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Abstract. We prove convergence of the Glimm-Jaffe-Spencer cluster ex-

pansion for the weakly coupled Yukawa model in two dimensions, thereby

verifying the Wightman axioms including a positive mass gap.

I. Introduction. In [9], [10] Glimm, Jaffe and Spencer developed a powerful

method for studying the weakly coupled P(<f>)2 model. In this paper we shall

apply their "vacuum cluster expansion" of [9] to the Yukawa model in two

dimensions. This method is largely model independent and should be applica-

ble to any weakly coupled, superrenormalizable model based on functional

integration in boson "g-space". (For recent applications to the <b* model, see

Feldman and Osterwalder [6] and Magnen and Sénéor [13].) In the next

section we present a brief review of the cluster expansion, but the basic idea is

as follows: For a Euclidean field model with interaction in the region A c Rrf,

one expects the interacting measure to have the form

(1.1) dvK « pAdii.

Here dp. is the free boson measure with mass m0 > 0, i.e. the Gaussian

measure on Q - § '(Rd) with mean 0 and covariance C = (- A + m2.)-1; and

pA is a function of the fields in A that embodies the interaction. For example,

for P(4>)2, pA = e~UA where t/A = /A : P(<j>) : d2x. One wishes to show that

dvK decouples between distant regions exponentially in the distance. If the

model is local in the sense that

0-2) Pa,ua2 = Pa.Paj

for disjoint A, and A2, then the coupling in (1.1) is due only to the Gaussian

measure dp (C = (—A 4- m%)~x is a nonlocal operator). Instead of dp,

suppose we consider the Gaussian measure dp® with covariance C$ =

(-Aa + m2,)'1; here A$ is the Laplacian (d = 2 henceforth) with Dirichlet

boundary conditions on % = (Z2)*, the set of unit line segments (= bounds)
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2 ALAN COOPER AND LON ROSEN

joining lattice points in Z2. The measure d/xa completely decouples across

lines in % and hence by (1.2) so does dvA0 = pA dp®. The cluster expansion

consists of relating the measure of interest, dvA, to this exactly decoupling

measure, dvA0, by means of a perturbation expansion in the bonds in %.

We consider now the Yukawa model in two dimensions ( Y2) for interacting

bosons and fermions. At present there is not available a fermion integration

theory analogous to the boson functional integration on which to base the

cluster expansion. However, Seiler [22] recently established a rigorous version

of a formula of Matthews and Salam in which the fermions have been

"integrated out" with the result that the Euclidean Green's functions or

Schwinger functions of the Y2 model can be represented by a purely boson

integration with a measure of the form (1.1). The Matthews-Salam-Seiler

formula for the Schwinger functions for « bosons and m fermion-antifermion

pairs is as follows:

(1.3) SA(f, g,h) = Z-xj$(h)det S'(f„ g;, <¡>)pA dii

where

(a) / = (/i, • • • ,fm), g = (gi, • • •, gm) and h = (A„ ..., h„) are suitable

test functions (e.g. h} in S (R2), and./;, g, in S (R2) © § (R2));

(b) d¡i is the free boson measure on § '(R2) with mass mb > 0 and 0(A) =

n?_i<i>(/i/) where <j> is the free boson field;

(c) S'(fi, g/, <t>) = Up 0 - *K)~%gj)o where ("' Oo denotes the inner

product on %¡ = L2(R2) © L2(R2); X G R is the coupling constant; S0 is the

free two point Schwinger function for the fermions with mass mf > 0,

i      - & + mf

(1.4) S0(x - y) = -i- / —-4 *»<*-*> d2?
(2trf J   p2 + mf

where p- = p0y0 + .p. y. in terms of p = (p0, p¿) and the 2 X 2 y-matrices y0

and y, (see [22]). K = KA is the operator with kernel

(1.5) KA(x,y) = S0(x- y)<t>(y)xA(y)

where Xa is the characteristic function of A. The determinant in (1.3) is the

m X m determinant of the matrix with elements S'(f¡, gy, <b).

(d)

(1.6) pA = detren(l - \KA) = det3(l - AK^exp^X^),

where

(1.7) det3(l - A) = exp[Tr(ln(l - A) + A + A2/2)j

and

(1.8) BA = \ :Tr(K2 + &K):,
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where K* is the adjoint of K as an operator on %¡ and : : denotes Wick

ordering with respect to dp;

(e) the partition function

(1.9) Z=fpAdp.

The above description (a)-(e) of (1.3) is only formal. For instance, it is not

clear what det3(l - XKA) or

(1.10) R = il-XKAyx

means, inasmuch as KA depends on the field ^ which takes values in S '(R2).

What Seiler did was to introduce momentum cutoffs so that each component

of (1.3) made sense, to perform appropriate renormalization cancellations,

and then to take the limit as the cutoff was removed. In this way he showed

that the integrand in (1.3) was indeed an integrable function of </>. Refine-

ments of Seiler's results and further developments based on (1.3) have been

obtained independently by McBryan [15], [16], [17] and by Seiler and Simon

[23], [24], [25]. We mention two of their results, but first some notation. Let

D = ip2 + m2)xl2 = (-A + w/)'/2 and let %a be the Sobolev space %a =

V-iD2^). Define X = %/2 © %/2 and /\m% to be the w-fold anti-
symmetric tensor product of % with itself. It is not hard to show that

(1.11) det S'(J, gy, <b) = m\ TxAm%(/\mR • P)

where /\mR is the w-fold antisymmetric tensor product of the operator R

(see (1.10)) with itself and P is the projection operator on /\m% defined by

(1.12) P = Oí, -)A-3e*

where r, - D~% A • • * AD~% and xb - SQgx A • • • A S0gm. (In the

Appendix we have collected the various definitions and facts about /\m%

that we shall use.) Now define

(1-13) HVA(<p)=||Am*||PA

where || Am*ll is the norm of Am^ as an operator on /\m%. Then it is

shown in [16] and [24] that for any p < oo there are constants c, and c2

independent of m and A such that ("Linear Lower Bound")

0.14) IKaIU,) < cfV2|A|

where |A| is the volume of A. Note that the estimate (1.14) involves a

cancellation between poles of Am^ as a function of X and zeros of

det3(l — XK). This estimate is an important ingredient in obtaining bounds

on the Schwinger functions: McBryan [17] and Seiler and Simon [25] show

that if A -» oo through a sequence of rectangles then

(1.15) m^iJ^h^Kinlf^lg]^
A-»oo



4 ALAN COOPER AND LON ROSEN

where | • |0 and | • |, are Schwartz space norms with |/|0 = II7LiU-lo etc-

At first sight the formula (1.3) for SA seems inappropriate for a cluster

expansion since the "interaction" is nonlocal: the price paid for integrating

out the fermions is that the "effective interaction", -logdetren(l - XK),

involves products of the boson field at different points in R2. Put differently,

(1.2) fails for pA defined by (1.6):

(1.16) Pa,ua2 * Pa,Pa2-

However, if we reinstate the fermi fields by going to the Osterwalder-Schrader

representation [18], then the interaction is certainly local and it makes good

sense (at least at the pre-estimate level) to base a cluster expansion on

inserting Dirichlet barriers in both the boson and fermion two point Green's

functions. One is therefore confident at the outset that the nonlocality (1.16)

cannot be a serious problem for a cluster expansion, provided of course that

one inserts Dirichlet barriers into the fermion "covariance" (1.4). We do so in

the following elementary way:

(1.17) S0(s; x,y) = Cf(s; x,y)(r+ mf) = (-iVy + mf)Cf(s; x,y),

where s is a multiparameter in [0, 1]® measuring the strength of Dirichlet

barriers (see §11) and Cj(s; x,y) is defined in precisely the same way as the

boson covariance (see (11.15)) except that mb is replaced by mf. Since

fr = — i V is a local operator S0(s) decouples across a Dirichlet barrier just as

Cf(s) does. With this choice, the Y2 theory does "decouple at í = 0", as we

explain in §111 where we formally derive the Y2 cluster expansion.

In §IV we prove convergence of the Y2 cluster expansion. As is to be

expected, some vestige of nonlocality remains in the sense that the cluster

expansion produces nonlocal polynomials of the form

}w(xl,..., Xj^x^)... <b(Xj) dx; however the nonlocality is exponentially

small in the sense that the kernels w(x{,..., Xj) are exponentially small in

the distance between the x/s. The estimates required for convergence are

established in §VI and §VII. For example, in §VII.4 we extend the linear

lower bound (1.14) to the j-dependent theory. For P(<b)2, estimates on Lp

norms of B^C^s; x, y) are critical [9], where, for y a finite set of bonds in ©,

9Y = Hbeyd/dsb. It is clear from definition (1.17) that we must consider

analogous bounds involving spatial derivatives as well. It turns out that all the

estimates in this paper can be reduced to estimates on the second mixed

partial (d2/dx¡dy)dyC. §VI is devoted to such estimates and in a certain

sense is the technical heart of the paper. Instead of a Wiener integral

representation as in [9], [28], we employ elementary techniques from the

theory of partial differential equations.

As in the case of P($)2, the Wightman axioms [30] for weakly coupled Y2

(except asymptotic completeness) are an immediate consequence of the
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convergence of the cluster expansion. In §V, we sketch the proofs of the

following results:

Theorem 1.1. If \X\/mb and \X\/mj are sufficiently small then:

(a) The infinite volume Schwinger functions S (f, g, h) = limA_R2SA(/, g, h)

exist.

(b) The S(f, g, h) satisfy all of the Osterwalder- Schroder axioms [19] includ-

ing exponential decoupling. Hence the corresponding relativistic theory satisfies

the Wightman axioms including a positive mass gap.

In our development of the Y2 cluster expansion we have tried to conform

as closely as possible to the version of the expansion in the Erice lectures [9].

However there are some additional features worth noting here:

(a) The integrand, as well as the Gaussian measure, depends on s. Deriva-

tives in s of the integrand ("fermion derivatives") lead to terms with a

different structure than derivatives of the measure ("boson derivatives"); in

order that we can treat both types of derivatives in a uniform way we find it

convenient to introduce dummy boson fields to replace those that have been

differentiated.

(b) We find it more convenient to use s-Wick ordering matched to the

measure dpC(Sy

(c) In order to take advantage of the linear lower bound (1.14) it is

important after each step in the cluster expansion to collect together certain

terms in such a way as to preserve the form (1.11).

(d) The nonlocality referred to above, while not a serious problem, affects

the combinatorics of the cluster expansion. In particular, a set of bonds y

may have from 1 to 6 associated localizations, instead of exactly 2 as in the

P (<f>)2 case.

(e) As remarked above, the convergence of the cluster expansion depends

on Lp bounds on (d2/dxidyJ)dyC. Although dyC(s; x,y) has only mild

singularities (i.e. logarithmic) asxorv approaches a bond and hence is any

Lp, the singularities of (32/3x/9y/)81'C are more severe and make it a delicate

question as to what Lp space (o2/'dxi'èyJ)VC belongs to (see Theorem VI. 1).

(f) To deduce convergence of the cluster expansion based on the unit lattice

Z2, we have to take |X| small as well as mb and ms large. The reasons for this

are (i) to compensate for positive powers of mb and mf introduced by the Lp

estimates referred to in (e); and (ii) to bound the partition function for a unit

square A away from zero as in [9]. The conclusions of Theorem 1.1, however,

are extended by a scaling argument to all values of X, mb, mf for which the

dimensionless ratios X/mb and X/mf axe sufficiently small. It is also possible

to develop a convergent cluster expansion for any given value of X (see the

Remark following Theorem V.l) provided one chooses mb and m¡ sufficiently
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large and the basic lattice spacing sufficiently small.

The following miscellany of remarks and conventions is mostly notational:

(i) We denote the twice subtracted determinant (see (1.7)) by det3 as in [15]

and [24] instead of by det(2) as in Seiler's original paper [22].

(ii) As noted in [25], the combination (1 - XK) and not (1 + XK) as in

Seiler [22] corresponds to the Yukawa Hamiltonian with coupling constant

+ X.
(iii) We shall often assert that something is true uniformly in the bare

parameters; it is to be understood that the bare parameters lie in the region

{(X, mb, mf)\ \X\ < l,mb> I, mf > I).
(iv) For notational convenience we shall usually set mb = mf= m0.

(v) X will be suppressed in most of the formulas until the proof of

convergence when it will be required.

(vi) Following standard convention, we shall usually omit spin indices and

confuse %a © %a with %a.

(vii) Although we have stated the Matthews-Salam-Seiler formula for the

scalar theory, all of our results hold for the pseudo-scalar theory obtained by

inserting an ry5 in the definition of K: K = Sniy54>xA.

As we were completing this manuscript we received a preprint from J.

Magnen and R. Sénéor [14] who have obtained the same results as we do but

by a rather different approach. We mention also that D. Brydges [2] has

developed a cluster expansion in the Hamiltonian framework for a fermion

field \p moving in an external field <b via the interaction \¡ñf/c¡>.

Acknowledgements. We wish to thank Joel Feldman, Peter Greiner, Ira

Herbst, Elliott Lieb, Barry Simon, and Tom Spencer for useful conversations.

II. Review of the Glimm-Jaffe-Spencer cluster expansion. For the reader's

convenience we outline in this section the basic ideas, definitions, and steps in

the cluster expansion of Glimm, Jaffe, and Spencer [9]. Our review is no

substitute for the presentation in [9] but we hope that it makes this paper

reasonably self-contained. Although the following discussion applies strictly

only to P(<b)2, we have tried to phrase matters in a model-independent way.

So consider the situation described in (1.1) and let (A}A = fA(<b) dvA

denote the expectation of a function A of the Euclidean fields and let

&A(A) = (A)A/Z(A) denote the normalized expectation where Z(A) = <1>A

is the partition function. The purpose of the cluster expansion is to prove

exponential decoupling or clustering of the form

(HO SA(AB) - SA(A)&A(B) = 0(e-^A^).

Here the constant m is independent of A, A, B but depends only on the bare

parameters (masses, coupling constants) and is positive for suitable values of

these parameters; d(A, B) is the distance between the regions where the
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functions A and B axe localized. It is worth pointing out that clustering such

as (II. 1) with m > 0 leads in a straightforward way to the existence of the

infinite volume limit limA_00SA [8, Theorem 2.2.2].

It is no loss of generality in (II. 1) to suppose that A and B axe each

localized in unit squares A,, and AB in R2 \ © where $ = (Z2)*. We also take

A to be a union of unit squares. Furthermore we may suppose that each of A

and B satisfies (for the various boundary conditions used below)

01.2) &A(A) = &A(B) = 0

for the general case can always be reduced to this one by a suitable

"doubling" of the theory (see [9, Theorem 2.1]). For such A, B the goal (II. 1)

simplifies to

(II.3) &A(AB) = e(e~MB)).

If instead of < • >a an<i ^a we were to consider < • >A0 and €>A0 corre-

sponding to the measure dvA0 with D B.C. (Dirichlet boundary conditions) on

all the bonds in % (see §1); then we would have exact decoupling between

lattice squares. Thus, for AA =£ AB,

by (II.2) for D B.C.
The cluster expansion proof of (II.3) now consists of relating SA to SA0

and showing that

(114) &A(AB ) - &Afi(AB ) - 0 (e —"•* >).

Considering the unnormalized expectations, one goes from (AByA0 to

(AByA by "turning on" the couplings across bonds in such a way as to

exhibit the smallness of the differences. This is accomplished as follows. With

each bond b E © we associate a parameter sb = 0 or 1 where sb = 0

corresponds to D B.C. on b and sb ■ 1 corresponds to full coupling across b,

i.e. no B.C. on b (later sb will range throughout the interval [0, 1]). For any

value of the multiparameter s = (sb)be<Sl we have B.C. intermediate between

(AByAfi = <^5>Ai_0 and (AByA =\AByA^^x and we denote the corre-

sponding expectation by (AByA¿. For any function f(s), b E % and set

Tc©,let

(8bf)(s)=m\si-l-m\St-v

(IL5) // \  \
(5 r/)w = ((nr5ft )/)(.).

Then we have the (formal) identity

01.6) /(l)-/(0)=   II (5r/)(0)
re®
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where the sum is over finite nonempty sets T. Note that 8Tf(s) is independent

of the values of sb, b ET; hence setting s = 0 in the summand in (II.6) gives

D B.C. only on Ve = % \ T. The expansion (II.6) corresponds to the Mayer

expansion from statistical mechanics. Its usefulness, for suitable functions /,

depends on the fact that, as a multiple difference of order |r|,

(11.7) 0Tf(0)&e-cM

where the constant c -♦ oo as m0 -» oo (see (11.20) below). If we had gone

from/(0) to/(l) via single differences, we would have obtained a sum with

"fewer" terms but would have lost the important decay (II.7).

As remarked after (II.6) 5^(0) has D B.C. on Ve: we regard the line

segments in Ve as barriers and those in T as bonds. With this viewpoint, T

gives a decomposition of R2 into connected components: R2 \ Ve = \JXj

where the Xj are disjoint. Returning to the "proof" of (II.4) we have from

(II.6) that

01.8) (AB\A-(AB)At0=  2 ST(AB)Afi
re®

where Ôr(AB\0 = o\AB)A¡,.0. If A,, * AB, (AB}Afi = 0. In fact, by

(II.2) the summand ÔT(AB}A0 will vanish unless T connects à.A and AB within

one connected component X,. For this to be the case T must be sufficiently

large, i.e. |r| > d(A, B). Therefore we expect that by (II.7) each term in (II.8)

is «exp[-cd(A, B)].

Now the above intuitive remarks cannot lead to a proof that (AB}A is

0^e-md(A,B)^ uniformly in A since (AB)A is unnormalized. To fashion a

proof from the above ideas it is necessary to divide by Z(A) and to effect a

cancellation. This is accomplished by a partial resummation of the expansion

(11.8) as follows. In the sum in (II.8) let T = T, u T2 where Tx connects A^

and AB; i.e., if X is the single component of R2 \ P7 containing â.A and AB,

then r, = T n int X. We obtain

(II.9)        Sôr<^>A0=2   2    2 8sTluT1<AB)Afi

re« x r,cint^r2cJfc

where the X and T, sums satisfy

(i) X is a finite, closed, connected union of lattice squares

(11.10) containing A^ and AB,

(ii) T  c % n int X is such that X ~ T\ is connected.

Now (T, u Tj) n 3* = 0 so that 5r'UI"2<^i9>A>0 decouples across ZX:

(11.11) 8^(AB\0= 8^(AB)AnX^(l)ArXtfi.

By (a slight generalization of) (II.6),
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(11.12)     2   Sr2<l>An^o=<1>An^l-iin^-Omx = Z3^(A~A'),
T2gXc

the partition function with interaction in A ~ X and D B.C. on dX. Therefore

by(II.8Hn.l2)

<^>a-2   2   sr>(AByAnxfizdx(^~x)
X r,cintJf

so that, dividing by Z(A),

Z3^(A~Z)

(11.13) &A(AB)= 2        z(A)       ^'^Wo

where the sums over X, Tx satisfy conditions (11.10) above.

The identity (11.13) is the desired cluster expansion for &A(AB). One

deduces (II.4) by proving that the summand in (11.13) is bounded by

(11.14) e(e-cM+dW),

the e-clr'l arising from the multiple difference 5r' and the ed^ from the ratio

Zdx\Z and the exp(0(|A n X\)) behaviour of an expectation < • >An^. Here

d is uniformly bounded in the bare parameters whereas c -» oo as m0 -» oo.

But by (ii) of (11.10), T, must fill out X; more precisely, (ii) implies that

|r,| > 1*1 - 1 so that (11.14) is bounded by 0(e-(f-d)m). Since there are at

most 0(eQaX9)M) terms in (11.13) with a fixed value of \X\ [9, Proposition

5.1], we obtain

|SA(,L3)|<0       2      e-<c-d-XnX9)W<e(e-md^B))

\X\>d(A,B)

where m -» oo as m0 -» oo.

This concludes our "intuitive" description of how the cluster expansion

leads to exponential decoupling. We next wish to recall some definitions from

[9]. If T c ©, let Cr = (- Ar + ml)~x where Ar is the Laplacian with D B.C.

on the bonds in T. In order to interpolate between C^ = (—A + m2,)-1 and

C$ = (-Aa + ml)~x, we let the parameters sb range through [0, 1] and we

define the covariance

(11.15) C(s)=  2 n sb n (i - sb)
re® Uer   ¿er

In particular, C(0) = C9 and C(l) = Cr

We denote the Gaussian measure corresponding to C(s) by dpc^ or dps,

and the interacting measure in volume A by dvAs = pA¿ dps. For P(^>)2 the

factor pAi may be chosen to be independent of s, i.e. pA = e~u* =

exp(—fA:P(tp): d2x) and for this reason we assume that we are dealing with

P(<t>)2 for the rest of this section. (For the definition of pA^ in Y2, see the next
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section.) The j-dependent partition function and (unnormalized) Schwinger

functions are

Z(A, s) =jdvAt„       ZS(A, S) -/*(/,) ... <K/„) dvAj,

where each test function f¡ is assumed to be smooth and localized in a lattice

square.

In order to expand F = Z or ZS as in (II.6) we must verify that F(s) is

regular at oo, i.e. if TV® through finite subsets, then F(s(T))-> F(s) for

each s, where

bel,

6 er.

In order to carry out the factorization as in (11.11) we must next verify that/

decouples at s = 0, i.e., if the D barriers in rc decompose R2 into a disjoint

union

(11.17) R2 ~ Tc = U Xj

then

(LUS) F(A, s(T)) = HF(A n Xj, s(T n Xj)).
j

Given that F is regular at oo and decouples at s = 0 we can obtain a

convergent expansion as in (11.13). For S (A) = S (A, s = 1) we resum over

the components in (11.17) that do not meet the set X0 = U,- supp^- and the

resulting expansion is, just as in (11.13),

_     ZBX(A~X)   „
(11.19) s(A)=   2     "*;       Vzs(An*,o)

(Ar,r)eS       ^lA*

where the set S = S (X0) is defined by

§ = {(X, T)\X a finite union of closed lattice

squares with X0 c X; T c ® n int X is such that each

component of X ~ Ve meets X0 ).

There are three estimates involved in analyzing (11.19) as indicated in the

discussion of (11.13) above. The main one is Proposition 5.3 of [9]:

I. There is a constant c, < oo (uniformly in the bare parameters, X, and

|r|) and a norm |/| on test functions such that

(11.20) \8VZS(X, 0)| < e-«ITI+e>M|/|

where c -> oo as m0 -» oo.

The second estimate is on the ratio of partition functions: for sufficiently

large m0 there is a constant c2 < oo (uniformly in A, A" and the bare
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parameters) such that

01-21) \Zdx(A~X)/Z(A)\<ec>W.

As shown in §6 of [9], (11.21) follows from an appropriate cluster expansion

for Z ("Kirkwood-Salsburg equations"), a bound on Z analogous to (11.20),

and the following estimate:

II. Let Z3ii(A) be the partition function for a unit square A with D B.C. on

3A. For sufficiently small |X| and sufficiently large m0,

(11.22) 1<|2T3A(A)|.

The third estimate is a combinatorial one:

III. The number of terms in (11.19) with a fixed value of 1*1 is bounded by

Obviously, this last estimate is model independent. To summarize: for any

model the convergence of the cluster expansion reduces to proving (the analogue

of) estimates I and II.
For the remainder of this section we discuss the method of proof of I. The

first step is to apply the fundamental theorem of calculus to 8T; i.e.

(11.23) 8TZS(0)=[ dTZS(o)d^o
J0<o<T(\)

where 3r = ITier3/3o-¿, and where, according to (11.16), the integration in

(11.23) extends over the region ob E [0, 1], b E T. But one has a simple

formula for ddpC(s)/dsb, namely [4]:

<IL24> ~k ÍG (*> *"« = Ï /( f " A*)G *"
where

(1L25)   (if• A*)G -// f <s;*•»mkf) ""*■
The formula for higher derivatives follows from the product rule:

(11.26) dT[G(<t>)dpcU)=    2     f U  \(VC-\)Gdpc,s)
J lEí(r)'' ye» *

where WÇT) is the set of all partitions of T. From (11.23) and (11.26) we obtain

(11.27) 8TZS(X, 0) =    2     f d^s (dpsU \ VC-^(X)e-uM
w<=<3'(r)J J yew l

where O(X) = IL;:supPícA.<í>(.¿).

