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Abstract. It is shown that if/is an entire function of infinite order, which

is real on the real axis and has, along with /', only real zeros, then /" has

nonreal zeros (in fact, infinitely many). The finite order case was treated by

the authors in a preceding paper. The combined results show that the only

real entire functions/for which/,/', and/" have only real zeros are those in

the Laguerre-Pólya class, i.e.

f(z) = zmexp{ -az1 + bz + c} II (l - — W*

a > 0,b,c and the zn real, and 2z~2 < oo. This gives a strong affirmative

version of an old conjecture of Pólya.

In our previous paper [1], we showed that if /is an entire function of finite

order which is real on the real axis and has the property that/,/', and/" have

only real zeros, then/is in the Laguerre-Pólya class, i.e./has the form

f(z) = zmexp{-az2 + bz + c}T[(l - — \e''*-
n  V zn I

with a > 0, b, c and each z„ real, and Sz~2 < oo. In this sequel we eliminate

the condition of finite order, and we prove what we termed the "Hypothetical

Theorem" in [1], thereby fully affirming an old conjecture of Pólya for real

entire functions. Background to this problem and a related problem of

Wiman was given by us in [1]. We establish the

Theorem. Let f be a real entire function of infinite order with only real zeros.

Iff has only real zeros, then f" has an infinite number of nonreal zeros.

We shall confine ourselves to functions of infinite order satisfying

0-1) log log M (/•,/)= O(rlogr)

since, as we pointed out in [1], Levin and Ostrovskiï [4] have obtained this

theorem for real entire functions for which (1.1) does not hold. (Actually,

Levin's and Ostrovskiï's result [4, Theorem 2] does not require that the zeros

of /' be real. Without this assumption on the zeros of /', it is probable that

our Theorem is still true. We also remark that for entire functions of infinite
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order the assumption of reality for / is necessary, as the example f(z) =

exp(t?'r) indicates. This observation is due to A. Edrei.)

We shall assume, without loss of generality, that /(0) i=- 0, /'(0) ^ 0. We

denote by {an) the sequence of distinct zeros of /and we enumerate them as

follows:

. . . < ak_, < ak < ak+, < . . .

(1.2)
(-oo<a<A<u< +00, A finite).

By Rolle's Theorem, /' has at least one zero in each interval (ak, ak+x);

choose exactly one and denote it by bk so that we have (reindexing if

necessary)

(1.3) ak< bk< ak+x   for all k with b - 1 < 0 < ax.

As in [1], we set

(1.4)     ^(z) =

z~ bo   TT   1 - z/bk
-   11   -¡-;;— if to = +00,
z ~ ao k*0 l - z/°k

z~bo n   * ~z/bk    -f   ^ j

and note, as in [1], that \j/ is meromorphic and maps the upper half-plane into

the upper half-plane. This follows from the interlacing property (1.3) (cf. [3,

pp. 308-309]).
(If /has no zeros we set \p(z) = 1, and we set \p(z) = (z — a0)~x if /has

only one zero.)

We have, therefore,

(1.5) CT//X«) = turn
with <j> real entire, and having only real zeros. A similar discussion applied to

/' which is also real and, by hypothesis, has only real zeros gives

(1.6) (f"/f')(z) = <bx(z)Uz)

with i/<, of the same form as if and obtained from the zeros of /' and /" as \f/

was obtained from the zeros of /and/'.

We proceed to show that <i>, must have infinitely many zeros, at most two

of which can be real. This latter statement as well as the statements of all the

lemmas to follow are predicated on the assumption that / satisfies the

hypothesis of the Theorem together with the growth condition (1.1). Coupled

with the result of Levin and Ostrovskii mentioned above, a proof of this

assertion about the zeros of <bx establishes the Theorem.

We first prove

Lemma 1. The functions <b and <f>, belong to the Laguerre-Pólya class and are

of order, at most, one.
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Proof. We first prove our assertion for <j>.

