
TRANSACTIONS OF THE

AMERICAN MATHEMATICAL SOCIETY
Volume 233, 1977

THE MACKEY BOREL STRUCTURE ON

THE SPECTRUM OF AN APPROXIMATELY

FINITE-DIMENSIONAL SEPARABLE C*-ALGEBRA

BY

GEORGE A. ELLIOTT

Abstract. It is shown that the Mackey Borel structures on the spectra of

any two approximately finite-dimensional separable C*-algebras not of type

I are isomorphic.

1. Main result. In a lecture in Bâton Rouge in 1967, J. Dixmier raised the

question of comparing the Mackey Borel structures on the spectra of different

separable C*-algebras. Specifically, he asked whether for a simple anti-

liminary separable C*-algebra the Mackey Borel structure is always the same.

He suggested the study of approximately finite-dimensional C*-algebras; we

have studied this case, and can report that the Mackey Borel structure on the

spectrum is the same for any approximately finite-dimensional separable

C*-algebra which is not postliminary. In other words, there is only one

nonstandard Borel space which can arise as the spectrum of an approximately

finite-dimensional separable C*-algebra.

We recall that a C*-algebra is said to be approximately finite-dimensional

if any finite number of elements can be approximated arbitrarily closely in

norm by elements of a finite-dimensional sub-C*-algebra.

2. Theorem (cf. [6]). Let A be an approximately finite-dimensional separable

C*-algebra, and let B be a separable C*-algebra which is not postliminary.

Then there exist a sub-C*-algebra C of B and a surjective morphism rp: C -* A

with the following properties.

(i) For every state f of A, the state f ° <p ofC has a unique extension to a state

ofB,sayf~.
(ii) The map f \-*f~ is an affine homeomorphism from the state space of A

(with the weak dual space topology) onto a locally compact face of the state

space of B. (So fis pure if and only iff is.)
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(iii) If fand f are pure states of A then f'andf" are equivalent if and only if

f andf are.

Proof. In the case A = A/2«, this theorem was essentially proved by

Glimm in [6] (see also [2, §9]). (A similar proof would deal with the case

A = M„ for any generalized integer », i.e., the case that A is a Glimm

algebra-see [3].) In the general case we shall need to refine Glimm's methods

to construct the subalgebra C and the morphism <p, although the proof of

properties (i) to (iii) remains the same.

It is clearly sufficient to prove the theorem with A replaced by the

C*-algebra obtained by adjoining a unit to A. We may, then, assume that A

has a unit, and for convenience we shall do so. Then (see 1.6 of [3]) A is the

closure of the union of an increasing sequence A, c A2 c ... of finite-di-

mensional sub-C*-algebras of A each containing the unit of A.

Since B has a nonzero antiliminary quotient ([2, 4.3.6]), we may suppose

that B itself is antiliminary. We may then apply 9.3.7 of [2] to B and a dense

sequence (s0, sx,... ) in the hermitian part of B. We remark that the presence

of a unit stipulated in 9.3.7 of [2] is not necessary; in the proof of that lemma

the elements v(0) and b(0) need only be chosen to be nonzero, positive, and

such that ü(0)A(O) = b(ö), and this is possible in any nonzero C*-algebra.

(Of course, 9.3.7(iv) must be changed, or just deleted.)

We shall choose C to be the sub-C*-algebra of B generated by a certain

subset of the elements

v(ax,..., a„)v(bx,..., b„)*,      a¡, bj E {0,1}, n - 0,1.

where the v(ax,... ,a„) have the properties of 9.3.7 of [2].

To describe the construction of C more precisely, we shall use the notation

of 9.2 of [2]. The linear span of the v(ax,..., an)v(bx,..., bn) will be

denoted by M(n) for fixed zz = 0, 1,..., and we shall denote by e(n) the

sum

2 v(ax,..., a„)v(ax,..., a„)*.
ax.a„<E{0, 1}

Realizing B as a C*-algebra of operators on a Hilbert space H, we shall

denote the range projection of e(n) by £(zz).

By 9.2.8, 9.2.9 and 9.2.11 of [2], for all k - 1, 2, ...,£(« + k) is permut-
able with M(zz), and M(n)E(n + k) is a simple finite-dimensional C*-alge-

bra of order 2". In particular, the restriction map M (n) -» M(n)E(n + k) is

injective.

