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SPECTRAL PROPERTIES OF TENSOR PRODUCTS
OF LINEAR OPERATORS. 1
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TAKASHI ICHINOSE

ABSTRACT. The aim of the present paper is to obtain, for tensor products of
linear operators, their essential spectra in the sense of F. E. Browder, F
Wolf and M. Schechter and explicit formulae of their nullity, deficiency and
index. The theory appliesto A ® I + I ® Band 4 ® B.

Introduction. Let 4 and B be densely defined closed linear operators in
complex Banach spaces X and Y respectively with domains D[A4] and D[B]
and with nonempty resolvent sets p(4) and p(B). Associated with each
polynomial of degrees m in § and n in 7

0.1) P ) = X cun*
Jjk
is a polynomial operator

©.2) P{A®LI®B) = 2 A’ ® BE

in the tensor product X ®a Y, the completion of X ® Y with respect to a
quasi-uniform reasonable norm a. In particular, the operators A @ I + I ®
B and 4 ® B correspond respectively to the polynomials £ + 5 and &). The
symbol I stands for the identity operators in both X and Y. The domain of
(0.2), which is by definition M ,,oD[4’]® D[B*], can be shown to
coincide with D[4 "] ® D[B"]. Assume (0.2) is closable in X ® Y and
denote its closure by P{4 ® I, I ® B).

The main concern of the present paper is with the problem of what spectral
contributions A4 and B make to P{4 ® I, I ® B). For a certain class of
polynomials P (£, 1), the spectrum of P {4 ® I, I ® B} has been determined
in Ichinose [11] and [12] (cf. Reed and Simon [20]):

o(P{4®11® B}) = P(s(4), o(B)),
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where the spectrum is denoted by a. The present paper gives exact represen-
tions of the essential spectra of P{A @ I, 1 ® B} in terms of the parts of the
spectra of A and B. By the essential spectra are meant those in the sense of F.
E. Browder [3], F. Wolf [26] and M. Schechter [22]; they are closed subsets in
the complex plane C and denoted respectively by o,,, o, and o,,. As
by-products, their complementary sets, i.e. the set of all isolated, finite-dimen-
sional eigenvalues and the intersection of the Browder essential spectrum and
the Fredholm domain, are also represented. Further, formulae expressing the
nullity, deficiency and index for {4 ® I, I @ B} in terms of the quantities
concerning 4 and B are derived. The class of admissible polynomials depends
on A and B and therefore on their spectra.

The results may be of use as basic principles in the spectral theory of
many-body Schrodinger operators (e.g. Balslev and Combes [1] and B. Simon
[23)).

In §1 there are given some preliminary results on linear operators and
tensor products which play underlying roles in the next sections.

§2 is devoted to the study of some useful properties of the admissible
polynomials, the class of which is denoted by ¥,(4, B) and defined as
follows.

A polynomial P (¢, n) is said to belong to 9,(4, B) if it satisfies that
P(0(A), 6(B)) # C when both 6(4) and ¢(B) are nonempty and that for
every k & P(o(A4), o(B)) with dist(k, P(0(A4), 6(B))) > 0 (for every k € C
when either 6(A4) or o(B) is empty) there exist nonempty open sets U and V
with CU C p(4) and CV C p(B) having the following properties:

(i) for each sufficiently large » > 0, the restrictions of the boundaries U
and 9V to the closed disc K, = {{; |¢| < r} consist of a finite number of
rectifiable Jordan arcs and have a length O (r) as r — o0;

(ii) dist(x, P(U, V)) > 0;

(iii) ||&&I — A)7") is uniformly bounded on CU and ||n(nf — B)7!|| is
uniformly bounded on CV;;

(iv) for some 7 > 0, |P(£ n)|(|¢] + |n])™" is bounded away from zero on
U X V for sufficiently large |¢| + |n].

Note that if both 4 and B are bounded every polynomial belongs to
?,(4, B). §3 contains the main results. A full use of the properties of the
polynomials in ?,(4, B) studied in §2 proves the theorems on the Browder
and Wolf essential spectra of P{4 ® 1,1 ® B} thatfor P € 9,(4, B)

6u(P {4 ® L1 ® B)) = P(0,(4), o(B)) U P(o(4), 0(B));
o(P (A ® 1,1 ® B)) = P(0,,(4), a(B)) U P(o(4), 0,0(B)).

On the proof of the inclusion C it works that P (£, ) belongs to ¥,(4, B)
which implies that | P (£, )| becomes large on o(4) X o(B) with [¢] + |5] so
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that it prevents “cancellations” at infinity. The other inclusion O, however, is
valid in fact for every polynomial P (£, n). A further elaboration enables one
to derive formulae of the nullity, deficiency and index for P{4 @ I, 1 @ B}.
With this very index the Schechter essential spectrum of P{4 ® I, I ® B} is
also exactly determined. It will be also observed that, if, in addition, the
crossnorm « is faithful, then all the results are valid for another associated

polynomial operator
(03) P[4®1,1®B]=3c, 4’ ®, B*
Jjk

in X é),, Y, where the 4/ ® , B* are the closures of the 4/ ® B* since they
are closable (see [12]).

§4 gives a concise summary of the main results, in particular, in two special
cases for the polynomials { + # and &, which may be of importance in
applications. The polynomial £ + 1 belongs to &,(4, B) if the spectra of 4
and B are included respectively in the sectors

S()={¢€C;largt <0,}) and S(fz) = {n€C;largn| < 0z}
with0 < 8, + 03 < 7 and if

|6€T — A)7'| < My(arg ), & S(8,)
[n(nl = B)™'|| < My (argn), & S(9),

where M(0) is a constant depending only on T and 8. The polynomial &,
belongs to @, (4, B) if it does not occur that one of the extended spectra of 4
and B contains 0 while the other contains oo. .

An exact representation of the essential spectrum of P{4 ® I, 1 ® B} in
the sense of T. Kato [15] will be given in a forthcoming paper.

For the basic notions and results on linear operators and tensor products
used here see T. Kato [15] and R. Schatten [21] (see also [5], [14], [24], [25]
and [7], [8)).

1. Preliminary results.

“L.1. Essential spectra of linear operators. Let Z be a complex Banach space
with Z its topological dual space. Let T be a closed linear operator with both
domain D[T] and range R[T]in Z. The identity operator in Z is denoted by
I. For T densely defined, tke adjoint of T is denoted by T’. We denote the
spectrum and resolvent set of T by o(T') and p(T), respectively.

The nullity of T, null T, is the dimension of the null space N[T] of T. The
deficiency of T, def T, is the dimension of Z/R[T). The index of T, ind T, is
defined as ind T = nul T — def T, if at least one of null T and def T is finite.
T is said to be semi-Fredholm if R[T] is closed and at least one of null T and
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def T is finite. In addition, if both nul T and def T are finite, T is said to be
Fredholm.

The semi-Fredholm (resp. Fredholm) domain of T, denoted by p,, (T) (resp.
Pew(T)), is by definition the set of all A in the complex plane C for which
T — A is semi-Fredholm (resp. Fredholm).

We shall use also the notions of the approximate nullity and approximate
deficiency of T, which are denoted by nul’T and def’'T, respectively. It is
known that nul'T (resp. def'T) coincides with nulT (resp. def T) if R[T] is
closed, and is infinite if R[T] is not closed [15, IV, §5, Theorem 5.10]. nul’T is
positive if and only if there is a sequence {z;}7%, C D[T] of unit vectors with
Tz, — 0 as / - oo, and nul’T is infinite if and only if this sequence {z,}72, of
unit vectors can be chosen to be noncompact ([15, IV, §5, Theorem 5.11] and
[26]). Here we say a sequence {2}, C Z is compact if every subsequence of
it contains a convergent subsequence. '

The approximate point spectrum of T, o,(T), is the set of all A in C such that
nul'(T — AI) > 0. The point spectrum of T, ¢,(T), is a subset of o,(T). Let
6.,.(T) (resp. o_(T)) be the set of all A in C such that nul'(T — AI) = o0
(resp. def' (T — AI) = o).

T. Kato [15], F. Wolf [26], F. E. Browder [3] and M. Schechter [22] have
defined the essential spectrum of T differently.

