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ABSTRACT. In this paper we produce a family of sequentially compact,
locally compact, T, first countable, scattered and separable spaces whose
product is not countably compact and thus answer a problem of C. T.
Scarborough and A. H. Stone [11] in the negative. We do this using the
continuum hypothesis. We also produce a completely regular, T,, sequen-
tially compact space K which is not p-compact for any p € BN — N.

NotaTION 1.1. N denotes the discrete space of integers {1, 2, 3,... }. All
spaces in this paper are Hausdorff. If X is a topological space and = is a
partition of X then X/« denotes both the quotient set and quotient space. We
use the continuum hypothesis (CH) throughout. & denotes the first uncount-
able ordinal. We reserve greek symbols like a, B,..., etc. to denote a
countable ordinal. English letters like m, n are usually members of N. BN
denotes the Stone-Cech compactification of N, and if X C BN then we give
X its subspace topology. Notions about filters and SN can be found in [4].
We follow [5] for notions about scattered spaces. Hereafter, an element
P € BN — N is considered to be given in advance.

DEFINITION 1.2. Let Y be an open subset of BN, P € BN — N and 7 a
partition of Y. We say that the pair (Y, «) satisfies the condition V if the
following hold:

P &Y.

()N c Yand {n} € wforalln € N.

(iii) 7 is a partition of Y by compact sets of BN.

(iv) Y/ is countable, locally compact and 7.

(v) Given a member 4 € = there is a compact open set V of BN so that
A CV C Y and V is saturated under =.
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LEMMA 1.3. Let (Y, ) be as in Definition 1.2 and satisfy V. Let F,,
F,, ..., F, ... beasequence of distinct members of w such that

o0 o] ) o0
(UF,,—UF,,)OY=® and F= \JF,- UF,
n=1 n=1 n=1 n=1
Let P & F. Then there exists a compact, open set W of BN so that P & W and

W O Fand W N Y is saturated under .

Proor. From (iv) and (v) of Definition 1.2 we get that Y can be expressed
as a pairwise disjoint union U.;M, of compact, open sets M|,

n=1

M,, ..., M, ... of BN so that M, is saturated under = for all n € N. If we
put M,/m = A, for all n € N then Y /= is the disjoint union U2, 4, of
compact, open sets A, A,,...,4,,... of Y/« Let g: Y- Y/% be the
canonical quotient map. Then the fact that M,/= is T, (from (iv) of
Definition 1.2) gives that the restriction of g to M, is closed. Hence g:
Y — Y /= is a closed map. Thus if B C Y is open and € C B is the union of
all members of 7 contained in B then C is open in Y and hence in SN. Now

UpaiFi=(ULF)U FandFN'Y =@.So

(UF,.)ﬂMk=(UE.ﬂMk)
n=1 n=1

is compact forall k € N. Put (U ,F,) N M, = D, fork € N.Since P € F

n=1
and F is closed we have that there is a compact, open set S of BN so that
FcSand P £ S. Now

o e] [~2] o

UD,uF=UFuUF= UF,

k=1 n=1 n=1
is compact and the collection {S, M, M,, ..., M,, ...} is an open cover for
U p=1F,. So there is an integer k > 1sothat D, c Sif/ > kand/ € N.Itis
now clear that U2, ,D; D F. Using the closedness of the quotient map g:
Y Y/m we get that the union V of all members of = contained in
YNSn (U2 M) isopen in BN. It follows from (iv) and (v) of Defini-
tion 1.2 that given / > k and / € N there is a compact open set ¥, of BN so
that D, C ¥, € M, n V and V, is saturated under = since D, is compact. Put
L= U241V Then L is an open set of BN so that U2, .,D,Cc L Cc SN
Y and L is saturated under #. Then LD F and LC S and L N Y is
saturated under 7. Then L = W is the required open set of the theorem.

COROLLARY 1.4. Let Y, « be as in Lemma 1.3 and (Y, ) satisfy the condition
V. Let F\, F,,...,F,, ... be a sequence of distinct members of w so that

b n

UnaiF, — U F, = F is disjoint with Y and P & F. Then there exists an
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open set Y, and a partition my of Y, so that the following hold:
(@) (Y, o) satisfies V.
(b) YoD F.
() YD Yand my D 7.