Since \p maps the upper half-plane into the upper half-plane (and, hence,

the lower half-plane into the lower half-plane), \p satisfies the inequalities of

Carathéodory [3, p. 18].

(1.7) c,i^<|*(«»)|<C2^        (0*0,*),

where C, and C2 axe positive constants (depending on \p). From (1.7) we see

that

(1.8) mi[\, i ) = ¿ f^log+ftire*)] d0= 0(log r).

Applying standard estimates from the Nevanlinna theory, it follows readily

from (1.5), (1.8), and (1.1), that

(1.9) m(r, <#>) < m(r,f'/f) + m(r, 1/» = O(rlogr),

where m, as in (1.7), is the usual Nevanlinna proximity functional. Since <p is

real entire with only real zeros and, in view of (1.9), at most of order one, <f> is

in the Laguerre-Pólya class.

It is sufficient now to observe that since / satisfies the growth property (1.1)

so does /'. Then, repeating the above proof step by step while replacing / by

/'» /' by /", <#> by <bx, and \b by «//„ we conclude that <p, is also in the

Laguerre-Pólya class and of order not exceeding one.

We require Lemma 1 for the proof of

Lemma 2. Iftphas an infinite number of zeros, so does <bx.

Proof. Suppose <¡>x has only a finite number of zeros. Since the order of <bx

does not exceed one by Lemma 1,

(1.10) <bx(z) = e^Px(z)

where a, is a real constant and F, is a polynomial.

By (1.7) applied to \px,

|(/7/')('»| =M<»I h ('»I =1^. ('»I |*i ('»I
(l.ii)

= °{\y\N)    vM-» + °°)

for some integer N.

On the other hand, (1.5) implies that/'(z) = f(z)<b(z)4*(z) so that

(1 12) (/7/')(z) = (/7/)(2) + (<í//<í,)(2) + <*'/*)(*)

= <b(z)t(z) + (<?'/<b)(z) + W/^)(z),

and, therefore,
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(1.13) |/7/'('»|>|*('»||^('»|-
9'

9

4>'

Since cj> is in the Laguerre-Pólya class and has order < 1,

9(z) = e"g(z)

where a is a real constant and g is a canonical product of genus 0 or 1 with

an infinite number of real zeros. A well-known, and easily verified, growth

property of such a function is given by

(114) |*i»|-|s('»|* 0(|y|")

for any finite n.

In addition, it is also well known and readily verified that

(1.15) \(9'/9)(>y)\ = o(\y\)

and that

(1.16) ' IW7+XWI - 0(1).
From  (1-13)—(1.16)  we  have  an  immediate  contradiction  of  (1.11).

Consequently, <p, must have infinitely many zeros. We now prove

Lemma 3. <p, has an infinite number of zeros.

Proof. Our argument will exploit the Mittag-Leffler expansion of the

function if in (1.4). It is given by [3, pp. 310-311]

(UT) ♦w-v + '+s^^-s;).

where y > 0, 5 is real, each Ak > 0, and

(1.18) ?$<+0°-

In view of Lemma 2, we are done if <b has infinitely many zeros. We

assume, therefore, that

(1.19) <p(z) = e«P(z),

where a is a real constant and £ a polynomial.

First we show that/ of infinite order forces a 7e 0. Suppose a = 0. Then it

follows from (1.5)and (1.17) that

(1.20) L (z) = P(Z)HZ) = P(2)Jyz + 5 + 2^( -^ - j-k )},

with y, 5 and the Aks as above. Equating residues at z = ak, we get

(1.21) P(ak)=-mk/Ak<0,
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since Ak > 0 and mk denotes the multiplicity of the zero ak of/.

Let d be the degree of P. We choose M > 0 so that for all k,

(1.22) 0<-P(ak)<M\ak\d.