The Kato essential spectrum of T, o, (T), is the complementary set in C of
the semi-Fredholm domain p,,(T) for T. The Wolf essential spectrum of T,
0,,(T), is the complementary set in C of the Fredholm domain p,,(T) for T.
It is easily seen that o0, (T) =0, (T)No_(T) and o,,(T)=0,(T)U
o_(T). The Schechter essential spectrum of T, o,,,(T), is the union of ¢,,(T)
and the set of all A in o(7T) for which T — AI is Fredholm with ind(7 — AJ)
7 0. The Browder essential spectrum of T, o,,(T), is the set of all A in a(T)
such that at least one of the following conditions holds: (i) R[T — AI] is not
closed; (ii) A is a limit point of o(T); (iii) U, 5oN[(T — AI)"] is of infinite
dimension.

If A is an isolated point of o(T), by the projection associated with A is
meant the bounded linear operator P in Z defined by

P= (2m')"fc(§1 -T)7' &,

where C is a circle round A such that A is the only point of o(T’) contained in
C. If P is finite dimensional, i.e. of finite rank, A is an eigenvalue of T with
algebraic multiplicity t(T; A) = dim P, which is coincident with

dim U N[(T - M)"].
n>0

Such an eigenvalue will be referred to, throughout this paper, as “an isolated,
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finite-dimensional eigenvalue”. Then the set o(T)\ 0,,(T) is the set of all
isolated, finite-dimensional eigenvalues of T.

All the four essential spectra as above are closed subsets of the complex
plane C; they are empty if the Banach space Z is of finite dimension. They
coincide if T is selfadjoint.

Among these various parts of the spectrum and their boundaries there are
the following inclusion relations. The boundary of a set U in the complex
plane C is denoted by oU.

ProposiTION 1.1. (2)
M) 0u(T)E5 D0 (T) C 0an(T) C 04(T) C o(T).

1.2) 0.(T) U 0,(T) = 0,(T) C o(T).
®)

13) 80,5(T) C80,,(T) C80,,(T)E5ar (1)< 0, (T).

14) 30(T) = (6(T)\ 0,,(T)) Ud0,,(T) C0,(T).

ProoF. (1.1) and (1.2) are obvious. (1.3) will be shown with the aid of [14,
Theorem 6] or [15, IV, §5, Theorem 5.17); for T bounded with D[T] = Z, it
has been shown in D. Mili¢i¢ and K. Veseli¢ [17]. For (1.4) see e.g. [10].
Q.E.D.

Associated with each polynomial of degree m in §

m

(1.5 r&)=2a¥, a,#0,
Jj=0
is a linear operator
m
(1.6) p(T)=2 aT
Jj=0

in Z. If the resolvent set p(T) or, more generally, the Fredholm domain
P,(T) of T is not empty, then p(T) is closed with domain D[T™] (see e.g.
[22]). It follows by virtue of the closed graph theorem that the graph norm of
p(T) is equivalent to that of T and hence to the norm

.7 llz] + § |T%|, ze€D[T"].
Jj=1

In this case, it will be shown that p(T)’ = p(T") it T is densely defined.
The relationships between the various parts of the spectrum of T and those
of p(T) are given by the following '

ProPOSITION 1.2. Let T: D[T] C Z — Z be a densely defined closed linear
operator with nonempty resolvent set p(T). Then
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(@ o(p(T)) = p(o(T)); (b) o,(p(T)) = p(s,(T));

(©) o, (p(T)) =p(a(T)); (4 0.(p(T))=p(0.(T));
(€ o-(p(T) =p(o_(T)); () ou(p(T)) =p(0s(T));
@) 0(P(T)) = P(0a(T)); () 0u(p(T)) D p(ou(T));
(l) oem(p(T)) Cp(aem(T))'

REMARK. Proposition 1.2 is valid for T’ in place of T. Further, it will be
shown that Proposition 1.2 is true also for T with nonempty Fredholm
domain,

ProOF OF PrROPOSITION 1.2 AND COMMENT. The relations (a), (b) and (c) are
well known. The other relations have been shown in B. Gramsch and D. Lay
[6], for T bounded with D[T] = Z. In (h) and (i), equality does not in general
hold; they give also simple examples in which these inclusions are proper. For
general T, the relation (f) has been shown in R. D. Nussbaum [18] and (g) in
E. Balslev and T. W. Gamelin [2]. The relations (g) and (h) follow readily
from (d) and (e). The relations (d), (¢) and (i) will be shown with the aid of
[14, Lemma 341], [5, Theorem 2.1] and the following lemma.

LemMA 13. Let T: D[T)C Z — Z be a (not necessarily densely defined)
closed linear operator with nonempty resolvent set p(T). Let m be a positive
integer. If nul’(T — AI) > O there exists a sequence {e;}j>, C D[T™] of unit
vectors such that, for 0 < j < m— 1, TV(T — N)e;— 0 as | — co. In addi-
tion, if nul'(T — AI) = oo the sequence {e;}{2, can be chosen to be noncom-
pact.

PrOOF. Let {z}72, C D[T] be a sequence of unit vectors with (T — AI)z,
— 0 as /— oo. Then setting

—(m— _ —(m-1)
=T =) " Pzl (T = )™ " Py 1=12.,

for some large k fixed and p € p(T) fixed will give a desired sequence.
Further, if nul'(T — AI) = o0 and if {z;}¥., is noncompact, {¢}j.; is non-
compact. Q.E.D.

We shall need the following result, a more precise one than the relation (b)
in Proposition 1.2. It is a slight extension of [25, Theorem 5.9-D]}, and can be
shown by modifying the proof as in the proof of [26, Lemma 3.8].

ProrosITION 1.4. Let T: D[T)C Z— Z be a linear operator and let
p@ =all; (¢ — p)™ a+#0, be a polynomial in § with distinct zeros
Bos Mg+« o s . Then

N p(T)] = N[(Ty = u)™] ® - - - @ N[(T =~ n1)"]-
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1.2. Tensor products of Banach spaces. Let X and Y be Banach spaces with
X' and Y’ their topological dual spaces.

A norm a on the tensor product X ® Y is said to be reasonable if it is a
crossnorm on X ® Y whose dual norm o' is also a crossnorm on X’ ® Y.
X ®, Y denotes the completion of X ® Y with respect to a.

We shall introduce a slightly generalized notion of uniform crossnorms,
which is useful in the present work. L(Z) denotes the linear space of all
bounded linear operators T of the Banach space Z into itself.

A crossnorm a on X ® Y is said to be quasi-uniform with constant k on
XQYif

(T ® S)u) =|(T ® S)ul,< K|T| |IS] ]l

for every pair (7,S)€ L(X) X L(Y) and all u € X ® Y. A uniform
crossnorm is quasi-uniform with constant k = 1.

Note that if « is a quasi-uniform reasonable norm on X ® Y the dual norm
a’ satisfies

«((T"® §)w) = (T ® Sl < KIT'N SN 1wl

for every pair (7, S) € L(X) X L(Y)and allu' € X' ®@ Y'.

The smallest reasonable norm ¢ and the greatest one = are uniform. The
prehilbertian norm o on X ® Y with both X and Y Hilbert spaces, which is
the norm induced by the inner product (x; ® y,, x, ® y,) = (x}, X))V}, ¥2)»
is uniform.

A crossnorm a (a > €) on X ® Y is said to be faithful if the natural
continuous linear mapping j*: X ®a Yo X ®, Y is one-to-one.

In the following, let P € L(X) and Q € L(Y) be continuous projections.
Then PX ® QY is a normed linear subspace of X ®, Y equipped with the
norm a induced by the norm a of X ®, Y. We denote the closure of
PX®QYin X ®, Y by PX ®; QY.

We shall also use the notion of ®-norms [8], which are defined on X, ® Y,
for each pair of Banach spaces X, and Y,. For a a ®-norm, we denote the
norm of u as an element of X, @ Y, sometimes by a(u; X,, Yy).

ProrosITION 1.5. (2) If a is a quasi-uniform reasonable norm on X ® Y with
constant k, then o is a quasi- umform reasonable norm on PX ® QY with
constant k|| P|| || Q||. In this case, P ®, Q is a continuous projection of X ®, Y
into itself and the range R[P ® 0] of p ® Q is the closure of PX ® Q}’ in
X®,v:

R[P®,0]=(P®, Q)(X ®, Y) = PX ®; QY.