Now the derivatives A^ in (11.27) produce a sum of products of local

polynomials : Q (<t>(X)): brought down from the exponential e~um. There are

thus a large number of terms in (11.27), for two distinct reasons:
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(Bj) The number of terms ^(F)! in the sum over partitions is large, of the

order |r|lrL

(Bj) The number of terms resulting from differentiations A^ is large, of the

order |r|'r'; moreover, the total degree of the polynomial brought down is of

the order |r|, which results in a number singularity which could be of the

order |r|lrL

The only hope for controlling these singularities lies with the 8YC's. In fact,

dyC(x, y) is small for two (essentially) distinct reasons:

(G,) dyC(x,y) becomes exponentially small as y becomes large.

(G;¡) dyC(x,y) becomes exponentially small as x or y gets far from any

bond in y.

Fortunately, (G,) controls (B,) and (Gj) controls (Bj). The intuitive ex-

planation of the latter is this: given x e R2 there cannot be too many y's near

x and consequently by (G2) only a small number of the ¿5/5<f>(;c)'s are

significant at x. Hence, locally the number of terms and the degree of the

polynomial ("local number singularities") are effectively bounded indepen-

dently of |r|.
For precise statements of (G,) and (G2) we quote Propositions 8.1 and 8.2

from [9], but first some more notation: Let Ay be the lattice square whose

lower left corner is at j E Z2. We let x, = Xà denote the characteristic

function of A,, and we define the distance

(11.28) d(y,j) = max[dist(6, A,.) + dist(Z>, AJ].

If y = {£>„ ... ,b„) consists of n bonds, and a is a permutation in Sn, let /0(y)

be the ordered set (ba , ..., b0). We define a size |/0(y)| as follows: Let

b\ «■ ba; let b'2 be the first of the b0's not touching b\; let b'3 be the first of the

bg 's after b'2 not touching b'2, and so on. Define

(11.29) IU = 2dist(ô;,è;+1)
i

with |/„| = 0 if there is no such b2. As an example we have |/0| = 3 for y and a

as shown:

"•2 b„ =6;

b„   =b'3 ba   = b\ ba
5 1 ' Q %

Lemma II. 1  (Proposition 8.1 of [9]; Appendix of [28]). Let 1 < q < oo

and let m0 be sufficiently large. Then
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(11.30) Ito^Cj^< K4(q)Kiy%(y)möW2"exp[-mnd(y,j)/3]

where K4(q) and Kg are constants independent ofmQ and

(11.31) K6(y)=  2 e-m°My)i/3.
oes„

Lemma II.2 (Proposition 8.2 of [9]). For m0 sufficiently large there is a

constant K-¡ independent of m0 such that

(11.32) 2      II K6(y) < e«*l.
ve9(X) yE»

Here, in barest outline, is how the proof goes that G} controls By The

analogous steps for Y2 require some modifications and will be explained more

fully in §IV:

Insertion of localizations. In order to estimate the number of terms in (11.27)

as well as the local number singularities A/(A), i.e., to control (Bj), and to take

advantage of (G2), we introduce a partition of unity for each local polynomial

brought down from the exponential. This amounts to the same thing as

writing

(11.33) dyC = 2^,9YC^ ^2 *yC(jy)
J-, h

where jy = (jyA,jyt2) runs through Z4. The sum over j = (jy) is pulled to the

outside and for a fixed value of j, one estimates the other sums.

Estimates on Q-space integrals. Such estimates lead to a product of factors:

the Gj factor HySJ\dyC(Jy)\\L,; the typical boson factor ILJVXA)!; and to a
linear lower bound factor e0(-\x\\

Counting. One introduces M (A) as the number of 8/8<b's localized in A.

Both the local number singularity factor ITAiV(A)! and the number of terms

(B2) are estimated by e0('r|)(IIM(A)!)^ for some ß depending only on the

degree of the polynomial.

(G,) controls (B,). This is just an application of Lemma II.2.

(GÍ) controls (B2). The (G2) factor is exp[-2Y/V(y,yY)/3] and the (B2)
singularities have been replaced by

IlM(A)!^<expice2M(A)1+e|

for any e > 0. A geometric argument that

01.34) 2 M (A)3/2 < const( 2 d(y,jy) + \T\)

shows that (G^ controls (B^ for sufficiently large m0.
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III. Cluster expansion for Y2: formalism. In this section we formally derive

the Y2 cluster expansion, the proof of convergence being given in §IV. As

described in the previous sections, a key point is to define the s-dependent

theory so that it decouples at s = 0. For Y2 it is also important to collect

terms in such a way as to preserve the fermion structure that enables us to

cancel poles with zeroes as in (1.14). For this reason, we shall write down the

expansion in a rather explicit way.

Our starting point is the Matthews-Salam-Seiler formula (1.3). We assume

without loss of generality that each of the functions in /, g and h is in

Schwartz space and has support in a unit square. As we have already stated in

(1.17) we shall obtain an i-theory which decouples at s = 0 (in the sense of

definition (11.18)) by replacing dp by dpC(s) and, in addition, by replacing the

fermion two-point function wherever it occurs by

(111.1) SQis; x,y) = C(s; x,y)(p-+ m0) - (-i*y + m0)C(s; x,y)

where C(s) is defined in (11.15). Note that we have set mb = m,= m0 and

that accordingly we use the same symbol C for both bosons and fermions.

The operator inequality C(s) < C(l) = C^ implies that (III.l) defines a

bounded operator S0(s) on L2(R2). Moreover, since

p-= -''(Yo9/9*o + Yi9/9*i)

is a local operator, S0(s), like C(s), decomposes across Dirichlet barriers; i.e., if

s = 0 on a set of barriers % which divides R2 into a disjoint union,

R2 \ % - U X¡, then

(111.2) S0(s)=es0(s)[L2(X,).
i

The i-dependent objects corresponding to (1.5), (1.6), (1.10) and (1.12) are

defined in the obvious way:

(IIL3) K(s) = K(A,s) = S0(s)4>xA>

0II.4) R(s) = (l-XK(s))~l,

(ffl.5) P(s) = (-n,-)Am%t(s),

where \b(s) = S0(s)gx A • • • A S0(s)gm, and

p(s) = p(A,s) = detTen(x--M(A,s))

(III.6)
= det3(l - XK(A, j))exp[ -X2B(A, s)]

where

(III.7)    B - Bis) - B(A, s) - i [:Tr tf(A, s)\ + 8m2 :<¡>2(Xa):s],

the Wick subtractions being made with respect to C(s). Of course, (III.7) is

only formal, e.g. the relation :TrÄ'tÄ':= Sm2:d>2(xA): involves the infinite
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constant 8ml. What we really mean by (III.7) is the limit as an ultraviolet

cutoff is removed,

(III.8) B(s)=limBa(s),

where we introduce the cutoff a as follows: Let h(x) e C0°°({x| |x| < ¿})

with h > 0, fh(x) dx = 1 and h(x) = h(-x). Define h„(x) = a2h(ax). Then

the ultraviolet cutoff fermion propagator is defined by

0II.9) S0 o (s; x,y) = fs0 (s; x, z)h„(z - y) dz.

Set

Ka(A,s) = S%a(s)<?XK,

(IIL10a) .   ,     ,„  ,,-.f     *P      f,_*

with

and

5w' = ^"/7à^)2

ha(p)=jeip\(x)d2x

(111.10b) Ba(A, s) = i [:Tr A. (A, s)\ + 8m^2(xA):,].

In (VII.52) we prove the convergence of (III.8) in L2(djLtcw).

Combining the above definitions we define the partition function

(111.11a) Z(s)=jp(s)dric(,)

and the (unnormalized) Schwinger function, as in (1.3),

(III.1 lb) ZS (s) = J$ Tm (AmR (s) • P (s))p(s) ̂c(i)

where we have used (1.11) and introduced the notation

rm(-) = m!TrA-5C(.).

In §IV we shall show using estimates from §VII that the objects in (ULI 1) are

well defined. However a word is in order here about the meaning of an

expression like (III.4) for R (s). As in [22] we let Qp (%) denote the class of

compact operators A on DC with \\A\\P = Tr(A*Ay/2 < oo; and we let Gpq.,

denote the class of 6p(%)-valued functions A (<b) with

(111.12) \\A\\Ptq;=y d^AMl < oo.

Since 11^(5)1144., is finite (see (VII.27)), it follows that K(s) is a well-defined

compact operator in the class ß4(3C) for almost all <f> (w.r.t. ¿Pcm)- Thus for

each fixed <¡> (except in a set of measure zero) (III.4) is well defined as an
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operator on % except for a countable set [X\X~X E o(K(s))). Of course this

set of X will depend on <f> and so it is quite possible that there is no X for

which (1 - A/if)-1 makes sense a.e. in <p. (We mention that Seiler [22] has

proved that for every X, (1 — XK)~ ' is well defined for ¿> in a set of positive

measure.) However we note that in (III.llb) the factor /\mR can be com-

bined with the det3(l - XK) to obtain a cancellation between the poles of

/\mR and the zeros of det3(l - XK). More precisely, by Proposition 5 of the

Appendix of [23], if A E ßp, then

(111.13) A -> B = Am(l - ^r'det^l - A)

is a continuous map from Qp to t(/\m%), the bounded operators on /\m%.

Accordingly we can define Am^det2(l - XK) by continuity in X even at the

values X E o(K)~x. It will turn out in the course of the cluster expansion that

the "operator" R (s) will always occur in a single jactor oj the jorm /\rR (s),

and consequently we shall freely use the above remarks to manipulate with

K(s) and R(s) = (1 — XK(s))~x as though they were well-defined bounded

operators on % jor all «p and all X. For notational convenience we shall set

X = 1 until the end of §IV at which point X will be resurrected.

With the above definitions and interpretation we now assert that ZS(s)

and Z(s) decouple at s = 0 (see (11.18)). For suppose that s = 0 on ®0 c

(Z2)* with R2 ~ % = U X, a disjoint union. Let K = K(A, s) and K¡ =

K(A¡, s) where A, = A u X¡ so that K = 2Ä). Let %(X¡) be the subspace of

% consisting of functions with support in X¡. Then clearly K¡ = 0 on OC(A^) if

i g* j, Range K¡ c %(Xt) by (III.2), and so

(III.14a) K¡Kj = 0   ¡îi+j.

Define the operator R¡ = (1 - K¡)~ '. As explained above we may assume

that 1 & oiK) and 1 & o(K¡) for all i so that R = (1 - K)~x and R, axe

well-defined operators. It then follows from the above properties of Ä^- that

(III.14b) R = R¡   on3C(A-,.).

In addition we see from (III. 14a) that

det„(l - A') = det

= det

(1 - K)exp

n (1_K/)exp|£_j

= iIdetfl(l-Ai).
t

Although it follows formally from (III.8) and (III. 10) that B decouples at
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J = 0,

(111.15) B(A,s) = '%B(Ai,s),
I

the proof involves an ultraviolet cutoff argument which we postpone until

§VII.5. Using (111.14) and (111.15) we obtain from definition (III.6):

011.16) p(A,s) = Hp(Ak,s)
k

in contrast to the nonlocality (1.16).

The trace term in (III. 1 lb),

Tm((AmR(s))P(s)) = detydf, R(s)S0(s)gj)L2),

also factors. Since each test function f¡, gJy h¡ is localized in a unit square it

must also be localized in one of the A^'s.By (III.2), if supp gj c Ak then

supp SQ(s)gj c Ak and so, by (HI. 14b),

R(s)S0(s)%-Rk(s)S0(s)gj

also has support in Ak. Consequently,

AiJ^(fi,R(s)S0(s)gJ)Ll= f(¿ *$>(')*)    if supp/and supp gycA„

10 otherwise.

We see that, after a suitable relabeling of the rows, the matrix Ay decomposes

into blocks A¡-k) associated with the various regions Ak. Obviously det Ay « 0

unless these blocks are square, i.e. unless the same number (mk) of/'s as gy's

have support in each Ak. We also have the factorization

Tm((AmR(s))P(s)) = det,4, = ± ndet4«

011.17) „
= ±nr^((A^)P0

where

Pk = {D-%A-- ■ AD-'/^.^o^A-- • AS0(s)gJmk

and/,,... ,fimk, gh,..., gjmk are the fs and g's with support in Ak.

If we insert (III. 16) and (HI. 17) into (III.ll) we obtain the desired decou-

pling since each p(Ak, s) and Rk is a function of the fields in Ak:

Lemma 111.1. ZS(s) andZ(s) decouple at s = 0.

For bounded A it follows easily from the results of §VII that ZS and Z are

"regular at oo" (defined before (11.16)). Thus the cluster expansions for ZS

and Z are generated exactly as for P(<#>)2 and we obtain for S:
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(111.18) S(A) =    2    (±) Z*X{?Z X) fd^sdTZS(A n X, s(T)).
(x,T)eS Z<A>        J

Here the set S = §(*()) is defined following (11.19) in terms of the union X0

of the supports of the j¡, g¡, h¡; ZS(A n X, s(T)) is the unnormalized

Schwinger function with interaction in A n X and with the /■, g¡, h¡ localized

in A n X; and the ± sign arises from the permutations involved in the

factorization (III. 17) (it is unimportant for the purposes of this paper).

We must now "evaluate" the ¿-derivatives 3 r. Our calculations involve the

differentiation formula (11.24) which becomes, in the case of an i-dependent

integrand,

(111.19) |/G(^)%=/(f^f-^)*,
Taking higher derivatives and using the fact that d/ds and 8/8<p commute,

we obtain

(111.20) dvÍGdps=     2 2     fÍLT  J3*C-aV/G¿m,
J T-Yb\jYj*<=<$(Tb)J   \yev ¿ I

where Tb and Tj are disjoint subsets of T which we regard as index sets for

boson and fermion derivatives respectively. In §VII.6, we indicate the

rigorous justification of the formal relations (III. 19) and (111.20) for the class

of integrands G considered in this paper.

The boson and fermion derivatives are independent except for the follow-

ing convention. The integrand G will always contain the factor e~B (see

(III.6)) as well as factors brought down by differentiating B. Let bis; x, y)

denote the kernel of B, i.e.,

(111.21) Bis) =\jb(s; x,y):<b(x)<b(y):s dx dy.

Since we use matched Wick ordering (: :s denotes C(s) subtractions) we

obtain a cancellation between boson and fermion derivatives; e.g.,

(¿ + ïfA>-i/S(*!^)^)^):.**.
The same cancellation occurs for higher ¿-derivatives. We accordingly adopt

the following convention. We drop the cancelled vacuum expectation terms

and collect the remaining terms in the form

(m.22) I Jdyb{s; x,y):<t>(x)<b(y):s dx dy.

Thus no term involving boson derivatives of B occurs in which the same

covariance kernel dYC(x,y) is integrated against each variable of b or dyb.
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From definition (III. 1 lb), and formula (111.20),

dTZS(s)=     2 2      Uii,   n (L2^C-\)
T=T„uT/ns9(r¡>)J        Ye»4

(111.23)
•^fTm(AmR(s)P(s))p(s).

We proceed to evaluate a typical fermion derivative (formally). Since R =

(1 - K)~x, we have

011.24) (d/ds)R = R(dK/ds)R.

Consequently,

3     A mr, _   V»   / A /-ln\   A    OR

011.25)

ys AmR - 2 (Aj~lR) A ^ A (Am-JR)

= dAm(R™)AmR

by (111.24), (A.5), and the definition (A.4) of the derivation d Am(-)- Since

(formally)

det3(l - K) = exp[Tr(log(l - K) + K + K2/2)]

we have

£de.3(l - K) - T,(-(l - *r)-f + f +*f )de«j(l - K)

--Tr(iKJ^)det3(l-ir).

Therefore

Cm,*) |._[Tr(^M) + f].

By (111.25) and (111.26)

±-sTm(AmR-P)P=\rm(dAm{R™)AmR-p)

+ Tm[AmR^)-Tm(AmR-P)

(111.27)

•H-2f)+f
Recall that in the discussion following (III.13) we asserted that R always

occurs in a single factor of the form A'R> this fact being critical for our

control of the terms in the cluster expansion. Plainly this is not the case for

two terms on the right side of (111.27) and so we must effect a cancellation.
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To this end we write R = RK2 + 1 + K so that

where

(111.28) A> = K2^£    and   ^ = (1 + ^)^-

The two offending terms in (111.27) become

Tm(dAm(R™)AmR-p)-TmiAmR-P)Tx(RK2^))

= Tmi/\mR ■ Pd/\m(RAs)) - Tm(/\mR ■ P)TX (RAS)

+ TmiAmR-PdAm(Es))

(111.29) = - Tm+, ( AmR • P A RAS) + Tm iAmR • P dAm(Es ))

011.30) = -Tm+xiAm+iR-PAAs) + TmiAmR-PdAm{E,))

where in (111.29) we have used the trace formula (A. 12) and in (111.30) the

elementary identity (A.5). Combining (111.27) and (111.30) we obtain the basic

differentiation formula:

j-sTm(AmR-P)p=[-Tm+xiAm+iR-PAAs)

011.31) +7m(Am*-.rVAm(£J))

+ Tm[AmR^ )-Tm(AmR-P)^}p-

For G an operator on Am3C> we introduce the functional

(III.32) rm(G)=Tm(AmR-G)p

Then (111.31) can be written

j¡^(P) = rm(^)-rm+x(PAAs)

(III.33a)

+ rm(PdAmEs)-rm(P)f.

Each boson derivative gives an analogous formula. That is, if G(<b) is a

function of the fields taking values as an operator on Am3t\ then

-8^y-)TÁG) = TÁ^F))~Tm+l{GAAy)

(111.33b) 8B
+ TmiGdAmEy)-rmiG)

8<b(y)
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where

*> -KI m • E> -(1 + K) m ™d *w= Z**»*™*
It is useful to rewrite an operator like PdAmEs in (HI.33a) as follows.

From definition (III.5),

(111.34) P (s) = Px (s) A P2 0) A • • • A Pm (s)

where Pj(s) = (D~% ■)% S0(s)gj is a projection in %. Therefore by (A.6) we

may "spread the d /\mE into the P/s"

PdAmE=PxE/\P2/\--- /\Pm + Px/\P2E/\--- /\Pm

(IIL35) +...+PlA...APmE.

Before plunging in to evaluate (111.23) by iteration of the derivative

formulas (111.33), we pause to comment on the general structure of 3 VZS and

the possibility of making estimates. Clearly, fermion derivatives lead to a sum

of terms of the form rr(G)B where B is a product of quadratic polynomials in

<j> (typically Tr :KdyK:) and where G is an r-fold tensor product G = (?,

A • • • A Gr. Here each factor G¡ is a product of operators on % containing

at least 3 factors of K (see (111.28)) or a rank one operator P¡ (see (111.35)).

Since a K factor is in (SjJ each G¡ will consequently be in (2,,. We may thus

estimate rr(G) by (A. 14):

K(fJ)|<r!||ArÄ||1(?,A---AC?r||,'|Pl

<[||Ar*|||p|]n>,||r
I

The first factor is in any Lp(dri),p < oo (see (1.14)); so is the second factor

and the product B. In fact, the G,'s and B together give the desired e~c^

decay because they contain the factors ||9 YA||3.

Now boson derivatives evidently upset this tensor product structure since

different factors G, are linked by 3YC's. However if we replace the fields <b

that have been differentiated by dummy fields <by then we can restore the

tensor product structure so that boson and fermion derivatives lead to terms

with the same structure. To this end let ry be the replacement operator which

acts on polynomials in the field by

011.36)       ry<b(Xl) . . . <b(xn) = 2 *(*,) - • • *(*.-i)*,(*M*,+,) • • • *(*„)
i = i

with the convention that ry acts only on the original fields <j> and not on

dummy fields. Then we have the formal identity

(111.37)    /a yc(x, y) s^l^ «*.) • • • <H*„) = VX*,) • • • <KO
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where the "covariance operation" Sy acts on the pair of <by fields by

(111.38) &y<by(x)<by(y)=dyC(x,y).

We shall denote dummy field replacements by subscripts; e.g.,

(111.39) 3 % - ryd*K - 9YS0<byXA.

For each y in the partition mb of Tb there will be a pair of dummy fields d>Y

and an Sy. The expression (111.23) will thus involve

(111.40) S(776)= n $r
y^n

In the next section we shall replace S(77¿) by integration over suitable

Gaussian measures.

It is now straightforward to iterate the differentiation formulas (111.33) to

obtain an explicit formula for (111.23). However this requires a veritable

arsenal of notation which we must first introduce. The fermion derivatives,

like the boson derivatives, are grouped into sets ycS belonging to a

partition of Tj. We adopt the following

Order convention. The bonds b iniB are ordered in some fixed order with

any subset rc9 inheriting the same order. We first apply the derivatives in

Tj in this order and then the derivatives in Tb in this order. If y and y' axe two

(disjoint) sets of fermion derivatives we say that y precedes y' (and we write

y -< y') if the first bond in y precedes the first bond in y'. Similarly for boson

y's. Any fermion y precedes any boson y.

As in (111.33), a derivative 3 y or ry may introduce a factor

(111.41) Ay = K2dyK   or   Ay = K2Ky.

We call such factors, as well as the expressions obtained by further deriva-

tives of (111.41), type A jactors. For example, 3 y*KKd y>K, Ay^Ä^, or

KKydy'Ky} are type A factors. In each of these examples, we say that y, labels

the "first" derivative, i.e. the derivative that produces the factor. By our

convention of applying derivatives in order, we have Y! -< y, for y = 2 or 3;

note also that a factor like Koy2KKyi does not occur since the boson deriva-

tives follow the fermion derivatives. We call factors of the form

011.42) Ey=il + K)dyK   or   Ey=il + K)Ky,

and further derivatives of (111.42), type E jactors. We call

5y,.y2 = :Tr 0y2KotyK:= jdy>-y%(s; x,y):<b(x)<b(y): dx dy,

011.43)
By = By# = :Tr KdyK:)       By =jb(s; x,y)<b(x)<py(y) dx dy,

as well as further ry derivatives, type B jactors. Note that Byi,yi and By are
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well defined without the need for a mass term (see Corollary VII. 13). We

refer to the factors <p(A.) in $, and their derivatives, as type $ jactors, and the

factors Pj in (111.34), or their derivatives, as type P jactors.

We return to (111.23) in which we shall expand the fermion derivatives 3 r'

and write the result as a sum over partitions it of T. We wish to classify

elements y of 77 according to what type of derivative they occur in. Accord-

ingly we write each 77 G $ (T) as a disjoint union

(III.44a) tr = irb U trf

where the elements of trb (resp. ttj) label boson (resp. fermion) derivatives.

Then we write

(III.44b)      irf = tru U irftE U tt/>0 U wftB U vftS U vftP = U^

where the elements of

mJA label first derivatives in an A factor;

WfjE label first derivatives in an E factor;

•ttfß label all other derivatives in an A or E factor;

m¡B label first derivatives in a B factor;

TtfS label second derivatives in a B factor;

7iy p label derivatives on P.

