = // g&r,)K0(o[(x - ¿)2 + -rff^didn

(1.7) *
+o ffKf(î,V)KQ(o[(x - O2 + r,2]V2)dtdV.

Here K0 denotes Macdonald's Bessel function of order zero. In addition,

u(x,y,a) is required to be analytic for Rea > 0 and u(x,y,o) -» 0 as Reo

-» oo.

We will prove existence of u in a region containing the right half plane
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(Theorem 2'). The properties of u will insure that if we define U(x,y, t) by the

Laplace inversion integral taken along the imaginary axis in the a-plane,

U(x,y,t) = ¿|_" e^'u(x,y,io2)do2

then U will be the solution of (1.1), (1.4).

The solution we seek of (1.5) and (1.6) is given by

(1.8) u(x,y,a) = J    p(s,x,y,o)w(s,0,o)ds.

The function p(s, x,y, o) represents the jump in the normal derivative of the

Green's function for the problem across the strip [9]. It is the solution of the
integral equation

(1.9) -KQ(o[(s - x)2 + y2]X/2) = f_x p(s',x,y,a)K0(o\s - s'\)ds',       \s\ < 1.

Reasoning as in [10] we see that (1.9) admits a unique solution p(s,x,y,o) for

every (x,y) not on the strip and every o ¥= 0 with Reo > 0 such that when

this p is inserted in (1.8) the function u thus defined is a solution of (1.5) and

(1.6) which is analytic for Rea > 0.

We wish to show that u(x,y, o) can be analytically continued into the left

half plane. We first consider w(s,0,a) given by (1.7). This will be an analytic

function of o in the a-plane slit along the negative real axis.

Lemma 1.1. If ox = Rea < 0, then for some positive constants C and B,

(L10)     \w(s,0,o)\ < C|ar5/Va'5,       \s\ < 1, m/2 < |arga| < m.

Proof. Since K is compact and does not meet the strip we can cover K with

circles {C,},^, such that for (£,r,) G C¡ either (a) |r/| > r¡0, (b) t - 1 > 8 > 0,

or (c) -1 - | > 5 > 0. Let {9¡}"=x be a family of C°° functions such that the

support of each 9¡ is contained in C¡ and 2"=1 9¡ = \ on K. Letf¡ = 9¡f, g¡
= 9ig.

Now consider for instance

ffcg^,v)K0(o[(s - f)2 + jf^dZdr,

where on C,-, |tj| > r/0. Since [(s - £)2 + tj2] is bounded away from zero

uniformly for |j| < 1 and (£,r/) G K, we may replace K0 by its asymptotic

expansion
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(1.11) K0(oR) = (2/troR)X/2e-aR[l - l/8ai? + e(oR)]

where |e(z)| < C3/|z| .

Equation (1.11) is valid for |arga| < m. In (1.11) we have set

Let us estimate

al/¿JJc,R

Since R^ = n/i? this is equal to

R = i(s - €)2 + v2f/2.

eriiScrm8^)didl1'

-jn5ke'oR{Ç^Ad^-

Here we use the fact that in C¡, |rj| > tj0. A second integration by parts shows

that   this   term   satisfies   an   estimate   of   the   form   (1.10)   where   B

= maxUI<l;(i,»)Eq*-Theterm

i   re e~aR
mJJcllpñg&'n)dtd'n

is handled similarly (one integration by parts) while the remainder term clearly

yields the estimate (1.10). The integral involving/is handled in the same way.

If in Cp £ — 1 > 8 or —¿ — 1 > 5, the integrations by parts are carried out

with respect to £. This completes the proof of the lemma.

We now consider the function p(s,x,y,o). Letting k = ia transforms (1.9)

into equation (0.1) with p(s, x,y, k) = p(s,x,y, — //c). We wish to continue p into

the left half a-plane. In §2 we consider (0.1) for k = k, + //c2, k, > 0, k2 < 0.

This corresponds to o = a, + io2 with ox < 0, a2 < 0, i.e., a in the third

quadrant. But since KQ(oR) is real for real o we see from (1.9) that if

Rea > 0,

p(s,x,y,o) = p(s,x,y,a).

Thus we may extend our results to the case where a is in the second quadrant

by reflection. Hence we have from Theorem 2 of §2

Theorem 2'. Equation (1.9) admits a unique solution p(s,x,y, o)for o satisfying
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(1.12a) e-a'<4^4|a2|3/4,       a, < 0,

such that ifu(x,y,o) is given by (1.8) u is analytic in o for a in the union of the

regions given by (1.12a) and the half plane a, > 0. //

(1.12b) e-« < 8X/W%2\V\       a, < 0.