In addition, if a is faithful on X ® Y, so is @ on PX ® QY.
(b) If a is a ®-norm then a is equivalent to @ on PX @ QY.
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Proor. (a) First we show a is a reasonable norm on PX ® QY. « is
induced on PX ® QY by a and so is a crossnorm on it. To show that the
dual norm &’ of a is a crossnorm on (PX) X (QYY, let (x}, y}) € (PX) X
(QYY. It suffices to show

a'(x; @ y1) < lIxill il
since the reverse inequality is always valid. By the Hahn-Banach theorem
there exist x’ € X' andy’ € Y’ with
I=lxill, {xpx) =<{xpx1), % € PX,
and
1=y, yuyD={wr) 2 €QY.
Then

& (x} ® yy) = sup{[<uy, x] ® y1)|; u; € PX ® QY, &(uy) < 1}
= sup{|Cuy, X’ ® y)|; u; € PX ® QY, a(u;) < 1}
= sup{[<u, x’ @ yH;u € X ® Y, a(u) < 1},

which, by definition of the dual norm «’, equals
@ (x" ®y') = |IX| Iy’ =lxill In]l-
This proves that a is reasonable on PX ® QY.

Next, we show that a is quasi-uniform on PX ® QY. Let 4, € L(PX) and
B, € L(QY), and set A = A\P and B = B,Q. Then 4 € L(X) and B €
L(Y) with |l4]| < [|I4,]| |P]| and ||B]| < [|B,]| Q]I If u, € PX ® QY, so
that (4, ® B))u; € PX ® QY, we obtain

a((4,® B)y)) = a((4 ® B)u,) = a((4 ® B)u,)
< k||l |Blle(my) < K|[P| | Q]| 4]l 1Bsfla (1),

since a is quasi-uniform with constant k. Thus & is quasi-uniform with
constant k|| P|| | Q|-

Since a is quasi-unifgrm, P ® Q belongs to L(X ® Y) and (P ® 0)?
=P ® 0, that is, P ®,Q is a continuous projection of X ® Y into 1tself
and so R[P ® Q] is a closed subspace of X ®, Y. It is evident that
PX ® QY is mcluded dense in R[P ®, Q], so that the closure of PX @ QY
inX ® Y coincides with R[P ® 0l

The last assertion for a faithful is evident.

(b) First note the induced norm a is defined precisely by

a(u) = a((jp ®jp)u), u€PXQ® QY,

where jp (resp. jip) is the injection of PX (resp. QY) into X (resp. Y). We have
to show a(u) is equivalent to a(u; PX, QY).
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Foru € PX ® QY we have
a(u) = a((jp ®jo)u; X, Y) < lljpll lljglle(u; PX, QY) = a(u; PX, QY),
a(u; PX, QY) = a((P ® Q)(Jr ®jp)u; PX, QY)
<|IPIHIQlle((r ®Jg)u; X, Y) = ||P|| |Ql|&(x). QE.D.

Note that in Proposition 1.5, if P or Q is of finite rank then R[P é‘, Ql=
PX ® QY.

2. Polynomial operators. In this section we shall study the properties of the
polynomials in the class 9,(4, B) defined in the Introduction, which are
useful in the next section.

Throughout this section and the next, X and Y are complex Banach spaces
and a is a reasonable norm on X ® Y unless otherwise specified. Let A:
D[A]c X—> X and B: D[B]C Y— Y be densely defined closed linear
operators with nonempty resolvent sets p(4) and p(B). The identity operators
in both X and Y are denoted by the same 1.

It is assumed that both dim X and dim Y are positive and at least one of
them is infinite. Only polynomials (0.1) of degreesm > 1infandn > 1inqy
are considered. For convenience in treating the essential spectra we assume
the operator (0.2) associated with (0.1) is closable in X ®, Y with closure
P{A ® I,1 ® B}. This is the case, for instance, if a is faithful on X ® Y
[12, Theorem 1.1]. For general a it is open whether or not (0.2) is closable. In
fact, it is possible that the norm « is not faithful on X ® Y for some pairs of
Banach spaces X and Y, for there is a Banach space without the approxima-
tion property, according to P. Enflo [4].

To simplify the notation we often write
.1) P,=P{AQLI®B}-NQ,I, P=P,

For a polynomial P (£, n) and subsets g, a5 of 0(4), 6(B), respectively, we
understand P (o,, 05) = @ if either g, or o is empty, while otherwise it offers
no problem to define P (o, 05). For r > 0, K, denotes the closed disc {§;
I$] < r}.

It is easy to see that if P(£ ) is in 9,(4, B) the set P(a(4), o(B)) is
closed in C. The class 9 (4, B) introduced in [12] is included in ?,(4, B).

We shall use the following result on the spectrum of P{4 ® I, 1 ® B}. It
has been shown in [12] for P € 9 (4, B), but the same proof as there is valid
in the present case.

THEOREM 2.1. Let a be a quasi-uniform reasonable norm on X ® Y and let
P € 9,(A, B). Then

22) o(P{A®L1® B)) = P(a(4),o(B)).
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By this is meant that (2.2) holds valid if both 6(A) and (B) are nonempty, and
further that the spectrum of P{A ® I,1 ® B} is empty if and only if either
o(A) or o(B) is empty.

Now we observe some properties of the polynomials in ?,(4, B). P {4’ ®
I', I' ® B’} stands for the operator (0.2) with 4’, B’ and I’ in place of 4, B
and I, respectively; it is considered as an operator with domain D[(4")"] ®
D[(B)"]in(X ®, Y)Y aswellasin X' ®, Y".

When either X or Y is of finite dimension, all reasonable normson X ® Y
are equivalent, and hence quasi-uniform and faithful. We have X ® Y =
X ® Y, in which (0.2) is closable, and (X ®a Yy =X’ ®,,, Y=X'®Y.

PROPOSITION 2.2. Assume either X or Y, say Y, is of finite dimension. Let
P (¢, ) be a polynomial (0.1) in ?,(A, B). Then
(a) for each fixed v € ¢(B)

D[P(4,%)] = D[4"],  D[P(4,7)] = D[(4)"]:
(b) for every positive integer t
D[P{4®1,1®B}'|=D[4™] ® D[B"],
D[P{A'® I I'® B'}'] = D[(4")"] ® D[(B)"];
©QP{A®LI®B)y=P{A®I1® B},
P{AQLI®BY =P(A®LI®BY =P{4'®I',I'® B');
(d) for every v and every A there exists a constant C such that for all
uE€D[A™®Y
"[(P(A, ») = M) ® l]uua< c[lp{a®L1®BYY, + . ]
and for all W' € D[(A")"] ® Y’
e -ayer]w| <cllp(aerresy|, + 1] |

PROOF. (a) Let » € o(B). It is obvious if 3% _,c,,»* does not vanish. If it
vanishes we have only to show A is bounded; note it implies by closedness
D[A™] =X and D[(4)"] = X'. Let A & P(0(A), o(B)). Since P €
%,(A, B) there are nonempty open sets U O a(4) and V O o(B) such that
A& P(U, V) and &¢I — A)™! is uniformly bounded in CU. In view of [15,
I1I, §6, Theorem 6.13] it suffices to show U is bounded. To see it choose a
small § > 0 with {n; |n — »| < 8} C V such that 3% _c,.n* does not vanish
on the circumference |n — »| = 8. There is a large r, > 0 such that for each
fixed £ with |£| > r, the polynomial in n, =% _oc,un* — Aé ™™, has a zero in
the open disc |7 — »| < 8. If U is unbounded we can choose a large &, in U
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such that

S 5 S gt

Jj=0

n

2 Gttt = A >
k=0
on [n — »| = 8. Then by virtue of the theorem of Rouché, P (£, n) — A has at
least a zero in |7 — »| < &, a contradiction.

(b) We show only for P{4 ® I, I ® B}. For A bounded it is trivial. If 4 is
unbounded then by the proof of (a), % _,¢,.n* does not vanish on a(B), so
that, by Proposition 1.2, 3% _.c,.B* has an everywhere defined bounded
inverse in Y. Then the assertion can be shown by induction on t.

