
TRANSACTIONS OF THE

AMERICAN MATHEMATICAL SOCIETY
Volume 231, Number 2, 1977

STRUCTURALLY STABLE GRASSMANN
TRANSFORMATIONS

BY

STEVE BATTERSON(')

Abstract. A Grassmann transformation is a diffeomorphism on a Grass-

mann manifold which is induced by an n X n nonsingular matrix. In this

paper the structurally stable Grassmann transformations are characterized

to be the maps which are induced by matrices whose eigenvalues have

distinct moduli. There is exactly one topological conjugacy class of complex

structurally stable Grassmann transformations. For the real case the topo-

logical classification is determined by the ordering (relative to modulus) of

the signs of the eigenvalues of the inducing matrix.

1. Introduction and preliminaries. Let Diff(A/) be the space of diffeomor-

phisms on a compact manifold M. Two diffeomorphisms / g G Diff(A/ ) are

topologically conjugate, denoted / ~ g, if there exists a homeomorphism

h: M -* M such that hf = gh. This form of topological equivalence implies

that the maps have similar qualitative properties. A diffeomorphism / is

structurally stable provided there exists a neighborhood U of fin Diff(M) such

that each g E U is topologically conjugate to /. This means that small

perturbations of the function do not alter its topological behavior. Given a

manifold M two of the fundamental problems in dynamical systems are:

(1) characterization of the structurally stable maps in Diff(A/),

(2) classification up to topological conjugacy of a large subset of Diff(A/).

In this paper we consider these questions for a subset of the set of

diffeomorphisms on a certain class of compact manifolds. Before elaborating

on this problem, we will give some basic definitions.

For the following definitions M is a compact manifold, p E M, and

/ G Diff(A/). \ff(p) = p then/? is a fixed point off. If there exists a nonzero

integer m such that fm(p) = p, then/? is said to be a periodic point off. A point

x G M is called a nonwandering point of/provided that for any neighborhood

U of x there exists a nonzero integer m such that fm(U) fl 1/^0. The sets
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of fixed points, periodic points, and nonwandering points for a diffeomor-

phism/are denoted respectively by Fix(/), Per(/), and ß(/). Each of these

sets is invariant and is preserved by a topological conjugacy (e.g., h(iï(fj) =

Q(hfl-X)).
An invertible linear map on a Banach space is hyperbolic if and only if its

spectrum is disjoint from the unit circle. If p £ Fix(/) then p is a hyperbolic

fixed point of /provided the derivative of / at p, Df(p), is a hyperbolic linear

map. Suppose M has metric d and p is a hyperbolic fixed point off. The stable

manifold of p, Ws(p), = [x E M\d(p,fm(x)) -» 0 as m —> oo) and the unsta-

ble manifold of p, Wu(p), = {x £ M\d(p,f~m(x)) -* 0 as m -► oo). These

manifolds are also preserved by conjugacies.

A periodic point p of period m is hyperbolic provided that it is a hyperbolic

fixed point of fm. For a hyperbolic periodic point p the stable and unstable

manifolds are defined to be the stable and unstable manifolds of p under fm.

A diffeomorphism / on a compact manifold M is said to be Morse-Smale

provided it satisfies the following conditions:

(1) ß(/) is finite;

(2) all periodic points are hyperbolic;

(3) for each/7, q £ ñ(/), Ws(p) and W"(q) have transversal intersection.

The first condition implies Q(f) = Per(/). The following theorem is due to

Palis and Smale [10].

Theorem./ E Diff^M) is Morse-Smale if and only ifü(f) is finite and f is

structurally stable.

A hyperbolic structure on ß(/ ) is a continuous splitting of the tangent bundle

Tq(j)M of M restricted to ß(/), T^f)M = Es 0 £", invariant under the

derivative Df, such that Df is contracting on Es and expanding on E". A

diffeomorphism / satisfies Smale's Axiom A if and only if fl(/) has a

hyperbolic structure and fi(/) is the closure of Per(/).

Suppose/satisfies Axiom A. If x E ß(/) then the definitions of stable and

unstable manifold can be generalized to

Ws(x) = {y E M\d(fm(x),fm(y)) -» 0 as m -► oo)

and

W"(x) = {yE M\d(rm(x),rm(y)) -* 0 as m -» oo}.

If for all x,y E fl(/), Ws(x) and W"(y) have transversal intersection then/

is said to satisfy the strong transversality condition.

Theorem. If f satisfies Axiom A and the strong transversality condition then f

is structurally stable.
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This theorem was conjectured by Smale and proven by Robbin and

Robinson [11], [13]. It is unknown if the converse is true, but hyperbolicity of

periodic points is a necessary condition for structural stability [3]. In this paper

we will characterize the structurally stable maps in a certain set of diffeomor-

phisms. The following corollary will simplify this problem:

Corollary. ///, g, h G Diff(M) and h is a conjugacy for f and g then

(\)f is Morse-Smale if and only if g is Morse-Smale;

(2) f is structurally stable if and only if g is structurally stable.