We perform a similar decomposition on itb except that each y E mb has two

associated derivatives or d>? replacements (see (111.36)). Accordingly we let irb

denote the set trb doubled (i.e. for each y E irb there are two distinguished

occurrences of y in <nb) and we write

(111.44c)   ml = ttm U wbfE U trbt0 U irb>B U trbS u irb,<¡> - Ux*bjc

where each of the ttbX has a meaning analogous to the corresponding it^,

with 77i>0 labelling derivatives of $, in analogy to itjp. We denote the sum

over all possible decompositions of tt as in (111.44) by 2decompir. Iteration of

(111.33) then gives the following explicit sum for (111.23):

(111.45*) dTZS(s) =   2      2   (-i)'/^SK)*K.)G(^)
ireiP(r) decompw

with

x     G(«pjc) =d«f°*rVbosTriPiTrfs) /\A(*JA, *m) ' dA'Etyj!, *d,e))
(III.45b)

B (^/.B' ^b)

whefe

(III46) < " M + Km I + M + KmI»
r = m + \wu\ + \irbJ,

(HI.47) $K,*) = (   II   rU,
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011.48) P0>,p) = (   II   3y)p,A--- APffl,

where each 3 Y must act on a different factor PJt

011-49) A(vM,*bJ = (   A aAa{   A  Ay),

011-50) dArE(trLE,^E)=   IT   d'ArEy   W   d'A%

0H-51) B(vf<B,wb¡B)=   H   By   U   By,
ye»/,«     y^n.B

(111.52) a^s=3^°3^s=   II   3Y  II   3Y,

where each 3Y with y G 7iy0 (resp. ttjS) acts on an «.differentiated K

occurring in a factor of type A or E (resp. 5), and with a similar meaning for

011.53) r      = r, r„   =   II   r,   II   r_.

In (111.50) the symbol d'Ar has the same meaning as dAr defined in (A.4)

except for the observance of the order convention. By this we mean that when

the E factors in (IH.45b) are spread into the P and A factors as in (111.35) we

omit those terms in which the derivative on the E precedes the derivative on

the A.

Also by the order convention, a bosen derivative in rv may be applied to

a fermion factor of type A,Eox B but a fermion derivative in d"'0* may not be

applied to a boson factor. Actually we can afford to be a little careless in

enforcing these conventions since we shall disregard the order convention, i.e.

we shall over-count, when we come to estimating the summand in (111.45).

The formulas (III. 18) and (111.45) constitute the cluster expansion whose

convergence we prove in §IV. In closing this section we explain how to insert

localizations (in analogy to (11.33) for P^)^. It is here that the "nonlocality"

of the model enters, for each y is not necessarily associated with two local

monomials in <f>. For example, the y giving rise to an Ay (see (111.41)) is

associated with a nonlocal cubic in <i> and therefore requires 3 associated

localizations. Indeed, the number of localizations associated with a y will vary

depending on which set irpX y is in. In Table III.l we specify, for each type

of y, the number of localizations required and their position. In the

following, x will be the standard symbol for the characteristic function of a

unit square; for / E Z2 we let x, = Xa denote the characteristic function of

the y'th lattice square. Insertion of a localization simply means inserting a

partition of unity: 1 = Sx^.
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Table III. 1. Insertion of Localizations

Set

«JA

mJ,E

"jfl

mJ,s

%'f.P

IT,byA

%b.E

^bfi

'"b.S

'"b.B

%b,<S>

Typical term

K2dyK

(1 + K)dyK

...dyK...

KdyK

dyK...

dyPj

K%

(1 + K)K,
...Ky...

//</,?3Y'H

<t>y(f)

No. of

localizations

3

3

1

2

1

0

3

3

1

1

2

0

Position of

localizations

Kx3KX2dyKxl

Xj(l + K)X2dyKXi

3y*Xi

#X23Y*Xi

3^X,

^XA^yXl
X3(l + ^)X2^yXi

*yXi

//<r\X26Xl<f>

Note that the localizations for y in wj¡0, wfs, itb0, and trb s occur immediately

next to localizations already present, but this over-localization produces no

difficulties. Let a0 be the number of y's in the summand in (111.45) that

require localizations, i.e.,

(111.54) «o=2 M+ 2 K*l
X*P A>*

Then we label the localization indices by jaß E Z2 where a — 1, 2,..., a0

and ß = 1,..., ß0, with ß0(a) = 1, 2 or 3 according to the above table. We

let/, = (/,,,... ,jatß). When we want to emphasize that set y to which/, is

attached, we write/, - jy orjaß = jyB.

We insert localizations in (111.45) as specified in the table, indicating the

presence of the localization by a subscript/:

j j\ • ■ Jaa

(III.55a)

where

(III.55b)
•dA'Ej (ttj,E, irbtE))Bj (vJJt vbtB)

with rVbosJ and 3/'os defined as in (111.53) and (111.52) but each K or <f> to

which an ry or 3 Y is applied is also multiplied on the right by x,,»

Gj(vp,x) = \0j;'°%{P(vf<P)AAj(irM, *rM)
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M'J*> *m) = (A  KXjiKXjyadyK^)
* fyA

and so on.

IV. Convergence of the cluster expansion. Consider the cluster expansion

(III. 18):

(IV.l) S(A)=     2     TiA,X,T)
(*,r)eS

where

Zav (A ~' X)    r
(IV.2)    r(A, jf, r) = ±     Z{K)     fdlTlsdTzs(a n x, s(T)).

In this section we prove that (IV.l) converges at a rate governed by |.Y|,

uniformly in A:

Theorem IV.l. Let a > 0 be given. For sufficiently small \X\ and sufficiently

large mb and m¡,

(TW3) 2     \T(A,X, T)\ < ^-«W-»-*»)
(A-,r)eS

\X\>d

where ß is a constant independent oj A, d, X, mb and mf. (Here n is the number

oj bosons and m the number of fermion-antifermion pairs in S.)

The constant ß in (IV.3) depends on n and m and on Schwartz space norms

of the test functions /, g, h. The form of ß is important as input into the

Osterwalder-Schrader axioms in §V. However, we find it convenient to appeal

to the a priori bound (1.15) of McBryan and Seiler and Simon rather than to

keep track of the exact form of /?.

The main estimate involved in the proof of Theorem IV.l is (see §11):

Estimate I. There are constants cx and c2 bounded uniformly in the bare

parameters such that

(IV.4) \dTZS(A,S)\ < q(?-«(ir|-7*)+c2|A|

where a -» oo as m0 -» oo and X -» 0.

Most of this section will be devoted to the proof of this estimate based on

the explicit formula (111.45):

(IV.5)     3rZS=    2        2     K-V'f dpßivb)$ivbi9)GjivpiX)
weíPír) decompir   j
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where the localized G, is defined in (111.55). The logic of the proof is exactly

as in the case of P(4>)2 (see the end of §11). First we interchange the sum over

localizations with the sum over partitions (Lemma IV.2). We next count the

number of terms in the summand in (IV.5) in terms of A/(A)'s (Lemma IV.3).

We estimate g-space integrals in Lemmas IV.4, IV.6, IV.7 and Theorem

VII. 14, in such a way as to extract Gx and G2 factors (see §11). These factors

are then used to control Bx and B2.

Before embarking on this project we remark on notation to be used. In

addition to the sharp localizations Xj introduced in §111 we shall also require

smooth localizing functions ^ S C0°° with the properties:

(IV.6) ¡j = 1     on A,:       supp Sj C {x\dist(x, A,) < ±}.

In the following estimates we use the letter c to denote various (not neces-

sarily equal) positive constants which may depend on n, m, J, g, h,... but

which are independent of s, A, T and the bare parameters. Similarly we use

the letters 8 and a to denote various universal positive constants where the

constants 8 will always satisfy 5 < 1.

We now wish to interchange the sum over partitions with the sum over

localizations in (IV.5). The number of localization indices clearly depends on

the partition tt and its decomposition (III.44). Therefore before interchanging

we rewrite the sum over partitions as follows. Let apX = \irPtX\ where p = box

j and X = A, E,B, 0, S, P or 0. We then write

api
(TV.?) 2     2=222

7reiP(r) decompw      <*pj(=0 irS^N(r)  decompir
a&p,X ^pjA-Opjc

where 9N(T) denotes the set of partitions of T into N subsets and N

= 2^xab,x + ^xaj,x' There may be no decomposition of it as defined in

(III.44) which satisfies the constraints \ttp<x\ = apX; if so the inner sum in

(IV.7) is zero. Since there are 12 apX's we may estimate the number of terms

in the sum over the o^'s by (2|T| + l)12. Assuming the summand is nonnega-

tive we thus have

2    2   2<(2|r|+i)12max 2     2   2-
in=& decompir   j **  isî,  decompir    j

\*pjc\ = <*PtX

In what follows we fix the apX (and hence N) at the maximizing values. Since

the number and type of localization indices jaß axe now fixed we may pull the

sum over theya to the outside. In addition, we estimate the number of terms

in the sum over decompositions of it by 62'rl, so that

0V.8) (2|T| + 1),22 2     2     <ea|r|2 2    max   .
ja   ir   decompir Ja   it    decompir
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Again to save writing we shall not write in the symbol "max" in (IV.8), but

shall assume that for each/ = (/,) and m E ^(r) we take the decomposition

of tt which yields the maximum in (IV.8). From (IV.5) we thus obtain

Lemma IV.2. For the maximizing values of apJC and ttp^,

(IV.9) |3rZS(i)| < eo|r|2     2    /¿«^fo)*(»w)W
j vestry

where Gj(tt) is defined in (111.55).

Suppose now that G^ir) is "computed" by multiplying the d'ArE's into

the P and A factors by (A.6) and by taking the fermion and boson derivatives

in (III.55b). We obtain a sum of "primitive terms" g¡,

M

Ov.io) Gj(it) = 2 gt
/-i

where by a primitive term we mean a term of the form

0V.11) g = *t,(F, A F2 A • • • A Fr)B

where $ is a product of n <f>'s or <f>y's, B is a product of factors of type B, and

each Fa is a factor of type P, A, PE, AE, PEE etc. We wish to estimate the

number of terms M = M(j, it) in the sum (IV. 10). To facilitate the counting

we make the following definitions concerning Gj(ir):

MAE (A) = number of times the localization A occurs

(IV.12) in an A or E factor

= \{Jyji\\, = A; y e tru U ir}tE u »M u -nb<E, ß - 1,2,3}|.

M (A) = total number of times the localization A occurs

(IV-13) = \{Ja,ß\h, - A; a - 1,.... «o; j8 - 1,..., ß0(a)}\.

Lemma IV.3. The number of primitive terms in (IV. 10) is bounded by

(IV.14) M < eclrIIlM(A)!.
A

Proof. We ignore the order convention in the estimate of M. We first

estimate how many primitive terms arise from spreading the d/S^E's into the

P's and A's. Given a square A, consider all the dA'E's with the leftmost

localization in A, i.e. A,- 3 = A. Suppose there are ME(k) such d/S^E's. Then

there are at most (MAE(&) — ME(A) + m) factors of type P, A or E which

may receive them (there may be previous E factors already multiplied in);

hence there are at most
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(MAE(A) - ME(A) + m)\
<2M^(A)-^(A)+mA/£(A)!

(MAE(A)-2ME(A) + m)\

ways of distributing these E's. Thus we conclude that all together there are at

most

(IV.15) II     2mà)+mME(A)\
A

M£(A)>0

primitive terms arising from multiplying in the E's.

Next, let Md(A) be the number of derivatives in 3/'°* and r j localized in

A. Since there are at most (M (A) - Md(A)) places for them to be applied, we

estimate the number of ways of applying these derivatives as in (IV.15) by

0V.16) II    2MWMd (A)!.
A

Md(h)>Q

The derivatives in the $ and P factors (111.47) and (111.48) contribute a

factor to M but this factor is bounded by n\m\. Hence from (IV.15) and

(IV. 16) we conclude that

A/< cmtíME(A)\Md(A)\

Now

A
A/(A)>0

ME(A)\Md(A)l< (ME(A) + Md(A))\< M(A)\,

and since each y has at most 6 associated localizations,

(IV.17) 2^(A) < 6|T|.
A

The last three inequalities yield the lemma.   □

The next step in estimating the summand in (IV.9) is to represent the

expectation &(irb), as defined in (111.38) and (111.40), by positive Gaussian

measures. There is one simple case in which there is no need for this step or

even for &y; namely, if for some decomposition of it we have both oc-

currences of some y in irb<s>, then we obtain a factor (h¡, yyCh¡) which can be

estimated by

(IV.18) \(hit dyChj)\ < cK6(y)m¿s>M

by (11.30). It is to be understood in the sequel that we always apply the

estimate (IV.18) and do not introduce dummy fields for such a y.

Now, although dyC(x,y) is pointwise positive, it is not positive as an

operator except in the case |y| = 1. Thus there will not, in general, be a

corresponding positive measure. However we can write 3YC as a linear
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combination of suitable positive operators. We do so in two ways depending

on whether we wish to exhibit the G, or G2 decay (see §11). For G2 we note

that if b is, say, the first bond in y, then by (VI. 19),

(IV.19a) dyC(s)=d"dy~"C(s)=    2   (-l)lyH"MCy>,(L.)
PCy~b

where

(IV. 19b) Cy»=3*C(S)| s ~ 1 on p
s = 0on y~(i>u¿)

Since only a single bond derivative is involved in (IV. 19b), dbC(s) = 8bC(s)

is positive definite (see e.g. [12]). In other words, (IV. 19) represents 3YC as a

linear combination of 2IyI_1 positive definite operators, each of which is

continuous on S(R2) and each of which has appropriate G2 decay: as we

prove in Corollary VI .2, for any e < |,

0V.2O) \\t>%CyJkD°\\L2{R4) < c(e)mge-Sm°Wy'»+d(y'k)X-

where the constant c(e) is independent of /, y, v, k, where

D = (-A + m2f2,

and where (b is the first bond in y)

(IV.21) d(y, i) = dist(6, A,).

Let d[Hy „ be the Gaussian measure on a copy Qy of § '(R2) with covariance

0V.19b), and define

(IV.22) dli2(-nb)=  ®   dii,^   on Q(7tb)=  X Qy
yew,, y£wl

where v(y) is some subset of y ~ b. Then we can represent the expectation

S(iTb) in (IV.5) as a linear combination of T[ySv2M~x = t?°(|r|) integrals of

the form ¡Qt„) dfcfa) with ̂ >y the coordinate function on Qy.

For the G. decay we restrict our attention to "large" y's. By definition a

large y is one for which |/a(y)| > 1 for all permutations a (see (11.29) for the

definition of |/„(y)|). It is easy to see that

(IV.23) |y| > 7 implies y is large,

and that if y is large then for all permutations a,

(IV.24) |/0(y)| >|y|/14.

If y is not large we say it is small. The point of these definitions is that for

small y, K6(y) > 1 (see (11.31)) and so there is no (?■ decay; whereas for large

y there is G, decay and, moreover, we can extract a convergence factor.

Explicitly, let

(1V.25) G1(y,S) = 2<?-iw°l''(Y)|.



YUKAWA2 FIELD THEORY 31

Then

(IV.26) K6 (y)s < Gx (y, 5/3) < e-*«**^ (y,82 )

where 5/3 - 145! + 52 with 5,. > 0 (we have used (IV.24)).

For the Gx decay for large y we appeal to Lemma VI. 11 which asserts that

3 yC may be written as a difference,

(IV.27) 3*C = Cr>+ -CY(_,

where Cy± > 0 axe not necessarily the positive and negative parts of 3YC, but

for anyp < oo can be chosen to satisfy

(IV.28) \\Cy¡±\\L,<cMmSGx(y,8)

where 5 > 0,ÇX and f2 are any two localizations as defined in (IV.6), c(p) is a

constant independent of y, £,, f2, and Gx is defined in (IV.25). Moreover, for

any e < 1, there is a constant c(e) < oo such that

0V.29) ||Z>eCy>±Z)e||L2< cM<<7, (y, 5).

As in the G2 case, we introduce Gaussian measures dpy± on Qy with

covariance Cy>± for each large y. For the small y's we use a G2 measure. Then

we can write the expectation jdpc,s/b(irb) as a linear combination of e°(lr|)

integrals of the form JQ^b)dpx(tTb) where

dPl(n)=     ®     ¿/iy,±     ®     ̂ (y),
ye.irt yevf

where itb (resp. nbs) axe the large (resp. small) y's in itb. When we insert dpx or

dp2 into (IV.9) it is to be understood that the y's and ± signs are fixed to

maximize the integral and that the e°(lrl) bound on the number of terms in

the sum over v and ± has been absorbed into the e"^. Thus from (IV.9) we

have

0V.30)      13TZS(s)\ < e°N2     2     min   f dpc(s)® dpfiAit)
J weiPw(r)''=1'2 JQxQ(«b)

We are now ready to estimate the contribution to (IV.30) of each primitive

term in (IV. 10), i.e. to estimate an expression of the form

(IV.31) min
i

j dpc,s) ® dp^rr(Fx A • • • A Fr)B

From definition (111.32) we find by the "weak linear lower bound" of

Theorem VII. 14' that for any p < oo and q > p there is a constant c

independent of m0, r and A such that

(IV.32) ||rr(F, A • ' • A Fr)\\LP< e^HllIllFJlJ
Il a Wl"

where || • H, denotes the trace norm on %. By Holder's inequality we then
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bound (IV.31) by

(1V.33) e^+l^min 11*11n̂ BF.B,
a-l

\\B\\l?
If

where Lf denotes the norm in L4(Q X Q(ttb), dnc,s) ® tfju,).

The last three factors in (IV.33) are estimated in Lemmas IV.4, IV.6, IV.7

below. We shall always estimate the minimum over i in (IV.33) by the

geometric mean.

Lemma IV.4.
2

(IV.34) H llallí2 < c   II   <G,(y,S)
i'=l ïEirM

where the factor mj¡ can be replaced by m0-5l'Y'/2 if y occurs twice in 7ri<t.

Proof. If y occurs twice in 7ri4, we simply extract the factor (IV. 18)

without introducing dummy fields <by into $ or measures d^, or d¡iY±.

Otherwise, the evaluation of \\$\\i* is a standard calculation involving (IV.20)

and (IV.29). The constant c in (IV.34) depends on n and Schwartz norms of

the form ||Z) "T.,.||¿2.   Q

Consider next the second factor (involving F„'s) in OV-33). In order to

understand the choices we make in estimating the F„'s, the reader should bear

in mind these facts: K is in any Gpj!., (defined in (III. 12)) with/? > 2; dyK is
in any Qp¡p;, withp > \ ; we can improve the Qpj)., property of K, in the sense

of decreasingp, by applying operators D ~' with e > 0; operators D' worsen

Qpj)., properties. Precise statements of the above may be found in §VIL2.

Consider now a typical factor Fa occurring in (IV.33); e.g.,

(IV.35)     Fa = AE = [K^K^KXiJlxjJl + K)XjJYKXjJ

where, of course, jyX = fy.3. We insert smooth localizations Ç, by Xj = XjHj t°

obtain

r. = (%)(Ä)(y%) • • • (Wyj&Ü-
We indicate schematically (i.e. without writing in the localizations) the

manner in which we estimate H^JI.. First,

i^-36) F<«lli<HII,FII-
Then, using Holder's inequality on the ||yi||i factor we get <24 and ßj norms

on the K and 3 yK factors (resp.), i.e.,

(iv.37) mx<\mmvxy
We estimate the factors K and dyKin E by operator norms and then by Q4
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and ßj norms (resp.):

(IV.38) \\E\\<(l+\\K\\4)\\ay'K\\r

Thus,

(IV 39) "Fa111 < ¡^A'lhMX' H^9^'112

■(^HkMMkr'K%J2
The procedure for the other possibilities for Fa is similar. If a P factor occurs

instead of an A factor we estimate its trace norm by

(IV.40) \\3yPi\\l = \\D-xJi\\%\\dySgi\\%.

Note that in this case we may still replace the sharp localization jg by f, in

the first E factor since the / occurring in P¡ is localized in a unit square. If

additional E factors occur we estimate them as in (IV.38). If derivatives in

3"/.o or r are applied to any of the factors, that does not alter our method of

estimation except that Ky factors, unlike 3 yK factors, require a 64 norm. This

causes one slight complication in the case of an Ay factor, Ay — K2Ky. In this

case we insert factors of De and D _e where 0 < e < | ; i.e.,

(IV.41) ||A-x3A'x2A;x,||1<||A'x3||4||Í3A'X20e||4-||o-Í2A'yXi||2.

Now the C2 and ß4 norms that occur in the above inequalities are the

square and fourth roots of polynomials in the fields. The kernels of these

polynomials have certain Lp properties which we list here and prove in §VII.

First we define the following distances: if /', k E Z2,

(IV.42) d(i, k) = dist(A(., Ak)

iijy E Z2B°, let

A>
(IV.43) d(y,j) = d(y,jy) - 2 d(y,jy,B)

ß=\

where d(y,jyB) is defined in (IV.21). We set d(y,j) = 0 if y has no associated

localizations. Then:

Lemma IV.5. (i) Let wyk be the kernel of WWKyjfc, i.e.

||£i9Y*&¡2"/w/M*i' *2>K*i)t>(*2) dxx dx2.

Then for any p < j2-,

IM/AR«) < cx(p)cMmSGx(y,8)e-s^M^(y,k)\

(ii) IJw? is the kernel oj \\dyKXi\\% thenjor any p < $

IKIIx/Ort < cx(p)c\y\ma0Gx(y,8)e-Sm^y'i\

(iii) Let e < I and p < 12/(11 + 6e). There is a kernel wiJe in LP(RS)
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satisfying

(IV.44a) ftA*J>TÍ </>W*, . . . x4)4>(Xl) .. . <p(x4) dx

with

(IV.44b) IKUUr«) < cmSe-WOM

(iv) Let e > 0 and p < min[(l — e)_1,  -Jy]. There is a kernel w_elk in

Z/(R4) satisfying

P't,ÄÄE</w-*a(*i. *2)<H*.)</>(*2) dx

with

\\W-^\\L^<C<e~Sm0flU'k)'

(v) Forp < jf-, there is a kernel w¡ E LP(RS) satisfying

||^xJ4</w,.(x, . . . *4)<i>(*i) . . . <b(x4) dx

with WwjWuqP) < cm%.

In the estimation of the Fa factors, the decay (G, and G^ will occur

explicitly in the kernels as in the above lemma and also in the covariance

when the dummy fields are involved. For example, consider an expression

like iUjf^XkWt dii¡ and apply 0V.44) with e = 0:

jïl?Ax*||4 fa <ffwjAx)<s>(xi) ■ ■ • <K*4) dx dp,
(IV.45)

= J   dX rt^jOLGCfcCXftX*!, *2)(X*Cxjfc)(*3. x4)+ ... \

where C is a covariance Cyv or Cy± depending on whether / = 1 or 2 (see

(IV. 19) and (IV.27)). We apply Holder's inequality with 1 < p < jf to bound
(IV.45) by

2   / r \X/2

(IV.46)    n(/ll^x,|i:%)   < HMiMCxù

< clYlw,0^-W</O,«+rf(Y,*)](;i (Y)S)

by (IV.44b), (11.30), and (IV.28), where we have taken a geometric mean as
explained before Lemma IV.4.

Let wAE consist of the y's associated with A and E factors, i.e.

(IV.47) *ae =    U    v,jr
P = bj

X=A,E,0

Then we have
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Lemma IV.6.

2    II    r m'/2

n
(IV.48)

n n^-iii
a-l

<JJecAi-(i)(4A^£(A))!1/4

II      cWG^y.5).   II   mZe-WtoJ,,.
yeirAEuirfJ, ye-TAE

Proof. As indicated in (IV.36)-(IV.39), each ||.Fa||, is split into a product of

factors, each factor being one of the types listed in the previous lemma. The

integrals involving dummy fields factor off, each containing a polynomial of

degree at most 8. They are estimated as in (IV.45)-(IV.46) by using Lemma

IV.5 to estimate the kernel and (11.30) and (IV.28) to estimate the covari-

ances. The remaining integral over dpc(s) involving the original fields <f> is the

integral of a product of lcoalized monomials of the type listed in Lemma

IV.5. This integral may be estimated by the Checkerboard Theorem of [12]

or by Theorem 9.4 of [9] in order to control the number singularities. The

required LP estimate on the kernels is supplied by Lemma IV.5. It is clear

that each y in irAE contributes a Gx(y, 8) factor and a decay factor e~Smcdiy'k)

where k is the localization index of the field in the K factor (i.e. dyK, K^,

3^., dyK/) in which y occurs. Note, however, that we have written the

estimate (IV.48) in terms of the distance d(y,jy) involving all the localizations

associated with y (see (IV.43)). This use of d(y,j) is justified by the triangle

inequality. For instance, in the bound (IV.46) we have

d(y, k) + d(j, k) > d(y, k) + d(j, k)/2 + [diy,j) - d(y, k)]/2

0V.49) , , ,
>[d(y,k) + d(y,j)]/2.