(c) B is bounded with D[B] = Y. Proving the first equality is equivalent to
proving the closedness of (0.2). For 4 bounded it is obvious. Therefore
assume A4 is unbounded. Let {#}{2, be in D[P{A ® I,I ® B}] = D[A™]
®Yand let yy >u, P(A®IL,1® B}y,—v in X ® Y in the norm a as
{ — 0. Then by continuity we obtain for p € p(4)

m

$ [t o [ § ) o
Jj=0

u has a representation u = 37_,x; ® y,, where both the sequences {x;};., C

X and {y,};., C Y are linearly independent. Since =% _c,,B* is one-to-one

as seen in the proof of (a), we see by (b) thatfor 1 < p < r

r m—1
A"A =) "+ S S gl - ),

i=1 j=0

[(4 = pI)™" @ I]o.

is in D[A™], where ¢; are certain constants. Hence {x;};., C D[4™] and
u € D[A™] ® Y. Thus (0.2) is closed.

To establish the second equality we have only to show the domain of
P{A®I,1® B} isincludedin D[(A4')"] ® Y'. Let u’ be in

D[P{A®LI®BY], w=3 x®y,
i=1

where both the sequences {x/}i=1C X" and {y/};., C Y’ are hnearly inde-
pendent. Since =} _ ¢, B* maps onto Y there exists a sequence {y,}/., C Y
with (2% 06,4 BY,, ;> = %pP,q=12,...,r Then for all x € D[4™]
and for 1 < p < r we have

(A™x, x)y + 2 2 (Afx,x>< .kB"yp,y,.’>

i=1 j=0
=(P{A®LI®B}(x®y,),u)
=(x®),, P{4®LI®B)u).
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Hence it is easy to see inductively that {x/};., C D[(4")"], whence ¥’ €
D[(4)"]® Y".

(d) We show only the first inequality. By (b) and (c), both 4™ ® I
and P{4 ® I, I ® B} are closed in the Banach space X ® Y equipped with
the norm a and have the same domain. It is easy to verify that there is a
constant C, such that forallu € D[4A"™]® Y

|P{4®L1I®BYu| < C|[4™® Iu|, +|ul,]-

Here recall that all reasonable norms on X ® Y are equivalent, because Y is
of finite dimension. Then by virtue of the closed graph theorem, the graph
norm of P {4 ® I, I ® B} is equivalent to that of 4°™ ® I. Since P,(¢, ») =
P v)— AN is of degree < m in § the graph norm of P\(4,») ® I is
majorized by that of 4™ ® I and hence by that of P{4 ® I, ® B}'.
Q.E.D.

ReMARK. From the proof it is seen that the assertions (a) and (b) in
Proposition 2.1 are valid for both X and Y of infinite dimension.

The proofs of the theorems in the next section will depend on examining
the properties of the parts of P in its suitable invariant subspaces.

Associated with each finite subset {a;}., of 6(4) \ 0,,(4) is the projection
Pin X:

= (2mi)" ng f @ — 4)™" dt.

Here C;, 1 < j < a, are disjoint circles round a; such that g; is the only point
of o(A) contained in C;. In the same way, associated with each finite subset
{B)omi of 6(B)\ ,,(B) is the projection Q in Y. P and Q are finite-dimen-
sional and commute with 4 and B, respectively, i.e. PA C AP, OB C BQ. By
Proposition 1.5,

X®,Y=R[P®, Q|®R[PE,(I-0)]
® R[(I- P) ®, 0] ® R[(I- P) &, (I - 0)],
where
R[P ®,0] = PX ® 07,
R[P®,(I- Q)] =PX®(I- Q)Y =PX®(I- 0)Y,
R[(I-P)®, 0] =(I - P)X ®; QY =(I - P)X ® QY,
R[(I-P) &, (1- Q)] = (I~ P)X &3 (I - Q)Y.

The projections P ® o,P ® I-0)I-P) ® Qand (I - P) ® 04
— Q) commute with P,\ Consequently P, is decomposed by these four

(2.3)
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subspaces of X éa Y in (2.3). Its parts in the respective subspaces in (2.3) are
denoted by Pyyy, Pyyp, Py, and Pyyy; for A = 0set Py = Py, js k = 1, 2.

The parts of 4 in PX, (I — P)X are denoted by 4,, A, and the parts of B
in QY, (I — Q)Y by B,, B,. Then A4, and B, are bounded on PX, QY,
respectively, with 6(4,) = {a,}I.;, 6(B)) = { B;}5-1» While 4, and B, are
closedin (I — P)X, (I — Q)Y, respectively, with spectra

o(d)) = o(A)\{a&}.,  o(By)=0(B)\{Bi}gur

The identity operators in PX, QY (resp. (I — P)X, (I — Q)Y) are denoted
by the same I, (resp. I,).

ProposiTiON 2.3. If P(§,n) is in F,(A, B) then it is also in F,(4;, By) for
S k=12

ProOF. Let P € ?,(4, B). Since 4, and B, are bounded every polynomial
belongs to ?,(4,, B,). The proofs of the other three cases are analogous and
so we show only the casej = k = 2,

We may assume both 0(4,) and o(B,) nonempty. Let A &€ P(0(4,), 6(B,))
with dist(A, P(6(4,), 6(B,))) > 0. We may assume A is in P(a(4), o(B));
otherwise the assertion is obvious. We must find nonempty open sets U, and
V ,with CU, C p(4, and CV, C p(B,) having the properties with (I — P)X,
(I - Q)Y, A,, B,, U,, V, and A in place of X, Y, 4, B, U, V and «, respec-
tively, in definition of ?,(4, B).

Since P € ?,(4, B) we can choose, for some fixed k & P(a(4), 6(B)),
nonempty open sets U, ¥ with CU C p(4), CV C p(B) having the properties
mentioned in definition of %,(4, B) and a large r > 0 such that both
6(A4y) N K, and o(B,) N K, are nonempty and such that

24) PE&n)| >N +1 onU+V, [f+nl>r
Then if U N CK, (resp. ¥V N CK)) is nonempty,
distA, P(U N CK,, V)) > 1 (resp.dist(\, P(U, ¥V N CK,)) > 1).

Since 0(4,) N K, and o(B,) N K, are compact, there exist nonempty,
bounded open sets U, and ¥, with boundaries consisting of a finite number
of rectifiable Jordan curves such that

c(A)Nn K. cUcU oB)NK cCcV,cCV,
dist(A, P(U,, V,)) > 0.
Set U,=(UNCK)u(U;nK), V,=(VnCK)u (V,n K). It is clear
that U, and V, are the desired open sets. Q.E.D.

The closability of P{4 ® I, I ® B} implies the closability of P{4;®
I, I ® By} forj, k = 1, 2. As a consequence of Proposition 2.3 we see that if
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P € 9,(4, B) then Theorem 2.1 is valid with 4, and B,, j, k = 1, 2, in place
of A and B, respectively.

ProPosITION 24. If P € 9,(A, B) then

2.5) P, =P{4,®1,1,®B,)},
2.6) P,=P{4,®L,1,0B,),
@.n P, = P{A2®Il, I,® B, },
(28) Py,=P{4,®L,1LQ®B,).

PROOF. (2.5) is obvious. If A & P(0(A4), 6(B)), by Theorem 2.1 P, has an
everywhere defined bounded inverse. Then the same is true of the parts P,;,,
P,,, and P,,,. They are extensions of the operators on the right of (2.6)~(2.8).
Therefore it suffices to show that the operators on the right of (2.6)—(2.8) are
closed and that all their resolvent sets contain A. However, it is readily seen
from Proposition 2.2 and Theorem 2.1 with Proposition 2.3 and from the fact
that the operator on the right of (2.8) is the closure of P {4, ® I,, I, ® B,}.
Q.E.D.

Throughout this paper, each of the parts of P,, that is, Py, Py;5, Py, and
Py, will be referred to as the part of P, relative to the sets {a;}.; and

{B)hmr-

Finally we introduce several subsets of 6(4) X o(B):
(29 AyA) = {(¢m) € o(4) X a(B); P(& 1) = A},
(2.10) ,A) = {(& ) € (o(A) \ 0.5(4)) X (6(B) \ 6,(B)); P(£, 1) =7},
QI ARA) = {(¢ ) € (a(4)\ 0,,(d4)) X (6(B)\ 0,,,(B)); P(§,m) = A},
(212)8,(N) = {(6 ) € (6(4)\ 0,,,(4)) X (6(B)\ 0,4(B)); P(§, 1) = A},
(213)8,(Ay = {(6 ) € (6(A)\ 6,5(4)) X (0,5(B) \ 0,,,(B)); P(§:m) =7},
2148, (A) = {(¢ 1) € (0,5(4) \ 0,,,(4)) X (a(B)\ 0,5(B)); P(§m) = A}.