Proof of (1). Suppose/is Morse-Smale and g = h ° f ° h~x. Then Í2(g) is

finite since Sl(g) = h(Q(f)). Suppose gm(p) = p and produce q E M such

that/? = h(q) and fm(q) = q.

Then

Tpgm = Tp(h o r o h~x)

= Th(q)(h o f>» o h~x)

= (Tqh)(Tqr)(TqhYX.

Thus Tpgm and Tqfm have the same eigenvalues and/? is a hyperbolic periodic

point of g.

Suppose h(p), h(q) E Q(g) and h(x) G Wgu(h(p)) n Wgs(h(q)). Then x

G W/(p) n W/(q).

Th(x)M = Txh(Tx(M))

= Txh(TxWfu(p)+TxW/(q))

= (Txh)(Tx W/(p)) + (Txh)(Tx W/(q))

= Th{x)h(W/(p))+Th{x)h(W/(q))

= Th(x)Wg"(h(p))+Th(x)W/(h(q)).

Therefore g is Morse-Smale. The proof of part (2) is similar.

Let G(k, n; F) denote the Grassmann manifold of A>dimensional subspaces

of F" where F is either R or C. G\(n; F) will be the general linear group of

nonsingular n X n matrices over F. Each A G Gl(«; F) induces a (real or

complex) Grassmann transformation Ak G Diff(G(k, n; F)). Let ^(k, n; F)

be the manifold of Grassmann transformations on G(k, n; F). Our goals are

the following:

(1) Characterize and classify the structurally stable maps in fT(A:, «; F).

(2) Analyze an open, dense set in 5"(k,n; F).
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Theorem A. Let A £ Gl(n; F). The following are equivalent:

I. Ak is Morse-Smale.

II. Ak is structurally stable.

III. The eigenvalues of A have distinct moduli.

Corollary. The structurally stable maps form an open, dense, submanifold in

^(k,n; C) and any two structurally stable maps are topologically conjugate.

The above results (whose proofs are contained in the following section)

provide a complete description of the complex case. The structurally stable

real Grassmann transformations are neither dense in (ti(k, n; R) nor are they

all topologically conjugate to each other. In classifying these maps we use a

modification of Smale's definition of labelled diagram. In Theorem C we

obtain a classification based on the ordering (relative to modulus) of the signs

of the eigenvalues of the inducing matrix.

Supposed, B, P E Gl(n;F) and B = PAP~X. Then Bk = PkAk(Pk)~x and

thus the similarity transformation induces a differentiable conjugacy. Conse-

quently in characterizing structurally stable maps and in classifying ^(k,n; F)

it will suffice to consider matrices in the canonical form described below.

An irreducible block is, for some j > 1, a / X/ matrix in one of the

following two forms:

O
/•J-ß

o 1

a

ß

a

1

0

a
-ß

0

1

ß

a

O \
o
i

O
1

o

aEF

a, j3ER

a#0

la + ßi\ # 0

a    ¡i

-ß    otj

Canonical Form Lemma. If A E Gl(«; F) then A is similar to a matrix of

the form

,o
O

where for each i:

(1) all eigenvalues ofo¡ have the same modulus \o¡\,

(2) M < k+1|,
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(3) o¡ consists of irreducible blocks along its diagonal and O'i elsewhere.

Matrices in this form will be said to be in canonical form.

N. Kuiper has obtained a virtually complete classification of 5"(1,/7;R) [6].

We state his results in terms of canonical forms.

Theorem. If two real projective transformations Ax and Bx can be put in the

canonical forms A = ox 0 • • • © om and B = rx® ••• © rm and there exist

Xj, ..., Xm > 0 such that, for each i, o¡ = X¡r¡, then Ax ~ Bx.

Kuiper has also proven the converse of this theorem for the transformations

in ?T(1,«; R) whose periodic points all have period q or 2q where q is a prime

power or 1.

2. Structurally stable Grassmann transformations. The purpose of this section

is to characterize and classify the structurally stable diffeomorphisms in

V(k,n;F).
Definition. Let cr< be the coordinate plane spanned by the rx, ..., rk

axes in F". We will assume r¡ < rí+x.