Clearly the distances d(y,jy)can always be extracted in this way by one or

two applications of the triangle inequality with an appropriate change in the

constants 5. Note that each y G itSP also contributes a Gx(y, 8) factor by

(IV.40); for let e > 0 and x be the characteristic function of the lattice square

in which g¡ is localized. Then for large y,

Wsgl\\x<WD^ysxD-'¡íl(fñp%y

which has G,(y, 5) decay by Corollary VI.2.   □

Finally we turn to the B factor in (IV.33). Let irB be the y's associated with

the B factor, i.e.

*B -     U     *pJC
P = bj

X=B,S

and let MB(A) denote the number of times the localization A occurs in a B

factor. We shall use the following estimate on the kernels (see Lemma

VII.ll(b)andVII.12):ife>|,
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2

(IV.50)    \\D-%dy^XjP"IUr«) < cmS II G,(yk, 5)e-*»rf<»J>
k~\

and

(IV.51) IP -'XtbxtD -E||LI(R4) < c(e)mSe-Wk\

Lemma IV.7.

n||B||if<cne^(A)(4MB(A))!'/4

(IV.52) ,=1 A
•   II clYlm0aG,(y,S)e-Smorf(Y-/).

Proof. B4 is a product of quadratic expressions of the form

f :'}>i(x)Xil(x)w(x,y)xil(y)<b2(y): dx dy

where w is a ¿-kernel with 0, 1 or 2 y-derivatives and <f>¡ and <i>2 are original or

dummy fields. The norm

||B||A«- {/b4^)®^.}

is then evaluated in the standard way as a sum over vacuum graphs: a

vacuum graph is obtained by grouping the </>'s in pairs (subject to the

restriction that no pair may be drawn from the same : quadratic expression:)

with each pair 4>(x)<b(y) giving rise to a covariance C(s; x, y), and by

grouping the <|>y's in pairs, each pair <by(x)<by(y) giving rise to a covariance

Cy(s; x,y). In each of the resulting integrals we insert a smooth localization

and the operators De and D ~' with § < e < f ; for example,

Jc(x,y)Xk(y)w(y,z)dy = f[C(x,y)tk(y)D;][Dy-'xk(y)w(y,z)] dy.

We estimate each of the resulting operators D%¡C$kD' by its operator

norm on L2(R2) and we apply the Schwarz inequality to obtain a product of

L2(R4) norms of the functions D~txiwxkD~t. The latter we estimate by

(IV.50) and (IV.51). In most cases D%CÇkD' will actually be Hilbert-

Schmidt: If a Cy covariance is involved, then the operator is Hilbert-Schmidt

with appropriate G,-decay on its norm by (IV.20) and (IV.29). If a C(s)

covariance is involved with d(i, k) > 0 then we write

(IV.53) D%C$kD' = D%C¿kD' + D%8C$kD'

where 8C = C - Cr The first term is Hilbert-Schmidt on L2(R2) by the

proof of Lemma III.4 of [11] and satisfies

(IV.54a) \\E>%C^kDe\\LHRt) < ce~m^k\
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while the second term is Hilbert-Schmidt by Lemma VI. 10 and satisfies

(IV.54b) \]D%8<Xk*>'L*aft < cmSe-Sm^k\

If in (IV.53) d(i, k) = 0, then the second term on the right still satisfies

(IV.54b) while the first term is evidently a bounded operator (to see this,

simply omit the f's). We conclude that D%CÇkD* is always a bounded

operator with d(i, k) decay as in (IV.54). This decay is important for

controlling the number singularities, i.e. the sum over vacuum graphs: using

(IV.54b) and Theorem 9.4 of [9] we obtain the estimate ]lAecAM^\4MB(A))\

for this sum. (We do not require such an argument for the <by pairings since

each field <by can occur at most 8 times in B4.)

Collecting all of these estimates, we obtain (IV.52). Note that an applica-

tion of the triangle inequality may be required again, just as in (IV.46); e.g. to

convert the d(jy,iJy,d and d(y,jyA) decays of /<px, bx¡ fa to a d(y,jy) decay.

D
We now collect the above estimates to obtain the desired bound on (IV.31).

The numerical factors in (IV.48) and (IV.52) may be simplified somewhat by

[(4MAE (A))! (4MB (A))! ]1/4 < 4""<*>MAE (A)\4M'™MB (A)!

< 4W(A)A/(A)!.

By (IV.33), (IV.34), (IV.35), (IV.48) and (IV.52) we thus bound (IV.31) by

c exp clr + |A| + |T| + 2 AT (A))  IIM (A)!
(IV.55) L a J a

•    II    «0-,M II «Í     II     Gx(y,8)e-Sm^y^
yGvb.M yew      yen-lu^

where the set ttb^2 consists of those y's which occur twice in trb$ (see Lemma

IV.4) and the set it' = itb U irf\(irb¿, U irftP). Note that the factor m¡¡ in

(IV.34), associated with those y's applied once to $, has been absorbed into

the mjj associated with the other occurrence of y in 77'. We can simplify

OV.55) somewhat by (IV. 17) and the estimate r < m + 2\T\ (see (111.46));

also we identify the two occurrences of a y in irb so that it\ u tt¡ may be

replaced by m, ttb^2 replaced by 77,1, consisting of y's exclusively associated

with Í», and tt' redefined to consist of those y's in 7r which are not associated

exclusively with a?or$ factor. Note that a y G 77 may now have as many as

six localizations/y ß. Using Lemmas IV.2 and IV.3 we then obtain

Corollary IV.8.
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\ZTZS(s)\ < ec<lrMAl>2     2     IlM(A)!2
J   ire9N(T)  A

(IV*56) •   II nÇ™ II mS II Gl(y,8)e-Sm^\
ySiTQ y^ir'        y Sir

We are left with the same expression as in the P(<b)2 case except for two

differences:

(i) the number of localizations / ß associated with y varies from 1 to 6,

instead of being exactly 2;

(ii) there is a large factor m^ instead of the convergence factor /Wr7a'r'.

Difference (i) is minor, for we still have the relation (11.34) and, conse-

quently, the bound, for 0 < e < \,

(IV.57)   IlA/(A)!2<exp c^M(A)x+t   < ec^exp\c^d(y,jy)l
A L      A J L J

Thus for sufficiently large m0 we can absorb the factor n¿M(A)!2 into the G2

decay factor, i.e. G2 controls B2.

As for (ii), we now liberate the coupling constant X so that each K factor

acquires an associated X and each B an associated X2. It is then easy to see

that with each y E it' we may associate at least a factor of |A|'/2. If we choose

X so that

(rv.58) /<IAI1/4 < 1

we deduce from (IV.56) and (IV.57) that for sufficiently large m0,

|3rZS(i)|< ec(lrl+lAl>2 2   II m0-5lYl

J    *   yGij

0V.59) „      , „ „
•  II  \X\x/4IÍGl(y,8)e-s'"^yA

y £ it' y e it

It should now be clear how we extract the convergence factor. For large y's

in it we can extract a factor e~Sm<>M from G,(y, 8) by (IV.26). For small y's in

Tr<t, and it' we have convergence factors /w¿"5|yl and |X|IyI/28, respectively; here

we have used the fact (IV.23) that a small y satisfies |y| < 7. The only

remaining y's are small y's associated with P factors. But there can be at most

m such y's each with at most 7 bonds. We conclude that for any a > 0, if we

choose m0 sufficiently large and |X| sufficiently small so that m¡¡, \X\X/2S,

e~Sm« < e~", then we have

|3rZLS(i)| < e^M^-^ri-7"1). 2   2    II G, (y, fi)*-**«*».
j   wS^jv yen

We now rejoin the P(<|>)2 proof: we pull out the factor

max„6g, Uye„e~Bm'^(y'^, sum over m to get a factor e°(lrl> by Lemma II.2 (i.e.

Gi controls 5,), and then sum over each jaß to get another factor e0(^\
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Therefore

|3rZS(s)| < ce-<*—m--»**4N

which is Estimate I (i.e. estimate (IV.4)). The proof of Theorem IV.l now

follows easily:

Proof of Theorem IV.l. It remains to check Estimate II (see (11.22)). We

use a dominated convergence type argument, namely Lemma 3.5 of [25]: if

p3A(\) denotes the renormalized determinant with A = A and s = 0 on 3A,

then we know (see §VII.4) that, for any p < oo, \\paA(X)\\ Lndl¡C(j < oo, uni-

formly for X in a bounded interval. Since p3A(A) -» 1 pointwise and dpC{s) is a

probability measure, we conclude that p3A(a)-»1 in Lx(dpC(s^ as A-»0.

Hence for sufficiently small |X|, Z3A(A) = JpdA(X) dpC{s) satisfies {■ < |Z3A(A)|

< 2. (Presumably, p(s) and Z(s) axe nonnegative as in the s = 1 case [22], but

we do not have a proof of this.) As in [9] we conclude that by Estimates I—III,

2    \T(A,X,T)\<c 2  e-«(lrl-7m)+cl*L
(A-.neS \x\>d

\X\>d

But by the definition of §, every component of X ~ Tc meets X0 so that

\T\>\X\-\X0\>\X\-n - 2m.

The theorem follows from the last two inequalities.   □

V. Consequences. In this section we shall establish the major consequences

of the convergence of the cluster expansion (in particular, Theorem LI). Our

proofs are brief since, once the appropriate doubling procedure is introduced,

the Y2 proofs follow those of P(<i>)2. Our first result is

Theorem VI (Cluster Property). Let a > 0 be given. Suppose that

Ía = Ua,¡)> Sa - (Sa,¡) a"d hA = (hA¡) are Schwartz space test Junctions with

support in the region A c R2, and similarly JB, gB, hB have support in the region

B. Let J= (JA,jB), g = (gA, gB), h - (hA, hB). Then Jor any given X we can

choose mb and m} sufficiently large so that

(v.i)   \SA (f, g, h) - SA (fA, gA, hA)SA (fB, gB, hB)\ < /fe-"(«U*)-<>

where ß = ß(f, g, h) is independent of A and depends on f, g, h only through

appropriate (translation invariant) Schwartz space norms, the constant c depends

only on the order ofSA, and d(A, B)is the distance between A and B.

Proof. We shall assume that the number mA of/< ,'s equals the number of

gA ,'s (and similarly for B). If not, then the subtracted term in (V.I) vanishes

and we simply apply the cluster expansion to SA(J, g, h) without the necessity

of a doubling procedure. We remark that it is possible to compare directly the

cluster expansions for the Schwinger functions on the left side of (V.I)
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provided we also multiply SA(f, g, h) by 1 = SA(l) and perform a cluster

expansion for it as well. However, as in [9], it is simpler to "double" the

theory as follows:

(i) (Boson doubling). We let (g(0, <#>w, dpï*) for / = 1, 2 be two identical

copies of the free boson field on Q(/) = S '(R2). Define a new process by the

independent sum t> = <f>(1) + <>(2) on Q = Qw X g(2) with measure dß =

dpw X 4i(2). We may introduce 5 B.C. for 4> by dp¿(s) = <//ic¿) x fací) ™ta

C(s) = C(s) © C(s) on S = S(R2) © S(R2).

(ii) (Fermion doubling). We let Sí?0, i = 1, 2, be two identical copies of %

and we define % = %l) © 302). If /"(<!>) is a_ function on S' taking values as

an operator on %, define the operators on %:

(V.2a) /■<»(*) = F(<i»(1)) © 0,       /-(2)(^) = 0 © F(>(2))

and

(V.2b) F (*) = F(<¡>(1)) © F(<b{2)) = Fw(4>) + F(2)(¿).

With K given by (III.3), we define

p(4>) - detren(l - /f (*)) = det3(l - K)exp[-{- :Tr(K2 + &K):].

The Schwinger functions for the doubled theory are defined as in (III.l 1) in

terms of p, dß, and fm = mlTr^^. Just as in (111.14)—(111.16) we have the

factorization

(V.3a) p(¿) - p(<í>(,))p(<í>(2))

and so

(V.3b) Z = ]>(*) dß = /pfo™) <V n/p(<f>(2)) d^ = Z\

Suppose we rewrite formula (III.l lb) for (/, g, h) as

SA(f,g,h) = Z-xfTm(AmR-QAAQB)pd¡i

where, for X = A or 5, Qx = $(hx) Ajtfxj with

Pxj = {D~XgXj>-)%SnfXJ,

and where m = mA + mB. Let 0¿° be the operators on Am*3C defined by

"ijr

where O^A*) - n^0^) and Px') is as defined in (V.2a). Then we claim

that

S = z-x ffm(AmR (QAl) - ßS°) A(ßi° - Q?))~p *
(V.4) ^

= 2[5A(/, g, A) - SA(fA, gA, hA)SA(fB, gB, hB)\.
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The identity (V.4) follows from the direct sum structure % = 30e0 © 3tf2).

For
AmR(QAl)-QA2y)A(QP-QP)

= AmxwQAl) A QBn + Am*(2)ßi2) A ß£°

- AmARwQAx) A Am"R(2) • QB2)

- AmAR{2) • ßi2) A Am^(1) • Qbx)-

We apply rm to (V.5), observing that by Lemma A.1 we obtain a factorization

of the off diagonal terms, e.g.,

fm(Am^(1)-ßi0AAm^(2)ßF)

^ - fmA (A"^(1) • ßj°) t. (A"**(2) • QB2)).

Noting that fm((AmÄ(0ß(0)(^))= ^((A^ßX^0)), integrating with re-

spect to p dp, and invoking (V.3) we deduce (V.4).

The left side of (V.4) has the appropriate form for an application of the

cluster expansion, i.e., it has the form (III. 11) and, furthermore, it decouples

at s — 0. For suppose that A and B belong to disjoint components A^ and AB

of R2 ~ T2. Then just as in (V.6) we have by Lemma A.1,

fm[AmR-(QAX)-QB2))A(QBx)-Q(B2))]

CV'7) - *ml W** W - Qa2))] • fmi[ Am'iB (fii» - fi?*)]
where 7?^ = (1 - A'AnA )-1. (Here it is the decomposition of the doubled

theory induced by the direct sum decomposition of L2(R2) that is involved.)

The integral of (V.7) now factors by (III. 16). If T fails to connect A and B,

then the corresponding term 3 TZS in the expansion factors as

3rZ5=   II   dr*ffmx[Am*Rx-(Qxi)-Qx2))]pAxdß

and so vanishes by the 1 <-» 2 symmetry.

Let 2 be the set of values of (X, mb, mj) for which the cluster expansion for

(V.4) converges in the sense of Theorem IV.l (i.e. 2 consists of sufficiently

small X and sufficiently large mb, mf); and let 2' be those (X, mb, m/) for which

(V.4) satisfies the desired bound (V.l). As in [9, Theorem 2.1] we deduce that

2 c 2'. It remains to show that 2' contains points with arbitrary X.

But the Schwinger functions SXm A(j, g, h), where we have denoted the

dependence on the bare parameters by additional subscripts, are invariant

under the change of variables:

A-»rA,   mb^rmb,   m}-*rmf,   A->r-1A,

h(x)^r2h(rx)   J(x)-*r3/2J(rx),   g(x) ^ r3/2g(rx).

This follows by a simple scaling argument based on the fact that <b(x; mb) and
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<b(r xx; rmb) are isomorphic processes. Consequently, if (X, mb, mj) E 2 with

decay rate e~c""-A,B) then so is (rX, rmb, rmj) with decay rate e-ad(rA<rBy =
e-rad'A,B)^     r-i

Remark. The results for large X can also be obtained via a convergent

cluster expansion provided we replace the unit squares with squares of side

length L = d/m0, where, for convenience, we have taken mb = mf= m0 and

where d is a constant to be determined. We sketch this argument: First we

rescale lengths as in the above proof with r = l/m0 to obtain an equivalent

theory with bare parameters X' = X/m0, m'b = mj = m'0 = 1, and interaction

region A' = m0A. We claim that the cluster expansion for this new theory

with lattice spacing L' = r~lL = d converges as in 0^.3) provided L' is

chosen large enough and X' small enough (and hence that the cluster expan-

sion for the original theory with lattice spacing L converges for any X

provided d and m0 are chosen large enough). To see this, consider the bound

which is the analogue of (IV.56):

|3r'ZS(A")| < eclr'l+c^'l2 IlA/(A)!2 II |X'|,/2

(IV.56')
•   II L'aGl(y,8)e-Sd{yJ\

yGir

Note that the factors G, and e~Sd(yJ) involve distances based on a unit of

length L' and that instead of factors m% there are now occur factors of L'a

since the local W estimates are calculated over squares of side L'. As in

(IV.56), we can extract a convergence factor e~SL'M from G,(y, 8) for large

y's. Next we choose L' sufficiently large for the combinatorial arguments of

the cluster expansion (i.e. G, controls 2„ and e'^^^ controls UAM(A)\2).

We then choose X' sufficiently small to give a convergence factor for the small

y's (except for the at most n + m y's in tt ~ it'), thereby controlling the

factors L'a. The only additional feature is that the crucial estimate |r| > \X\

- n-2m (see the proof of Theorem IV. 1) becomes |F| > \X'\/L'2 - n -

2m. But this presents no problem as the linear lower bound constant c2 in

(IV.56') can be made arbitrarily small by choosing X' small enough. Finally,

for any choice of L, the bound (11.22) on Z3A(A) will hold for all sufficiently

small X'.

We now turn to the existence of the infinite volume limit.

Proof of Theorem 1.1(a). By the scaling argument used in the proof of

Theorem V.l it is sufficient to prove the theorem for values of X and m0 for

which the cluster expansion applies. We consider the effect of increasing the

interaction region A by adding a single lattice square A. To do this we

interpolate between xA and xAua by hT = Xa + tXa and write
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where S(r) is defined as in (1.3) with Xa in 0-5) replaced by hT. As in [8,

Theorem 2.2.2] it suffices to bound dS(r)/dr by

(V.8) \dS(T)/dr\< ce-ad^'xo)

where a and c are positive constants (independent of A and A) and X0 is a

fixed set which contains the supports of all the test functions in S.

As in (111.26) and (111.31) we find that

£z(r)- -/[!*«,) + § P dp

and

= f [-Tm+l{Am+lR- P AAT) + Tm(AmR- PdAmET)

-Tm(AmR-P)f}pdp

where

A     =   Vlfr\2

dr
AT = K(r)2 §■ = K(r)2KA,   ET = (1 + K(r))KA,

4jL = :Tr[ KAKA + r(K2+ K¡KA )]: - :Tr KAKA: + rBA.

Thus we obtain

j-TS(T) = Z-ij-TZS-SZ-xj-TZ=TE-TA-TB

where

T1¡'Z-ijTm(AmR- PdAmET)Pdp,

TA = Z-xfTm+l(Am+XR-PAAT)pdp

-Z-2fTm(AmR-P)pdpfTl(RAT)pdp,

TB = Z~X fTm(AmR-P)fpdp-Z-2fTm(AmR-P)Pdpffpdp.

Consider first the term TE. To obtain a bound of the form (V.8), we apply

the cluster expansion to TE and argue that each term in this expansion will

vanish unless T connects A and X0. Suppose that X0 and A are in two

disconnected components, say Xx and X2 of R2 ~ Tc = U X¡. Then by

(III. 14a)
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(V.9) ET = (l + KAi + tKa)Ka

where Ay = A n Xy Consider a typical product PfET obtained from spreading

d AmET into the P's as in (111.35). We have P¡ET = P¡XxET = 0 since, by

(III.2), S0 has vanishing matrix elements between A', d X0 and X2 d A2 u A.

We conclude by Theorem IV.l that TE satisfies a bound of the form (V.8).

The bounds on TA and TB are essentially a corollary of Theorem V.l.

Consider TA and write it in terms of the doubled theory:

(V.10)     TA = \z-xffm+x(Am+XR- (P(X) - Pü)) AK" - A?))~pdp.

We apply the cluster expansion to (V.10) and argue as in the proof of

Theorem V.l that if T does not connect X0 and A, then dTZTA factors and,

hence, vanishes by the 1 <-» 2 symmetry. The nonlocality of Ar is no problem,

for as in (V.9) AT will be completely localized in the same component of

R2 ~ r as A, i.e. Ar - (KA¡ + tK¿)2Ka.

The case of TB is similar. The only point to be checked is that dB/dr is in

every Lp(dpCis)). In particular, the term ¡TrA^A^: is in LP without the

necessity of a mass counterterm since A and A do not overlap but at worst

touch (see Corollary VII. 13).   □

Finally we come to the axioms:

Proof of Theorem Lib. Consider the Osterwalder-Schrader axioms [19]:

(EO') Distribution Property. We simply appeal to the a priori bounds

(1.15) of McBryan and Seiler and Simon.

(El) Covariance. Translational invariance is a consequence of the conver-

gence of the A -» oo limit. Rotational covariance may be deduced by in-

troducing instead a spatial cutoff h which is spherically symmetric (the

transformation of spinor indices never changes from that of the free theory).

(E2) Positivity. As remarked in [18], positivity will hold after the removal

of cutoffs if it holds with cutoffs. In the (appropriate) ultraviolet cutoff case,

positivity follows from the Feynman-Kac formula of [18]. See also [25] for a

proof of the relation between the Matthews-Salam-Seiler formula and the

Hamiltonian formalism which does not use Euclidean fermi fields.

(E3) Symmetry. This is independent of the spatial cutoff and follows from

the determinant structure of (1.3).

(E4) Cluster Property. This is just Theorem V.l.

Note that by scaling the infinite volume theory depends on the bare

parameters only through the dimensionless ratios X/mb and X/mf.   □

VI. Derivatives of Green's functions.

VI. 1. Introduction. In this section we obtain local Lp estimates on the mixed

partial derivatives (d2/dx¡dy¡)dyC(s; x,y) where the ¿-derivative 3YC is

defined in §11. These estimates have two important features: (i) as |y|
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increases, the Lp properties improve; (ii) the estimates provide the G, and G2

decay needed for convergence of the cluster expansion. As in §IV, we use the

letters 8 and c to denote various positive constants where 5 will always be a

universal constant in (0, 1) and c will, in general, depend on various parame-

ters (e.g.,/?, 5) but not on m0, y oij. Our main result is

Theorem VI.l. For a„ a2 = 0 or 1 and y c% a finite set oj bonds, let

P < Pai+ai(\y\)> where p¡(n) is dejined in the table below. Thenjor all ix, i2 = 1

or 2 andjx,j2 in Z2 we have

(VI.1)
*,MfcO0 toffy* aYC(j; *•*)

< m0cMGx(y,8)e-Sm^y'i)

Z/(R4)

where x is the characteristic Junction oj the square A;, and Gx(y, 8) is dejined in

(IV.25) and d(y,j) in (11.28).

Definition of p¡(n)

Po(")

Pi(«)

P2(")

w = 0

3/2

«>1
Proof of
(VI.l) in

§VL4

§VL6

§VL7

Remarks. 1. By tracing through our proof, the reader can check that any

Ô < j is allowed in (VI.l) and that for ax = a2 = 0 the factor m0 may be

replaced by m0-2//\ A scaling argument indicates that for large m0 the best

possible power of m0 in (VI.l) is m¡¡,+ai~2/p (each spatial derivative in-

troduces a factor of m0).

2. If oyC is replaced by 5C = C(s)- C(l) or even by C(s) provided that

j\ ^ h> we obtain Lp estimates on the spatial derivatives similar to the case of

oyC with |y| - 1 (see Lemma VI.10 in §VL7).