PrROOF. Let W be as in the conclusion of Lemma 1.3. Let Yo=Y U W,
mo=mU{W—-Y}if F#*@Q and Y,= Y, my = 7 otherwise. Then we get
the corollary.

LEMMA 1.5. Let Y, C BN be an open set, m, a partition of Y, so that (Y, m,)
satisfies V, and Y,,, D Y, and w,,, D 7w, forn € N. Let Y = U .Y, and
7= UX. 7, Then (Y, n) satisfies V.

Proor. Easy to see.

COROLLARY 1.6. Let (Y, ) be as in Lemma 1.3 and satisfy condition V. Let
% be a countable family of subsets of BN so that if A € F then there is a
countable collection {G,, G,, ..., G, ...} of distinct members of w so that

= (UG, — UL \G,) and P & A. Then there is an open set Y, of BN
and a partition m, of Y, so that the following hold:

@YyD YandmyD 7.

(b) (Yo, 7o) satisf es the condition V.

©IfA€F and A+ D then Yyn A # Q.

ProOOF. Write the members of & in a sequence 4,, 4,,...,4,,.... If
YNA #Qord =Qthenput ¥,=Yand 7 =7.1f Y N 4, = @ then
use Corollary 1.4 to get an open set Y, and a partition =, of Y, so that
Y, D Y; @ D m (Y, m) satisfies V and Y; O 4,. By induction suppose we
have defined Y; and 7, fori = 1, 2, ..., n where n € N. Assume further that
* the following hold:

DY cCY cYforalij=12,...,nsothati <.

()7 cm cmforalli,j=12,...,ns0thati <.

(iii) Y; nA,#QlfA #Jwherei=1,2,3,...,n

(@v) (Y, m,) satisfies condition V foralli=1,2,...,n.

If A1 =9 ot 4, ,NY,#3 then put ¥,,, =Y, and m,,, ==, If

A,y #Dand 4,,., N Y, = O then use Corollary 1.4 to get (Y, m,44) SO
that (Y,,y, 7, satisfies V; ¥, ., D Y,; m,,, D m,; and ¥,,, D 4,,,. Then
the statements (i), (i), (iii), (iv) above are true for n + 1 also. Now put
Yy,= U,.Y, and my = U ;% 7, Then this (Y,, m,) satisfies the (a), (b), (c)
of this corollary.

REMARK 1.7. Let P € BN — N. We are going to give below a method for
constructing an open set Y of BN and a partition 7 of ¥ by compact sets so
that P € Y and Y/ is first countable, locally compact, T,, locally count-
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able, Y O N and {n} € = for all n € N and whenever F,, Fz, ceesFpyoolis
a sequence of distinct members of 7 and (U F,— U F,)=F# QO
then Y N F # @. This method was introduced by the first author in [6] and
was used in [7], and [9] to solve some problems of W. W. Comfort; Z.
Semadeni; R. Telgarsky; P. Nyikos and S. P. Franklin.

DEeFINITION 1.8 (THE V-PROCESS). The following method of constructing an
open set Y of BN and a partition 7 of Y is called the V-process. Put Y, = N
and 7, = {{n}|n € N}. Put ¥, to be the collection of all sequences of
distinct member of =,. Put §, to be the collection of all sets 4 of the form