If A is a diagonal matrix, then each cr is a fixed point of Ak. We will

compute the derivative of Ak at c

Consider the set of « X A: matrices: 6 ~» ß« ... = {{xü)\xr¡ = 1 and

xrj = 0 if i #/}. The column vectors of each {*,.} span a ¿-dimensional

subspace of F". Q is a chart for cr with the coordinates of fx..} being the

k(n — k) values of the matrix in the non-/; rows. We will call Q the standard

chart for c„
l\,...,1¡

Example. A = dg(l 2 3 4),

H ° - •
[\x3   x4//J

Lemma. Let A = dg(a, • • • an) and cr . be a coordinate plane in F". Then

in (¿-coordinates the derivative of A^ at c.      „ is
K r\,... ,/fc

i   ii <;<»

DA^.')=dgkU/<*i"r','"l--fc

Note. The derivative is a diagonal matrix consisting of all quotients of

{ax,...,a„} where the subscript of the denominator element is an /• from

cr      r and the subscript of the numerator is not an r.

Example. A = dg(l 2 3 4),
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DA2(cXj) = dg(2 2/3 4 4/3).

Proof of lemma.

'a, x
\A\

A({x„}) =

x¡ denotes /th row vector of {x¡j}. Then 04 ({Xy })),..,■ = ¡2f. and (^({x^-})) ■ = 0

if i ¥> j.
Let {y¡j) be the matrix which results from dividing the /th column vector

(i = 1,2,...,*) of^.}) by a,..

Then y^(- = 1 and yr, = 0 if / 7e / Also .y« = a/a,, if / # <j, / = 1, ..., /<.

So{^}ee.
Each coordinate x,y of {x¡j} is mapped by /l^ to the coordinate (a¿ar)x¡j.

Q.E.D.
In proving the lemma we have also shown that if A is diagonal and Q is a

standard chart then Ak(G) = 6 and ^^ is linear in standard coordinates on 0.

Thus, if/j is a hyperbolic fixed point in 6, Ws(p) C Sand Wu(p) C (3.

Lemma. If p E G(k,n;F), A = dg(ax •••an), and \a¡\ < |a/+1| /Ae« fAtve

ax/sr coordinate k-planes q, q' E G(k, n; F) such that p is forward asymptotic

to q and backward asymptotic to q'.

Proof. Let/7 E G(k, n; F).

If v = (vx,. .., v„) ¥= 0, define s(v) = max(/ | Vj i= 0}. Choose a basis

{£'}*-1 for/7 such that s(v') < s(vi+x). ThenAm(v') -» cs(^ as m -> oo. So

(4fc)M 0>) -► ̂ (S'),. •., »(?*) as m -* °° •

Similarly /7 is backward asymptotic to a coordinate plane.

The following theorem characterizes the structurally stable diffeomorphisms

in 5"(/c, n; R) and $(k, n; C).

Theorem A. Let A £ Gl(n; F). The following are equivalent:

I. Ak is Morse-Smale.

II. Ak is structurally stable.

HI. TAe eigenvalues of A have distinct moduli.

Corollary 1. Ak is structurally stable if and only if A is similar to a diagonal

matrix whose entries are of increasing modulus.

Proof of Theorem A. It suffices to consider canonical forms.

I => II follows from the theorem of Palis and Smale.

Ill => I. To show Ak is Morse-Smale we must prove:

(1) Q(Ak) is finite.
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(2) The periodic points of Ak are hyperbolic.

(3) For each/?, q E tl(Ak), Wu(p) and Ws(q) have transversal intersection.

Suppose A = dg(a, ■■•an) and 0 < \a¡\ < |û/+i|. Let /? = cr be a

coordinate plane. Then/? is a fixed point of Ak.

By the lemma

«•W-*{^}iíJ<t"">    '-i.*•
Since |a,| ^ |ar| (if / ^ r7),/? is a hyperbolic fixed point of Ak.

Pick/? G G(k, n; F) and produce q = cr|such that p G If J(^). If ß is

a standard chart for q, then p E Q. But ,4¿ is linear in standard coordinates

on the invariant chart Q. Thus Q(Ak) n 6 = {9}. So if/? is not a coordinate

plane, then /? wanders.

It remains to prove the transversality condition.

Let /? = cn . and q = cs s and let Q be the standard chart for /?, i.e.,

Q = {{jchJIx,},- = 1 and x • = 0 if / t^ /} where each {je«) is an « X ä: matrix.

Wu(p) = {{x^Kxj,} G e and x.. - 0 if / < 5} C 6.

Let {i^.} G If "(/?) n H^g) and suppose {by} is in 6 coordinates.

For transversality it suffices to show:

Ws(q) D {{XiJ}\{Xij} E G and x„ = by if / > 5}.

Suppose {xy} is in the above set. Let x and 6 denote the/th column vectors

of {xy} and Í6,-,}.

Then {è/}y=1 is a basis for {£,.,.} G G(k,n;F). Since {o/y} G Ws(q), there

exists another basis {/},_] such that Am(fj) —> cy as m -» 00.