Then (1.18), (1.21), and (1.22) imply that

(1.23) i 2 -^ <2 -^- = 2 4 < +«>•
M  *   K|d+2     f a2F(a,)      f a|

Thus, if a = 0 in (1.19), the zeros of/ have a finite exponent of conver-

gence and/may be written in the form

(1.24) f(z) = m(z)ehM

where 77 is a canonical product of finite genus having only real zeros and A is

a real entire function. Then

(1.25) (f'/f)(z) = (it'M(z) + h'(z) = P(z)t(z),

so that h'(z) = P(z)^(z) - (<n'/m)(z) and

(1.26) m(r, A') < m(r, P) + m(r, uV) + m(r, it'/tr) + log!

Each of the first three terms on the right-hand side of (1.26) is O (log r); the

first since F is a polynomial, the second because i|/ satisfies (1.7), and the third

as a consequence of Nevanlinna's important lemma on the logarithmic deriva-

tive [5, pp. 56-63] applied to m which is of finite order.

It follows then that

(1.27) m(r,h')= O (log r),

which in turn implies that A' is a polynomial and, therefore, that A is a

polynomial.

Thus, if a = 0, we find that/is of finite order contradicting our hypothesis.

So we take a * 0 in (1.19) and we treat this case in two subcases:

Case 1. Suppose/has an infinite number of zeros:

Then, using (1.18) and a residue argument similar to that in (1.20) - (1.23),

we get

O-2«) 2 -^77<+00>
k   *<>*!

where, as before, d denotes the degree of P.

Since 07*0, the convergence of the series in (1.28) implies that either/has

a finite number of positive zeros or a finite number of negative zeros. Say the

former case holds. (The argument is similar in the latter situation.) Then

(1.28) implies that

(1.29) a < 0,

which together with (1.19) and (1.29) gives
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(1.30) (/'//)(') = e«P(zr)(z),       a<0.

The assumption that <b has only finitely many zeros together with the fact

that / has only finitely many positive zeros implies that /' also has only

finitely many positive zeros.

Now, suppose ¡px has only a finite number of zeros; then /" has only a

finite number of positive zeros since/' has this property. Moreover,

(1.31) 9x(z) = e**Px(z),

and a residue argument identical to the preceding one shows that a, < 0,

since / (and, therefore, /', by Rolle's Theorem) has an infinite number of

zeros.

By (1.16) and (1.31), we have, on the one hand,

(1.32) (f"/f')(z) = e^Px(z)Uz),

and, by (1.30),

(1 33)     (/7/')(z) = (/7/)(z) + i(/'//)7 (''//)}(*)

= e"P(zM(z) + a + (P'/P)(z) + (f/tf)(z),

with a < 0 and a, < 0. Letting z = x -» + oo in (1.32) and (1.33), we see that

(1.32) implies that (f"/f')(x)-*0 while (1.33) implies that (f"/f')(x)->a.
(That (\p'/\b)(x) -> 0, as z = x -> + oo, when co < + oo follows readily from

(1.4).) Since a ¥= 0, we again have a contradiction, and we conclude that <¡>x

has infinitely many zeros.

Case 2. f has finitely many zeros.

Suppose again that <p, has finitely many zeros. We still have (1.32) and

(1.33), but we cannot infer anything about the signs of a and a, from the

convergence of (1.28) and its analogue for/' when the number of zeros of/

and/' is finite. However, in this case, if, if'/if, and if, are rational functions;

hence, by letting z = x-»+ooor-oo (depending on the signs of a and ax),

we find once again that (1.32) and (1.33) are incompatible with a^O.

This completes the proof of the lemma.

Our final lemma is

Lemma 4. With at most two exceptions, the zeros o/tf, are nonreal.

Proof. We know from Lemma 1 that <f> is in the Laguerre-Pólya class.

Consequently, as is well known and simple to verify,

(1.34) (9'/9)'(x) < 0,

for x ^ ak, a zero of <#>.

The proof of Lemma 4 is now identical to the proof of Lemma 7 of [1],

except that (1.34) replaces inequality (3.16) of [1].

Proof of the Theorem. Combining Lemmas 3 and 4, we see that <p, has
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infinitely many nonreal zeros and, as a result, so does/".
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