) B -}
-(0r-0r)
n=1 n=1
where the sequence (Fy, F,, ..., F,,...) is a member of %, and P Z A.
Then §, is uncountable. Let {4,,, 4,3, ..., 4}, - .. } be as well ordering of
8, (using (CH)) where 1 < a < Q. Now assume that § € [1, Q) is a successor
ordinal equal to y + 1 and that we have defined Y,, 7, and 4, for all a so
that 1 < «a < y and & so that 1 < § < Q. Assume further that (Y,, =,
satisfies the condition V for all« €1, Y] and Y, 5 Y, and 7, D w4 for all @,
Bin[l, y] and B < a. Assume that given a € [1, y] and § € [1, Q) there is a
sequence F, Fp, ..., F,... of distinct members of =, so that
=UX,F,— U F, and P £ 4. Conversely assume that given a €
[1 ‘y] and a sequence G;, Gy, . .., G,, . .. of distinct members of =, so that
P & UG, there is an n €[1, Q) so that 4, = (U,,_l UG
Then using Corollary 1.6 construct an open set Y, =Y, and a partition
My = 1,4, of Y, so that the following conditions (a), (b), (c), (d) hold:

(@) Y,,, is an open subset of BN and =, is a partition of Y, ., by
compact sets.

(b) (Yy +1» Ty4 ) satisfies condition V.

©7Y,,,DYand7,, Dw,.

) Y. +1nA,,8¢Qprovxded I<np<yand1< 3§ <w"andA,,5¢Q
Now put &, to be the collection of all sequences {F,, F,, . .. ... }of
distinct members of 7, sothat P & Uy F,. Put§ ., tobe the collectlon
of all sets of the form A =(UZ F,— UZ F,) where the sequence F,,
Fy,...,F,... is in §,,,. We well order § ., as Aq.yp»
Aty s Agens - - With 8§ €[1, @) by using (CH). (At this point we
remark that it is easy to see that G, ., is uncountable and has cardinality ¢
and hence §, ,  can be well ordered by [1, £).)

Now assume that @ is a limit ordinal in [1, 2) and we have defined Y, =
and A, for all a, § where @ €[1,0) and § €1, Q). Put Y, = U,,Y, and
m = U, <o'” Let %, denote the collection of all sequences (F),
F, .. ...)of dlstmct members of 7, so that P & U, F,. Let 8, be
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the collection of all sets 4 of the form U F, — UX,F, where the
sequence (Fy, F,, ..., F,,...)is in ,. Then §, is uncountable. Well order
Gy asAgy, Aggs -5 Aggs ... Where1 < § < Q.

Finally put Y, = UyepgYpand 7, = Uyepgmand X, = Y, /7,

The V-process ends here.

The spaces X, constructed above will be the spaces that will answer a
problem of C. Scarborough and A. H. Stone [11]. We proceed below to show
that X, is a first countable, locally compact, T, sequentially compact space

forall P € BN — N.

THEOREM 1.9. Let P € BN — N, and let Y,, m,, X,, Y, 7,, A, be as in the
definition of V-process for all a € [1, Q) and & € [1, Q). Then the space X,
obtained in the V-process is locally compact, T,, locally countable and hence
first countable. Moreover if F\, F,,...,F,, ... is a sequence of distinct
members of m, and U ;o F, — UL F,=A#QDthenAnY,* 0.

ProoF. Now Y, is openin BN, Y, D Yg and 7, D mg for all a, B €1, Q)
and a > B. (These assertions are easy to see from the definition of Y, and =,
in the V-process.) Put X, = Y, /7, for all a €1, Q). Then X, C X, in a
natural way and X, is open in X, because 7, C 7, for all a, 8 €1, 2) and
a < B. Moreover, X, = U ,ep,0)Xa- Since (Y,, 7,) satisfies condition V we
have that X is countable, locally compact, T, and hence first countable for
all « €1, ©). Since X, = U ,¢p1,0/X, and X, is open in X, for all « €1, )
we get that X, is T, locally compact, locally countable and first countable.
Now let Fy, Fy, ..., F,, ... be a sequence of distinct members of 7, and let
U,,... — UnpaiF, =4 # @. We claim that 4 0 Y, # @. To see this we
first of all see from the definition of #, that given in n € N there is an
a, €[1, Q) so that F, € 7, . So, if « €[1, ) and a > @, for all n € N then
F, € =, for alln € N. Now we have two cases.

Case (i). P & U o F, — U.,F, = A. Then there is a § in [1, ) so that
A = A,. (This is from the definition of 4’s.) Now there is a y € [1, Q) so
that y > a and § < . Then Y, N 4,; # @ from the construction of Y, in
the V-process. So ¥, N 4,4 is also # @.