We shall construct a sequence », < «2 < ... and a sequence C, c M(nx),

C2 c M(n2),... such that for each/ = 1, 2,..., the restriction CjE(n} + 1)

is a sub-C*-algebra of M(n^E(n¿ + 1) and the unit of CJ+xE(nJ+x + 1) is

permutable with CjE(nj + 1), and such that the sequence
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CxE(nx + 1) -> C2E(n2 + 1) -»...

defined by the canonical restrictions is isomorphic to A, -* A2 -*-

We shall choose Cx, C2,... so that, moreover, for each/ = 1,2,... there

exists Cj E Cj with

U+ÁSj-Cj)fj+X\\<(j+l)'\

where fJ+x is the preimage in CJ+X of the unit of CJ+xE(nJ+x + I).

Label the minimal direct summands of each A, from 1 to r¡. Then A¡ is

determined by the column vector m¡ = (mk¡)x<k<r¡ in which mki is the order of

the kth minimal direct summand of A¡. Moreover, the inclusion of A¡ in Ai+l

may be described by the matrix of multiplicities

Pi = \Pjk)l<ij<rl+l,\<k<rl>

in which pfp = 0, 1,... and is the multiplicity with which the A-th minimal
direct summand of A¡ is mapped into the jth minimal direct summand of

Ai+X. (Cf. [1].) Then />,. = m¡+x, i = 1, 2,....

Now choose a strictly increasing sequence 1 < nox < «, < n02 < n2 < ...

in N such that

rt

2"°' > 2 mkX,   2"l~"m > r„
k-l

1-2

2"oj-«i >  max    V pWf   2"i~"<a > r2,
Kk<rxJZx

r¡

2"03-«2 >    max      V   „(2).
Kk<r2~x   JK

Since

2"°' > S nikX,
k=\

there is a sub-C*-algebra of M(n0X)E(n0X + 1) isomorphic to Ax. We may

choose such a C*-algebra to be generated by minimal projections of

M(nox)E(nox + 1); denote its preimage in M(nox) by C01. We may suppose

that C0, is the linear span of certain of the v(ax,..., a„Jv(bx,..., £„„,)*■

The relative commutant of M(nox)E(nx + 1) in M(nx)E(nx + 1) is simple

of order 2n|""n<". Since 2ni~"01 > /•„ we may choose r, mutually orthogonal

minimal projections £,,..., £ri in this relative commutant. Denote by

C¿x\ .... C¿x,} the preimages in M(nx) of the minimal direct summands of

CoxE(nx + I). Then the sum
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is a sub-C*-algebra of M(nx)E(nx + 1) isomorphic to CoxE(nx + 1); denote

its preimage in M(zz,) by C,. We may suppose that C, is the linear span of

certain of the v(ax,..., an )v(bx,..., bn )* (choosing each Ek to be a sum of

certain v(ax,..., an)v(ax,..., an)*E(nx + 1)).

Denote by/, the preimage in M(nx) of the unit of CxE(nx + 1). Then

CxE(nx + l)=/,A/(zzo,)/,£(n, + 1).

To see this, denote by ek the preimage in M(nox) of the unit of the minimal

direct summand C¿k)E(nx + 1) of C0,£(zz, + 1), so that C^E(nx + 1) =

ekM(n0X)ekE(nx + 1). Then

fxE(nx + 1) = ¿ ekEk,
k-\

and

fxM(nox)fxE(nx + l)=   ¿  e,M (nnX)ekE}Ek
j,k*-\

= 2 ekM(n0X)ekEk= CxE(nx + 1).
*-i

The relative commutant of M(nx)E(n02 + 1) in M(n02)E(n02 + 1) is sim-

ple of order 2"02-"1. Since 2"°2~''1 > rnax1<t</.i2y2_,^1), there exist, for each

k = 1,..., r,, mutually orthogonal projections EJk,j « 1,..., r2, each the

sum of pj^ minimal projections in this relative commutant. With ex,..., er,

£,,..., Er as in the preceding paragraph, set

2 FJkekEk= Fj,      j=l,...,r2.
k-l

Then Fx,..., Fri are mutually orthogonal projections in M(n02)E(n02 + 1).