Each /• can be written as a linear combination,

mj

fj = ^ß,jbi   where/?     #0.
/=l

Since f>.) G ß, 6r m = 1 and br , = 0 if / =£ w,. So the /•„ coordinate of the

vector / is•7

m,

(fj\ = 2 h\i = A»/ " °-

In general a nonzero vector is forward asymptotic under A to cs, if and only

if it is nonzero in the Sj place and zero beyond the Sj place.

Therefore Sj, > rm.
\k

Let jj = 2/% ifyx,. Then {^}y_j is a basis for {^}.
The column vectors x¡ and b¡ have the same coordinates in the r, place and
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below the r¡ place. So f¡ and y¡ have the same coordinates in the rm place and

below the rm place. Since Sj > rm ,f¡ andjy are both forward asymptotic to cs.

Therefore {jc^} £ Ws(q).

To prove II =» III, suppose condition III is not satisfied.

Case 1. A is diagonal and \a¡\ = \ai+x\ for some i. Let p = cr r be a

coordinate plane with r = /, but r+x ¥= i + I.

By the lemma DAk(p) is a diagonal matrix one of whose entries is a¡+x/a¡.

Thus/7 is a nonhyperbolic fixed point. So Ak is not structurally stable.

Case 2. F = R and A has complex eigenvalues, but all canonical blocks are

trivial (i.e., no ones on the superdiagonal).

A can be approximated by a matrix B which is also of the form of Case 2,

but whose complex eigenvalues are roots of real numbers. Then for some

m, Bm is diagonal and at least two of its eigenvalues are of the same modulus.

By Case 1, (Bk)m has a nonhyperbolic fixed point. So Bk has a nonhyper-

bolic periodic point. Thus Bk is not structurally stable. Since Bk approximates

Ak, Ak is not structurally stable.

Case 3. All nontrivial canonical blocks are triangular.

We will approximate A by a matrix whose canonical form is of either Case

1 or 2.

Suppose A contains the w-block (a may be real or complex)

Perturb this block to

'a + ex       1

a + e2   1

O m-2

O
• a + e„,_,     1

a     1

where the e/s are small positive numbers.

If F = R the canonical form for the perturbation is

fa + £]

a + e-,

O

o
a + em-2

a

—£_
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If F = C the canonical form for the perturbation is (the order may actually be

different)
fa + ex

a + £->

O *a — eMi

a + emi,

In the above manner, perturb each block of the form

fa   \     Q

O a    1

a

Let B be the matrix which results from the perturbations and let C be the

canonical form for B. Then C is of the form of Case 1 or 2 and thus Ck is not

structurally stable. Since Ck is differentiably conjugate to Bk and Bk approxi-

mates Ak, Ak is not structurally stable.

Case 4. F = R and A contains nontrivial complex canonical blocks.

Consider the canonical 2w-block

/-•

\

I

0

a

-b

O

o
i
b

a

Perturb this block to

I a + ex
I    -b     a + ex     0

a + e2

-b   a + e2   0    1

\

O
a + £m-l

\

a     A     1     0

-b   a    0     1

a    ba    b   I

-b   a

O
\

fcm-l

1       0

0     1

a    b

-b   a
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where the e('s are small distinct positive numbers. The canonical form for the

perturbation is

/a + e,      b \
-b     a + ex \

a + e2       b O

—b      a + t2

a + em_x b

-b       a + em_x

\       ° -; :/

Perturbing each nontrivial complex block in the above manner yields a

matrix whose canonical form is that of either Case 2 or Case 3. Therefore Ak

is not structurally stable.   Q.E.D.

Let S(k,n;F) denote the set of structurally stable diffeomorphisms in

?T(A:,n;F). For the remainder of this section we shall be concerned with the

classification of S(k, n; F) up to topological conjugacy.

Lemma. Ak = Bk if and only if A = XB for some 0 # X E F.

Proof. If A = XB then clearly Ak = Bk. To prove the "only if" part, we

first consider the case where B = I.

Suppose Ak — Ik and A = {a¡).

Let e¡ be the vector (0,..., 0,1,0,..., 0) where the 1 occurs in the ith place.

Then A((ex,.. .,e¡_x,ei+x,...,ek+x}) = <«?,,...,£,_,,ei+x,.. .,ek+x}so

k

A(ek+i) G .n <<?,,...,<?,_,,<?,+1,...,<?i+1> = (ek+xy.

Similarly A maps each e¡ into <e(). Therefore A is a diagonal matrix. If two of

the diagonal entries are not equal, then there is a coordinate plane at which

the derivative of Ak is not the identity. Thus there exists 0 # X E F such that

A =XI.