Case (ii). P € A =(U2 U -1F,). Thén we claim that there is a
subsequence F,, F,,z, ce F,,,, ... of F, F,...,F,... so that
PgB=ULF,-U;LF, and B#Q, and BN Y,=0@. If this is
proved then the Case @) aboe shows that Y, N B# @ and B C U,,_|
UpaiF, = A. Thus we will get Y, N 4 # Q in this case too. Now (Y,, =, )
satisfies condition V. So, as in the proof of Lemma 1.3 we can find pairwise
disjoint compact, open subsets M,, M,, ..., M,,... of BN so that Y, =
U %M, and each M, is saturated under =,. Since P € UX_,F, we have
that U % F, is not compact. So U ., F, cannot be contained in a finite

n-l



250 M. RAJAGOPALAN AND R. G. WOODS

union of the M,’s. So there exists an infinite sequence n, < n, < n,
<-:+-<m<... of integers in N so that each M, contains at least one
F,. Now SN is extremally disconnected. So P can belong to the closure of at
most one of the sets U ;. M, or UM, .

Choose the sequence (M,,) if P & UM, and the sequence ( M)
otherwise. Rename the chosen sequence as (M ) for convenience. For each
k € N choose one set F, from the sequence ( ») so that F, c M, for all
k € N. Then U ;. \F, cannot be compact since the collecnon (M, |k € N}
is an open cover for U . 1F,, from which a finite cover cannot be extracted
So UgaiF, — UjaF,=B# @ and P £ B. Clearly BN Y, =@ and
hence B c:U,,_l Y CUZF, - U, F, = A. So the subsequence
(F,) is the required subsequence and we have the theorem.

THEOREM 1.10. Let P € BN — N, and let X, be the space obtained by the
V-process. Then X, is countably compact. Since it is also first countable, it is
sequentially compact.

PrOOF. Let Y, m,, Y,, m, be as in the definition of V-process for all a in [1,
). Letq: Y, —> X, be the canonical quotient map. Let {x,, x5, ..., X,, ... }
be a countable discrete infinite set in X,. Choose F, € , so that ¢(F,) = x,
for all n € N. Now Y, N 4 # @ by Theorem 1.9 where 4
= U miF,— U . F,. Lety € Y, N 4. Then ¢(y) € X, is clearly a cluster
point of the set {x;, x5 ..., %, ...}. So X, is countably compact and
Theorem 1.9 gives that X, is also sequentially compact.

DEFINITION 1.11. Let p € BN — N be given. Let X be a topological space.
X is called p-compact if given any 1-1 map f: N — X there is a continuous
extensiong: N U {p} - X of ffrom N U {p} into X.

ReMARK. The idea of p-compactness was first introduced in a different
form by A. R. Bernstein in [2].

LEMMA 1.12. Let p € BN — N be given. Then the space X, obtained by the
use of V-process is not p-compact. Moreover, X, is scattered. So given an
element p € BN — N, there is a scattered, locally compact, T,, locally count-
able, first countable, sequentially compact, non p-compact space.

ProOF. Let X, U {c0} be the one point compactification of X,. Let g:
Y, - X, the quotient map and f = g|N. Then f: N — X, is a function which
is one-to-one on N. We are going to show that this f has no continuous
extension from N U {p} » X,. Let g: BN - X U {0} be the function which
maps BN /Y, onto {0} and coincides with g on Y,. Then g is continuous and
is the unique continuous extension of f to BN. In particular g(p) = 0. Now

B(N U {p}) = BN so every continuous function ¢: N U {p} - X, U {00}
must extend to a unique continuous function ¢: SN — X, U {00} So if there
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is a continuous extension f: N U {p} - X, of fto N U {p} then there will
be a continuous extension § of f from SN — X, U {0} and this & will also be
a continuous extension of f. Now g(p) € X, and g(p) = . So g # g. So, if
an extension f for f exists as a continuous functlon from N U {p} - X, then
Ji N> X, U {0} will have two continuous extensions g, § from SN — X U
{0} which is not possible. So X, is not p-compact. The second part of the
lemma now follows easily from Theorem 1.10.