Then p satisfies the estimate (cf. (2.10))

4
\p(s,x,y,a)\ < - ¿Ä>[(* - ,)2 + (y- r)2]X/2)\r=0

(L13) +C|a2r1/2(1 + \o2\-X/2)e-°^+\>\+x)

X (e"^-x)(l - s)~x/2 + e-°^s+x)(l + s)~X/2).

The proof of analyticity is exactly the same as in [10]. By (1.8), (1.10) and

(1.13) we find that if .(1.12b) holds

(1.14) \u(x,y,o)\ < C\o\'2e-D°K

The quantities C and D in (1.14) depend on x andy, but (with a little more

work in §2) the estimate (1.14) can be made uniform over compact subsets of

the plane with the closed strip removed.

The solution of (1.1) (for U) and (1.4) is defined by

(1-15) U(x,y,t) = ¿/r e<"u(x,y,o)do.

The contour T can be taken to be the imaginary axis (as we shall see

u — log|a| near a = 0).

Let F be the contour T, U T2 U T3 where

Tx:e-°> = Sx^(-o2f\ox<0,
T2: a, = 0, - 1/4tti/3 < a, < 1/4tt1/3,

r3:e-<" = 8»/V/4a3/4^i<0.

V is oriented so that a2 is increasing (Figure 4).

We wish to show that the integral in (1.15) can be taken along T' for

sufficiently large t. For this it is sufficient to show that the integral along a

horizontal segment between T and T' tends to zero as |a2| -> oo.

Thus let

f
7„2 = Jgte° u(x,y,a)do

where e'"* = 81/27r1/4|a2|3/4. By (1.14) if t > D,
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C    rO      ,    r,\ C    1 — e"*('~D) C        1

Thus, if / > D, | Ia | -» 0 as |a21 -* oo and we have

(1.16) U(x,y,t) = ¿Jr ^«(jc^o)*.

We next show

(1.17) f ec'u(x,y,o)da = 0(/-1)   as / -> oo,       / = 1, 3.

To prove (1.17) we parameterize T3 by a2. On T3, e~C] = 81/27rI/4a2/4, aa,

- -(3/4) (¿a2/a2) and \do\ < Coa2. By (1.14)

IXea'u(x,y,o)do

= 47r1/3C[l+l(/-i))r1 = 0(1//).

The integral over Tx is treated similarly.

Setting a = (4771'3)~ we now have

(1.18) U(x,y,t) = ¿/_ûa ei°>'u(x,y,io2)do2 + 0(1//).

We now consider the behavior of u(x,y, ia2) near a = 0. From (3.41) we have

P(s,x,y,-iK) = (-l/v)T(R'/R)(s)

+p,(j,x,y,K),       k > 0.

In (1.19) Ä - ((* - j)2 + y2f2, R' = dR/Bs, R0 = (x2 + y2f2. The opera-
tor T is defined by (3.7), but for the present purposes it is enough to note that

T(R'/R) E Lj[—1,1] and the integral in (1.19) is finite. The remainder term

px(s,x,y,k) satisfies

(1.20)      ||Pl ||Li = 0(K2InK),   ||aPl/3K-||Li = 0(k In*),      k > 0.

Also in (1.23) ln(/cy/4/) = ln(oy/4), where o - -lie, In y = 0.57721 • • • (Eul-

er's constant) and the logarithm is taken to be real for a > 0. With this
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definition of the logarithm, (1.19) and (1.20) hold also for k < 0.

From (1.7), using the series expansion for K0, we find

(1.21) w(s,0,o) = a(i)ln(ay/2) + b(s,o)

where a(s) and b(s) are continuous in 5 for |s| < 1 and

db
(1.22) \b(s,o)\ < C|alna|, da(s,o) < C|lna|,       \s\ < 1.

Using (1.19) and (1.21) in (1.8) we find for a = -it,

(1.23) u(x,y,o) = a(x,y)\n^- + ß(x,y) + 8(x,y)(ln^     + e(x,y,o)

where

(1.24) |e|<C|alna|,   |3e/9a| < C|lna|.

In (1.23) a, ß, 8, e are bounded in (x,y) uniformly for (x,y) in compact subsets

of the plane with the strip removed.

