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LATTICE-VALUED BOREL MEASURES. II
BY

SURJIT SINGH KHURANA

Abstract. Let T be a completely regular Hausdorff space, Cb(T) the set of

all bounded real-valued continuous functions on T, E a boundedly mono-

tone complete ordered vector space, and <p:Cb(T)-* E a positive linear

map. It is proved that under certain conditions there exist o-additive,

T-smooth or tight £-valued measures on T which represent <p.

Let F be a completely regular Hausdorff space, Cb(T) the vector-lattice of

all bounded, real-valued functions on T. Let F be a boundedly complete

partially ordered vector space and cp:C6(F)-» E a positive linear map, i.e.,

/ G Cb(T),f > 0 implies q>(f) > 0. In case Fis compact, it is known ([2], [5])

that a quasi-regular Borel measure u on T which represents cp, i.e., cp(/) =

//a"u, V/ G C(T), all continuous real-valued functions on T (see [4], [5] for

details). The more general case of a Hausdorff completely regular space is the

aim of study in this paper.

For a topological space Y let $ (Y) be the o-algebra of all Borel subsets of

Y and ^(Y) the a-algebra of all Baire subsets of Y (that is, the smallest

a-algebra which makes each bounded continuous function on Y measurable).

Let B(Y) (B0(Y)) be the space of all bounded Borel (Baire) measurable

functions on Y. For basic facts about vector lattices we refer to [1] (see also

[2], [4]-[9]). We shall make use of the result proved in [2], that if a boundedly

a-complete vector lattice E contains a vector subspace F which is monotone

order o-closed and if F contains a vector sublattice G of F, then F contains

the order a-closure of G. If 5 is a Stonian (a-Stonian) compact Hausdorff

space we define a mapping \b:B(S)-* C(S) (x}>x:B0(S)^> C(S)), \p(f) = f

CM/) = /) except on a meagre subset of S. It is easy to verify that \b and ip,

are positive order a-continuous linear maps and for any increasing net

{/«} C C(S), with sup/a = / G B(S), ib(f) = sup iK/a), sup being taken in

the boundedly complete vector lattice C(S) [2] (these maps are called

Loomis-Sikorski maps [5]).

Throughout the paper any F-valued measure p on any a-algebra is required
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to be nonnegative and a-additive with respect to the order of E, i.e., whenever

{F„}, 1 < n < oo, is a monotonie sequence in the a-algebra then fi(U ™»iPn)

■» \J^xp(Fn). Integration with respect to these measures is taken in the

sense of [4], [5]. Throughout this paper ç>: Cb(T) -» E is assumed to be a given

positive linear map, T being a Hausdorff completely regular space, and E a

boundedly monotone complete vector lattice assumed to be over the field of

real numbers. Denoting by X the Stone-Cech compactification of T, we get a

positive linear map <p:C(X)-* E, ç(/) = <p(f\T), which is represented by a

quasi-regular Borel measure p on X, by the

Proposition 1 (Wright [4], [5]). Given a positive linear map <p: Cb(T) -» E,

there exists a unique quasi-regular E-valued Borel measure ponX such that

?(■/]*) =J>¿  forallfeC(X).

Proof. This theorem is proved in [5]. By quasi-regularity we mean that for

any open subset V of X, p(V) — sup{ p(C): C compact, C c V).

To get a measure on T we first note the following result.

Lemma 2. (i) %(T) = {E n T:E E %(X)}.

(ii) $(P) - {En T:E E <3>(X)}.

Proof is similar to Lemma C [6].

Corollary 3. There is a unique E-valued Baire measure p on X which

represents <p, i.e.,

<P(f) = ifäp,  forallfECb(T),

if and only ifp(A) = Ofor any A = %(X) with A n T = 0.

Proof. If p~(A) = 0,VA E %(X), with A n T = 0, then defining p(P) =

p(P0), where P0 n T = P for a P0 E ©0(^). for any ^ 6 %(T), it is easy to

see that p is well defined, is countably additive, and Jfdp = ¡f\xdp, V/ E

C(X). Conversely, if there is such a ju, then jfdp = ff\xdp, V/ E ¿(A-). This

means {/ E B0(X):Jfdp = {f\xdp}) contains C(X) and is monotone order

o-closed. Thus ffdp = f J\xdp, V/ E %(X), and so the result follows (cf. [6,
Theorem E]).

For each positive e in E, let

E[e] = {a E E: 3X > 0 such that -Xe < a < Xe}.

Thus E[e] is an order-unit space and can be equipped with the order-unit

norm. Since <p and p take their values in E (<b(l)) there is no loss of generality

in supposing E is an order-unit space with order unit e — <J>(1). Let E be

equipped with order-unit norm.
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Proposition 4. A sufficient condition for the existence of a unique E-valued

Baire measure p on T which represents <p is that there exists a weakly

o-distributive [6], boundedly o-complete vector lattice W such that E can be

embedded (without alternation of suprema) in W and, whenever {/„} is a

monotonie decreasing sequence in  Cb(T) with pointwise infimum 0, then

Ar.i«(/»)-o.