(F,Fj = 2kEikEjkekEk = SyFj.)
The sub-C*-algebra "2j^xFjM(n02)Fj of M(n02)E(n02 + 1) is isomorphic to

j42; denote its preimage in M(n02) by C02. Moreover, each /J is permutable

with C,, and the map C,jrJ(zz, + 1) -» C02£'(«o2 + 0 consisting of multiplica-

tion by 2^jL\Fj is isomorphic to the morphism A, -» ^2. We may suppose that

C02 is the linear span of certain of the v(ax,..., a„^v(bx,..., bn<J* (choos-

ing the Ejk to be sums of certain v(ax,..., an<Jv(ax,..., an<J*E(n02 + I)).

Since 2"2-"01 > r2, we may construct C2 starting from C02 in the same way

as C, was constructed from C01. Thus, C2 c A/(zz2)-moreover, C2 is the linear

span of certain of the v(ax,..., a„Jv(bx,..., bn^*-,C2E(n2 + 1) is a

sub-C*-algebra of M(n2)E(n2 + I), and if f2 denotes the preimage in M(n¡)

of the unit of C2E(n2 + 1), then

C2£(zz2 + 1) =f2M(n02)f2E(n2 + 1).
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In addition, f2E(n2 + 1) is permutable with C,, and the canonical morphism

CxE(nx + l)^C2E(n2+ 1) is isomorphic to A,-» A2.

By 9.3.7 of [2] there exists f, G M (I) such that ||e(2)(s, - tx)e(2)\\ < 2_l.

To define cx such that c, belongs to C, and satisfies the inequality

\\f2(sx-cx)J2\\<2-\

we must recall some more properties of the v(ax,..., an)v(bx,..., b„)*,

n - 0,1,....
It follows from 9.2.8, 9.2.11 of [2] that if n = 0, 1,... and k - 1, 2,...,

M(n)M(n + k) c M(n + k). Hence it follows that if e E M(n) and / e

M(n + k) are such that eE(n + k + 1) andJE(n + k+ 1) are projections

with the second smaller than the first, then ej = /. Indeed,

ej E M(n + k),

and

eJE(n + k + 1) - <?£(« + A: + l)/£(« + k + 1) -/E(n + k + 1).

In particular, M(l)M(n0X) c M(n01), since «0I > 1, so txJ0X E M(nm),

where /0, is the preimage in M(nox) of the unit of CoxE(nox + 1). Also

/oi/i -/i» since/o, e M(nox),Jx E M(nx), and JoxE(nx + I) and/,£(«, + 1)

are both projections with the second smaller than the first. This proves that

/,r,/, EjxM(nox)Jx. Since JxM(nQX)ixE(nx + 1) = CxE(nx + 1), there exists

c, G C, such that

JxtxJxE(nx + 1) = cxE(nx + I).

Multiplying on the right by J2E(n2 + 1), we have

J^fJiE(n2+ I) = cxJ2E(n2+ I).

Since /,/,/i/2 G JWXrt^MCwo^M^A/Ojj), and «0, < n, < «2, we have

/l'i/i.^ G M(«2)- Since c,/2 G M(nx)M(n2) and «, < /i2, we have c,/2 G

A/(«j). Since multiplication by ¿s(n2 + 1) is injective on M(n2),

M/1/2 = cJi-

Since JxE(n2 + I) and j2E(n2 + 1) are projections with the second smaller

than the first,

/1/2 = fi-

Since/, and/2 are both selfadjoint (M(nx) and M(n¿ are both selfadjoint,

and the restriction maps are injective),

fifx-h
Combining the preceding three equations gives

/2'l/2 = /2Cl/2-

Since n2 > 2, and e(2),f2 are selfadjoint, we have
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*(2)/2=/2,      /2*(2)-/2.

Since C2 is the linear span of certain of the v(ax,..., an^v(bx,..., 6„2)*, /2

must be the sum of certain of the v(ax,..., a„^v(ax,..., a„J*. Since these

are selfadjoint, with mutually orthogonal supports ([2, 9.3.7(i)]), and of norm

one ([2, 9.3.7]), it follows that/2 has norm one. Therefore, from

\\e(2)(sx - /,)e(2)|| < 2"'

follows ||/2(i, - c,)/2|| < 2~\

It is clear that the construction may be continued to obtain a sequence C,,

C2,... of finite-dimensional linear subspaces of B with the stipulated prop-

erties.