From (1.18) and (1.23),

U(x,y,t) = ¿/_" e'^[a(x,y)ln(ay/4) + ß(x,y)

+5(x,y)(ln(ay/4))-1 + e(x,y,o)]d<,2 + 0(1//).

Using (1.24) we see by integrating by parts that the term involving e is o(\/t).

Clearly the term involving ß is 0(1/1). Also if T± are the half lines running from

—oo ± ia to ±ia, then

-l.

£ e°'(a(x,y)\n<% + 8(x,y)(ln^J )do = o( j).

Hence

U(x,y,t) = ¿/ro e°'(a(x,y)ln^ + 5(x,y)(ln^)    )do + o(j)

where y0 is a contour starting at -oo - /, circling the origin and ending at

—oo + /'. The negative real axis is a branch cut for lna. We have

^-. f eot\nodo = - f°   e°>'dox = -\.
2m Jyn J-ao l t
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Finally, reasoning as in [10], we see that

Jy/'(ln(oy/4))      °(fln(4//y)}

Thus U(x,y,t) = 0(1/1).

The solution to our problem V is given by V = U + W where W given by

(1.3) is the free space solution of the problem (1.1), (1.2). Since W(x,y,i)

= 0(1/1) we have proven

Theorem 1. Let V be the solution o/" (1.1), (1.2) which vanishes on the strip

{(x,y): y = 0, \x\ < 1}. Then at any point in space V decays like \/t.

Remark. It can be shown that the decay rate is uniform on compact subsets

of the plane with the strip removed.

2. Solution of the integral equation in the "high frequency" case. In this

section we study the integral equation

(2.1) -h{x\k[(x' - x)2+y2]X/2) = Ç_x p(Off„(,)Mí - A)dí,       M < 1.

We have written p(t,x,y,k) = p(£) for brevity. We assume k = kx + ¡k2, k,

> 0, k2 < 0. We look for a solution of (2.1) of the form

(2.2) p(0 = ¿Jy (a2 - K2rX/2p(ia)exp{iax - (a2 - K2)X/2\y\}da.

The choice of contour y depends on the position of (x, y). The function p(£, a)

is given by

p(t,a) = -2(a2 - K2)X/2e-'a( + [  eik(i~x)<bx(k,a)dk

(2-3)
+      eikü+x)$2(k,a)dk.

The functions <£¡ and <b2 are assumed to satisfy the pair of integral equations

k on Cx,

<14)   .«fMMM - -«Il f -4**>?%**"*.
k on C2.
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a plane

Im {az-K2)--0

Figure 1

a plane

Figure 2

a plane

Figure 3

This is the solution method of [9]. The contours C, and C2 are pictured in

Figures 1, 2 and 3. The function (k - k)     is defined in the k plane slit along

C2 and taken to be positive for Im k = k2 , Re k > k, . The function (k + k)

is defined in the k plane slit along C, and taken to be positive for Im A: = —k2,
1/2 -1/2Re/t >-k,. In (2.4) *,(*) = (* + k)   '   and X2(k) = (k - «) " .  For A: on
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Cx, Xx+(k) refers to the values of A', on the left side of the slit C,, while for k

on C2, X2(k) refers to the values of k on the right side of the slit C2.

As usual these equations are solved by successive approximations. We

parameterize C, by letting k = -k - ¡skx, 0 < s < oo, and C2 by letting

k = k + itKx, 0 < / < oo. Let <t>x(-K - iKxs,a) = ipx(s,a) and <b2(ic + itnx,a)

= 4>2(t,a). We also set k2 = -ic,/3. We will assume that 0 < ß < \. With

these substitutions (2.4) becomes

4>x(s,a)
2 iW4(-a - K)X'2K\l2sx'2e-

77

_L_
a + k

t2(t',a)e~2Kl''dt'

(2.5)

: r00_

Jo   (2 + /(/' + s - 2/3))(2 + /(/' - 2ß))X/V

2  ,   ,A-a + K)Xl2KX/2tx'2eia

T2V    '     it a + k

„iV/4
_./i/2e2/K r
7T ^0

^x(s',a)e-¿KiS dï

/0   (2 + /(/ + s' - 2iß))(-2 - i(s' - 2ß))x/2'

We now specify the contour y over which a runs.

(a) If y ¥= 0 we take y = y, where y, is the contour shown in Figure 1.

(b) If y = 0, x > 1 we take y = y2 where y2 is the contour shown in Figure

2.