Proof. In this case, p:B0(X)-* E is regular [6]. The given condition gives

p(Z) = 0 for any zero set Z of X, Z n T = 0 (by zero-set we mean/-1{0},

for some/ G C(X)). By regularity p(P) = 0 for any F G %(X), P n T -

0. Corollary 3 now gives the result.

Proposition 5. A sufficient condition for the existence of a unique E-valued

Baire measure p on T which represents <p is that whenever {/„} is a monotone

decreasing sequence in Cb(T) which pointwise converges to 0 then ||cp(/n)|| -»0.

Proof. Proceeding as in [2] we see that <p(C(X)) is embedded, as an

ordered vector space, in C(S) for some Stonian compact Hausdorff space S,

preserving arbitrary suprema and infima and <p(l) being the constant function

1 in C(S) (this can also be done by taking MacNeille-Dedekind completion

of F [4], [9]). This gives us a positive linear map <p: Cb(T) -> C(S) c BQ(S),

with pointwise order in BQ(S). Since B0(S) is trivially weakly a-distributive, it

follows from [8, Theorem 3.4] that cp extends to a linear, positive, monotone

order a-continuous map tp:B0(T) -» B0(S). Since (ipx ° cp)-,(F) is monotone

order a-closed and contains the lattice Cb(T), we get (\px » cp)-,(F) = B0(T).

Defining p =ipx ° cp|iBo(r) we get the desired Baire measure. The uniqueness is

easy to verify.

Remark. It is enough to assume in Proposition 4 and 5 that F is boundedly

monotone order a-complete.

Definition, (a) An F-valued measure p:iB(r) -» E is said to be T-smooth

if, whenever { Ua) is an increasing net of open sets, p(\J Ua) = \/ap(Ua).

(h) An F-valued measure u: ® (T) -» F is said to be tight if for any open set

U, p(U) = V{ H(C): C compact, C c U).
We list some properties of these measures.

Proposition 6. (i) If p is T-smooth then for any decreasing net {ga} of

bounded, upper semicontinuous, real-valued functions with pointwise inf ga = g

G B(X0), fgdp = f\Jgadp; also for an open set V, in T, p(V) = \/{ 1>-(P)-P
C V,P closed in T).

(ii) If pis tight, then the following statements hold:
(a) p is T-smooth.

(b) If a net {/,}, in B(T), converges to f E B(T), uniformly on compact
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subsets of T, \\fa\\ < 1, Va, and E is a boundedly complete vector lattice, then

jfadp -> 0 (order convergence).

(c) If   Vx   and   V2   are   open   subsets   of   T,   then   p(Vx \ V2) =

\/{p(C):C compact, Cc Vx \ V2).

(d) For a bounded, nonnegative, lower semicontinuous function f on T,

¡fdp = \J{fgdp:0 < g < f, g simple and a combination of characteristic func-

tions of disjoint compact subsets ofT).

Proof, (i) This follows by using the inequality

±îp({xET:f(x)>i})

<ffdp < \ p(T) + I | p({x E T:f(x) > £ }),

valid for any n > 1 and for any measurable /, 0 < / < 1. The regularity

property follows from the fact that every point of T has a nbd. base

consisting of closed sets.

(ii) (a) is trivially obvious. To prove (b), we have, for any compact subset C

of T,

ffdp =ffdp+f    fdp < lim f fadp + p(T\C)
J Jc JT\C JC

= hrn^f fadp ~STJ«<lv) + M(r \ C)

<hmffadp + 2p(T \ C).

In a similar way we get ffdp >lrmffadp -2p(T\ C), from which the result

follows. Proof of (c) is straightforward. To prove (d), assume 0 < / < 1, fix a

positive integer n and let V¡ = {x E T:f(x) > i/n), 0 < i < n. V/s are open

and
"     • _ 1 n      .

¿> ~n~Xy,.l\r, < /< 2 "Xvnw,-

Using (c) and the fact

/[ 2 ¿Xk(_,vk, - 2 ^Xv^v, W = \ V-(Vo) - j¡ H(T)

we get the result.

Corollary 7. There exists an E-valued r-smooth measure p on T which

represents <p, // and only if p(P) - 0, for each Borel set P E $ (X), P n T =

0.
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Proof. If p(P) = 0 for any F G % (X), P n T = 0, we define p(Q) =
p(Q) for any f2 G © (F), 0 being in <& (X) such that Q'f)T= QAt is easily

verified that p is well defined and is countably additive. Also, since p is

T-smooth and p(P) = 0, VF G % (X), F n F = 0, it easily follows that p is

T-smooth. Further, ffdp = }f\xdp, V/ G C^). Conversely, if there is such a

u, then

ffdp=ff\xdp,\/fEC(X).

This means H = {f E B(X): ffdp = jf\xdp) is a monotone order a-closed

subspace of B(X) and contains all bounded upper semicontinuous on X

(using Proposition 6). Since the subspace, of B(X), generated by upper

semicontinuous functions on X is a vector sublattice of B(X) (simple verifi-

cation) we have H = B(X) and so the result follows (cf. Corollary 3).