3. By the equivalence of Sobolev and potential space norms [29, p. 135]

together with standard interpolation techniques [20], Theorem VI.l implies

Corollary VI.2. For any ax, a2 in [0, 1] and

p<(2 + xnin(2,\y\))/(ax + a2),

(VI.2)     \\Dx°%t (x)dyC(s; x,y)Sh(y)D;%< m^Gx (y, a)e-*»*«*/>
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where Dx = (—Ax + ml)1/2 and where the smooth localization Çj is defined in

(IV.6).

Our proof of Theorem VI. 1 is based on the fact that (C^ — Cr)(x,y) is the

solution of a Dirichlet boundary value problem for -Ax + ml with boundary

values Cç(x,y) on T. This enables us to express 3YC as a sum involving

iterated sequences of Poisson kernels which can be estimated by standard

techniques from the theory of partial differential equations. This approach

appears to give more direct information about the spatial derivatives of 3YC

than does the Wiener integral representation (for this method see [6, §V]). At

the same time, it provides a completely elementary derivation of the known

[9], [28] estimate when ax = a2 = 0.

VI. 2 Iterated Poisson Formula. From definition (11.15) of C(s) we find by a

straightforward calculation that

(vu) dyc(s)=   2    IK  II  (i-í¿)SYcr
rcs~yier   ber~y

where, in the notation of (II.5),

(VIA) 8yCr = 8yC(s)\,„ni)=8yC(s)\
s = I on I
i-Oonr0

For example, if b E Ie, then 8hCr< = Cp^ - Cn. More generally we have

by induction that

(VI.5) 8yCr= 2(-l)W"MCr*-.,.
PCY

According to (VI.3), 3YC(i) is a convex combination of SYCrc's so that it will

be sufficient to prove Theorem VIA for 8yCr with bounds independent ofT.

We thus study 5YCr. If x, v £ F and y c F then by (VI.5),

(-A, + m2)8yCr(x,y) - 2 (-l)1™^* -y) = 0.
vdy

Hence 8yCr(-,y) is the solution to the Dirichlet problem for (-A + ml)

with boundary values 8yCr(z,y) on Ve. Given a piecewise smooth curve

B c R2 we let u = Pgf denote the solution of the boundary value problem

(-A + ml)u(x) = 0,       x J2 B;       u = /   on B

where / is a continuous function on B (if B is bounded we require that u be

regular at oo, i.e. u(x)^0 as *-»oo). The kernel PB(x,z) of PB (the

"Poisson kernel") is given in terms of the normal derivative of the Dirichlet

Green's function by (see e.g. [3])

(VI.6) PB(x,z)=dCB(x,z)/dnz.

We shall be particularly interested in the case where B = b, a single bond, in
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which case we shall replace the line integral Pbf(x) = fbPb(x, z)f(z) dz

around b by an integral along b with Pb being the jump across b of the

normal derivative of Cb. According to this notation we have 8yCr< = P^Cr*

where on the right side we regard SYCr(z, y) as being restricted to z E I* in

order to provide boundary values for Pj-c which acts on the first variable z,

the variable v E Tc being regarded as a parameter.

We now claim that if y E Tc then

(VI.7) 8yCr = 2 PrXb8y~"CT<~b
bey

where Xv is the characteristic function of v c ®  as a subset of R2. For

8yC?c(z, y) = 0 if z E F ~ y so that

(VI.8) SYCP = PrXyS'Cr = 2 Pr-X^r*.
bey

But by (VI.5) and the fact that x¡,Cy = 0 if b £ y,

xi5^=2(-i)lYH,'lx6cr_

(VI.9)
=    2    (-l)MHHX.C1.^-x.«T-4Cn-..

Combining (VI.8) and (VI.9) we obtain (VI.7). By iterating (VI.7) we deduce

Lemma VI.3. Let y cF c<& with y = {*,, ...,bn) and let B = F ~ y.

77¡e/j

8yCr =   2  PBubalU ■■•ub„XbaPiiubCiu •■• u*„„_,
»es.

(VI.10) D ^
•X6„n_, ■■•Xb^BuK,XbcyB'

Remark. We may regard (VI. 10) as an integrated form of the representa-

tion of 5YCn as a Wiener integral over paths which cross every b} in y [9]. The

sum over permutations a is a sum over orders of crossing.

VI.3. Maximum principle. We shall make frequent use of the following

maximum principle:

Proposition VI.4. Suppose that (-A + ml)u = 0 in an open region A, and

that u is continuous in A. Then if sup u > 0 it must be attained either on 3 A or

at oo, and if inf u < 0 it must be attained on 3 A or at oo.

Proof. In A, A« = m2,« so if u(x) > 0, u cannot have a maximum at x.

D
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It follows immediately from this principle that if u satisfies (-A + mfyu ■

0 in A, u > 0 on 3 A, and u(x) -» 0 as x -» oo, then u(x) > 0 everywhere in

A. In particular we have

Corollary VI.5. Pt is positivity preserving.

A positivity preserving operator .4 obviously satisfies \AJ\ < A\j\. Ii A and

B are two linear operators, by A < B (pointwise) we mean that B - A is

positivity preserving. When A and B have measurable kernels, this is equiv-

alent to saying that A (x, y) < B (x, y). If 0 < A < B (pointwise), then

(VI.11) |4/|<i4|./|<*|/|,

a relation we shall use below.

A well-known consequence of the maximum principle (see e.g. [11]) is that

0 < Cr < Cq (pointwise) and, hence,

(VI.12) 0 < Cr(x,y) < ce-m^-^ (l + \ln(m0\x - y\)\).

Now clearly if y c T c ®, we have PrPy - PyPT - Py and xTPr = XY-II

follows from Corollary VI.5 that for any X c R2,

(VI.13) PTXxPy  <   PTPy =  Py

and

(VT.14) PTXy = PrXyPy < ¿r^Y - Py

These relations allow us to estimate the products occurring in (VI. 10) in terms

of single bond Poisson kernels:

Lemma VI.6. Let y, B c $ with y - bx U • • • U ¿>„ C Bc. Let 2 < ix <

i2 < • • • < ir < n. Then

(VI 15) ¿U*iU ••• Ub,Xb.PBubtU ••• Uft»-|A^_| '      ' Xft/BuftiAi,

< ^ • • • V*.   (Pointwise).

Proof. Since all the operators involved are positivity preserving, we can

use (VI.13) to drop any of the factors Qr = PBublU ... vbrXbr (except the first)

from the product Q„ ... Qx on the left of (VI.15). Then by (VI.14) we can

dominate each remaining Q} by the corresponding Pbj.   □

We shall estimate each term in (VI.10) by first applying (VI.15) and then

using the fact that PT(x, z) decays exponentially: To see this, suppose that x

and y axe on the same side of an infinite straight line X in R2. Then by the

method of images Cx(x,y) = C^(x,y) - C^(x,y) where/ is the image of y

under reflection in X. Thus for any e > 0 there is a ct such that for

|x - z\ > e,

(VI.16) Px(x, z) = W/dnJC+ix, z) < ctntf2e—¿*-4/\x - z\x'2
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since Cç(x - z) ~ c(m0|x - z\)~x/2e~m(Ax~^ for large \x - z\ and similarly

for its derivatives [1].

But if T is an arbitrary subset of R2, and x is outside the convex hull

conv T of T, we let X be the straight line separating x from conv T with

d(x, conv T) = d(x, X). Then clearly Pr(x, z) = (PxPr)(x, z), and since

1-Pr/OOI < supzer[/(z)| by the maximum principle, we obtain from (VI.16):

Lemma VI.7. For any 8 < 1 there is a constant c = c(8) such that if

d(x, conv r) > j, then for any f,

(VI.17) |Pr/(*)| < ^~imorfUlConvr)sup|/(z)|.

zeT

VIA. The 3YC decay estimate of Glimm-Joffe-Spencer. We now prove the

result of [9], [28] that (VI.2) holds when a, = a2 — 0 (see Lemma II. 1 above).

As remarked after (VI.5) it is sufficient to estimate 8yCr. Consider the sum

(VI.10). To each term, call it Ta(B, y), we apply (VI.15), dropping bonds if

they touch the last retained bond. From Lemma VI.7 we get precisely the

decay factor e-imol4(Y)l as defined in (11.29) for any 5 < 1:

T„(B, y) < cWe-*^4(Y)l sup CB(z,y).

Summing over a and using (VI. 12) we obtain

(VI.18) ôYCpc < cMO, (y, «)log(l + d(y,y)~x)

where Gx is defined in (IV.25).

To extract the G2 factor we may reason as follows. Let b be any bond in y,

e.g. the one giving the maximum in (11.28). From (VI.5)

(VI.19) dyCr = 8b8y~bCr =    2   (-l)H"W8*Cn^.
*CY~¿>

This represents 5YCp: as a sum of 2IyI_1 terms each of which may be bounded

by

xjpCr-tXj, < x,,PbC(r~>)~bX/2

(yU°) < ce-"""^supC<,(z,y)8h(y)
zeb

by (VI.17) and the bound CB < Cr If b touches Ay2 then sup^^C^z, v) gives

a log factor as in (VI. 18); otherwise it gives a decay factor exp[- m0d(b, A^)].

Taking the geometric mean of (VI.18) and (VI.20) yields

(VI.21)    X, 5YCnx,-2 < c^G, (y, 8)e-Sm^y%log(l + d(y,y)~%i

for any 8 < \. (VI.21) obviously implies (VI. 1) in the case o, = a2 = 0 with

a = 0.

VI.5. Estimates on dCB(x,y)/dy¡. To estimate (3/3y,)5YCn(x, v) we take
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the.y,- derivative of CB in (VI. 10) and apply the maximum principle method as

in the previous subsection (using (VI.l 1)). However the log factor in (VI.21)

becomes a d(y,y)~x singularity which is not in any Lp,p > 1. It is therefore

not sufficient to use the fact that Pb is a contraction from L00 to L00 and we

must make a more careful analysis of the singularities of Pb(x, z) and

<¡CB/dy¡: In addition to the \z - y\~x singularity at z = y, dCB(z,y)/dy¡ will

have (at worst) \y — j\~x^2 singularities for j in the set e(B) of endpoints of

the individual bonds in B. More precisely:

Lemma VI.8. Given y, z in R2, and B c ^>,letj be the point in e(B) closest

toy. Thenij\z - y\ < \,

dCB(z,y) t       i

<<(|737|+'*oBy,

(VI.22a)

+ \y - JV^[\ + ^ + (\y - j\+\z - j\yx/2]]

where the constant c is independent qfm0, B, z,y. If\z — y\ > \, then for any

8 E [0, 1),

(VI.22b) \oCB (z,y)/By\ < cse-Sm°^ (1 + \y - j\~x/2)

where the constant cs depends only on 8.

Remark. By (VI.6), the bonds (VI.22) apply to PB(z,y).

Proof. We first consider a special case of (VI.22a) where the Green's

function can be explicitly evaluated by conformai mapping, namely m0 = 0

and B = R+. In this case the conformai mapping f = z1/2 maps B onto R

and C ~ B onto the upper half-plane. By the method of images, the corre-

sponding Green's function is

c#W) = C$*tf, r,) = ln(|f -n\/\t - t,|)

where £ = zx'2, r, = yx'2. Since \dnfdy\ = \\y\~x/2 and |3C¿0)(Í, t\)/B-n\ <
c\H — T)\~x> we thus have

(VI.23) \dC$(z,y)/dy¡\< c\y\-x/2\S - r,\~l.

The proof of (VI.22a) will then be completed by the inequality

(VI.24)     \y\~1/2\S - Vfl< c[\z - y\~x +\y\-x/2(\y\ + \z\)-X/2].

To prove (VI.24) we note first that if |arg J - arg t/| > 7r/2 then |f - tj|2 >

|i|2 + |r,|2=|z| + M,sothat

(VI.25) \y\-x/2\t - r/|-1<|.vr1/2(|.y| + \z\yx'2.

On the other hand, if |arg f - arg r¡\ < 7r/2, we have
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m26, __J_2 1 U+"H|-2H
' Lv|1/2i?-ijI   \*-y\   M1/2I? + »ii i? +1-21.1 •

The second factor in (VI.26) has magnitude less than 1 and now |f + tj| >

(|z| + \y\)x/2; hence (VI.25) and (VI.26) imply (VI.24).

By similar conformai mapping techniques we can establish (VI.22a) for the

special case where mQ = 0 and where B = B0, a union of 0 to 4 of the

semiaxes. In this case there will actually be no |y|~1/2 singularity if y is

enclosed in an angle of it/2 or it between two axes, and only a |y|~I/3

singularity if the enclosing angle is 3tt/2. Also if B = ¿?,, a union of 0 to 4

unit bonds emanating from the origin, and if the origin is the closest lattice

point toy, conformai mapping shows that

(VI.27) \dCB»(z,y)/dy¡\<c\y\-x/2

provided |z| > 1 so that z is bounded away from 0 andy.

Consider now the case of general B c ©. If / is the lattice point closest to

y, we let J5, be the set of unit bonds in B touching y and BQ the union of the

rays in 2?, extended fromy to oo. Then since 5. c B we have Cj0) = CB0)-

P$»C$* as in §VI.2. Similarly Cjg = Cj°> - P^C^ so that

(VI.28)

Cf\z,y) - C$!(z,y) -/       dx PB®(z, x)CB°?(x,y)

-f       dxPB°Xz,x)CB*(x,y).
JB~Bl

On the right side of (VI.28), the variable x satisfies \x — j\ > I so that

differentiating (VI.28) with respect to y,- and using (VI.27), we can dominate

the right side of (VI.28) by c|y — j\~x¡2 by the maximum principle. It follows

from (VI.28) that C^\z,y) satisfies the bound (VI.22a):

(VI.29)

^ |< <{ ̂ +\, -Jf'V + <\> -A^-A)-"1}}-

Next we extend this result to m0 > 0 by means of the resolvent formula

,yT,m *c*(*>y)   *ciB%'y)       2fr,   Jc{B°Xx*y) j2
^•^ —3^-3^-W°J C*(z> x)       tfy,       dx-

Using the bounds (VI.29) and CB < Cr we find that the right side of (VI.30)

can be dominated by

(VI.31)       cm20jC+(z,x){\x -y\~x +\yfX/2[l + (M + |y|)~'/2]} d2x

where we have set / = 0. By making the change of variable £ = mQx, we can

estimate (VI.31) by c(m0 + mxn/2/\y\x/2) where the constant c is independent
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of m0. Thus from (VI.29) and (VI.30) we obtain

ZCB(y,z)

9y,-
< <{ ]737| +"o + br1/2[i + <12 + (\y\ + \AVl/2]}

as desired.

Finally, (VI.22b) follows from (VI.22a). For let D be the disk of radius e

and centre>>. Then in R2 ~ D ~ B, u(z) = dCB(z,y)/dy¡ satisfies

(VI.32) u(z)~f 1BuBD iz,x)
ZCB(x,y)

dx.

Consequently by (VI.l 1) and (VI. 14)

<>CB(x,y)

(VI.33)

«W| < /  PBD {', x) to, dx

< ce-am°^-y\-c)[e-x + m0+\y -;r'/2(l + ™x0/2 + £~x/2)]

for any a < 1, where we have applied Lemma VI.7 and (VI.22a). Clearly

(VI.33) implies (VI.22b) (the powers of m0 can be absorbed in the exponential

decay factor).   □

VI.6. Estimates on d8yCr(x,y)/dy¡. When y is empty, the estimate (VI.l)

for 3Crc/3^, follows immediately from (VI.22). We move to the case where

|y| = 1, i.e. y consists of a single bond b. Now by (VI. 10) and (VI.15)

<[dzPb(x,z)
Jh

(VI.34) ±8»Cr(x,y)
3v,

CB(z,y) = I(x,y)

where B = Tc ~ b. If b does not touch A^, then |z - y\ > 1 in (VI.34) and we

may apply (VI.22b) to bound dCB/dy¡ and (VI.17) to bound Pr. In this way

estimate (VI.34) by (inserting x, (x) and Xj (y))

(vi.35)    /(x,7)x,iWx,2(>') < «MfctofcOO»-*"**^! +|^ -y0|"1/2)

where 5 < 1 andy0 is the point in e(5) closest toy. Clearly, (VI.35) is in L*~

(i.e. in any Lp,p < 4) with the bound (VI.l) on its Lp norm. Sincepx(l) = 3

< 4 we have established Theorem VI.l for this case.

Suppose next that b does touch AJ2. We may assume that the origin is at an

end of b touching A^ and that the origin is the point of Z2 closest toy (if not

we have the bound (VI.35) as above). Suppose that xx labels the coordinate

parallel to b (xx> 0 on b) and x2 the perpendicular coordinate. Then by

(VI.22a) we have

(VI.36) \oCB (z,y)/dy,\ < c[f(z,y) + g(y; m0)],

where

(VI.37a) f(z,y) = \z -y\~x + \y\~x'2(\y\ + \z\yx/2
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and

(VI.37b) g(y, m0) = m0 + \y\~x/2(l + mx¿2).

As in (VI.35); the g in (VI.36) contributes a term to I(x,y) which is in L4-

with appropriate G2 decay (and whose mQ dependence is given at worst by a

factor of m0). To estimate the contribution of f(z,y) to I(x,y) we apply

(VI.22a) to Pb(x, z) (note that there is also a singularity at the other endpoint

/ = (1,0) of b):

(VI.38)   Pb(x, z) < c[f(x, z) + g(z; m0) + f(x - j, z - j) + g(z - j; mQ)]

where z = (z„ 0). We insert the bounds (VI.36) and (VI.38) into the

definition (VI.34) of I(x,y). Since we have assumed that y is closer to 0 than

to/, the most' singular term in I(x,y) is

(VI.39) J (x, y) = ff(x, z)f(z, y) dzx
Jb

i.e. the contribution from the first term in (VI.38).

In order to estimate J(x, y) we use the following inequalities:

(VI.40) l/|x| <(l/\xx\°>)(l/\x2\°>),

(Vi.41) \/{\x\ + \y\)<(i/\xxr)(l/\xp),

for any a¡ > 0 with ax + a2 = 1, and

du

\u - vY\u\"

for any p, q E (0, 1) with p + q > 1. For example, we have by (VI.40) and

(VI.42),

(^        /„' dz-|x-z||z-y| < clx*nxx -*™~'

where c depends on r, j, t which must satisfy

(VI.44a) r, s, t > 0,       r + s + t = I.

We note that in (VI.43) we may take s = 0 provided we choose r + t > 1,

and we may take r = 0 if xx is bounded away from [0, 1]. As another

example, we have.by (VI.40) and (VI.41),

/1i/z1zr'/2(w + zI)-1/2|y|-1/2(bl + ^)",/2
•'0

< c|xI|-"1x2|-^|y1|-61y2|-^

where c depends on a,, b¡, and

a¡ > 0,   b¡ > 0,   ax + a2> 0,

¿>i + ¿2 >i>   0, + ö2 + bx + b2 > 1.

<™2>      ri7^w<const|üi,_í,"?

(VI-44b) .   ^  0
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Altogether we find that

(VI.45)     J(x,y) < c[\x2r\xx~yxr\y2\-> + |*,|—|*2r«»|*r*'M-*]

where the indices satisfy (VI.44). If we now satisfy these constraints by

choosing r = s = t = \,ax = a2=\ and bx = b2 = \ +, we see that the two

terms in (VI.45) are in Lx~ and Lf^, respectively.

By similar reasoning we see that the texmf(x — j, z — j) in (VI.38) makes

an additional contribution to the bound on I(x, y) of the form

c\xx - l\-^\x2\-^\yx\-b^\y2\-^

where the singularity is milder than (VI.45) in the sense that a¡, b¡ satisfy

(VI.44b) without the constraint ax + a2 + bx + b2> 1. The g's in (VI.38)

lead to terms with no x singularities, but with an m0 factor. We conclude that

(VI.46) |x,/X,-2||L3-< cm0e-Sm^b^

for any 5 < 1. The G2 factor in (VI.46) has been extracted just as in (VI.33),

i.e. we enclose b in a small convex set D and let the "boundary values"

I(x,y) for x EdD determine I(x,y) for all x. These considerations establish

Theorem VI.l in the case |y| = 1.

Finally we turn to the case |y| > 2. As in §VI.4 we use (VI.15) to drop

bonds from each term in (VI. 10) if a bond touches the last retained bond. We

consider the case where the first bond b touches A,, for otherwise we simply

appeal to (VI.35). Suppose that b' is the next bond which does not touch b.

We wish to estimate

(VI.47) I'(x, y) = fdz Pb, (x, z)I (z, y)
Jb'

where / is defined in (VI.34). Since dist(z, b) > 1 in (VI.47), I(z,y) has no

singularities in z but only iny. More precisely,

(VI.48) I(z,y) < cm0\yx\-b^\y2\-^

where b¡ > 0 and bx + b2>\. To see this, consider the most singular

contribution J(z,y) to I(z,y) as estimated in (VI.45). Since V does not touch

b,z Eb' must satisfy |z, - \\ > \ or |z2| > 1 or both. If \zx — \\ >f, then

in (VI.45) we choose r = 0, í = 1, t = 0 +, ax = \, a2 = 0, bx + b2 > \ ; if

|z2| > 1, then we choose r = 1, s = 0, t = 0 +, ax = 0, a2 = \, bx + b2 > 5

(see the statement following (VI.44a)). With these choices J(z,y) satisfies the

bound (VI.48). Similarly so do the other contributions to /.

Choosing bx = b2—\+ in (VI.48) we see that I(z,y) is in Lx^ in y

uniformly in z bounded away from b. Extracting the Gx and C72 factors as in

§VI.4, we obtain the bound (VI.l). There is still one case remaining in the

proof of Theorem VI.l for a, = 0, a2 = 1, namely the case where every other

bond V E y touches the first bond b in the ordering la(y), i.e. |/„(y)| = 0. In
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this case we can show that for V touching b, (VI.47) satisfies

(VI.49) I'(x,y) < cxx-"<x2-aiyx-by2-b>

where a¡ > 0, b¡ > 0, bx + b2 > \, ax + a2 + bx + b2 > 1, so that the choice

ax = a2 = bx = b2 = \+ gives /' E Lx~ as desired. We omit the proof of

(VI.49) since the calculations involve nothing new.

VI.7. Estimates on d28yCr(x,y)/dx¡dy¡2. Obviously the maximum principle

techniques of §§VL4, VI.6 do not allow us to take an x derivative. Instead we

note that u(x) = (3/3y,2)5YCP(x,y) satisfies (-A + ml)u = 0 for x $ F

and we apply the following lemma (proved at the end of this subsection).

Lemma VI.9. Suppose that u satisfies (—A + ml)u = 0 in the disk D =

{x\ \x — z\ < R). Then there are constants cx and c2 independent of m0 such

that

(VI.50) \du(z)/dx¡\< (c, + c^-^maxlM^)!.

By this lemma, v(x,y) = X/lXj^2SyCr(x,y)/dxidyii will satisfy a bound of
the form (for small R - d(x, F))

(VLSI) \v(x,y)\ < c^m0G(y,j, 8)d(x, F)-Xs(x,y)

where G(y,j, 8) = G,(y, 8)e~Sm,fi(yJ) and s(x,y) contains the singularities of

u(x) as studied in the previous section (see e.g. (VI.45), (VI.48), or (VI.49)).

Now the x singularity in (VI.51) is worse than they singularity. However, we

note that jc and y play symmetric roles in v(x,y) so that we can obtain a

second bound on v in which the roles of x and y are interchanged and we can

then take the geometric mean of these two bounds. In addition, we choose the

exponents in s(x,y) in such a way as to minimize the factor of d(x, F)~x in

s(x,y). For example, consider the singularity (VI.49) that arose in the case

|y| > 2 and suppose that d(x, F) = |x2|. Then we choose a2 = b2 = 0,

a\ = 2 » *i = \ + so tnat

,1/2

\v(x,y)\ < c^m0G
1 1

j \xxnyx\x/2+ \y2\ \yinXl\^* J

= MmM-
0 W,/2+W1/2b1l1/2+b2l,/2

which is in L,2". Actually the singularity (VI.49) is the worst that occurs for

|y| > 2 and so we have verified (VL1) for |y| > 2. For |y| = 1 the worst

singularity is given by the first term in (VI.45), and by the above procedure

we find that it gives a term in L\¡2~. As for y empty, 32C/3x(i3yÍ2 has a

singularity |* - y|-2 which is in Ll~. These somewhat brief remarks com-

plete our proof of Theorem VI. 1.