(c) If y = 0, x < -1 we take y = y3 where y3 is the contour shown in

Figure 3.

cr plane

Figure 4
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The analysis of equations (2.5) is independent of the position of (x,y). We

take the zero approximations ^|°^(j,a) and \p2 '(t,a) to be the inhomogeneous

terms in (2.5). For a on y and k — —k — ískx on Cx we have \a + k\ > kxs/2,

while for a on y and k = k + itnx on C2 we have \a + k\ > Kxt/2 (in all

cases). Hence, if a = ax + ia2,

\40)(s,a)\ < (4A)(Kli)-1/2|-« - <c|l7V2,

\^](t,a)\ < (4M(Kxt)-i/2\-a + K|VVa>.

Let

(2.6) Ma>lc = max{|-a - k|VV', \-a + K|1/2<ra*}.

Then

!#(*,«)-*j°>(S,a)|

< Vw^fv2 a'Kj°   [4 + (f - 2ß)2]x/4[4 + (f + s - 2ß)2]X/2

4
< yWl2e-2*Ma,Kg(s)Ç t>-x'2e-2^dt>

= (2hf2sxl2g(s)e-^KxxMatK.

Here

g(s) ■Í4,
1(4 +

í <2A

(s - 2^)2)"1/2,       5 > 2ß.

An entirely analogous estimate holds for \\¡/^ (t,a) — \pf'(t,a)\. By induction

then

/9\3/2 /   -4k2 \(i-1)/2

|#M - ^-1)(,,a)| < (I)    sl/2^)K,Ke-2KW\^) ,

(o\3/2 /   -4k2 \(n-l)/2

n = 1, 2, 3,_

Thus if

(2.7a) <rK* < 47r1/4/c3/4,       k, < 0,
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the sequences {\¡>\n'(s,a)) and {\¡>2"\t,a)} converge uniformly in í and /,

respectively, for each a ¥= ±n to functions \px (s,a) and ^(/.a) and this pair of

functions satisfies (2.5).

We now suppose

(2.7b)

then

t~* < $I\V\\I\       k2 < 0;

\^(s,a)\ < (4/v)(Kxs)-X/2MatK + 2(2/vfl2sxl2g(s)Kx-xM^

with a similar estimate holding for i¡>2(t,a).

Since g(s) < 2x'2/s for í > 0, we obtain

\tx(s,a)\ < (16A3/2)(Kli)-1/2Ma>)C(l + kxx'2),

\^(t,a)\ < (l6/^2)(KXty1/2Ma>K(l + kxx'2).

From this we obtain

(2.8)

f  eiW-x)<bl(k,a)dk+ f   eik^+x)^2(k,a)dk

< (\6fr)MJ(\ + Kxx'2){eK^-x\l - i)-X/2 + e-*M+x\l + ¿)_1/2}.

Thus from (2.2), (2.3) and (2.8) we obtain

|p(i)| < 2\(d/dv)H¿%[(x - |)2 + (y- t,)2]1/2)|„=0|

+4(i + KXx/2){eK^-xHi - ¿r1/2 + ^(f+,)(i + o_,/2}

[ MaK(a2 - K2)~X,2exp{iax - (a2 - K2)X/2\y\)da .

(2.9) 77

X

We now estimate the integral in (2.9). We first assume y ¥= 0 so that y = yx.

On that portion of y, lying to the right of the point k we have

Mj(a2-K2TX/2<e-K>(«l-Kiyl/2',

\exp{iax - (a2 - K2f2\y\)\ < exP{-a2|x| - \y\(a2 - a2 - k2 + k\J'2)

< exp{-K2|x| - ax\y\ + \y\(a\ + k2 - Kj)X/2}

< exp{-K2|x| -a,\y\ + fc,|.y|}.
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Here we use the fact that on the curve in question, a2 > k2 + a\ — k\ > 0,

and if A > B > 0, then (A2 - B2)l/2 > A - B. Finally on this portion of the

curve \da\ < 2dax. Thus this integral is dominated by

2^(1*1+1)^1 f00 e-bh(    - KxyX/2dax = 2rrXl2\y\-Xl2e-K^+X\

The same estimate holds for the integral over the part of y, lying to the left of

—k. On the straight line portion of y[ we let a = Kt, — 1 < / < 1. Then

KM - «2)r1/2 < 2'/v/2(i - ñ~l/2e-K>,

\exp{iax - (a2 - K2f2\y\}\ < ^(W+W),

\da\ < 2x/2kx dt.