Suppose Ak = Bk. Then (AB~x)k = Ak(Bk)~X = Ik. Produce 0 ¥= X E F

such that AB~X = XI. Then A = XB.   Q.E.D.
If Z = {XI\X E F}, then Gl(/i; F)/Z is a manifold. Define $: G\(n; F)/Z

-» ^(k,n; F) by $([A]) = Ak. The map $ is a diffeomorphism (it is injective

and well defined by the preceding lemma). Let S(n;F) be the set of all

A E Gl(n; F) such that the eigenvalues of A have distinct moduli. The set

S(n;F) is open in Gl(n; F) and thus projects to an open set in Gl(«; F)/Z.

Since §(&,«; F) is the image under O of this projection, §>(&,«; F) is an open
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submanifold of 5(k, n; F). If F = C then S(n\ C) is dense in Gl(«; C) and thus

%(k,n; C) is dense in ^(/c,«; C).

Definition. If Ak E %(k,n; R) define Sgn(/1): {1,...,«} -> {-1,1} to be the

finite sequence given by Sgn(^)(/) = sgn(À() where X¡ is the eigenvalue of A

of ith largest modulus.

Then Sgn(A) gives an ordering of the signs of A's eigenvalues. We now state

a corollary to Theorem A.

Corollary 2. If Ak, Bk E %(k, n; R) and either Sgn(^) = Sgn(ß) or Sgn(,4)

= - Sgn(B) then Ak ~ Bk.

Corollary 2 does not give a complete classification of $>(k, n; R). Later in this

section we will show that if k > 1, there exist Ak, Bk E S(/<,2/<:;R) with

Ak — 5¿ but SgnC-Q ̂ Sgn(5) and Sgn(A) # - Sgn(5). For structurally

stable transformations on complex Grassmann manifolds the situation is

simpler.

Corollary 3. S(/c, n; C) is an open, dense submanifold ofö(k, n; C) and there

is exactly one topological conjugacy class in S(/<, n; C).

Proof of Corollary 2. We follow the method of Kuiper [6].

Suppose

A = dg(a„ ..., a„),       |a»|<|a,+,|,

B = dg(bx,...,b„),       \bj\<\bJ+l\,

and Sgn(/1) = Sgn(5).

Lemma. If\aj_x \ < ß\aj\ then

Ak - (dg(ax,...,an))k~(dg(ax,...,aj_x,ßaJ,ßaj+x,...,ßa„))k.

Before proving the lemma we will complete the proof of the corollary.

Produce /3,, ..., ßn > 0 such that

bx = ßxax,

b2 = ß\ßla2'

h = ß\ß2-~ßn*n<

then applying the lemma:
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Ak = (dg(ax,...,a„))k

= (dg(ßxax,...,ßxan))k

= (ag(bx,ßxa2,...,ßxan))k

~(dg(bx,ßxß2a2,...,ßxß2an))k

since\bx\<\b2\ = \ßxß2a2\=ß2\ßxa2\

= (dg(bx,b2,...,ßxß2an))k

~ (dg(¿i ,b2,...,bn_x,ßxß2---ßnan))k

= (dg(bx,...,bn))k

-lu-

vt Sgn(A) = - Sgn(fi), then Ak ~ (-B)k = Bk.

It remains to prove the lemma.

Suppose |a_,| < /?|a,-|. For each real number / between 1 and ß, define

A' = dg(a,,..., üj_x, ta,, taj+x,..., tan).

Note.A1 = A and (A% G §(«,»; R).

Thus {(A')k} is a path of structurally stable diffeomorphisms between the

two diffeomorphisms which we want to show are conjugate. Since structural

stability is an open condition, the two diffeomorphisms are topologically

conjugate.

In proving Corollary 2 we have actually shown that if Sgn(A) = Sgn(5)

then Ak and Bk are in the same path component of S(A:, n; R). The proof of the

second part of Corollary 3 is similar and amounts to showing that §(&,«; C) is

path connected. The hypothesis of the lemma is changed to |fl-_,| < |/to-|

where ß is a complex number. To prove the new lemma, define A' by choosing

a path of /'s in C between one and ß such that the modulus of each point on

the path is between 1 and \ß\.

For the remainder of this section we shall be concerned with the topological

classification of §(&,«; R). We begin by showing the relationship between

S(k,n;R) and S(n-k,n;R). Recall that if Ak E S(A:,n;R) then Sgn(A):
{1,...,«} -> {—1,1} gives the ordering of the signs of the eigenvalues (from the

smallest to largest). Note that Sgm/T1 ) merely reverses the ordering of Sgn(/1).

Theorem B. // Ak G $(k,n;R) and Bn_k E %(n - k,n;R) and either

Sgn(A~x) = Sgn(5) or Sgn(A~x) = - Sgn(5) then Ak ~ Bn_k.

Examples.