Proof of Lemma VI.9. Without loss of generality, we take z = 0 and / = 1.
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By calculating the Green's function for - A + ml for a disk of radius r' < R

in terms of modified Bessel functions we can express u(x) in terms of its

boundary values on the circle of radius r':

(vi.52)      «M)-¿  2   ¡eiKe-9')T^uV>e')d9'
Lm /--oo-7 Jt(mor)

where r < r' and I, is the modified Bessel function which is finite at the

origin; in fact 1,(0) = 0 for / ^ 0 and 70(0) = 1 (see [1]). Putting r = 0 in

(VI.52) we thus obtain the mean value property

ox, integrating over r' from 0 to R,

i     r u(x)
(VI.53) «(0) = 4l f        ii    ■  .x d2x.

irR2 J\x\<.Rl0(mQ\x\)

(Strictly speaking we should integrate over |jc| < R' < R and later take

R' -* R.) But du/dx, also satisfies the homogeneous equation in D so that by

(VI.53),

■-¿4</wi/«KWr,A

+ ^- (R\u((R2-x2)1/2,x2)
irR%(m0R)J-Rl   ^ 2)        2>

-u(-iR2-x2)1/2,x2)]dx2

by integration by parts. Now 70(moiî)_1 and id/dxx)I(j(mQ\x\)~x aie

uniformly bounded in x and R and so by straightforward estimates we obtain

(VI.50).   D
We conclude this subsection with a proof of Remark 2 following Theorem

VI.l:

Lemma VI.10. For a„ <x2 = 0orlletp < 3/(a1 + ctj. Then

(VI.54) Wfc dx">dy,a> sc < cm0e-Sm°d(J«'l)

L*

where 8C = C(s) - Cr The same estimate holds when 8C is replaced by 8C(s)

provided thatjx ¥* j2.

Remark. The analogue of (VI.2) also holds for 5C.
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Proof. By (11.15) SCis a convex combination of differences   Cr = Cy-C^

so that it suffices to prove (VI.54) for 8Cr. But as in §VI.3,

(VI.55) |5CT.| = |PrC,| = 2 PrX,C<, ; 2 pbc*-
bev

The sum in (VI.55) converges because of the exponential decay of Pb or C^.

We can estimate y derivatives of (VI.55) as in §VI.6 for |y| = 1 and x

derivatives as above in order to obtain (VI.54).

If/i *h then itis easv t0 check using (VI.40) - (VI.41) that (VI.54) holds
with 8C replaced by C,.: the |jc - ^|_ai~ai singularity of

(3a'+ay9x)°l3y^)C<()(x,y) is in Lp withp < 3/(a, + a2) since x and y are in

different lattice squares. Hence (VI.54) must hold for C(s) = 8C + Cr   □

VI.8. A decomposition lemma. The major role played by Theorem VI. 1 is to

control 5 derivatives dyS of fermi covariances. However, the following con-

sequence of Theorem VI. 1 is used to control 5 derivatives of boson covari-

ances (see (IV.27)):

Lemma VI.ll. Suppose \y\ > 2,p < oo, e < 1. There exist positive operators

Cy>± on L2(R2)such that dyC = Cy+ - Cy>_ with

(VI.56) \\Cy,±\\L,<cMm0Gx(y,8)

and

(VI.57) ||Z>£Cy)±Zr||L2< c^m0Gx (y, 8).

Proof. Let B = DedyCDe. If {^} is a smooth partition of unity, we see

from Corollary VI.2 that

(VI.58)
<m¡c^Gx(y,8).

That is, B is a Hilbert-Schmidt operator on L2(R2). Thus fi±, the positive and

negative parts of B (in the operator sense), also satisfy the bound (VI.58). We

define Cy>± = Z)_e5±Z)-e so that 3YC = Cy>+ - Cy_ and Cy± satisfy

(VI.57). But (VI.57) implies (VI.56) by the following lemma.   □

Lemma VI. 12. Let

q~x <r~x + e/2   where0 < e < 2.

Then D~tD~t is a bounded operator from Lq (R4) to Lr(R4) with norm bounded

by cmö^e/2+r"-''"\

Proof. D ~e is given by convolution with a function ml~ed_e(m0\x\) which

is exponentially decreasing at oo and has a singularity \x\'~2 at x = 0. Thus

foranyp < 2(2 - e)_l,
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(VI.59) |K-eKM)IUtf) < cmö2/p.

Therefore, by Young's inequality,

¡D-'D-Vfry)^ < cmo4-2-4^'^!^^

where z?"1 + q~x = 1 + r~l and q~x - r~x < 1 + (e - 2)/2 = e/2.   D

VII. Estimates.

VII. 1. Introduction. In this section we establish the estimates used in §§III

and IV. In particular, in §VII.2 we study the operators K(s), dyK(s), and

8K(s) = K(s) - K(l) on % = %/2 © %x/2 and show that they are in

certain Qpq.s classes (defined in (III. 12)). In §VII.3 we obtain estimates on

quadratic expressions such as B (s) (defined in (III.8)). In §VII.4 we prove the

"linear lower bound" for pA(s). Our method of proof is basically that of

McBryan [16] in that it involves momentum expansions but we obtain a

considerable simplification by using the formalism of §111 to control the

terms in the expansion. Finally we use the estimates of §§VIL2-VIL3 to

complete the proof of decoupling at s = 0 (in §VII.5) and to justify the

formulas for s derivatives (in §VII.6).

There is a basic complication involved in the estimates for s B.C. In Seiler

[22] and subsequent work on Y2 frequent use was made of the elementary

identity

(VII.l) (-#• + m0) C if + m0) - 1

for C = Cq. Since C(s) is not diagonal in momentum space, (VII.l) is not

available for s B.C. when s ¥= I. As a replacement for (VII.l) we shall

systematically write

C(s) = C+ + 8C(s).

We then use (VII.l) on the C^ term and the local Lp estimates of the previous

section on the 5C term, exploiting the fact that d28C(s)/dx,dyj has better Lp

properties than d2C(s)/dx,dyj (see Lemma VI.10).

VII.2. Properties oj K. In this section we study the operator-valued function

oi<t>,

(VII.2) K (A, s) = S0 (s)<¡>Xa = C (s)(p- + m0)<j>xA,

as well as the related operators 8K and dyK defined as in (VII.2) but with

C(s) replaced by 8C(s) and dyC(s), respectively. We intend to calculate

products, adjoints, and traces of these "operators" using their integral kernels,

e.g.,

(VII.3) Tx%(K8K) = ftx K(x, y)8K(y, x) dx dy

where tr denotes the trace over spinor indices. Why are such operations
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justified? In certain cases, e.g. in the calculation of Tr|5.Kj2 as in Lemma

VII. 1, we are justified in the use of a formula like (VII.3) because we can

show that SK is Hilbert-Schmidt on % for almost all <f>. But this assertion that

8K E (^(X) a.e. or the identity (VII.3) must ultimately be justified by

passing to momentum cutoff objects:

(VII.4) KoAA's) = S0,(^kXa

where a denotes the fermion and k the boson cutoff, 50a is defined in (III.9),

and <bK(x) = f<p(y)hK(x - y) ay in terms of the same smooth function h used

in (III.9).

Since KaK, 8KaK are Hilbert-Schmidt we are justified in using formulas like

(VII.3) with a, k < oo and we then pass to the limit a, k = oo. In a number of

the following calculations where this limiting procedure is fairly clear we shall

simply deal directly with the case a, a — oo. However, we wish to emphasize:

expressions like B = \ :Tx(K2 + KyK): or :Tt(K + K*)2: have no meaning

independent of the limiting procedure a -» oo.

For y = (J1J2) e Z4 and e = (e,, e^ E R2, we introduce

(VII.5) TeJ = DHjKxjD»

as well as the related operators dyTeJ and 8TcJ in which K in (VII.5) is

replaced by dyK and 8K, respectively. Operators such as (VII.4) and (VII.5)

are linear in <f>. If Tx,..., Tr are r such operators on % then Tr^T,... Tr)

will have the form fw(xx,..., xr)<b(xx)... <b(xr) dx; we refer to w as the

kernel of Tr^T, ... Tr). We use the notation Lp~ to denote the functions in

Lq for any q <p; when we write ||w||£,- < c we mean that ||>v||¿, < c(q) for

q < p, where c(q) may diverge as q -»/>. The following two lemmas are basic

to this section.

Lemma VII.l. Given e„ e2 < \, letp0 = 12/(11 + 6 max(e„ e2, - |)).

(a) The kernel w of \\dyTeJ\\22 = Tr(3Yr£*.3Yrti/) is in LP»-(R4) and

(VH.6a) ||w||L,0_ < cm£Gx (y, 8)e-Sm^yA

(b) The kernel w of \\8TeJ\\l is also in Lp°- with

(VII.6b) IMU-< cm^e-Sm^^\

Remarks. 1. We are using the same notation as in the previous sections:

c, a, and 5 will represent various positive constants as explained after (IV.6);

G, is defined in (IV.25), d(y,j) in (11.28), and dfJuJi) in 0V.42).
2. Assuming that A,2 c A (otherwise TeJ = 0), we can omit the Xa in

K(A, s).
Proof, (a) Recalling that the adjoints T* on %x/2 and Ty on L? are related

by T* = D - xTyD, we have

(VII.7)    Tr(3Yr*3Yr£i/.) = Tr(D ~i+2^dyS% px+2*%.dySx,<t>).
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Letting p2 be multiplication by m0, we see from (VII.7) that w(x,y) is given

by a sum over i, /' = 0, 1,2 of terms of the form

(VII.8) cu,D -x+2t*(x- y)(B?D '+2"B,. )(x, y)

where Da(x - y) is the kernel of the operator Da, c„, is a constant arising

from the trace over spinor indices, and B, is the operator with kernel

(VII.9) B,(x,y) - f,i(x)(3^Q,,)(x,>')x,2(7)

where;?, acts on the argument y of 3YC.

If we now write

2

(VTI.10) i)l+2t'=2ftfl-1+\
*=o

then (VII.8) becomes a sum of terms of the form

(VII.l 1) b,r,.D-x+2"(x -y)fq~(x^x)D-x+:u'(x' - y')Ck,(y',y) dx'dy'

where Q, = />*£;,( 3 YÇp,)x,v When fc = 0, 1, thepk = /'3/3xK in Ck, acts either

on dyC(x,y) or on ^ (x), but in either case we know from Theorem VI.l that

for any r < §,

(VII.12) ||Q,,-|Ur«) < <C|Y|C7, (y, 8)e-Sm^yA

But the x' andy' integrations in (VII.l 1) take place over a finite area, so that

we can bound the L*(R4) norm of (VII.l 1) by

c{/|Q,.(x',x)|>-1+2^(x-7)i)-1+2"(x'-/)f

(VTI.13) • \CU (y',y)\P dx dx' dy dy'j

<^II^IL'IIQHI^||^-1+2ii(-)IL,(R2)||ö-,+2£'(-)||L,(R2)

if 2/r + l/q = 2/p. In (VII. 13) we have applied Young's inequality exploit-

ing the fact that D ~"(x - y) is a function of the difference x - y. By (VI.59)

(VII.14) ||Z> ~a\\L,< oo   if q < 2/ (2 - min(a, 2))

so that in (VII.13) we must take q < 2/(1 + 2 max(e„ e2, - ¿)) and r <

3/2. Thus if we choose p < 12/(11 + 6 max(e,, e2, - £)), (VII.12) and

(VII.13) imply (VII.6).
(b) If 3 YC is replaced by 5C, we argue as in (a) using Lemma VI. 10 in place

of Theorem VI.l.   □

Lemma VII.2. (a) Let w be the kernel oj Tx(KXj8Kx,), or Tx(8Kx¡8KXj2).

Thenjorp <f,

(VII.15) IML'< cw0oe-Sm°d(/"/j).
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(b) Let w be the kernel ofTr(dy2Kxj dy,Kxj) where yx is nonempty. Then for

P<h
2

(VII.16) ||h>||l,< cmS II G, (yk, 8)e-Sm^y^.
k-l

Proof, (a) The more singular case is Tr(iÇx; 8Kxj ) with kernel

w(*,y) - ^,(%(7)tr(S()', x)8S(x,y)).

By Theorem VI.1 and Lemma VI. 10, S and 8S are in L2~ and L3~,

respectively, so that by Holder's inequality, w E L6//5~ with norm bounded

as in (VII. 15).

(b) Same proof as (a).   □

Remark. By the inclusion, 6p¡ c QPl ifpx < p2, for the trace classes Qp(%)

on %, we can obtain information about 6,n norms from Lemma VII. 1. For

example, with e„ e2 < \,

(VII.17)   \\STtJ\(i<\\8Tj42=fw(xx, x2)w(x3, x4)4>(xx)... <f>(x4) dx

where the kernel in (VII.17) is in LP(RS) if p < p0 with norm 0(e~Smod(J,Jli).

The next two lemmas collect some useful criteria for certain operators to be

bounded on L*(R2) or to be in Qp(L2), the trace ideal on L2(R2) with norm

\\A\\p = TT(AUy/2.

Lemma VII.3. Suppose l< p < oo; a, ß E R; and I E C0°°(R2).

(a) 3D ~x/dxk is a bounded operator on LP(R2).

(b) DaÇD-" is a bounded operator on LP(R2) and the norm ofx¡D%D "° on

Lp(R2)isO(e-*m^iJ)).

(c)IfO<a< ß/2 and a < 1/2 then DaXjD ~B is a bounded operator on

L\R2) and the norm ofXiDaXjP> ~ß " 0(e-&m^iJy).

Proof, (a) This follows from [29, Theorem V.3].

(b) Forp = 2 the boundedness of Da$D ~" was established in [21, Lemma

6.1]. The same proof works for general p (using part (a)). As for the decay,

suppose i/(A,, A7) > 0. If a > 0 we choose an integer n > a/2 and we write

(VII.18) %£>% = XiD2nDa-%

Now D2n = (-A + /Kq)" is a local operator and we know that for x E A„

y E supp tj, the kernel D"-2n(x - y) is 0(<?-s",ol*-.>'l) together with all of its

derivatives. Thus the norm of (VII.18) on Lp is 0(e-&m^(iJ\ If a < 0, we

write

X¡D%D -" = x¡D%D2nD -2"-"

and repeat the above argument with D2n acting to the left.

(c) The boundedness of DaXjD ~ß was established in [21, Lemma 6.2]. We
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obtain the exponential decay as in part (b).   □

Lemma VII.4. Let 2 < p < oo; a, ß E R;/ G L"(R2); and f G C0°°(R2).
(a) IJß>2p-x, thenjD-* G Gp(L2).
(b) IJß - a > 2p~x then DaÇD ~B E ßp(L2).

(c) IJß -2a> 2p~x then DaXjD ~B E Gp(L2).

Proof, (a) This is a special case of Lemma 2.1 of [24].

(b) Letting {£,} be a partition of unity where each |(- is a translate of a fixed

| G C0°°, we write

Da$D ~B - 2 (Da$D -* ){D -U-%).

i

By Lemma VII.3(b) the first factor is bounded, and by (a) the second factor is

in Qp, so that each term in the sum is in &p. The sum converges in Qp since if

d, = dist(supp I, supp £,) > 1, (CD-ß£,)(x,y) is 0(e-Sm<A) along with all of

its derivatives so that the Hilbert-Schmidt norm \\DaW~ßii\\e1 is 0(e~Sm^).

Finally, Gp D 0^.
(c) We choose ß' to satisfy 2a < ß' < ß - 2p~x and we write DaXjD ~B

= (DaXjD -*) • (DB'$jD ~B). The first factor is bounded by Lemma VII.3(c)

and the second factor is in Qp by part (b).   □

We return to estimates of the type in Lemmas VII.l and VII.2 for the case

s= 1:

Lemma VII.5. (a) For ex,e2> —\,let

px = (l -min(e[, ~) - min(e2, i))    .

There is a Junction w G Lp(R4)jor any p < px such that

(Vn.19) \\T-tJ(l)f2<fw(xx, x2)<t>(xx)4>(x2) dx

Jor almost all $ and

(VII.20) \\w\\l'< ce-S"1«1^.

(b) If ex = 0 and 0 < e2 < \, let p2 = \(l + e2)_1. There is a function

w E LP(RS) satisfying (VII.20) for any p < p2 such that for almost all d>,

(VH.21) \\TtJ(l)\\<jw(xx .. . x4)<t>(xx) .. . <J>(*4) dx.

Remark. With a little more work it is possible to prove (VII.20) for the

actual kernels of ||r_£i/(l)||2 and ||r£</.(l)|^, but the stated result suffices for

our purposes.

Proof, (a) If d(jx,jf) — 0 we can eliminate the smooth localization ^:
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F-« W& < \\D ~%P'f\\D ~tlKmP "IE

<c|Z)-^(l)x,,Z)-«i2

by Lemma VH.3(b). The kernel of the right side,

"(*„ x2) - c%¿x¡)D-1"2" (xx - xàtfxàD-1-** (x2 - xx)

is easily seen to be in Lp,p < px by (VII.14).

If d(jx,j2) > 0 we retain the ^ and take w = ker|| r_ei/(l)||2. The estimate

(VII.20) follows from the fact that for y E Ah, $h(x)C(l; x - y) is a C00

function which is 0(e~SmoáUlJ:í) together with all of its derivatives.

(b) As in part (a), for ¿(/„/j) = 0 we use ||re,(l)||4 < UjUK^D^,

and for d(jx,j2) > 0 we appeal to the smoothness and decay of ÏjC^.   □

If we intergrate (VII. 19) with respect to dp, and apply Holder's inequality,

we see that forp < /?,,

(VII22) HT-jW&fa <jy{xx,x2)C(s;xx,x2)dx

It follows from (VII.22) that Ä"(1)Z) "' E ßj2;i for any e > 0. Similarly from

(VII.21) we see that K(l)D' E 644;, for any e < \. Using complex interpola-

tion, we can obtain the well-known results [23] that

(VII.23) K(l)ECPt„.,   if p > 2, ? < oo.

It is clear from Lemma VII. 1 that dyK and 8K have better 6 ;j properties

than K(l) in the sense that the restriction p > 2 can be improved. For

example, by the same argument as in (VII.22), if e,, e2 < \,

(VII.24) \\*yTj2¡2.,< cmSGx (y, i)e-*^^.

This implies

Corollary VII.6. For any p>\,q < oo,

(VII.25) |i},*T**,U.* cwôG'<* «)'"îmod(W).

(VII.26) |i}.M&6»U.< cmo-e-*"«^"*>.

Remark. Writing K = 8K + K(l) we see by (VII.26) that K(s) enjoys the

same Qpq properties as #(1), e.g. ifp > 2, q < oo,

(VH.27) |&*tofcU.< ^o^^0'^-
Proof. If e, = e2 = e < ¿ we write

(VII.28) WKxj, = (^^)(dyTtJ)(D-%2)

where £ E C™ covers ^, i.e., ÇÇJt = ¡Jt. Now the operator CD~e on % is

unitarily equivalent to D X/2ÇD -e-1/2 on iJCo, which by Lemma VII.4(b) is in
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Qq for any q > 2/e; similarly for D  %.. Hence by Holder's inequality

(VII.29) |fr»'*fcU.< c^rrj^
where/>"' = 2~l + 2q~x; i.e. (VII.29) holds ioxp > ({■ + e)~x. Since e may

be chosen arbitrarily close to ¿, the restriction on p in (VII.29) is p > f.

(VII.24) and (VII.29) imply (VII.25) for q = 2 and by a standard hypercon-
tractivity argument [11] for any q < oo (of course the constant c in (VII.25)

diverges asp -> § or q -» oo). The proof of (VII.26) is virtually identical.   □

We now have the technical tools in hand for the

Proof of Lemma IV.5. (i) is just Lemma VII. 1(a). (ii) follows from a slight

modification of (i): in (i) we replace £ by £ where {£,} is a suitable partition

of unity and then we sum over i, the exponential decay giving convergence.

(iii)-(v) are all proved by writing K = 8K + K(l) and using the triangle

inequality to estimate the two resulting terms separately. The Ä"(l) term is

estimated by Lemma VII.5 and the 8K term by Lemma VII.l(b) and (VII.17).

D
In §VII.4 we shall require the following information about the limit

K = lim^A, (KK is defined by (VII.4) with o = oo):

Lemma VII.7. Let p > 2, q < oo. There are positive constants c and e such

that jora > 1,

(VII.30) ||A-(A, s) - KK(A, s)\\pq;i< cm^-.

Proof. We verify (VII.30) by following through the proof of (VII.27)

(based on (VII.23) and (VII.26)) with </> everywhere replaced by 8<t>K = 4>- $K.

When we calculate ||(A: - KJD-'\\22;i as in (VII.22) we find that C(s) is

replaced by differences such as

(VII.31) $C$-h;$C£   or   SC$*hK - h^Ct*hK

where we are entitled to insert £ G Cq0 provided £ = 1 on a sufficiently large

set. (Notation, h* acts on the first and *hK on the second variable of

$(xx)C(xx, x2)$(x2).) By part (a) of the following lemma, these differences go

to zero in any Lp(R4),p < oo, at a rate 0(k~') and this establishes (VII.30).

D

Lemma VII.8. (a) Let ? G C0°°(R2), let hK be defined as in (III.8), and let dK

be one oj the junctions in (VII.31). Then jor any p < oo, there is an e > 0 such

that K||L, = 0(k-°).

(b) Ijax, a2 < 1 with ax + a2 < §, there is an e > 0 such that

(VII.32) WD"'^(C - h;C)$jDa>\ < cmZK-te-Sm*t<J^)

where \\ • || denotes the operator norm on L2(R2). The same estimate holds if

C-h*C is replaced by C*hK - h*C*hK.
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Proof, (a) Since the operator h* on LP(R2) has norm less than \\hK\\Li = 1

(by Young's inequality), it is sufficient to consider the first difference in

(VII.31). But for any/? < oo we know by (VI.2) that there is an a > 0 such

that D"ÏC$ G L'(R4). We then apply Lemma VII.9(b) below.

(b) Consider first the case s = 1. If d(jx,j¿) — 0 we can drop the f 's since

DaW~a is a bounded operator on L2 (Lemma VII.3(b)). The resulting

operator is diagonal in momentum space and easily seen to be 0(Kai+"2~2).

If d(jx,j2) > 0 we obtain an overestimate by putting a, = 2 and letting the

local operator D2 act on the f 's and C. We obtain a sum of terms, e.g.,

(VII.33)    \%D2(C - h:C)D%1\ = \%{D2CD2 - h;D2CD2)Sj2\\.

Now if x, E supp §, C(xx, x2) is C°° and, together with all of its derivatives,

is 0(e~Smolx,~Xl\). Thus, estimating the operator norm of (VII.33) by its

Hilbert-Schmidt norm, we can apply Lemma VII.9(b) to extract the conver-

gence factor 0(k~c). Actually, to do so we must first "commute" ^ and h*,

using the fact that the commutator is a bounded operator on L2 with bound

O(k~x). Explicitly,

/|W/W - KU(x)\2 dx=fdx |J\(* - x')(S(x) - ï(x'))J(x') dx'

(VH.34) < cf dx \JKix - x')\x - x'\Jix') dx'

<c^fhKix)\x\dx   ll/ll2 = cK-2||/||2

where we have used Young's inequality in the last inequality.