From this we see that the integral is dominated by 27tkxx'2e~K2{-x+^+*y*'. Thus

the integral over y, is dominated by Ckx/2 e~Kl(-x+'x^+^\ It then follows from

(2.9) that

|p(OI < 2|(3/ar/)//0(1>(K[(* - o2 + (y - i)2]1/2)l„=ol

(2.10) +Ck¡/2(1 + Kl-'/2)e-2(l*l+lyt+0

X {«*«-»(! - O"'72 + e~K^+x\\ + I)-172).

We now return to (2.9) and consider the case where y = 0, x > 1. In this

case y = y2.

On the portion of y2 to the right of k,

MaJ(a2-K2)-]/2\<(a2-K2)-X/2e">-2*

so that the integral over that portion of y2 is dominated by

2e-2«> r {a2 _ K2)-VV<^-»¿a2 = 2rtx'2(x - \)~X/2e-^x+x\

On the portion of y2 to the left of —k,

MaJ(a2-K2yl/2\<(a2 + K2)-X/2ea>

so that the integral over that portion of y2 is dominated by

2 r («2 + K2)~X/2e-a^-xUa2 = 2¿l\x - \yX'2e^^.
K2

The integral over the remaining portion of y2 is estimated much as in the first



THE TWO DIMENSIONAL WAVE EQUATION 419

case. The result is that the integral is dominated by 2ttkx/2e~Kl^x+x\ Thus the

integral over y2 is dominated by Ck\'2 e~K2XX+x' and we again obtain the

estimate (2.10) (withy = 0).

The case y = 0, x < — 1, in which we take y = y3, is handled in the same

manner and again we arrive at (2.10) (with y = 0). In (2.10) the constant

depends on x and y.

An argument in [10] shows that the solution we have found is unique. Thus

we have proven

Theorem 2. The unique solution p(£,,x,y,K) of (2.1) for k satisfying (2.7a) is

given by (2.2), (2.3) where <bx(k,a), §2(k,a) are the unique solutions o/(2.4). í/k

satisfies (2.7b), the estimate (2.10) is valid. In (2.10) C depends on x and y.

3. Solution of the integral equation in the "low frequency" case. In this

section we study the equation

(3.1) g(s) - Ç_x H¡%\s - s'\)p(s')ds',      \s\ < I.

We will show how to solve (3.1) for small positive values of k. The method of

solution is due to Sologub [6]. In [7] the author introduced the function spaces

^2(9)' ^2 (fl) m order to study (3.1). Examination of Sologub's method

showed that it fit naturally into the context of these spaces. In [11] it was

shown how these ideas could be brought together to solve a related problem.

Here we use the Sologub method to investigate how the norm of the solution

operator for (3.1) depends on k for small values of k. We then apply this result

to equation (0.1).

3.1. Preliminaries, (a) Definition of the spaces L2(q), W2(q) and 6?.

L2(q) - {/: \\f\\l(q) = Sii l/(0|2(l - /2)1/2*V < =0},
^2(1) ~ if'- fis absolutely continuous on [-1,1],/' e L2(q)). We equip

W2 (q) with the norm

WêiW = I/É.M + \\fÍM-

â = fa <¡>(X) = ¿¿/«y3*«;/ e L2(q)j.
We equip & with the norm of L2(q).

The right hand side of (3.1) defines an operator LK. We have

Theorem [7]. The operator LK for k > 0 is a one-to-one bicontinuous map of

L2(q)onto W2(q).

Here we wish to derive an estimate for \\L~X || which is valid for small values

Of K.
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An application of Holder's inequality shows that L2(q) <^* L (— 1,1) for

1 < P < !• Thus if we extend functions in L2(q) by setting them equal to zero

for |/| > 1, we have, with Lp = Lp(-co, oo),

(3.2) Ml, < Cp\\f\\L2,q)   V/ G L2(q), l<p<i.

In particular we can take Cx = trx'2 in (3.2). We also have the inclusions

W2(q) ̂ > Lx. To derive this we let g E W2(q); then for -1 < x,y < 1,

g(x) = g(y)+fXg'(t)dt,
Jy

• x

Jy

•X

Jy

Integrate with respect to y to obtain

Istol < \g(y)\ + (xg'(t)dt < 1*001 + llg'lL,

(Cx as in (3.2)). Hence we find

(3.3) h\\u<lci\\s\Wi(t,)   V^G wiM-

Another result we will need concerns singular integral operators acting on

L2(q).