Proposition 8. A sufficient condition for the existence of a unique T-smooth

E-valued Borel measure pon T which represents cp is that

(i) whenever {/,} is a decreasing net in Cb(T) with inffa = 0 (pointwise

order) than /\<p(fa) = 0, and

(ii) F is embedded, as an ordered vector space, in a weakly (o, oo)-distributive

vector lattice [7], preserving arbitrary suprema and infima.

Proof. Idea of proof is same as Proposition 4. The measure ¡¿:^>(X)-* E

is regular in this case. Proceeding as in Proposition 4 and using Corollary 7,

we get the result.

Proposition 9. A sufficient condition for the existence of a unique T-smooth

E-valued Borel measure p on T which represents cp is that whenever {/,} is a

decreasing net in Cb(T) with inffa = 0 (pointwise order), then \\<p(fa)\\ -»0.

Proof. As in Proposition 5, <t>(C(X)) can be considered embedded, as an

ordered vector space, in C(S) for a Stonian compact Hausdorff space S,

preserving arbitrary suprema and infima. This gives us a positive linear map

<p:Cb(T) -*C(S) c BX(S), BX(S) being all bounded real-valued functions on

5 with pointwise order. Since BX(S) is boundedly complete and weakly (a,

oo)-distributive, using Proposition 8, we get a T-smooth F,(5)-valued measure

Pq on T representing cp. Now H = {f G B(T): ffdpo E B(S)) is a mono-

tone order a-closed subspace on T and so H = B(T) (same argument as in

Corollary 7). The required measure is u =$ ° u0|3(r). To prove it is F-valued

let Hx — {/ G B(T): ffdp E E). Then Hx is a monotonie order a-closed

subspace of B(T) and contains upper semicontinuous bounded functions on

T. Arguing as in Corollary 7, we prove Hx - B(T). This proves p is

F-valued. Uniqueness is easily verified.
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Proposition 10. A necessary and sufficient condition for q> being represent-

aba by a unique tight Borel measure pon T is that <p(l) = p(X) ■ V{ ß(C):

C compact, C C T). If E is a boundedly complete vector lattice then this will

happen if and only if for any uniformly bounded net {/,} c Cb(T) such that

/, -» 0 uniformly on compact subsets of Xq, <p(fa) -» 0 in E(order convergence).

Proof. First suppose that the condition is satisfied. Let B be any Borel

subset of X disjoint from T and let C be any compact subset of T. Then

p(X) > ¡i(B U C) = p(B) + p(C). Thus p(B) = 0 and so by Corollary 7

there exists a well-defined T-smooth /¿-valued Borel measure p on T with

p(B) = p(B n- T), VP E <&(X). In particular, p(C) = p(C) for any com-

pact C c T. If P is a closed subset of X, then for any compact C c T, we

have

p(p \ p n c) = p(P \ c) < p(T\ c) < p(x \C) = ¡i(X) - p(C),

and so p(P) = V{ p(P n C):C compact in T). Now for any open set U, in

T, p(U) = \y{p(P):P cU, P closed in X) (Proposition 6). Hence p is

tight. Converse and. uniqueness are easy to verify. Let E be a boundedly

complete vector lattice and suppose that <p satisfies the hypothesis. We define

a partial order on 7 = {(C, a):C a compact subset of T and a a finite subset

of T\C), (C2,6*2) > (C,, a,) if C2 D C, and a2D ax\ C2. I becomes a

directed set. Define, V(C, a) E 7,/Ca E C(A"), 0 < /Ca < 1,

f     . Í0,    on a,
Jc-a     11,    onC.

Evidently /c>a|r-> 1 uniformly on compact subsets of T and so p(fc,a)^*

p(l) (order convergence) in E. For a (C0, a0) E I, inf{p(fCa):(C, a) >

(C0,a0)} < inf{jï(/Co)a):(C0, a) > (CQ, a0)) = p(CJ and so qp(i) = p(l) =

\/{p(C): C compact, C c P}. The converse is straightforward.

Remark. The second characterization of Proposition 10 is the definition of

the tight functional given in [3].

Using similar methods we have the following sufficient condition for the

measure extension to hold in any boundedly a-complete vector lattice.

Proposition 11. Let Sí be an algebra of subsets of a set Y, 21" be the

o-algebra generated by 21, and E a boundedly monotone a-complete partially

ordered vector space. Let qM-± E be a positive, finitely additive set function

such that whenever {A„) is a monotone decreasing sequence in 21 with fl f-\An

= 0, then \\q(A,ù\\ -»0. Then there exists a countably additive E-valued

measure q" onW which extends q.

Proof. As in Proposition 5, we can consider ç(2I) c C(S) c B0(S), for

some Stonian compact Hausdorff space S. With pointwise order on B0(S), it

is weakly o-distributive and so we have a countably additive measure /x:2I° -»
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BQ(S) [6]. The desired measure is a° = i//, ° p. It is easy to verify that q" is

F-valued.

I am very grateful to the referee for making many useful suggestions which

simplified some proofs.
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