Having dispensed with s — 1, we complete the proof of (VII.32) by estab-

lishing it for 5C. Again we estimate (VII.32) by its HS (= L2(R2)) norm. We

interpolate in a, between 0 and 1 to estimate this L2 norm: For a, = 1, it

follows from Lemma VI. 10 that

\\D^(C - h;C)^D\\L¡/1_<cmSe-Sm^^.

For a, = 0 we use (VII.34) and part (a) to show that for any/> < oo,

\\^iC - h;C)^\\Lf< cmSK-'.   D

Lemma VII.9. (a) /// G LP(R2), then \\J - h*J\\Lf -► 0 as k -> oo.

(b) IJDaJ E Lp(R2)jor some a > 0, then

(VII.35) ||/- h*f\\^< ck-^\\D«j\\l,.

Remark. The same results hold if j(xx, ...,xn)E Lp(R2tt) and Da and h*

act on one of the variables x¡.

Proof, (a) Since h* is a bounded operator on Lp, it suffices to prove
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convergence for a dense set in Lp, say/ E C0°°. But if / E Cq° c L2 we find

that

\\f- Kfé"í\J(k)\2\h(k/K) - ifdk^O

by the Lebesgue dominated convergence theorem. Lp convergence follows for

p > 2 by the Hausdorff-Young inequality and for p < 2 from the fact that

/ — A*/has compact support.

(b) By Young's inequality

(VTL36) ||/- /\*/l|L,<p-a - h:D-"\\Ll\\Daf\\LP.

Now since hK(x) has support in [x\ \x\ < (2k)"1},

D-«(x)-jhK(x-y)D-«(y)dy

= j|x-y|AK(x-y)-j—j- dy

(VII.37)
< sup       IVD-WI/Ix-j^x-jO^

b-*|<(2«)-' '

< ce-«m0W       sup       |y|~3+a/c-1

|j.-*|<(2k)-'

since 3Z>~"(y)/3y,. has a singularity |y|_3+° aty = 0. Thus for |jc| > k~i/3,

(VII.37) is 0(e~8maWK~a^) and so the integral of (VII.37) in this region is

0(fc~a/3). In the region \x\ < k_1/3 we estimate the two terms on the left of

(VII.37) separately, e.g.,

f \D-a(x)\dx <c( \x\~2+adx = CK-"/3.

Thus the L ' norm in (VII.36) is O (k ~ o/3).   D

VII.3. Properties of B. We turn now to quadratic polynomials such as Bg,

defined in (III. 10b), as well as the related objects

(VII.38) 8Ba(s) = Ba(s) - B„(l),

(VII.39) By»y> (s) = :Tr 3 Y^03y'Ka:.

We also consider a polynomial which enters in the proof of the linear lower

bound in §VII.4:

(VII.40) Wha = i :Tr(^ (1)^(1) - ^(1)^(1)):.

Note that the counterterm :Tr K0(l)+K„(l): in the definition (IILlOb) of

B„(s) is s-independent: once we cancel it against the divergences in B„(l), the

remaining term SB„(s) is well defined, as we show below.

We let b0, 8bc, 3 yi'y2b„ and wXa denote the kernels of the above polynomials
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without the characteristic function Xa- For example,

B„ = : f     bais; x,y)<}>(x)<t>(y) dx dy:
^AxA

where

ba(s; x,y) = itr[s0jO(i; x,y)S0>a(s;y, x)

(VIL41) + (^(1)X(#.^(*"4

When s=l, the kernel ba(l; x,y) is a function of x - y. We let

WoAx-y)^ ba(l;x,y)

and study

w,a(k) = (2T7)-2 ¡eikxw,<0(x) dx:

Lemma VII.10. (a) Let e > 0. Then w,a(k) < c(e)D(k)' unijormly in o where

D(k) = (k2 + m2)1/2. The limit w,(k) = limo^00wJ.iO(A:) exists in the sense that

suPk(wAk)- w,i0(k))D(k)~' -*0 and also satisfies w,(k) < c(e)D(k)'.

(b) Supposeß >\.Let

v,Ax,y) = D-BD-\(x)w,<a(x -y)^(y).

As o -» oo, v,g converges in L2(R4) to

v,(x,y) = D-%-%(x)w,(x -y)xj2(y)

where (the tempered distribution) w, is the inverse Fourier transjorm oj w¡. v¡

satisfies the bound

(VTI.42) \H\lHK) < c<e~Sm*'(J,j2)-

Remark. In [22], Seiler verified by explicit integration that w,(k) =

0(ln\k\).
Proof, (a) We consider only /' = 0, the case i = 1 being similar. From

definition (VII.41) we calculate that

(VII.43)  w0¡a(k)= -L- f
(2itf J

ml-p+.p_ ha(pf
ha(p + )ha(p_) +

D(P+)2D(p_)2  ""♦'■""-'     D{p)2
dp

where p±= p± k/2. If we write ml - p+ -p_ =p+-k - D(p+)2 + 2ml
and make the change of variable/» -»/> + k/2 in the first part of the integral

in (VII.43), we obtain

ñoAk) =
(2tt)4 J  D

K(P) 2ml + k-(p + k) _

W  D(p)2

(VII.44)

+ KiP) - h„(p + k)

D(p + k)¿

dp.
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Since ha(p) = h(p/a), we have, for any a in [0, 1],

(VII.45) \h„(p) - h„(p + k)\ < c\k\"/o°.

Using (VII.45) it is fairly easy to show that w0¡a(k) < c(e)D(k)', and so we

shall spell out only the convergence of >v0 0 to

r /m        2     f2>"l + k-(P + k)   j _    2     ff,    ...wo(k) "-J I -ó-7 dp =-t I /(p, A:) dp.
(2ir)Aj   D(p)2D(p + k)2 (2tt)a J

We write

*«(*) - **«(*) - 2[^(Ä:) + *„(*)]/ (2*)4

where

A.(k) =ff(p, k)(l - ha(p)ha(p + k)) dp

= }f(p, k)[(l - h0(p)2) + ha(p)(ha(p) - h„(p + k))] dp

and

J  D(p)

Since |/(p, k)\ < cD (k)/D (p)2D (p + k), we find, using (VII.45), that

1  *V " l '•>  D(p)2D(p + k) °"

< cD(k)"logD(k)/aa

and similarly for Ba. This establishes the desired convergence of w0o to vv0.

(b) Regarding ü,ff(x,y) and w,0(x - y) as the kernels of operators V-% and

fP£f, we write

(VII.46) K,y = (D-%)- (WtfD-^^D'xjD-e)

for 2e < ß - \. By part (a) and Lemma VII.4(c) we see that the 3 factors in

(VII.46) are in Q4, 6M, and 64 of L2 so that the product is in ßj.. By part (a),

this factorization also yields the L2(R4) convergence of via to v,.

It remains only to establish the exponential decay in (VII.42) when d(j\Ji)

> 0. But this is immediate from (VII.41) (without the need for the D ~B

factors). For if x E A,, y E A^ we have 8(x — y) = 0 and S (I; x,y) =

O(e-6mo\x-y\). Since ha(x) is supported in {x| |x| < l/2a}, convolution with

ha preserves this decay and so w0o(x - y) = 0(e~Sm°\x~y\). The same con-

clusion holds for wla since

keT:TTKa(l)*Ka(iy-=tr(S0¡a(iyDS0tO(l))(x,y)D-x(x-y)



YUKAWA, FIELD THEORY 69

and

tTS(lfDS(l)(x,y) = 2D~x(x-y) = 0(e~Sm"\x-y\).   Q

In the case of general s we have

Lemma VII.ll. (a) 8b„ E L6/5_(R4) and converges in L6'5' to a limit 8b

satisfying

(VII.47) IXÄJU*- < cmSe-Sm^^\

(b) 3Y»Y#0 E L6/5_(R4) and converges in L6/5~ to a limit 3Y"Y£ satisfying

2

(VII.48) HX^^X-JU- < cmS II G, (y„ S)*-*""^

where the k = 2 factor is not present ify2 is empty.

Remark.   By   (VII.48)   and   Lemma   VI.12   we   see   that   if   e>§,

D -'xjV^ÛXjP -* is in L2(R4) and satisfies, the bound (IV.50).

Proof, (a) From definition (VII.38),

XÄ = 2-ker Tr(5^5^2 + * 0)XÄ2 + SK^K^j)

and similarly for the a cutoff objects. The bound (VII.47) is a corollary of

Lemma VII.2, while the convergence as o -» oo is a corollary of Lemma

VII.9(a).

(b) This follows from Lemmas VII.2(b) and VII.9(a).   □

By Lemmas VII.10(b) and VII.11(a) we see that the (distribution) kernel b

of B introduced in (111.21) is rigorously defined by b = wn + 8b and has the

following properties:

Lemma VII. 12. Suppose ß > f. As a -> oo,

(VII.49) Dx-ßD-\(x)[ba(x,y) - b(x,y)]xJ1(y)-^0

in L2(R4) and the limit satisfies (IV.51), i.e.

(VII.50) \\D-%bx,D-b\\lHr4) < cmge-Sm^\

Proof. We write ba - b = (w0a - wQ) + (8ba - 8b). The contribution of

the first term to (VII.49) converges to 0 by Lemma VII.10(b) while the second

term contribution converges in U~ where r~x = 5/6 - ß/2 < 1/2 by

Lemmas Vll.ll(a) and VI.12. (VII.50) is obvious from the previous two

lemmas.   □

From (VII.49) we deduce the convergence (III.8) of B„ to B in L2(dpC(s)).

For

f(B - Ba)2dpc,s)=[ \ba(x,y) - b(x,y)]-[b0(x',y') - b(x',y')]
J JA4

(VII.51) . ..
■[C(x,x')C(y,y')+C(x,y')C(y,x')]
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COBy a standard procedure we multiply the C's by smooth cutoffs f G C0°

which cover Xa anc* introduce factors D~B and Ds, \ < ß < \, for each

variable in (VII.51). As in Lemma IV.7, DBÇCÇDB is a bounded operator on

L2(R2) and so we obtain from (VII.51),

(VII.52) f(B - Ba? dpc(s) < c\\D -BXA(ba - b)XAD ̂¡|22(r4) -+ 0.

The above estimates also show that:

Corollary VII.13. Ifyx¥=0 and A n A = 0 then the quadratic polynomi-

als dy"y2B and :Tr KAKA: are well dejined in Lp(dps),p < oo (without the need

jor counterterms).

Proof. We consider only :Tr KAKA:. As in Lemma VII.2(a) the kernel is

w(x,y) = XA(x)xA(y)Hs(y> x)S(x,y)).

But by Lemma VI. 10, xAXAS E L3_(R4) so that w E L3/2~. It follows easily

thatíTrAV^GL'.   D
VII.4. Linear lower bound. We now come to the basic estimate on

(VII.53a) wm¡A(s) = || A"*||det3(l - K)e~B.

Theorem VII. 14. For any p < oo there are constants cx and c2 independent oj

m, A and s such that

(VII.53b) K,a(*)IU„) < &**.

For s = 1 this result is due to McBryan [16] and Seiler and Simon [24].

Although it seems to us that either of their proofs can be generalized to the

case í 7e 1, we shall not actually prove Theorem VII. 14 here. Instead we

establish the following weaker result which is sufficient for our purposes. Our

proof is close in structure to McBryan's while our control of certain addi-

tional terms when s =£ 1 relies on techniques of Seiler and Simon.

Theorem VII. 14'. Let Px,..., Pm G C,<q.s jor any q < oo. Suppose that

each Pj is localized in the sense that PjXA = Pj Jor some unit square A. Define

P = PXA'-- l\Pmand

(VII.54) wmA(s) = Tm(P AmR)^h(l - K)e~B.

Then for any p and q with p < q < oo there are constants cx and c2 independent

of m, A, s and P such that

IKaWIU,,, < c?e<MII IM

Remarks. 1. By (A. 14) and Holder's inequality, Theorem VII. 14 implies

Theorem VII.14'. Were it not for the localization hypothesis on the PJs the

converse would be true, for wmA given by (VII.53a) can always be expressed
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in the form (VII.54) in terms of appropriate rank one operators Py satisfying

llalli = I-
2. In the course of proving Theorem VII. 14' we shall not be explicit about

the dependence of cx and c2 on the bare parameters X and m0. However it is

easy to see that cx is uniformly bounded and that c2 = 0(awjo) for some a.

Thus our assumption in §IV that c2 is uniformly bounded is justified once we

impose the constraint (IV.58).

3. Our method allows us to include an arbitrary finite mass renormalization

iM2/A:«i,2:in2?(see[15],[23]).

4. If one wishes to recover Seiler's result [22] that (VII.53a) with í = 1

satisfies ||wm aIL* < c(A)m, then the following method simplifies considerably

and gives an elementary alternate proof.

Proof of Theorem VII. 14'. The basic idea of the proof is the same as the

corresponding proof for P(<¡>)2 [12, §VII.4 and Appendix] in which a Duhamel

expansion is performed in each unit square in A and a Checkerboard

Estimate is used to decouple the unit squares. (VII.54) has the same form as

the integrand in (III.llb) on which we based our cluster expansion. We now

perform a momentum expansion. Let A = U ietA, be the decomposition of A

into unit squares, where we assign some fixed order to the index set / c Z2; if

/ precedes i' in this ordering we shall write i < i'. We consider the sequence

Kj = eJ,j = 1, 2,..., of momentum cutoffs, and we define

K(0 = S0<í>xA¡,       Kj* = StfíVXA,

where the momentum cutoff field $K is defined after (VII.4). The first step in

the momentum expansion of (VII.54) is to consider the first i in / and to

replace K = 2 A» by Kx = Kx® + 2(>1A<''> by interpolating via

(VII.55) Kx (t) = (1 - t)K¡° + tKli) + 2 A(,'>.

That is, with Rx = (1 - A,)"1, Rx(t) = (1 - Kx(t)yx, and

(VH.56) B(K) = \ :Tr(A2 + [A+A],.,):,

wm,A - Tm(P Ami?,)det3(l - Kx)e~B^

-Jf* | Tm(P A"*i)det3(l - A5, )*"*(*)

(Vn.57) =S^dt[-Tm+x{Am+%-P/\Ax)

+ Tm(AmR,PdAmEx)- Tm(AmR, ■ P)BX }det3(l - Kx )e~B^)

asin(IIL31). Here
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Ax(t) = Kx (t)28Kx   with 8KX = KU) - K¡'\

Ex(t) = (I + Kx(t))8Kx   and

Bx(t) = {- :lx(2kx8KxU)+[8Kf Kx + ÜJaaCf°]#-|):.

We continue to iterate this procedure replacing the Kx(t) and Rx(t) in (VII.57)

by

tf2(f) = (l - ,)#<<> + rA-w + 2 ¿t01   and

/?,(/)- (1-^(0)"',

and so on. Having carried out this (infinite) expansion in A,-, we move on (in

order) to each of the other A/s and perform such an expansion in each lattice

square. Clearly the resulting terms will have a structure similar to the terms of

the cluster expansion (see (111.45)).

We now introduce the requisite notation to describe this structure. For

each i E / and positive integer «,, let

«i

(VII.58) jfW(|) . 2 tfpKJp + t$K(i)
/-«

where St}1* = tj'2x - r/° and

(VII.59) 1 = 4° > 'i° > • • • > <£° > 0.

We also define

7 = 1

For n = («,),-e/ given, we let

(vii.60)       *„(/) = 2<(0.    *„(') = (i - a»«)-1.

and as in (VII.57),

(VII.61) KnJJ(t) = 2 ^(0 + K}<\t) + 2 AT(f).
/'</ e>t

Then iteration of (VII.57) as described in the previous paragraph yields

>Va= 2 /<*     2      {-\)'Tr{/\Rn+fPAA(ttA)dArE(trE))
n=0 decompw„

(V11-62) „r^    >
•2?K)det3(l-*„+,)*-*<*»♦■>,

where the sum over n is over n¡ from 0 to co, i E I; f dt represents integration

with respect to the |n| = 2«,- variables f/°, i E V, y = 1, 2,..., n¡, in the

region (VII.59);
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77„ = {a\a - (i,j); i E I,j = 1,..., «,}

ordered by (i,j) < (i',f) if i < i' or if i - i' and 7 < /; 2decompffji is the sum

over decompositions of irn into 3 disjoint subsets it„ = trA U irE U itB; I =

\itA\ + \itB\ and r = m + \itA\; Rn+X and Kn+X axe defined in (VII.60) where

the notation n + 1 means (n, + 1)(6/; A(irA) = Aae»/4«^"» 0» where for

a = (hf),

(VII.63) Aa(n,t) = Knt¡J(t)28K¡¡\

where A„ „ is defined in (VII .61) and

(VII.64) «A?0 = A(,) - Kj°;

dArE(irE) - n„e„£ d'ArEa(n, f), with the factors taken in increasing order

from left to right, where

(VII.65) Ea(n,t) = il+ knJJ(t))8K}i\

fiW = n„E,A(».')> where

(VII.66) 2?a(«, /) =:Tx(KntU8K^+[¿1,8^1^):.

As in the cluster expansion, d'/\f is defined just as dAr except that the

order convention is observed: when the E factors are spread into the P and A

factors as in (111.35), a product AE is omitted if the E factor precedes the A

factor (relative to the ordering of tt„).

The analysis of (VII.62) is similar to the analysis of (111.45) but is somewhat

simpler: In each of the A, E, and B factors in (VII.62) we replace KniJ(t) by

the sum (VII.61) of localized A's according to definitions (VII.63), (VII.65),

(VII.66). In addition, we insert an additional partition of unity at the left of

each E factor. This expresses the A, E and B factors as a sum of "localized"

A, E and B factors. In the sum over localizations each element a of 77,, or itE

has 2 associated localization indices, which we denote by ka • (fca,, ka2) E

Z4, and each element « of itB has 1 localization index kaX. Since there are 3'"'

possible decompositions of 77„, we may replace the sum over decompositions

by 3|n| provided we choose the maximizing decomposition 77n = tt¿ u ite U

itB.

For each value k = (ka)aB„ of the localization indices, we let

(VII.67) M (A,) = n, + \{ka,ß\AKß = A,.}|,

i.e., M (A,) is the total number of times the localization A7 occurs in a SK^

factor or in k. We also let MP(A) be the number of PJs with localization A. As

in (IV.15) the number M of primitive terms obtained by spreading the E

factors into the P and A factors is bounded by

(VII.68) M <n2"'(A)+Am)M(A)! = 2mIl2w(A)A/(A)!.
A A
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Choosing the primitive term with the largest Lp(dp) norm we thus obtain

from (VII.62)

IKAlL^-'Ml^A^+r Ap_i<?p)

>B(vB)det3(l-Kn+x)eB«'+>\

(VII.69) ",k

where each Gp is a product of type P, A, PE, AE, PEE ... where the A's and

E's, as well as the 5's in F(trB), are localized.

As in (IV.32) we apply the bound

(vii.70) \Tr(ArRn+r Apgp)\ <«A^+1||-n||Gp|1.
p

Substituting (VII.70) into (VII.69) and applying Holder's inequality, we

find that(withp_1 = 23=1t7f')

(vii.71)   |ka||l,<23wa/ HiiGpii,   m«B)L«HA" + OIL«,
n,k 9 ¿«i

where

^A(«)=«AX||det3(l-^)e-^.>.

We control the growth of the last factor in (VIL71) by the following lemma

which we prove below:

Lemma VII. 15. For any q < oo there are constants c¡ independent of r, n, A

such that

(VII.72) KaOOL«*) < e'"-+^"+^Al.

The estimates on the other factors in (VII.71) are so similar to those of §IV

that we shall be rather brief. After inserting smooth localizations Çk as in §IV

we estimate Pj factors by \\Pj\\x = 1, A factors as in (IV.41), and E factors

using G4 norms on the K's and 8K's. This bounds II||Gp||, in terms of

products of norms of individual localized K's or 8K's. These norms are

analyzed in Corollary VII.6 and Lemma VII.7 and we may estimate such

products by the Checkerboard Theorem of [12] or Theorem 9.4 of [9]

obtaining the usual local number singularity factors II,M (A,)!. Because of the

momentum cutoff each K or 8K will be a function of the field in a slightly

enlarged unit square, but this presents no real problem; e.g., before applying

the Checkerboard Estimate we first use Holder in order to separate overlap-

ping squares.
Although the estimate of the B(ttb) term in (VII.71) is not much different

from the estimates of Lemma IV.7, we indicate some of the details: When the

sum (VII.61) is inserted into definition (VII.66) for Ba, we get a sum over

localized B's, Ba = *2keIBa k. Explicitly we have
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Ba = B,,J)=:Tx(K}»8K}»+[K}i»8K}»l_i):+ 2  :Tr A<«5AJ'>:
k=£i

(where Kj& = K(k) if k > i) so that the localized BaJe's axe given by the

following formulas: if k = i,

Ba¡, -:Tt(KJ°ÔK}0 +[K}'n8KJ°]sml):

= ^Jxi{x)b(x,y)x,(y):<t>/(x)(<t>(y) - <f>hj(y)): dx dy

where b is the kernel of B (see Lemma VII.12), $h = h*$, h} = h and

j
(VII.73a) fix) = 2 Stj%,(x) + fd(x);

/-i
iik^i,

BaJc=:TxK^SK^:

= jxk(x)b'(x,y)X¡(y):<t>g(x)(<í>(y) - 4>hj(y)): dx dy

where g(x) = gw(x) = 8(x)ifk > i, and

"*
(VII.73b) ga)(x) = 2 8tjk)hj(x)   ii   k< i,

j-i

and where, by Corollary VII.13 and Theorem VI.l,

(VTI.74) IM'xILv^ c<e-^('-.«.

We now estimate \\B(irB)\\Ln exactly as in Lemma IV.7. Assuming without

loss of generality that q2 = 2, we evaluate H-SO^Ill* as a sum over contribu-

tions of vacuum graphs. The contribution of each vacuum graph is an integral

of a product of x&x's (or Xb'x's) linked by covariances of the ioxmffC^

where ̂  = fig ox (8 - hj) as defined in (VII.73). As in Lemma IV.7, we insert

smooth localizations f, covering the x/s and factors D±a where § < a < f.

By Lemma VII.8, the operator norms on L2(R2)

(VII.75) |P %/f C*f2$kDa\\ = O (e-*M<U))

or 0(e-tJe-Sm°d«-ky) if one of them's is (5 - hjp The factors D ~axbxD ~a axe

in L2(R4) by Lemma VII.12, the factors D-ax¡b'XkD~a are in L2(R4) by

(VII.74) and Lemma VII.12 with norm 0(e~Sm<>d(i-k)). Thus the estimation

proceeds as in Lemma VII.8 with the sum over vacuum graphs controlled by

the exponential decay of the covariances. Note that each a EitB gives rise to

a factor e~w (as does each a E irn).

In this way we obtain for some 5 > 0 and e > 0,
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(VII.76)
L">

niiGPn,
p

< c(ef]l
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cM^M^y. II e-*
y-1

[   e-Sm0rf(Aa>fco))

where A0 = A, if a = (i,j) and

(Vll.ll) d(Aa,ka)=^d{Aa,kaS).
ß

Collecting the estimates (VII.71), (VII.68), (VII.72) and (VII.76) we get

IK,a|L,< cr+|A|2c|n|IIexpi^i-j

• 2 üc^^MíA,)!2 II e-Sm^-k-\
(VII.78)

aeir.

where we have used the estimates r = m + \tta\ < m + \n\ and 2/Li/ >

nf/2. By a combinatorial lemma due to McBryan [16, Lemma A.l] the sum

over k in (VII.78) is bounded by c(b)^Ui(3ni)lb for any b > 4. Thus,

IKa|L,< cr|A|n2exp[c«,. - e«2/2 + 3bn,log3«,.]
í   "/

< c,m+|A|Iïc3 < c¡V*|A|,
i

establishing the theorem.   □

Proof of Lemma VII. 15 in the case í = 1. We appeal to results of

McBryan [15], [16]. As pointed out in [15, Lemma 3.3], the estimate

||A'/y-|detj(l - K„)\ < em+W.+K?,*

is an elementary generalization of Carleman's Inequality [5]. Hence, since

B (K) - i :Tï(K + K*)2: + \ :1r(K*K - KyK):,

(VII.79) \wr¡A(n)\ < exp[r/2 + \<Jt(K„ + K* )2>]

■exp[±:TT(KZKn-Ktt%y-],

where < • > denotes /(•) dp, (here s = 1). The first factor on the right is less
than e'ß+o{\n+i\) since; by Lemma 2.4 of [16],

(VII.80) (TriAO) + K*n(l)f) <0(\n+ 1|).