Theorem [7]. Let

(3-4) ww-lfcW*,    h<l
Then H is a continuous map ofL2(q) onto L2(q) with a one dimensional nullspace

spanned by p(t) = (1 — r2)      , i.e.,

(3.5) /_' (i - t2rxl2^-t = 0,    H < 1.

The map

is an isometry of L2(q) into L2(q) such that

(3.7) HT = /.

(b) Fourier transforms on Lp, 1 < p < 2.

It is known [5] that the operator of Fourier transformation F defines a
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bounded linear mapping from Lp into Lp, for 1 < p < 2 andp' = p/(p — 1).

Thus iff E Lp, 1 < p < 2, and/ = Ff,

(3.8) 11/11 v < c;||/||v

From this ensues the embedding & <=-* Lp., p' > 4, for if <í> = F(o), o E L2(q),

and 1< p < i U\\L   < C'p\\o\\Lp < C;Cp||o||M?) = CpCpU\. Thus if C,

(3.9) Wv<Cp,|4       4<p'<co.

An important example of a transform pair is embodied in the formula

(3.10) ^^-ijr-^Ä.

7        ? 1/2
The function (k — X ) is defined in the À-plane cut along rays going

vertically up from X — k and vertically down from X = — k (i.e., Ci and Cx of

§2 with k > 0) so that its value at X = 0 is <c. Thus (k2 - X2f ~ /|X| as

|X| -» oo along the real axis. The function (k2 - A2) is in L^ for 1 < p < 2.

The Parseval relation

(3.11)       r Kt)g(t)ds=r M)È(t)dt
•'—00 •' — 00

is valid for all/and g E L■ , 1 < p < 2, where/ = Ff, g = Fg.

3.2. Solution of the integral equation for small k. We seek a solution of (3.1)

in L2(<7). The function g is in W2(q). We may differentiate (3.1) to obtain

g'(s)=f J-H<¡%\s-s'\W)ds'
(3.12) i

= 2i(Ho)(s) + j_x k(s - s')p(s')ds',       \s\ < 1,

where H is defined by (3.4) and

k(s) = l^%\s\)-^1-.w      ós   °   v ' u     m s

The function k is in Lp(-oo, oo) for 2 < p < oo. We now use (3.10) and (3.11)

to transform (3.1) and (3.12). Letting <t> = Fp (3.1) becomes

(3.13) \g(s) = r    fX)eH/2<A,       \s\ < 1,
2 J-"> (k2 - X2f2

while (3.12) becomes



422 PETER WOLFE

\g'(s) = iHF~x<b(s)

(3-14) rw   ~iX   JAiw    u^i

We have used Lemma 2 of [11] on the second term on the right of (3.12).

Lemma 3.1. Let f G L2(q) and T be defined by (3.6). Then for arbitrary

complex C the function

(3.15) <i»(A) = -iFTf(X) + CJ0(X)

is in & and satisfies

(3.16) iHF~x<b(s)=f(s),       H<1.

Proof. The first term on the right of (3.15) is clearly in 6L JQ E & since

J0(\) = lf^e-iXs(l-s2)-l/2ds.

Applying iHF~x to <p and using (3.7) we obtain iHF~x<b = / + iCHF~xJQ, but

(3.17) HF-xJ0(s) = l£t (1 - ,T1/2^ = 0,       \s\ < 1,

by (3.5). This proves the lemma.

We define the operator P to be multiplication by the characteristic function

of the interval [-1,1] and r\(\) = \\\/\- i\/(K2 - \2)1/2. Then tj G Lp for

1 < p < 2.

Theorem 3. Let <b E &be a solution of the equation

(3.18) <b = (\/i)FTPF~x (t#) + (\/2i)FTg' + CJ0

for any C. Then (3.14) is satisfied. Furthermore, if C is chosen so that the

corresponding <> satisfies

1 _,A^ _ f «o       <b(\)

then p = F~x(<b) is the solution of (3.1)

2        J-°°(K2-\2y2

Proof. Suppose </> satisfies (3.18). Apply iHF~x to (3.18). Since tj G L\, -q<}>

G Lx, hence F~xt\<b E Lx and PF~xi)$ E L2(q) so that FTPF~X(#) G &.

Hence by (3.7) and (3.17) we obtain (3.14). Thus <i> satisfies (3.14) which

implies p satisfies (3.12). If p satisfies (3.12) then
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g(s) + k - f\ H<i%\s - s'\)p(s')ds' = 2 f     fX)e'2X°dX.