3. Essential spectra for tensor products of linear operators. For the closed
linear operator P {A®I1,I ® B}in X ®, Y, we shall first give exact repre-
sentations of its Browder and Wolf essentxal spectra in terms of the parts of
the spectra of 4 and B, next derive formulae for its nullity, deficiency and
index, and finally determine its Schechter essential spectrum with this very
index.

We follow the same conventions as in §2.

3.1. The Browder essential spectrum.

THEOREM 3.1. Let a be a quasi-uniform reasonable norm on X ® Y and let
P € P,(A, B). Then
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(3.1) 0,(F(4®L1® B)) = P(0,(d), 0(B)) U P(o(4), 0,,(B)).
By this is meant that (3.1) holds valid if both a,,(A) and o(B) are nonempty or

if both 0(A) and o,,(B) are nonempty, and further that o ,,(P (A®LIR B})
is empty if and only if either 6(A) = @ or 6(B) = @ or o,,(4) = 0,,(B) =

As will be seen from the proof of Theorem 3.1, the inclusion
(32 0,(F {4 ® L,1® B))> P(c,(4), 6(B)) U P(s(4), 0,(B))

holds valid in fact for every polynomial P (£, 1). To prove (3.2) we need
Lemma 3.2 below. To prove the reverse inclusion we simply modify the
method of R. D. Nussbaum [18] to fit the setting of tensor products.

LEMMA 3.2. Let P (£, 1) be a polynomial (0.1).

(@) If both nul'(A — plI) and nul'(B — »I) are positive and if at least one of
them is infinite, then nul'P, is infinite with A = P (p, ).

(b) If both def'(4 — plI) and def'(B — vI) are positive and if at least one of
them is infinite, then def'P, is infinite with A = P (p, v).

(c) Let P € 9,(4, B). If both nul'(P(A4, v) — N and nul'(B — vI) are
positive and if at least one of them is infinite, then nul'P, is infinite.

(d) Let P € 9,(A4, B). If both def'(P(A,v) — AI) and def'(B — vI) are
positive and if at least one of them is infinite, then def'P, is infinite.

Proor. First note
B3  PEm)-P(py)= 2 = 1) (=9 by =0,
and
PEm)—A=(PEn) - P(Er) +(PEY) -2
-3 3 @8’ (n = v)“+ (P(&v) = A).

k=1 j=0

(3.4)

(a) By the hypothesis with Lemma 1.3 there exist sequences of unit vectors,
{x}i21 Cc D[4™] and {y,}%, C D[B"], such that A/(4 — pI)x,—>0 as
/> o0for0< j<m-—1and B¥(B - »l)y,>0as!/ >0 for0< k < n—
1. Since either nul'(4 — pI) or nul'(B — »I) is infinite, by Lemma 1.3 either
{x}i21 or {y}7%, can be chosen to be noncompact. Then {x; @ y}ins is
noncompact in X ® Y (e.g. [9, Theorem l]) and hence in X ® Y because
e < a. It is a sequence of unit vectors in X ®, Y, since « is reasonable. By
(3.3) we obtain with A = P(p, »)

P\(x®y) =[P{A®LI®B} - P(p,1IQI]|(x,®y)

= 2 - % @B -y,
J+k>
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which approaches 0 in X é‘, Y as / - o0. Hence nul'P, = 0.

(b) In this case, nul'(4’ — pI’) and nul’'(B’ — »I’) are positive and one of
them is infinite. By the same argument as in (a) the approximate nullity of the
closed linear operator
(3.5) P{A®II'®B'} — P(p,0)I' @, I'
in X' é),, Y’ is infinite. Since P, with A = P(p, ») is an extension of (3.5),
both as closed operators in the dual space (X ®, Y)', we obtain def'P, =
nul'P, = co withA = P(p, »).

(c) By the hypothesis with Lemma 1.3 we can choose a sequence { y,}5%, C
D[B"] of unit vectors with B¥(B — »I)y,»0as /> for0< k < n-— 1.
Note that by Proposition 2.2(a) with its Remark D[P (4, »)] = D[A™] for
v € 6(B) and choose a sequence {x;}7%, C D[4™] of unit vectors with
(P(A,v) = AM)x; -0 as I — o0. Since the graph norm of P (4, ») is equiv-
alent to the norm (1.7) with T = A4, each sequence {4/x,}{%,, 0 < j < m, is
bounded. By hypothesis either {x;}7%, or {y,}j%, can be chosen to be
noncompact. Then an argument analogous to (a) using (3.4) will yield the
desired result.

(d) The hypothesis implies that both

nul'(P(A4’,») —AI') and nul' (B’ — »I')
are positive and one of them is infinite. The same argument as in (c) and (b)
will yield the result. Q.E.D.

PrOOF OF THEOREM 3.1. (a) PROOF OF THE INCLUSION (3.2). Because of
symmetry it suffices to show P(o,,(4), 6(B)) C o,,(P), assuming o,,(4) and
o(B) are nonempty.

Let A € P(o,,(A), 6(B)). By Theorem 2.1, A belongs to o(P). We want to
show A € o,,(P). Assume not, so that A is an isolated, finite-dimensional
eigenvalue of P. So A is an isolated point of o(P) and hence P (o,,(A4), 6(B)).
Both g,,(4) and o(B) are nonempty, closed proper subsets of C. It is then
easy to see that there are boundary points £, of 0,,(4) and 5, of (B) with
P (&, mp) = A. By Proposition 1.1, §, € o,,(4) and 1y € o,(B), so that

nul'(4 —£I) =c and nul'(B - 5,)>0.

Then by Lemma 3.2(a) nul’P) = 0. Since the range R[P,] of P, is closed it
follows that nul P, = oo, that is, A is an infinite-dimensional eigenvalue of P,
contrary to assumption. This proves A € o,,(P).

(b) PROOF OF THE REVERSE INCLUSION. Let A € o,,(P). Since P € 9,(4, B)
there are nonempty open sets U D a(4), ¥ D o(B) and a large r > 0 such
that (2.4) holds. For each small ¢ > 0, set

U, = {&; dist(§, 0,,(4) N K,) < ¢} U (U N CK,)
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and
V, = {$ dist($, 0,,(B) N K,) < e} U (V¥ NCK,),

if both 0,,(4) N K, and 6,,(B) N K, are nonempty, while if 6,,(4) N K, = @
(resp. 0,,(B)N K, = @), set U, = U NCK, (resp. V, =V NCK). If ¢ is
sufficiently small U, is included in U and V, in V.

To prove that A belongs to the right member of (3.1) it suffices to show
that, for every sufficiently small ¢ > 0, A belongs to P(U, a¢(B)) U
P(0(A4), V,). In fact, suppose this is established. For each sufficiently large
integer / choose (§;, n;) with P(§, m) = Ain

{(Ul/l N Kr) X (O(B) n Kr)} U {(O(A) n Kr) X (Vl/l N Kr)}‘

Since {(§, n,)};%, is bounded, we may assume, by taking subsequences, that it
is convergent to (£, ny) as ! — co. Obviously (§;, 1) belongs to (o,,(4) X
o(B)) U (a(A4) X 0,,(B)) and P(§y, m) = A, whence A belongs to the right
member of (3.1).

If 6(4) C U, or o(B) C V, then the desired assertion is evident by Theo-
rem 2.1. Otherwise both the sets

o(A\ U, = {a);., and o(B)\V, = {B}im

are nonempty and finite. Let P and Q be the projections associated with

{5, and { B,}% ., respectively.
In view of (2.4) choose (ay, By) € U X V such that |P(ag, By)| > [A] + 1.