Denote the sub-C*-algebra of B generated by C, U C2 u ... by C. We

shall construct a morphism tp from C onto A such that conditions (i) to (iii) of

the theorem are satisfied.

Denote by Dj the sub-C*-algebra of C generated by C, u • • • U Cj,j = 1,

2,_Then Dx c D2 c ..., and U Dj is dense in C. Since fjE(n¡ + 1) is

permutable with C,, it is permutable with Dj. Moreover, for each / = 1,

2,...,
DjfjE(nj + 1) - CjEinj + 1).

Since the sequence C,£(zz, + 1)-» C2E(n2 + 1)-» ... is isomorphic to Ax

-» A2 -> ..., the inductive limit of which is A, there is defined a compatible

sequence of morphisms DX->A, D2-+ A,.... The common extension of

these to U D} is a continuous morphism onto a dense subalgebra of A ;

denote the extension to C by tp.

Let us first prove (i). Let / be a state of A, and let g be a state of B such

that the restriction of g to C is f ° tp. To show that g is unique it is enough to

show that Tor/ = 1, 2.\g(sj — cj)\ < (j + l)-1. Also, we may (at this

moment) suppose that B has a unit, and that this belongs to C (if necessary,

adjoining one, and extending <p to map it into the unit of A). Fix / = 1,

2.Since fJ+x E C and <pfJ+x = 1,

g((i-^+,)2)=/(«p(i-^,)2) = o.

Since fj+x ~ f/%x, it follows by the Cauchy-Schwartz inequality that

g(b) = g(fj+lbfJ+x),   all b E B.

In particular this holds for b — s, — c,. Using

lfj+i(Sj-c,)fJ+i\<V+l)-\
we have

|g(*y-c,)|<(/+l)-1,

the desired inequality.
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Next, let us prove (ii). Continuity of / h»/" follows from the inequalities

\fXsj)-J(Cj)\<(j+l)-\     y-1,2,....

Since the state space of A is compact (in the case that A has a unit, which it

suffices to consider), it follows that the image of/ |-»/"is compact. Suppose

that / is a state of A and that /', /" are states of B such that for some real

X > 0, f= Xf + (1 - A)/". Since/"(/,) =/(?/,) =/0) = 1, and also ||/,||
= 1 and ||/'|| = II/"» = 1, we have /'(/,) = /"(/,) - 1, whence the
restrictions of/' and/" to C are states of C. Since, moreover,

XJ'\C<J°<p,   (l-X)/"|C</o«p,

there exist states g' and g" of A such that

/'|C = g' o «p,   J"\C = g" ° rp.

Hence by (i),

f-sr, j" = g"~-
This shows that the image of/ h»/"is a face.

Now let us prove (iii). If / and/' are equivalent pure states of A, in other

words, if the associated representations are unitarily equivalent, then by

Corollary 8 of [7] there is a unitary uE A such that/ = u*f'u. Choose w E C

of norm one such that <pw = u. Then

/ » <p = w*(/' ° <p)w.

Hence by (i),

/"= w*fw,

whence/" and /" are equivalent. Conversely, suppose that/" and /'" are

equivalent, that is, that for some unitary v E B,

f-=v*fv.
As shown in the proof of (i) (see also [6, p. 586]),

J-=JjfJP r=JjJ%   y-1.2,....
Hence

r = (Jjv*jj)j"(jjvjj),    y-1,2.

Choose k and/ =1,2,... so that k < j,j > 5, and

||« - (*k + isj)\\ < (j + I)-',   \\sk + isj\\ < I.

Since A+ijÇ+i =jÇ+i-see the proof of the inequality \\Jj+x(sj - cj)SJ+l\\ <

(j + l)_1-and also ||^+,|| = 1, we have

M+i^-cjjj+^u+i)-1.
It follows that
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\\fj+i(°-(Ck + iCj))fj+i\\<HJ+l)-1.