If we let j = 0 and assume (3.19) holds we find k = 0 so that p also satisfies

(3.1).
Remark. (3.18) is equivalent to the equation derived by Sologub.

(K /i  )

where

„u        1    rl      e "        ,  /"' (1 - t /
V\   = —r       -TTT^dt I    i-'—-dr

2¡J-1 (X       .2\l/2     J-i t

1_ rl       <T'X' /•! (1 - T2)'/2e'>T

2772/^-l(l_f2)l/2^

This form of the equation is probably better suited for computations.

However, for our purposes form (3.18) is more convenient.

Define the operator B by

B<b = (l/i)FTPF~x(ri<b).

As we have seen in the proof of Theorem 1, B maps £ into & We wish now to

estimate ||5||. Direct computation shows that \\rj\\L = k(it + 2). Thus if

$ = Fa (cf. the remark after (3.2)),

sup|«#»| < ¿Mj, < ¿NU) = J¡72II*

Thus <í>tj G L, and ||<í>t/||L| < (2t71/2)_1(t7 + 2)k||<í>||s. It follows that PF~x(ti<b)

E Lj-l, 1] with \\PF(rt)\\^ < (2t7,/2)-,(t7 + 2)K|W|«; thus

\\PF-x(v<¡>)\\L2{g) < (f J    IIPF"1 fo)^ < ^(77 + 2)k||*.

Finally, recalling that T is an isometry on L2(q) we obtain

(3.20) ||J5*<(23/2r1(77-r-2)K||^.

Thus if

(3.21) K < 23/2/(77 + 2)

(3.18) can be solved by iteration to yield a solution of (3.14).
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There remains the problem of choosing C so that (3.19) holds. We assume

k satisfies (3.21). Let B = (I - B)~ ; then the solution of (3.18) is given by

(3.22) <b = (2i)~XBFTg' + CBJ0.

Inserting this value of <b in (3.19) we obtain

(3.23) 1») - }£ j^glnWO + 2cfl ^pUfii.

The integrals on the right in (3.23) are well defined since & °* L , for p' > 4

and (k — A ) G L for 1 < ^ < 2. Later we will estimate these terms

using Holder's inequality with/? = \,p' = 5. Thus we can solve (3.23) for C

if d # 0 where

(3-24) rf = 2/;M^^Ä/0(X).

So suppose d = 0. Let <f> = Ä/0 and a = F~'<f>. Then <J> satisfies (3.18) with

g' = 0 and hence (3.14) with g'= 0. Thus ji, /70(1)(k|.s - s'\)o(s')ds'

= const, and by hypothesis and (3.19) this constant is zero. Thus by

uniqueness o(x') = 0, |jc'| < 1 and so <b = 0. But <¡> = B<b + J0 = J0 which is

a contradiction. Thus d cannot vanish if (3.21) holds and we can use (3.23) to

find C and hence <i>.

3.3. Estimate of the norm of the solution operator. Denote the operator on the

right hand side of (3.1) by LK. Then L~x maps W2 (q) onto L2(q). We now wish

to estimate \\L~X \\ where the norm is taken in t(W2(q),L2(q)).

We start by assuming

(3.25) - k < 2,/2/(7r + 2).

If (3.25) holds then

(3.26) ||£|| < 2

and

(3.27) II/-JH <(21/2r,(7r + 2)»c.

We can now estimate <b as given by (3.22) and (3.23). First consider d given

by (3.24). This can be written
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The first term has the value 2ttH0xX'(k/2)J0(k/2) [6]. To estimate the second

term we use Holder's inequality withp = f, p' = 5. From (3.9) and (3.27),

C^rztf^1 - S)J°](»dX< C5\\(I - B)J0\\J(k2 - X2)
,2 x-1/21

L5/4

< Ak*'5

where A is a generic constant independent of k. Now

(3.28) H¡x)(k\x\) = (2i/ff)ln(icy|jc|/20|jc| + h(x)

with \h(x)\ < CaK In«, ¡jc| < a (see the discussion after (1.20) for the defini-

tion of the logarithm), so that

(3.29) d = 4/ ln(Ky/4/) + o(l)   as k ^ 0.

Now consider the first term on the right in (3.23) which we write as

1 r00        dX 1 r°°        dX

Using (3.10) and (3.11) the first term can be written

!£ Äb(,)Wi|)(rg')Wdt

= i In«/^ (rg')(/)o-/ +1/^ (i/0(1)W/|) -1 Inic)(7fr')0<ft.