Consider the operator
P{A®I+A4,8Q,I®B+ P Q®B,}

Jj k .
=30.$ 3 ()¢ o omst
J

sm(Q (=0

(3.6)

in X ®, Y with domain D[4™] ® D[B"], where 4, = a,P — AP and B, =
BoQ — BQ are bounded linear operators of finite rank on X, Y which
commute with 4, B, respectively. It is easy to check that there exists a
bounded linear operator R on X ®, Y of finite rank which commutes with
(0.2) and such that foru € D[4™] ® D[B"),

P{A®I+A4,80,I®B+P®By}u—P{A®II®B}u=Ru
Since (0.2) is closable, (3.6) is closable; we denote the closure of (3.6) by Q.
Then D[Q] = D[P]. R commutes with P. Foru € D[P] we have Qu — Pu =

Ru. Q is decomposed by the four subspaces of X ®, Y in (2.3). Its parts in
the respective subspaces are

Qi =P(ap B)(;®1)), Q=P Q; =P, and Qy=P,
Since the Browder essential spectrum of a closed operator T remains
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invariant under perturbations of T by compact operators commuting with T
((16], [13]), we obtain

0,,(P) = 0,,(Q) C 0(Q) = 0(Q);)) U 6(Qy2) U 6(Qy) U 6(Qxy).
It is easy to verify by Theorem 2.1 with Propositions 2.3 and 2.4
a(Qn) = {P(ap Bo)}s 0(Qy2) = P(0(4,), o(B,)),
0(Qq) = P(0(4,), o(8y)), 0(Qz) = P(0(4,), 0(B,)).
It follows that o,, (P) is included in

{P (a0, Bo)} U P(0(4,), 0(By)) U P(0(4,), 6(By)) U P(0(4;), 9(By)).

Since A # P (e, By), A belongs to
P(o(A)\{a)}r, 0(B)) U P(a(4), 0(B)\ { B }s.y)
c P(U,0(B))uU P(a(4),V,). QED.

Theorems 2.I~and 3.1 determine the set of all isolated, finite-dimensional
eigenvalues of P{4 ® I, I ® B}.

COROLLARY 3.3. The same hypothesis as in Theorem 3.1. Then

o(P{A®LI®B))\o,(PF{4®1,1Q®B)})
3.7 = P(o(A)\ o,,(4), 6(B)\ 0,,(B))
\ {P(0,(4), a(B)) U P(0(4), 5,4(B))}-

For each A in the set (3.7), the set (2.10), A,(N), is finite, AjN) = A,(N) and
(3.8) (P{ALI®BYN) = 3 t(4; p)(B; ),

(pr)EAM)
where 1(T; k) is the algebraic multiplicity of an isolated eigenvalue x of T.

Proor. We shall be concerined only with the algebraic multiplicity of A,
because the other assertions are easy to see from definition of the Browder
essential spectrum.

Denote the image of the projection of A,(A) into the £ (resp. n) coordinate
by A;(A; A) (resp. A;(A ; B)). Then both of them are finite, for A,(A) is finite.
Since P, is Fredholm, the parts P,,;, Py;5, Pz, and Py, relative to A;(A ; 4)
and A(A ; B) are Fredholm. In the same way as in the proof of Theorem 3.1
we obtain

o(Py) = P(A,(As 4), A(A; B)),

o(Py;) = P(8,(A; 4), o(B)\A (A 5 B)),

a(Py) = P(o(A)\A (A 4), A(A 5 B)),

o(Py) = P(s(A)\A\(A; 4),0(B)\A (A5 B)).
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By definition of A;(A), A belongs to o(P,;) but not to the other three sets.
Consequently #(P ; A) = #(P,;; A). On the other hand, ¢(P,;; A) is equal to the
dimension of the projection 2, ,)ea,a)Pu ®o O, for if (p, #) is in A(A; A) X
A;(A; B) with P(p,») # A then the part of Py, in R[P, ®, Q,] has the
spectrum not containing A. Hence follows the result. Here P, and Q, are the
projections associated with u and », respectively. Q.E.D.

3.2. The Wolf essential spectrum.

THEOREM 3.4. Let « be a quasi-uniform reasonable norm on X ® Y and let
P € ?,(A, B). Then

(3.9) 0.,(F{4®1,1® B)})= P(o,,(A4),d(B)) U P(s(4), 0,,(B)).

By this is meant that (3.9) holds valid if both e,,,(A) and a(Bi) are nonemply or
if both 0(A) and o,,,(B) are nonempty, and further that o, (P{A ® I,I ® B})
-is empty if and only if either 6(A) = @ or o(B) = @ or o,,(4) = o,,(B) = O.

It will be seen from the proof of Theorem 3.4 that the inclusion
0. (P{A®1,1® B))> P(q,,(4), 6(B)) U P(a(4), 0,,(B))

(3.10)
U P(oeb(A)’ oeb(B ))

holds valid in fact for every polynomial P (£, 7).

PrOOF OF THEOREM 3.4. (a) PROOF OF THE INCLUSION (3.10). First note the
right member of (3.10) coincides with the right member of (3.9). In fact, by
Proposition 1.1 both ®, = ¢,,(4)\q,,(4) and &, = 6,,(B)\0,,(B) are
open in C. If both of them are nonempty, we have only to see that P(®,,, ®,)
is a subset of the right member of (3.9). Let A € P(®,, ®,). Then it is seen
(e.g. [11, Lemma 3.7]) that there exists a boundary point (&, ) of ®, X @,
C C* with P (&, o) = A, which belongs to o,,(4) X o(B) or o(4) X o,,(B)
by Proposition 1.1. Hence X = P (4, 1) belongs to the right member of (3.9).

Thus, to prove (3.10) it suffices to show P (o,,,(4), 6(B)) C o,,,(P).

Let A € P(o,,(4), a(B)). If R[P,]is not closed, A belongs to a,,,(P). In the
sequel we may therefore assume it is closed. The proof relies greatly upon
Lemma 3.2

Let (1, ») € o,,(A4) X o(B) with P(u, ») = A. The proof is divided into six
cases. Note » € o(B) if and only if nul(B — »I) > 0 or def(B — »I) > 0.

It is easy to check that the hypothesis in (a) or (b) of Lemma 3.2 is satisfied
in the following four cases:

I. R[A — pI]is not closed and nul(B — »I) > 0;

II. R[4 — pl]is not closed and def(B — »I) > 0;

IIL. R[4 — pl]is closed, nul(4 — pI) = co and nul(B — »I) > 0;

IV. R[A - pI]is closed, def(4 — pl) = oo and def(B — »I) > 0;
so that the desired assertion follows from Lemma 3.2.
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V. In case R[4 — plI] is closed, nul(4 — pI) = oo and def(B — »I) > 0,
we may assume in view of the cases III and IV that def(4 — uJ) < oo and
nul(B — »I) = 0. If R[B — »I] is not closed this case is reduced to the case I
with 4 and B replaced by each other. Therefore assume R[B — »I] is also
closed. Then p lies in the semi-Fredholm domain p,,(4) of 4 and » in the
semi-Fredholm domain p,, (B) of B. By Proposition 1.1 both

‘PA = eb(A) \ oek(A) and ‘I,B = eb(A) \ oek(B)
are open in C. Then by [14, Theorem 6],

nul(B—-nl)=0, def(B— nI)=def(B—-1»l)>0
in a neighbourhood of # = » in ¥ . Further, def(B — nI) > def(B — »I) > 0
in the component ¥, () in ¥, containing ». In the same way nul(4 — 1) =
oo in the component ¥, (u) in ¥, containing p. Then by an analogous
argument used previously, there is a boundary point (Y, 1) of ¥ () X
¥, (v) C C? with P (¢, ng) = P(p, ») = A, so that & € o,,(4) or 1 € 0,,(B)
by Proposition 1.1. If (&, ) is in 0,,(4) X ¥z(v) then def'(4 — §,1) =
and def(B — ) > 0. If itisin ¥ ,(p) X o,,(B) then
nul(4 — §/) = nul'(B — qol) = oo.

Finally if it is in 6,,(4) X 0,,(B) then nul'(4 — §,1) = nul'(B — nl) = 0.
Thus anyway the assertion follows from Lemma 3.2 (a) and (b).

VI In the remaining case that R[4 — ul] is closed, def(4 — pl) = oo and
nul(B — »I) > 0, we may assume in view of Lemma 3.2 that nul(4 — pJ) <
oo and R[B — »vI]is closed with def(B — »I) = 0. Then p (resp. ») lies in the
semi-Fredholm domain of 4 (resp. B). By [14, Theorem 6]

def(B — nI) = 0, nul(B — nI) = nul(B — »I) > 0

in a neighbourhood of n = » in ¥. Further nul(B — /) > nul(B — »I) >0
in the component in ¥, containing » and def(4 — §I) = o in the component
in ¥, containing p. Then the same argument using Lemma 3.2 as in the case
V will yield the result.

(b) PROOF OF THE REVERSE INCLUSION.

I. The case in which one of X and Y, say Y, is of finite dimension. In this case
let us keep in mind Proposition 2.2 and P = P{4 ® 1,1 ® B}, then (3.9)
becomes

39 0(P {4 ® I,1® BY) = P(o,,(4), o(B)).