The second factor is in all Lq(dp), q < oo, with norm less than e°W) since,
by Lemma 2.1 of [16],

(VII.81)    \exp[-\:lT{Kn(l)*Kn(l) - Kn(l?Kn(l)):]\L< e™
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uniformly in A. This completes the proof of Lemma VII. 15 and, hence, of

Theorem VII. 14 in the case s = 1.   □

Proof of Lemma VI 1.15 in the case j^ 1. We split Kn into a low and high

(fermion) momentum part:

Kn(s) = La,n + Ha,n(s)

with L0„ = Sye/S'o.oO^XA, f°r some appropriate choice of o (to be de-

termined). It is convenient, but not essential, in the sequel to assume that the

o cutoff is sharp (i.e. that h\ is the characteristic function of [k\ \k\ < o}).

This eliminates high-low cross-terms Tx(L*H) or Tx(L^H). We now write

(withi/n = //0>n(5))

«**<*) -||A'Äjdet[(l - A-n)exp(Afl + \H2)]

(VII.82) .exp[-\:TxiH2 + H*Hn): + \{JxiK2 - H2))

+ x2:lx(H:Hn- Kn(l)^Kn(l)):\

In order to bound (VII.82) we note that

\\\ArRn\\àet[(l-Kn)exp(Kn + \H2)]\

(VH.83) r .     ,    , m
< exp[c,r + callan, + \TxiH2 + //„*#„)].

(VII.83) follows by combining Lemma 2.3 of [23] with the fact that if A is

symmetric with positive part A +, then

det3(l + A+) < expjTxA2. < exp ±Tr,42.

We thus obtain, as a generalization of (VII.79),

|uv>A(«)| < exp[c,r + c2||L||I]exp[i<Tr(A'fl2 + /£//„)>]

(VIL84) .exp[i:Tr(^i/„-An(l)tAn(l)):].

Since ||L||, < 2/s/||LXilli» we fmd» by the Checkerboard Estimate and the

argument of Lemma 2.5 of [23], that the factor eClWU is in all Lp with norm

bounded by e°W) uniformly in s. The proof of the lemma will then be

completed by the following two lemmas corresponding to (VII.80) and

(VII.81).   □

Lemma VII. 16. There is a constant c(o) independent ofn, s, A such that

(VII.85) (Tr(A2 + H^flJ)) < c\n + 1|.

Lemma VII.17. For every p < oo, there are a o and c(o) independent of s and

n such that

(VII.86)      ¡exp[^:Tx(HlnHa¡n - Mtf^O)):]^ < e°W-
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Proof of Lemma VII. 16. We first isolate the ¿-independent high momen-

tum cancellation, leaving a number of terms involving expectations of

quadratic monomials in <i> which can be estimated uniformly in n. By

elementary algebra,

(Tt(K2 + H*nHn)) = (Tr(*-„(1)2 + Kn(l)* Kn(l))) + 2<Tr Kn(l)8K}

(VII.87) + <Tr 8K2> - <Tr L*V) + <Tr 8K*Hn(l))

+ <Tr Hn(l)*8K) + <Tr 8K*8K),

where 8K = Kn(s) - Kn(l). Now by (VII.80) the first term on the right of

(VII.87) is 0(|n + 1|). We claim that the remaining terms are 0(|A|) uni-

formly in s and n, and are thus 0(\n + 1|). Bounds uniform in n will follow

by Lemma VII.8 if we can establish bounds in the absence of a boson

momentum cutoff. For the terms <Tr K(l)8K) and <Tr 8K2} we insert

localizations and then apply Lemma VII.2(a) and Holder's inequality using

the e~Sm^<JiJi> decay factor to obtain an O (|A|) bound.

We illustrate the bounds on the "adjoint" terms in (VH.87) by the case of

Tr(8K*H(l)). We insert localizations and apply Lemma VII.18 below (with

a = x2,A = H(l), B - 8K, and § < q < 2) to write

\Tr(8K*H(l))\ - 2Tr((SKx.)*tf(l)x,)
JiJi i

<c2|Fx,1|J^(i)x,2||/-im^).
Juh

Now d(jx,j2) is a function of the difference |y. - y'2| so we can apply Young's

inequality on I2:

\Tr{8K*H(l))\ < c(2 ||5^«2?)    (2 ¡^(l)^)

(vn.88) <^2(i^l2f + ||Ä(i)^t)
j

<^2(||^«2í+||ír(i^l2,+fiL^),
ye/

where in the last line we have used the triangle inequality and the inclusion

S, c eq. if q' > 2. By (VII.23) and (VII.26), qSK^} and {\\K(l)XjW2^ are
finite, as is <||.Lxy|l2> because of the momentum cutoff. Thus (Tt(8K* H (I))}

= O (|A|) and similarly for the other terms in (VII.87).   □

In the proof of the above lemma we have used

Lemma VII.18. For any a suppose that Axi E Qq(%a) and Bx2 E dy(3Ca)
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with l/q + l/q' = 1. Then there exist positive numbers c, 8 independent of A

and B such that

\Tt(AXi(BX2)*)\ < ce-Sm^^\\Axx\\e,(%J\Bx2\\e^-

Proof. The case </(A„ A^ = 0 is just Holder's inequality. If d(Ax, A2)>0

we write

|Tr(^Xi(5x2)*)| = Tr(AXlD-aX2ByDa)

= TT((Da/2AXlD ~a'2 )(D"/2ÇXD -%2Dtt'2 )(D -«l2X2ByDa'2 ))

<Hx1||e,wFX2||e,W«Z)a/2^Z)"a^o/2«opa2)

and then apply Lemma VII.3(b).   □

Proof of Lemma VII.17. Since C(s) < C(l) as operators we can invoke

conditioning [11] to put s = 1 in the measure dp, and Wick ordering (the

¿-dependence of Ha„(s) remains). We then write

:Tt(H*nHa¡n - Kn(lj*Kn(l)):=Ax +A2 + A3

with

Ax = :Tr(Ha,n(l)*H0,n(l) - Kn(l?Kn(l)): + M2( :<b2(x): dx,
•'A

A2 = -2 Re<Tr H„t„(l)*8K) - <Tr 8K*8K),

A3 = 2ReTT(8K*Hon(l)) + Tr(8K*8K) - M2 f :tf(x): dx,
•'A

where the constant M2 is to be determined below and

<S>n(x) - 2 x«(*)fy»(*)
kel

where g{k) is defined in (VII.73b). By Holder's inequality it is sufficient to

bound each of ||e1/'2'4-'||i>, separately.

Now A, = faaM(x, y)'-<i>„(x)<t>n(y): dx dy, where for any M we can choose a

sufficiently large so that aoM(x,y) is the kernel of a negative operator (see

Lemma 2.8 of [23]). Hence by explicit Gaussian integration (see e.g. Lemma

3.3 of [22])

II^IU,) < «P(lMtHk,))-
From definition (VII.40),

Ax = 2fwx(x,y):<bn(x)<ba(y):-:TTLlnLay. + M2f^2:,

and so we have the bound
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(VII.89) \\AX\\2L2< c\   fwx:<¡>n<pn:      +||:Tr L*L: fL> + ¡M2f :<t>2:\\    \.
[\\J L1 II      J        Wo)

It is easy to see that each of the terms in (VII.89) is O (|A|). For example,

il c        II2
Ik ii l2

=    2    ÍXi(x)wx(x,y)xj(y)Xr(x')wx(x',y')x/(y')
ij.i'J' t= I

■ [C„.(x, x') Cjj. (y,y') + C,f (x,y')Cej(x\y)]-dx dx' dy dy'

where C,r = g(,)*C*g(0. As usual we insert smooth localizations and factors

of D ±tt for some a in (£, f ) and apply estimates (VII.42) and (VII.75). The

exponential decay provided by these estimates controls the sum over i,j, i',j'

and gives an 0(|A|) bound. As for the second term in (VII.89), the 0(|A|)

bound follows from the fact that :Tr L*L:= //„:<#>„<#>„:, where lg(x,y) =

2D~x(x - y)h*D~x(x - y) E LXo^ (because of the momentum cutoff) and

ÏÏXiloXjWo- m 0(e-Sm^ij\ The last term in (VII.89) is obviously 0(|A|).

Now A2 = 0(|A|) by the previous lemma. It thus remains to show that

there is an M < oo independent of s such that He^H^ = e0^. To do so, we

appeal to the analysis of such problems by Seiler and Simon [24, §111]. In

(VII.88) we use complex interpolation to replace the ß?. norm by Q^ and C4

norms (see [23, Lemma 2.7]) and (VII.29) to replace the ßq norm (provided

q > y)by a 0^ norm:

\Tx(SK*H)\ < c 2 {\\8KxjD'f2 +||A(l)x,Z>-«>||2
ye/

(vi« +II*O)a>0í;+|i*||2:)

= <2 2a>(,),
JSI   i-l

where ex = 2/q - 1 < 1/6, e2 > 0, e3 < 1/2. By Holder's inequality it is

sufficient to show that there is an M such that for each /,

n exP(c^'> - \M2 ( :&:)

has Lp norm e0^. By the Checkerboard Theorem (after use of Holder's

inequality to remove the slight overlap caused by the cutoff functions gw), we

need only show that for some M,
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< 00.exp(x^-íM2j^goy.\\

According to the method of [24] this will be the case if for some M

(VII.91) f(XJ°)2dvMj<e-2,

where dvMJ is the Gaussian measure on S ' with mean zero and covariance

C(l + M2XjC)~x. (We may drop the ultraviolet cutoff g01 in the proof of

(VII.91).) The cases i = 2, 3, 4 of (VII.91) are dealt with in [24] and the case

/ = 1 is similar since we know that the kernel of Xj^ = \\8KxjDe,\\l is

pointwise bounded by an ¿-independent function in LPa~ (see Lemma VII.l).

D
VII.5. Decoupling at s = 0. We now complete the proof of Lemma III.l by

verifying (111.15); i.e., if s = 0 on % c (Z2)* with R2~ % = \JX, a dis-

joint union, then in L2(dpC(s)),

(VII.92) B(A,s) = 2,B(A„s)
i

where A, = A n X,. To prove (VII.92) we must show that the cross-terms

between different A/s vanish:

(VII.93) j:<l>(x)xAl(x)b(s; x,y)xAj(y)<t>(y): dx dy = 0

in L2(íz/xC(í)) if i i= j. If we estimate the L2(dpc^s)) norm of (VII.93) as in

(VII.52), we see that (VII.93) follows from the assertion that D ~pX\bX2D ~ß

— 0 in L2(R4) for some ß < \ where Xi = Xa and X2 = Xa • Tl"s m turn

follows if for any jx,j2 E S (R2),

(VII.94) fjx (x)Xx(x)b(s; x,y)X2(y)J2(y) dx dy = 0.

Suppose first that d s dist(supp/, u sup/2, ®0) > 0. Then if o > (2d)~x

we claim that Jx(x)xx(x)ba(s; x,y)x2(y)J2(y) = 0. For consider formula

(VII.41a) for b„ = b0a. Certainly 8(x — y) vanishes, as does S0a(s; x,y),

since S0(s; x,y) = 0 if x E A„y G A; and convolution with ha (see (III.9))

"blurs" the support of S0 by a distance of only l/2o. By the convergence

(VII.49) of ba to b as a -> 00 we thus deduce (VII.94) in the case d > 0.

When d = 0 we simply approximate j, by f,(n) with d > 0 such that, as

n -» 00, ftn)^>f, in both Lp, any p < 00, and in %ß for some ß > 0. Then

Xif¡w^X¡Ji in L> and in %a for a < Min(l, ß)/2 (by Lemma VH.3(c)).

Since b can be written as a sum b = w0+ 8b0 where w0D ~" defines a

bounded operator on L2(R2) and 8b0 G ¿/¿/11_ (see Lemma VII.12), we

conclude that

íñn)Xxbx1fin)-*¡JxXybX2J2
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and this establishes (VII.94) and the decoupling (VII.92).

VII.6. Boson functional derivatives. In [4] Dimock and Glimm proved the

"integration by parts" formula

(VII.95)       A fF(s, <f>) dpcU) = /( JL + I ^ . A,)f ̂ w

for a large class of functions F of the field cj> (actually their F's did not have

an explicit s dependence). Their method consists essentially of two parts. First

they show that (VII.95) holds if F is a cylinder function of the form

F(<b) = F(<t>(fx),..., <¡>(fn)) for some fixed/,, ...,/,£§ and polynomially

bounded function F in C2(R"). This is proved by explicit Gaussian integra-

tion and integration by parts. In this case the functional derivative 8/8<j> is

defined by

(VII.96) (g^)F)(*) -2 /,(*)3^(<K/i)- ••*(/»))

where 3, denotes the partial derivative with respect to the Ah variable. Then

for the family of functions F of interest they construct an approximating

sequence of cylinder functions [FN) such that as JV-» oo the integrals with

respect to dp, of FN, dFN/dsb, and (dC/dsb) ■ A^FN converge to the integrals

of F, dF/dsb and (dC/dsb) • A^F, respectively. The validity of (VII.95) for F
then follows by the elementary

Lemma VII. 19. ///„ E C'([0, 1]), /„ ->/ and f'n-*g uniformly as n -> oo,

thenfeCx([Q,l])andf' = g.

We have applied formula (VII.95) to the functions F(s, <£) = rm(G) (see

(111.32)), where the «-derivatives are computed by the rules (111.24)—(111.26)

and the ^-derivatives are computed similarly just as if <b were a single variable

provided that we define

(VII.97) 8H(<b)/8<i>(y) = H(8y)

for linear functions H of </> (e.g. H =dyK). Of course, the functions F =

rm(G) are not specifically covered by the results of Dimock and Glimm and

in this subsection we verify (VII.95) for such F by following their procedure.

However, we wish to emphasize that we do not claim to be rigorously

justifying partial calculations such as (111.25). Rather, it is always necessary to

collect terms as in (111.31) and (111.33) so that R = (1 — K)~x occurs in a

single factor of the form A^- P°r formulas like (111.24)—(ÏII.27) do not even

make sense if 1 £ a(K). However after collecting terms we can assert:

Lemma VII.20. Let K be a (¿¡-valued continuously differentiable function of s

in an interval I c R, i.e. K E CX(I, Q2(%)), P E CX(I, ex(A"K)), B E
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CX(I), and t„(P) be as in (111.32). Then t„(P) is dijjerentiable in I and

(III.33a) holds.

Proof. The formulae (111.25), (111.26), (111.27) and so (III.33a) certainly

hold for all s such that 1 G o(K(s)) (see for example [5]). If 1 G o(K(s)) then

there is an 6 > 0 such that 1 g o(XK(s)) for 0 < |X - 1| < e. So (III.33a)

holds for K replaced by XK in the definition of rn(P). But the right-hand side

of (III.33a) is continuous in X by results of the Appendix of [23]. Thus by

Lemma VII.19, (III.33a) does indeed hold at X - 1 even if 1 G o(K(s)).   □

We define cylinder function approximants to K(<$>) so as to preserve the

algebraic structure of the expressions involved. First we apply boson and

fermion momentum cutoffs, approximating K(<j>) by KaK((¡>) (see (VII.4))

which is in Qx(%) for all <i> G S'. Let rmaK(G) denote the corresponding

cutoff version of rm(G). Then for the arguments G of im which occur in the

derivative formula (111.33), we know thatjrm „ K(G) dps-* ¡Tm(G) dp,. This

follows by a dominated convergence type argument as in the proof of

Theorem IV.l, since by the estimates of the preceding subsections Tm>0ilt(G) G

Lp(dps) for any p < oo, uniformly in o and k. By Lemma VII.19 it thus

suffices to prove (VII.95) for KgK. We henceforth fix o and k which will be

suppressed in the notation.

Next, we choose an orthonormal basis {e,} in %x/2 and approximate

K* = A or At by the finite rank operators

(VII.98)      K* if) = ENK* (<¡>)EN -   2  e,(e„ K# (*),-,)(*   • )
iJ<N

with matrix elements

(VII.99)        CW.-lf'''*'*'-**)    »"<*
[0 Hioxj > N,

where kt =kßand

kij{y) =// dx e,(x)DS0,a(x, z)xA(z)ej(z)hK(z - y) dz

(VII. 100)

-*(*)r

Letting FN be the approximant to F obtained by replacing K by KN we

verify (111.33) by means of Lemma VII.20. In this connection, note that the

definition (VII.96) of 8FN/8<$>(x) does indeed coincide with the prescription

for calculating a 8/8$ derivative given in (VII.97). We illustrate this in the

simple case F = det3(l - A):
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^y dctj(l - K(t)) = 2 k0(x) -±- det3(l - *(*))   (by (VII.96))

= 2K(8x)uK(<b)2^ g|-í:](«í>)det3(l - K(<b))   (by(VII.100))

= K(^2K(8x)i/uyet3(l-K(^))

= K(<b)2K(8x)det3(l - K(<b))

since Jy = dK/dKy has Im matrix element (J¡j)lm = 5,v5,m.

Since KaK EC. for all t> E S ', Â^ -» K in 6,, as AT -» oo, pointwise in <f>.

So if F(<f>) is of the form F(<b) = rm(G) as defined in (111.32), then FN -* F,

dFN/dsb -*dF/dsb, (dC/dSb) ■ A^FN -» (dC/dsb) ■ A^F pointwise in <b. Since

ll-^jvlli < llalli» tne EN, ̂ EN/dsb, and (3C/3í¿,) • ̂ Fn are dominated uni-
formly by cxeCimi+m which is in Lx(dp,) so that by the dominated conver-

gence theorem, their integrals converge. This establishes (VII.95) for K =

Appendix. Antisymmetric tensor products. In this Appendix we collect and

prove those properties of fermi statistics that we have used throughout the

paper. We begin with some definitions. Given a separable Hilbert space %,

let A"3C be its «-fold antisymmetric tensor product. It is convenient to

regard A"^ as a subspace of the ordinary tensor product ®"%, and to

identify an operator/I on A"^ with me operator on ®"% which equals A

on A"3C and is zero on (A"^C)±. We let irn be the orthogonal projection in

<E>"3C onto A"3C- The antisymmetric tensor product of vectors ex,..., e„ £

% is

(A.1)    ex A • • • A èn = mnex ® • • • 8 en = -Jr   2 sgn ae   ® • • • 8 e .
n] oes„

If {e¡} is an orthonormal basis for %, then {(n\)x^2e¡ A ' * * A ^} with

¡i < i2 < • ' • < i„ is an orthonormal basis for A"^- Note that

(A.2) (/, A • • • A/„, gi A • • • A &) - («! )_,«K/p*)

from which we obtain the basic identity (1.11). Given « (bounded) operators

Ax,..., An on %, their antisymmetric tensor product is defined on A"3C by

(A.3a) Ax A A2 A • • • A A„ = mnAx 8 • • • 8 ¿„v

Alternatively, .4, A • • ' A An may be defined by its action on a basis vector

(A.3b)    (Ax A • • • A ¿„K A • • • A \ - ¿-  2 ^..«i, A • • • A Vv
"• «es,



YUKAWAj FIELD THEORY 85

We write A"A =^A^A,,,A^(" factors). If A and B are operators

on An% and Am^> respectively, we define A f\ B by irn+mA ® Birn+n.

Finally, given an operator E on % we define its derivation d A"E on A"^

by d A"E = nE A IA ■ ■ • A L ox alternatively by its action on a basis

vector:

(A.4)      dA"Ee,x A • • • A «(, - 2 %A • • • A Eei A • • • A \
y"-i

It is easy to see that the operator product A is commutative, associative,

and distributive with respect to addition. However, it is not true in general

that i A". XA¡) • (A"-iB,) = A".\A¡Br What is true is that

(A.5) (AUA)AHB"A'!-l(AlB)

as is obvious from (A.3). We also find that

(A.6)        (A?. A) dA"E - i AxA • • • A A,E A • • • A AH.
i-l

For put B = (1 + sE) in (A.5). Since (d/ds) A"^L-o " d A"E, we deduce
(A.6) by differentiating (A.5).

If TrA»5¿(.) denotes the trace on A"^> we introduce Tn(-) = n\TxAnyf-).

Let A E Gx(%), the trace class on %. As emphasized by Simon [27],

(A.7) det(l + X4) = 2  ^Tn(A"A)

where the series converges for all X by virtue of the bound [27, Lemma 3.1]

(A.8) |rn(A^)|<«!||A^||,<H|i;.

(The subscript 1 denotes trace norm on A"3C and %, respectively.) Now

suppose Ax,. .. ,AnE ßx(%). Then it is obvious from (A.7) that

(A.9)   T„(AXAA2A--- AA„)= aA[ a"  dKdet(l + X-A)\Xi.....K_0

where X-A = Sy-iA^-. The relevant properties of T„(AX A ' ' ' AA„) can

now be read off from (A.9). For consider the trace formula that we used to

collect terms in the cluster expansion:

T„(Al A • • • A An) = Tn_x iAxA--- /\An_x)-TxiAn)
(A-10) , ,    %

-Tn.x{AxA--- AAn_x-dA"-XAn).

It is proved as follows. Letting R = (1 + X„An)~x we have
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det(l +X -A) = det
/ "-1       1

(1 + XnAn)[ 1 + i? 2 Vi
\ 7 = 1 J

n-1

= det(l + V4„)detl 1 + 2 XjRAA.

Therefore by (A.9),

g«-I

9A,
(All)

g^— det(l+A^)|Xi=...=Vi„0

= det(i + xn^)rn_1(An_IJR-^iA--- A4,-i).

Since 3An-1-R/3\,l\,-o = _ dA"~XAn, we deduce (A.10) by differentiating

(A. 11) with respect to A,,. By taking linear combinations we can generalize

(A.10) to

(A.12) T„(B /\A) = Tn_x(B)Tx(A)- Tn_x(BdA"-'A)

for A and B trace class operators on % and A"1^» respectively.

We also have the factorization used in (V.6) and (V.7):

Lemma A.l. Suppose that the operators QA¡, i = 1,..., mA, and QBJ,

j = 1,. .., mB, satisfy QAiQBJ = Ofor all i andj. Then

(A.13)   T„A+mB((AQA,)A(AQbj)) = TmA(AQA,)Tms{AQBj)-

Proof. The left side of (A.13) is given by

dXAyX ... dxBmB
det(l+XA-QA+XB-QB)\tA=~XB=0.

But det(l + XA ■ QA + XB ■ QB) - det(l + XA ■ QA)det(l + XB ■ QB).   D

Finally we note this generalization of (A.8):

Lemma A.2. Given A x, ..., An £ 6, (%),

(A.14) «A^ll,^ niNir

Proof. We first prove (A.14) in the special case where each A¡ is a rank one

operator P, = (/, -)&with ||/|| = ||g,|| = 1.

Letting/ = /, A • • • A/„ and g = gx A • • • A g„, we have P = A,P, =

(/V)S, P* = (*,-)/, \P\2 = IUH2(/,-)/ and \P\ = 11/11 • \\g\\Pf, where Pf is
the orthogonal projection onto {/}. Hence,

||A^4=Tr|P| = ||/||.||g||<-i-,
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where in the last inequality we have used (A.2) and Hadamard's determinant

inequality [5]. But each A, has a canonical representation A, = 27a/AP1w,

with P,u"> a rank one operator of the above type, a^ > 0, and \\A,\\X = 2>fl//').

Therefore by the triangle inequality,

I A^|, <   2   oJW ... a^\\P^ A • • • A Wl

<±2aV...aP = ±TL\\A,\\v   D
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