By (3.5) and (3.6) the first term is zero. Using the Schwarz inequality in L2(q)

the second term is bounded by

h\i<)LAi-ñ-yi ul%\t\)-*\**dt.

The integral can be bounded independently of k for small k. Repeating a

previous argument

Cíx^-^w
(<C2 - A2)

< /ÍK4/5 lg'IL2(?)I

so that

Sl-^^2^i'(X)\<A\\g\\wRq).
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From (3.3) |g(0)| < (3/2)C, Mm<]), so that

(3.30) C<í/-1^||g!|^,(?).

Also

w&r'BFTg'KWg'w^y

Thus from (3.22) and (3.30) if p is the solution of (3.1) and <b = Fo,

(3.31)

HpIIl2(?) = IWIs < d-XA\\g\\w¡{q) + \\g'\\L2{q),       0 < k < 2xl2/(* + 2).

The important thing about this estimate is that A is independent of k.

3.4. Application to equation (0.1). We now turn our attention back to (0.1).

We first observe:

Lemma 3.2. The solution of the equation

(3.32) 1l¡X_x\n^i\s-s'\p(s')ds' = g(s),

g G W2(q), is given by

p(s) = (2i)-X(Tg')(s)

(3-33) +27M(1-^V1^)4/>H(^)(04

Proof. The verification of (3.32) is a simple computation. We use the fact

(3.34) f1 (1 - i2)"I/2ln|/ -i\dt = -a ln2,       |£| < 1.

Also from (3.5) and (3.6), if / G L2(q),

(3.35) f_i(Tf)(t)dt = Q.

Thus

(3,6, |£ ¿¡M* -%ffi[m - It mwm*}

*£ \n\s - s'\p(s')ds' = \f_x \n\s - s'\(Tg')(s')ds'

(3 37)

-¡Pih-li',1*»1!
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Let/(j) = tT1 Six ln|* - s'\(Tg')(s')ds'. Then by (3.7),

As) = \Ç_X jèjVWW)* = HTs'(s) = g'(s).

Thus/(s) = g(s) + C. Setting s = 0 gives

C = lf\n\t\(Tg')(t)dt-g(0).

Hence

(3.38)   l-f_x \n\s - s'\(Tg')(s')ds> = g(s) - [g(0) - 1/^ ln|/|(7g')(')¿'].

The result now follows from (3.36), (3.37), (3.38).

Using (3.28) we see that if p is given by (3.33), then

(3.39) Ç_x p(s')H^(k\s - s'\)ds' - g(s)   < ^K2lnK||p||¿2(9).

Note that ||p||¿ ,^ can easily be estimated in terms of ||g||^i(9). We now turn

to (0.1). Use (328) to write

(3.40) -H¡%R) = -(2i/w)\n(KyR/2i) - h(R)

where R = [(x - s)2 + y2f2 and h is as in (3.28). Let p0 be defined by (3.33)

with g = -(2i/ir)ln(Ky/î/2i), R' = dR/ds,R0 = (x2+y2f2.

P0(s) = -tt-xT(R'/R)(s)

<3'41)    +^[^*+ttMty>*¥-**-

Observe that ||p0||¿ tq\ is bounded independently of k. Let p be the exact

solution of (0.1) and px = p — p0. Then

jlx H¡x)(k\s - s'\)px(s')ds' - -H¡x\kR) -jX_x H¡x\k\s - s'\)p0(s')ds'

- ~h(R)-fX h(\s - s'\)p0(s')ds' = k(K,s).

-l

-l

-l

The function k is analytic in k as an element of W2(q). Also \\k(ic, Ollwu«)

< Ck In«, ||3/c(/c, O/okII^u \ < Ck ln/c. Thus applying the basic estimate

(3.31),

(3-42) ||p, ||¿2(9) <Ck2 In k.
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If we define the Hankel function in the plane slit along the negative real axis

then LK is an operator valued analytic function such that L~x exists for k > 0.

Thus, by a standard theorem on analytic families of operators [1], L~x is an

operator valued analytic function for k > 0. Thus px = L~x k is analytic in k

for k > 0 (as an element of L2(q)). dpx/dn satisfies the equation

f^H¡%\s-s'\)^(s')ds'

" "/-i ftOgj^M* -s'l)*'+ !("•*>•

The right hand side can be estimated in the norm of W2(q) by Ck lnic; thus

by (3.31),
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