B is bounded with D[B] = Y and the spectrum o(B) of B consists of a finite
number of eigenvalues. We have

Y= 3 &Y, Y,=N[B-d)]
vEo(B)
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B is decomposed by the Y,. The part of B in Y, is the sum of »I, and a
nilpotent operator in Y, where 7, is the identity operator in Y,. Then X ® Y
is decomposed into the topological direct sum
(3.11) XY= 3 ©(XQ®YVY,)

vEo(B)
and P is decomposed by the X ® Y,.

Let A € o,,,(P). By Theorem 3.1 there are points p € o,,(4) and » € o(B)
with P(p, ») = A. By the reduction method we have only to show that A
belongs to the right member of (3.9), assuming that » is the only eigenvalue
of B with algebraic multiplicity #(B; ») =t =dim Y, so that B — »[ is
nilpotent.

If P(§ ») — A = 0 then by Theorem 2.1, o(P) consists of only one point A.
Then taking a boundary point p’ of o,,(4) we have A = P(y/', »).

Therefore we consider the case P (£, ») — A 2 0. Recall that A € o,,, (P) if
and only if either nul’ P, or def’ P, is infinite.

In case nul’ P, is infinite, by Lemma 1.3 with Proposition 2.2(b) there exists
a noncompact sequence {}7%, of unit vectors in D[4""] ® Y such that for
1<p<y,

PPy =P{A®LI®B)* ' [P(AQLI®B) - \NI®I)]u—0
inX ®Yasl— 0.

As Y is of finite dimension, we can choose a sequence { y;}7%; in Y’ of unit
vectors such that {<u;, y/>y}%, is not compact. Here set

r
Yy = 2 O ¥D%
im]

where u = 37_,x; ® y; in X ® Y and y’ € Y’. We may assume, by taking
subsequences, that {{u,y;)y}j=, is noncompact and bounded away from
zero. Set

X =K vy K ¥y I=1,2,....
Then {x;}{%, is a ioncompact sequence of unit vectors in D[4 ™).
To prove that A belongs to the right member of (3.9)’ it suffices to show

[A ) ®Iy—0, P(Er)=PEr)—A
in X ® Y as I - oo. In fact, this implies P, (4, »)’x; =0 as / - oo, so that
nul’ P,(4,») = o and 0 € o,,(P,(4, »)). By Proposition 1.2 there is a
W € g,,(4) with P(p', v) — A = 0, whence follows the assertion.

Now we turn to the proof of [P, (4, »)' ® Ilu;— 0 as / - c0. The ¢-dimen-
sional space Y has the direct sum decomposition

(.12) Y=N,®---®N,
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such that
(3.13) N;®---®N, =N[(B-)], 1<k<u
Hence X ® Y is decomposed into the topological direct sum
X®Y=(X®N,)®---D(XON,).
Then yy =3 1wy, uy, EX®N,, 1< k<1t 1=12,....Each sequence
{u,}7>, is bounded. We have to show for each k, 1 < &k < ¢,
[P,\(A, ) ® I]uk,—>0 as [ — oo.

In fact, we show [P\ (4, v’ ® Iy, —>0as /s fort—(k—1)<p<t.
The proof is by induction on &k fromk =t to k = 1.

For k = t, we see with the aid of (3.4) and Proposition 2.2(d) that for
1<p<y

[PA( 4,9 ' ®(B~wI) ' [[P{A®LI®B} -~ NI®I)]y
=[P\(4,%)" ® (B—»I)" ]y

approaches 0in X ® Y as/— 0. If {y,}?, is a basis of N, then u, = =¥,x,
® y;, where {x;}?, c D[4™],1=1,2,.... We have only to consider the
case N, # {0}. Then {(B — »I)'"'y;}'?, is linearly independent. It is easy to
see that for 1 < i < i(t), P,(A, v)’x, approaches 0 in X as / — oo, whence
[P\(4, vy @ Iu;,—»0inX ® Yas!/— .

Assume now that the assertion is valid for k > 5, 1 € s < ¢. Similarly, for
t—(s-1D< p<y,

[Pr(4,9) '@ (B -»I)"'|[P{A®LI®B) - \NI® )]y
=[P,\ 4, ® (B - vI)"']u,,

+[P(4, )7 @ (B~ w)]

[P{A®LI® B} —\I®I)] ﬁ u,

h=s+1

approaches0in X ® Y as/— 0.
First observe the second term above. By (3.4) rewrite it as

“ > ( ) a,-kAf)Px(A, )’ '® (B - vI)"‘*"}

k=1\j=0

+[P>‘(A,v)"®(B—vI)"']} 2’; Uy,

h=s+1
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whose norm is, as easily seen, majorized by

2 (I %) ® I +[[Pr (4, 7)™ @ 1]ut])-

Therefore by the induction hypothesis the second term concerned approaches
OinX®Yas!—o0,sincet—(s— 1)< p <t It follows from the first
term that,fort - (s - 1) < p< ¢,

[Pr(4,7)" ® (B = »I) " |uy >0

as /| — o0. The same argument as for k = ¢ yields that [P\(4, »)’ @ I]u,
approaches 0 in X ® Y as / — oo unless N, # {0}. This proves the desired
assertion.

In case def’ P, is infinite, the same argument as above applies to

PAGI'I'®B}-NI'QT)
which is by Proposition 2.2(c) the adjoint of P,, since the approximate
deficiency of a densely defined closed linear operator coincides with the

approximate nullity of its adjoint. There exists a noncompact sequence
{47}, of unit vectors in D[(4')™] @ Y’ such thatfor 1 < p < ¢

P{A/®I,I'® B’}""[P{A’ @I I'®B'} -ANI'® I')]u,’-—>0
in X’ ® Y’ as/ — 0. In the same way it can be shown that
[Pr(4,9) @Iy
approaches 0 in X’ ® Y’ as / — oo. This implies that nul’ P,(4’, »)’ = o0 and
hence def’ P,(A4, )’ = o0. Therefore by Proposition 1.2, A belongs to the
right member of (3.9)".

1. The general case. Let A € o,,(P). Since P € ?,(4, B) there are
nonempty open sets U D o(A4), V D o(B) and a large r > 0 such that (2.4)
holds. For this r take the same open sets U, and V, as in the proof (b) of
Theorem 3.1.

It suffices to show that for every sufficiently small ¢ > 0, A belongs to the
union of three sets

(3.14) P(o,,(A), a(B)\V,)U P(s(A)\ U, 0,,(B))uU P(U, V,).

In fact, suppose this is established. If, for some ¢ > 0, A belongs to either of
the first and second sets in (3.14) there is nothing more to prove. Therefore
assume A belongs to P(U,, V,) for every € > 0. For each positive integer /
choose (§, m) in (U, N K)) X (V,,, N K) with P(§, n;) = A. By the same
reasoning as in the proof of Theorem 3.1 the sequence {(§, 7))}, is
bounded, so that we may assume it converges to (£, o) as /— co. Then
(0, mp) lies in a,,(4) X o,,(B) and hence A = P (§,, 7,) belongs to the set on
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the right of (3.10) and so on the right of (3.9), because they coincide as seen in
the proof (a).

Now we come to the proof that A belongs to the set (3.14) for all . As in
the proof of Theorem 3.1, let 6(4)\ U, = {a;}9.,, 6(B)\ ¥, = { B, }}}, and
let P, Q be the projections associated with them. Then using the same
notations as (2.5)(2.8) we obtain

00 (P) = 0,,,(Py) U 0, (P;) U 0,,,(Py) U 0,,(Py).

Since PX and QY are of finite dimension, o,,(P,;) is empty. Since P €
?,(4, B), we have by Propositions 2.3 and 2.4 and by case I,

0es(Pi2) = P({&})m 1y O(B2)) = P(0(4)\ U, 0,,(B)),
Ops(Por) = P(0pu(da)s { B }iom1) = P(0m(4), 6(B)\ V,),
and by Theorem 2.1,
0.,(P2) C 0(Py) = P(a(4,), 0(B,)) C P(U, V,).

Thus putting all this together shows that o,,(P) is included in (3.14). In

particular, A belongs to (3.14). Q.E.D.
By Theorems 3.1 and 3.4, the intersection of the Browder essential
spectrum and the Fredholm domain of P {4 ® I, I ® B} is determined.