LeMMA 1.13. Let X be a topological space, and let f: N — X a one-to-one
function from N into X. Then f(N) has a cluster point in X if and only if there is
at least one py € BN — N so that f extends continuously to a function g:
N U {po} = X from N U {p,} into X.

PrOOF. If f has a continuous extension f from N U {p,} into X for some
Po € BN — N then f( Po) is a cluster point of f(N). Conversely let f(N) have
a cluster point / in X. Let V be the filter of all deleted neighbourhoods of / in
X. Let 9 be the collection of subsets A C N so that 4 € ¥ < 3 a member
V € Vsothat 4 = {i|f(i) € V and i € N}. Then it is easily seen that F is
a filter on N which is free. So ¥ is contained in a free ultrafilter p, € BN. Let
g: N U {po} — X be the function so that g(p,) = /and g|N = f. Thengisa
continuous extension of f to N U {p,}.

THEOREM 1.14. For every p € BN — N let Z, be a T, topological space which
is not p-compact. Then Il,cpn_nZ, is not countably compact. Hence there
exists a family of sequentially compact, T,, locally compact, locally countable,
scattered, first countable spaces whose product is not countably compact.

ProOF. For every p € BN — N let f,t N—> Z, be a one-to-one function
from N — Z, which does not extend continuously to a function g,: N U {p}
—Z,. Letf: N — II,epn-nZ, be the product function I, ¢ gy v f, defined by
the rule that the pth coordmate of f(n) is f,(n) for alln € N and p € BN —
N. Then fis a 1-1 map from N into HpE/iN ~Z,- Now let p, € BN — N be
given. Then f cannot extend continuously to a function ¢: N U {p,} -
I, epv-nZ,- For if such a ¢ exists then the function g = ¢, © ¢: I, cpy—y —
Z,, will be a continuous extension of f, to a function from II,cgy_y — Z,
where &y, is the projection from II,¢gy_nZ, onto Z,. So f(N) will be an
infinite set which will have no cluster point in II,¢ gy ,.,Z by Lemma 1.13.
So II,egnv-nZ, is not countably compact.

Now taking Z, = X, of Lemma 1.12 for each p € BN — N we get the last
assertion of our theorem.

REMARK. The V-process of M. Rajagopalan is very effective in solving
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some problems in topology considered by M. E. Rudin [10], A. V. Arhan-
gel’skii [1] and others on constructing hereditarily separable, regular, non-
Lindelof spaces and compact c-spaces. These results obtained by the first
author will appear elsewhere.

K. Kunen, and Eric Van Douwen informed the authors in a private
communication that by a different method they also got spaces like X, of
Definition 1.8. Recently their technique was also used by J. E. Vaughn [12] to
get the same type of spaces. Both J. E. Vaughn and K. Kunen use (CH). Eric
Van Douwen uses an axiom weaker then (CH). Their results are very recent
and the results of this paper were obtained in 1974 and were announced in
[13]. Recently M. Rajagopalan got the solution to the above-mentioned
problem of C. Scarborough and A. H. Stone using an axiom called ® which
is weaker than both (CH) and (MA) [14].

The following result is of independent interest.

THEOREM 1.15. There exists a completely regular T, sequentially compact
space M which is not p-compact for any p € BN — N. Then M?* is not
countably compact.

PROOF. Let x, be a fixed element of II,gv_ X, Where X, is the space
constructed by V-process above for eachp € BN — N. Let M be the set of all
elements of II,cgy_»X, which differ from x, in at most a countable number
of coordinates. Then M is easily seen to be sequentially compact. Now M
contains a closed subspace homeomorphic to X, whatever p € BN — N may
be. Since X, is not p-compact, it follows that M is not p-compact where
P € BN — N. Let us put M, = M for all p € BN — N. Then imitating the
proof of Theorem 1.14 we get that II,cpy_nM, = M7 is not countably
compact.
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