STRUCTURALLY STABLE GRASSMANN TRANSFORMATIONS 397

(dg(l 2 3 4 -5))2 ~ (dg(-l 2 3 4 5))3,

(dg(l -2 3 4))2 ~ (dg(l 2 -3 4))2.

Proof. We can assume A = dg(ax • • • an), |a, | < |a/+, |. Let dk : G(k, n\ R)

-» G(n - k,n; R) be the diffeomorphism that maps a /c-dimensional subspace

of R" to its (n — A;)-dimensional orthogonal complement.

Lemma. dk is a conjugacy for Ak and (A~x )n_k.

Proof of lemma. A~x = dg(a,-1 • • • a~x ).

Let p E G(k, n; R) and suppose u is a vector in p. Suppose r is a

vector in dk(p) £ G(n - k, n; R). If u = (w„ ... ,un) and r = (rx,..., rn)

then A(ü) = (axux,..., anu„) and A~x(r) = (axxrx,..., a~xrn), and u-r =

0.

A(u)-A~x(r) = (uxrx,... ,unrn) - « • r - 0.

So ,4 applied to a vector w in /7 is orthogonal to A~x applied to a vector

which is orthogonal to u. But the choice of vectors was arbitrary. Therefore

the diagram commutes:

Ak
G(k, n; R)-> G(k, n; R)

*               (A~l) *

G(n - k, n; R)-'L-lL+G(n - k, n; R)

Returning to the theorem, suppose Sgn(/1-1) = Sgn(i?). Then by Corollary

2, (A~X)n_k - £„_*• So by the lemma' ^A ~ 5«-fc-If Sgn(^_1) = - Sgn(B),

then Ak~(-B)n_k = Bn_k.
For n = 2k Theorem B gives some conditions sufficient for the topological

equivalence of elements in S(k,n; R). We shall now show that these conditions

combined with those given in Corollary 2 are necessary. This will complete the

classification of S(k,n; R).
For the remainder of this chapter assume unless stated otherwise that

Ak,Bk E S(k,n; R) and that A and B are in canonical form. Since Ak and Bk

are also Morse-Smale we can define their diagrams.

If/7, q £ Fix(Ak)thenp < a if and only if Wu(p) n Ws(q) * 0.Up < q

and p 7e q, then p < q. A diagram of Ak consists of vertices corresponding to

fixed points and oriented segments from vertex p to q (denoted p -» q) when

p < a, but there is no ^' such that p < a' < a. If /7 -» a then /7 is said to give

to q and # is said to receive from p.

The following lemma describes the diagram structure of a canonical form
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structurally stable transformation. Lemma a is also valid for F = C.

Lemma a. (1) c^     ^ < <^,...,,t if and only if, for each i, r¡ < s,..

(2) c -» c, >4 // ana" o«/y // /Aere ex/s/s 1 < / < k such that

r¡ = Sj: — 1 a/ia* r¿ = i, /or / # /.

(3) A vertex can give to at most k other vertices and can receive from at most

k other vertices.

Proof. For (1) look at Wu(c ) C 6where Sis the standard chart for

cr . Consider what happens to a point in W"(cr ) under forward

iteration.

(3) follows from (2) which follows from (1).

Lemma b. If p -» q, then [W"(p) n Ws(q)] U [p,q] is a circle which is

invariant under Ak. Also p and q are the only fixed points of Ak\([Wu(p)
D Ws(q)] U [p,q]).

The diagrams that we have defined are special cases of the Morse-Smale

diagrams which Smale describes in his survey article [15]. Our labelling of the

diagrams will be different from that of Smale.

Label p -* a with a "+" ("—") if Ak preserves (reverses) orientation on

([Wu(p) n Ws(q)] n [p,q]). Lemma a implies that without labelling, the

diagram is completely determined by n and k. The diagrams of Ak and Bk will

be defined to be equal provided that they have the same labelling.

Lemma c. (1) The labelling of cr      . -* cr.r  ,+!,... is the sign of

anan+\•

(2) Ak and Bk have equal diagrams if and only if either Sgn(A) = Sgn(5) or

Sgn(A) = - Sgn(B).

Definition. The//A row in the diagram of Ak is the set of fixed points with

stable manifolds of dimension/.

Lemma d. The fixed point c is in row (2,=i r¡ ~ k(k + l)/2).

Definition. H: Fix(^^) -* Fix(Bk) is a diagram isomorphism if and only if:

(a) dim(Ws(H(p))) = dim(Ws(p)) for any/7 £ Fix(Ak).

(b)p^q<*H(p)-*H(q).
(c) If p -* q then sgn{p,q) = sgn{H(p),H(q)) where sgn{p,q) is the sign

(+ or -) of the diagram arrow.