Since

\\axgbx - 02gA2||<||g||(||fl,|| ||A, - 62|| + ||A2|| ||a, - <z2||),

we have

\\r- CM<* + icj)fJ+lyr(fJ+l(Ck + *j)U)\ < hj+iyl< u

in particular, ||/ - a*/'a|| < 1, where a = <p(fJ+i(ck + ic/)fj+x). The proof of

Corollary 8 of [7] shows that if/and g are pure positive linear functionals on

A such that ||/— g|| < ||/|| + ||g|| then / and g are equivalent. Since /' is

pure, so is a*fa. Since ||/|| = 1 we have

\\f-a*fa\\<l<\\J\\ + \\a*fa\\.

Hence / is equivalent to a*fa, and therefore to /'.

3. Corollary. Let A be an approximately finite-dimensional separable

C*-algebra and let B be a separable C*-algebra which is not postliminary. Then

there exists a homeomorphism from the set of pure states of A (with the weak

dual topology) onto the set of pure states contained in a locally compact subset of

the state space of B which preserves equivalence in both directions.

4. Lemma. Let B be a separable C*-algebra and let E be the set of pure states

contained in a locally compact subset S of the state space of B. Then the

saturation of E with respect to equivalence is Borel.

Proof. In the case E = S, the result is due to G. K. Pedersen; the general

case requires no new ideas. By Corollary 8 of [7], the saturation of E is

UueUu*Eu, where U denotes the unitary group of B (with unit adjoined, if

necessary). By Corollary 9 of [7], which says that two pure states strictly

closer in norm than 2 are equivalent, this is the same as the set of pure states

in Uueu(u*Eu + B*), where Bf denotes the closed unit ball of the dual of

B. In fact, it is the same as the set of pure states in \Ju^u(u*Su + 5*)-a

modification of the proof of Corollary 9 of [7] shows that if / is a pure state,

g E u*Su, and ||/- g\\ < 1, then g is pure, i.e., g E u*Eu. Choose a dense

sequence (un) in U. Then

U u*Euc      U     ("Ä + B*x ) c U (u*Su + Bx*);
uSU n-1,2,... uBU

hence the saturation of E is the set of pure states in U „_ \x.. (M*Stz„ + £*).

This set, like S, is a countable union of compacts.

5. Lemma. If two Borel spaces are each isomorphic to a Borel subset of the

other, they are isomorphic.
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Proof. The bijection constructed in the proof of the Cantor-Bernstein

theorem (see, e.g., [8]) is easily seen to be Borel in each direction.

6. Proof of the main result. Let A and B be approximately finite-dimen-

sional separable C*-algebras which are not postliminary. By 3 (applied to the

pairs A, B and B, A), together with 4, the set of pure states of each of A and

B, with the Borel structure determined by the weak dual topology, is Borel

isomorphic to a Borel subset of the pure states of the other, in such a way that

equivalence is respected (by both the isomorphisms and their inverses), and

the saturations of the images are Borel.

If a given Borel subset S of pure states has a Borel saturation, then its

quotient Borel structure is equal to the restriction of the whole quotient Borel

structure. To see this, note that the saturation of any Borel set of pure states

is Souslin, being the second coordinate projection of the Borel set (cf. 4) of

pairs (/, u*Ju), j in the set. Also, recall that if the union of two disjoint

Souslin subsets of a standard Borel space is Borel, each of the sets is Borel.

What is to be verified is that a relatively saturated subset of the given Borel

set 5 is Borel if and only if its saturation in the space of all pure states is

Borel. One implication is immediate. In the other direction, if a relatively

saturated subset of S is Borel, the relative complement in S is both relatively

saturated and Borel. The full saturations of these two sets are therefore both

disjoint and Souslin; hence, since their union is Borel, they are Borel.

It follows from the preceding two paragraphs that the quotients of the

Borel spaces of pure states of A and B are isomorphic to Borel subsets of

each other. By [5], these quotient structures are the Mackey Borel structures

on the spectra of A and B. By 5, the two spaces are isomorphic.

7. Remark. Combining the present result with the classification of the

biduals of approximately finite-dimensional separable C*-algebras given in

[4], one obtains the following statements for this class of separable C*-alge-

bras.

The bidual determines the Mackey Borel structure on the spectrum.

The Mackey Borel structure on the spectrum, together with the number of

extreme tracial states of type I„, n = 1, 2,..., and of type II,, determines the

bidual.
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