For the definition of diagram isomorphism we will not require A and B to

be in canonical form. If A and B are in canonical form then ¥ix(Ak)

= Fix(5^). In this case we shall say that the diagram isomorphism is a

diagram automorphism on the diagram of Ak.

Examples.
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(1) (dg(-l 2 3 4))2 (2) (dg(l 2 3 -4))2

12

13

12
I

13

(3)(dg(12 3 4))x

1

1+
2

+

14 23 14' 23

24

34

24

+

34

The diagrams of examples (1) and (2) are isomorphic. The diagram

isomorphism is also a diagram automorphism.

(4) (dg(-l 2 3 4 5))2 G $(2, 5; R)
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Note. The only diagram automorphism on the diagram of example (4) is the

identity.

We shall use the diagrams to distinguish maps which are not topologically

equivalent. We now give an example of two diffeomorphisms in S(2,4; R)

whose diagrams are not isomorphic. Using Smale's definition of labelling,

these same maps have diagrams that are equal. The diffeomorphisms are not

conjugate.

(dg(l 2 3 4))2 (dg(l 2 3 -4))2

14

12

+

13

23 14

12

13

.+

23

/+

34

+

34
Same maps with Smale diagrams

dim Ws dim IV"

34

+

34

12 + 4 12 +

+ 13 + + 13 +

+ 14 + + 23 + 2 2 + 14 + + 23 +

+ 24 + 3 1 + 24 +

+ 34 4 0 + 34
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The sign on the left (right) side of the vertex indicates whether the map

preserves or reverses orientation on the stable (unstable) manifold of the fixed

point.

If k > 2 the first three rows (without labelling) in the diagram of Ak are:

r°w0 C\,2,...,k

rowl Ci,2,...,fc-i,fc+i

rOW 2 cl,2,t^,k-l,k+2 Cl,2?..,fc-2,fc,fc+l

Lemma e. If H is a diagram automorphism on the diagram of Ak, then H is

determined by its restriction to row 2 (i.e., if A, B, C are in canonical form and

Ak, Bk, Ck E %(k,n;R) and H: ¥\x(Ak) -» Fix(Bk), H': Fix(Ak) -* ¥ix(Ck)
are diagram automorphisms whose restrictions to row 2 are equal, then the

diagrams of Bk and Ck are equal).

Proof. If k = 1, each row has only one element. Thus for k = 1, the

identity is the only diagram automorphism.

Suppose k > 1 and H is a diagram automorphism. Then row 0 and row 1

each have only one element which therefore must be fixed by H.

To prove the lemma, it suffices to show that in each row/ (/ > 3) there are

no two elements which receive from exactly the same vertices.

Suppose p and /?' are in row/ > 3 and that both p and /?' receive from q in

row/ - 1.

Let/? = c„       r. Then q is of the form q = c.      .    , _,, , and/?' is
r <\,...,rk i i rx,...,rm_\,rm-\,rm+u...,rk f

of the form/?' = cr      .   _., „        r    ,   ,,
r r],...,i¡_],r,+l,i)+],...,rm_],rm-l,rm+i.rk

So the indices of /? and /?' agree at all spots except for / and m where they

differ by 1. It would be impossible to find a q' ¥= q that gives to both p and /?'.

It remains to show that there cannot exist/? and/?' in row/ (/ > 3) which

both receive from q and only q.

Up receives from exactly one vertex, it has one of the following two forms:

(l)P = Cr,,r, + 1.r, + k-l',

(")P = Cl,...,m-\,rm,rm + \.rm + k-m, rm > m-

Clearly there do not exist /? and /?' in rowy such that both /? and /?' are of form

(i).
Suppose

P = C\.m-l,r„,rm+l.r„ + k-m,      Tm > W>

Then

1 =  CI,...,m-l,rn-l,rm + l.rn + k-m-
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Now p' can only have one gap in its sequence and p' must be derived from

raising by one an element in the sequence for q. Since there is a gap between

rm — 1 and rm + 1 in the sequence for q, that sequence must stop at rm — 1 or

else there would be two gaps in the sequence for p'. This forces m = k.

Thus/7 = c,,...,*..,^, q = c,.k-iA-v Then/7' = c,.*_u,rt-i-

Since // can only have one gap in its sequence, rk— I = k + I. This means

P' = c\ ... k-2Jck+\ • ̂ ut ïhenp' is in row 2.   Q.E.D.

Corollary. There are either 1 or 2 automorphisms on the diagram of Ak.

Proof. The identity is always a diagram automorphism. There are only 1

or 2 elements in row 2, so there can be at most 2 automorphisms.

We are now ready to classify S(k,n; R).

Theorem C. Let Ak, Bk E S(k, n; R). The following are equivalent:

l.Ak~Bk.
II. diagram (Ak) is isomorphic to diagram (Bk).

III. One of the following is true:

(i) Sgn04) = Sgn(fi),

(ii) Sgn(A) = - Sgn(B),

(iii) n = 2k andSgn(A~x) = Sgn(JS),

(iv) n = 2k and Sgn(A~x) = - Sgn(B).

The theorem does not require that A and B be in canonical form.

Proof. Ill =* I follows from Corollary 2 and Theorem B.

To prove I =» II we must show that diagram isomorphism is a topological

invariant.

Let A be a conjugacy for Ak and Bk and let H: Fix(Ak) -» Fix(Bk) be

defined by H = h\¥ix(Ak).

Claim. H is a diagram isomorphism.

(a) Ws(H(p)) = h(W5(p)). So dim(Ws(H(p))) = dim(Ws(p)).

(b) Supposep < q (that is, Wu(p) n Ws(q) # 0).

Wu(H(p)) H  Ws(H(q)) = h(W"(p)) n h(Ws(q))

= h(W(p) n w'(q))

Thus i/(/7) < H(q) and Ü preserves the partial ordering (as does Ü-1).

Therefore condition (b) is satisfied.

(c) Supposep -* q. Then h\({p,q) U [W"(p) n Ws(q)]) is a conjugacy. So

H must preserve sgn(/7,qr}.

II => III. Assume ^^ and 5^. are in canonical form.

Case   1.   Suppose   n > 2/c  and   neither   Sgn(^4) = Sgn(B)   nor   Sgn(/1)
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= - Sgn(B). To show diagram (Ak) is not isomorphic to diagram (Bk), it

suffices to show that the identity is the only diagram automorphism on

diagram (Ak).

Let H be a diagram automorphism on the diagram of Ak.

Claim. The restriction of H to the second row in the diagram of Ak is the

identity.

Consider c2 3 ÄÄ:+1 in row k. This vertex receives from exactly 1 and gives

to exactly 1 vertex. Because n > 2k, it is the only vertex in row k which has

those properties. Consequently c23      ¡,k+x must be fixed under H.

Define   a   finite   sequence   {s¡}¡Zi    from   si — c2,3.kk+\    to   s*-i

= c\  ..,k-2k,k+\ °y lettmg si+\ be the only vertex that gives to s¡ (i.e.,

si = cl,2.i-\,i+\,...,k,k + V-

Since sx is fixed under H, each element in the sequence is also fixed under

H. In particular sk_x = cx k-2jck+\ 1S a nxec* Pomt- But sk_x is one of the

two elements in row 2. So H restricted to the second row in the diagram of Ak

is the identity.

By Lemma e, H is the identity.

Case 2. k < n < 2/c and neither Sgn(A) = Sgn(ß) nor Sgn(^)

= - Sgn(B).

Let  k' = n-k.  Then  n>2k'.   Let  A   = dg(an ',... ,ax ')  and   B

= dg(A;1,...,Ar1).
Then A and B are in canonical form and neither Sgn(A ) = Sgn(5 )

nor Sgn(/T) = - Sgn(5~). By Theorem B, Ak ~ (A~)k, and Bk ~ (B~)k..

But from Case 1, diagram (A~)k, is not isomorphic to diagram (B~)k,.

By a slight generalization of "diagram isomorphism" and an argument

similar to I => II, diagram (A~)k. is isomorphic to diagram (Ak) and diagram

(B~)k, is isomorphic to diagram (Bk).

Therefore diagram (Ak) is not isomorphic to diagram (Bk).

Case 3. n = 2k.

Let A = dg(ax,... ,an), A~x = dg(axx,.. .,a~x), A~ = dg(a~x,... ,axx).

We will show that the conjugacy between Ak and (A~)k induces a nonidentity

diagram automorphism.

In the conjugacy dk from Ak to (A~ )k, dk was defined by taking orthogonal

complements. Thus dk(cx>     k_lk+2) = ckk+Xk+3k+4.2k.

Let P = {Pj} be the n X n matrix defined by /? = 1 if /+/ = «+ 1 and

P: = 0 otherwise. i£ is a differentiate conjugacy for (A~ )k and (A~)k.

Pk(ck,k + \,k+3,k+4,...,2k) ~ C\.k-2JcJc+\ '

Thus there is a conjugacy between Ak and (A ~)k whose restriction H to the

fixed point set has the property that H(cx      k-Uc+2) = cl.k-2,k,k+l- But

H is a diagram automorphism. So we have a nonidentity diagram automor-
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phism produced by the conjugacy from Ak to (A~)k.

Since Sgn(A~x) = Sgn(A~), conditions (iii) and (iv) generate the only

possible nonidentity automorphism.

Since Sgn(/1) is invariant up to similarity of the matrix A, II => III is true

regardless of whether Ak and Bk are in canonical form.
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