COROLLARY 3.5. The same hypothesis as in Theorem 3.4. Then
0,(P{A®LI®B})\o,,(P{4®11Q B})
= {P(U(A) \ 0,(4), 0,(B)\ 0,,,(B))
U P(o,(4)\ o,,(4), 0(B)\ 0,(B))}
\ {P(am(A), o(B)) U P(a(4), om(B))}.

For each \ in the set (3.15) the sets (2.11), A,o(N), and (2.12), Ay, (M), are finite
and

(3.15)

A1) =2,A) U A(A),  Au(d) = 4,(0) U Ay(N),
Bo(A) = 4;6() U 86(2)-

ProoFr. Obvious.

3.3. The nullity, deficiency and index. For P € 9,(A, B), the operator (2.1),
P), is Fredholm and at least one of nul P, and def P, does not vanish if and
only if A is in the union of the sets (3.7) and (3.15) in Corollaries 3.3 and 3.5.
This implies in view of (3.4) that if dim X = co then P (¢, ») — A = 0 for each
fixed » € 0(B) \ o,,(B), in which case we write

G16) PEy) -A=d() I ¢E-w™™, dp=3 ",
BP(pp)=A k=0
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where m(v) is the degree in § of P(§ »), m(¥) = Z,.p(ps=r m(p, ) < m.
Similarly, if dim ¥ = oo then P(p,n) — A2 0 for each fixed p € 6(4)\
0,,(A), in which case we write

(9 < ;
@17 P(mm)—A=e(w) I @-9"" e(w=2Z cup’

v P(pr)=A j=0
where n(p) is the degree in 9 of P(u, 1), n() = 2, p¢uny=att(ps ¥) < 1.
Set

G.18)  p(m, ) =t(B;v)m(p,v),  q(uv) = t(4; p)n(p, v).

Let r(p, g; p, v) be the rank of the coefficient matrix of the system of the pg
linear equations with the pg unknowns u,,

(3.19) D by =0, 1<s<p1<t<yg
1<j<s
1<k<t

where the by, are the coefficients of the Taylor expansion (3.3) of P(§, 1) at
(p, »). Set

(320 n(p, q; p,¥) =pq — r(pgq; s v) 2 1.

We shall now establish explicit formulae for the nullity, deficiency and
index of (2.1).
For a linear operator T: D[T] c Z — Z and a positive integer p set
n,(T) =2nul 77 — nul 77~ — nul 77+,

G20 d,(T) =2 def T? — def T7~"! — def T7*/,

when they are well defined. Here note (cf. [25, Lemma 3.3]) that nul 7” (resp.
def T?) is finite if and only if nul T (resp. def T) is finite.
The following result amplifies Corollaries 3.3 and 3.5.

THEOREM 3.6. Let a be a quasi-uniform reasonable norm on X ® Y and let
P € @,(A, B). Then for \ in the set (3.7) or (3.15) the following formulae hold:
nl[ F{A®LI® B}~ M ®,1]
3.22) o i i
= 2 S n(p, q; b »)i, (4 — pl)ii (B — vI);
(1Y) EA ) UALA)UAHQ) Pg=1
def[ F{A®LI®B) -\ 8,1]
(3.23) ©

= 2 2 n(p’q; p"”)‘;p(A -#I)Jq(B—VI);
(1¥)EAA)UA AU, A) Pg=1
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ind[F{4®LI® B} -\ &,1]

1(4;p)
(3.29) = 2 ind(B — vI) 2 n(p, q(p, v); &, ”)np(A = ul)
(mr)EALQ) p=1

t(B;»)

+ 3 ind(d - ) 3 n(p(k ) g )n(B = o).
(mr)EL;H(Q) q=1

Here for (p, v) € A,(M),
Ay(A = pI) = ny(A = pl), d(A ~ ul) = d,(4 — ),

(3.25) ) r=L2...,
i (B —vl)=n,(B—vl), d,(B—vl)=d,(B-yvl),
q=12,...;
Jor (1, ¥) € A;,(N),
A(A = pl) = n(A4 - W), (4~ pl)=d,(4-pl)
r=L12...,
(n,(B - vI), 1< g<q(m7),
fi(B = »I) =4 nul(B - »I)" — nul(B — »I)*"", g=gq(p»),
0, q>q(p»),
(3.26) )
d,(B - »I), 1<g<aq(p?)
d (B — »I)={def(B — vI)* — def(B — vI)*"", q=q(7),
o, q>q(p2);
and for (p, v) € 4, (N),
(4 = uI), 1< p<p(pr)
(A = pI) ={nul(4 — uI)’ —nul(4 — pI)*"", p=p(p»),
0, P> p(m)
@27 (d,(4 — pl), 1<p<p(mv)
d,(A - pI) ={def(4 — pI)" — def(4 — pI)*™", p=p(m7)
0, ?>p(m),
Ai(B = vI) = n,(B —vl), d(B—vl)=d,(B- ),
g=12,....

Therefore the sum I _, is finite and in fact taken over those p and q with
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1< p<t(d;p) and 1< q < t(B;v) for (pv) €EAQ), with 1< p<
t(A; p) and 1 < q < q(p, ») for (p, v) € A,(A), and with 1 < p < p(p, »)
and 1 < q < t(B; ») for (p, v) € Ay;(N).

The proof of Theorem 3.6 will need a thorough investigation of the case in
which either X or Y is of finite dimension. Let us keep in mind again
Proposition 2.2.

First we consider the case where both X and Y are of finite dimension. In
this case every polynomial P (§, ) belongs to ?,(4, B).

LeMMA 3.7. Let dim X < o0 and dim Y < co. Then for every polynomial
P& 1) and every A € C

t(4;p) t(B;»)
(322) mulP,= Y > 2 n(p g pv)n,(A — pl)n(B — vI),
(rr)EAQ) pP=1 g=1
1(A;p) t(B;v)
(G23) defPy= ¥ X X n(p, g1 r)d, (4 — pl)d,(B - ).
(pr)ELR) p=1 g=1
PrROOF. 4 and B may be considered as matrices. Both a(4) and o(B)
consist of a finite number of eigenvalues. We show (3.22)'; (3.23)" follows
from this, since the nullity and deficiency of a matrix coincide.
We may assume A and B are of the Jordan normal form. We have
= - _ t(A;p)
A
Y= 3 oY, Y,=nN[B-d)"]
vEao(B)
A is decomposed by the X, and the part of 4 in X, is the sum of pJ, and a
nilpotent matrix where 7, is the identity matrix in X,,. The nullity of (4 — pJ)*
for 1 < s < #(4; p) is equal to the nullity of its part in X,,. The same is true
of B. It follows that

X®Y= > 6(X,®7,)
(p,v)Eo(A)Xa(B)
and P is decomposed by the X, ® Y,. The part of P, in X, ® 7Y, is
one-to-one if P(p, ») # A. The nullity of P, is the sum of the nullities of the
parts of Py in X, ® Y, with (p, ») € 6(4) X o(B), P(p, ) = A.
Therefore, to establish (3.22) it suffices to show that

(3.28) mulP, = i i n(s, t; p, v)n(A — pl)n,(B — »I)

s=] ¢=1

in the case where
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X N[(A - ,u)”], dim X = p = ¢(4; p);
Y=N[(B-vI)"], dimY =g =1(B;»);
o(4)={u}, oB)={r}, P(mr)=A

In this case note that A — pJ and B — »I are nilpotent.

First consider the special case in which nul(4 — pJ) = nul(B — »I) = 1.
In this case 4 — ul (resp. B — »I) is a square matrix of order p (resp. q) of
the form

(3.29) .
O 1 0
Choose bases {¢,}2.., of X and { f,}9.., of Y such that

e,y (s+1<p)

_ Jer (+1<q)
(A—“‘I)e:_{o’ (S=P), :

Everyuin X ® Y is represented as u = 22_,39_,u e ® f. We have
0=[P{4®LI®B}-NI®I)u

= 3 b[(4-uY®B-v)]u

Jj+k>0

= 2 2 b:-j,t—kujke:®f;

1<s<p 1< j<s
1<t<q 1<k<t

in view of (3.3) and hence (3.19). Then with (3.20) we obtain
nul P, = pg — r(p, ¢; p, v) = n(p, 4; 1, »),

which proves (3.28) because n,(4 — pI) = §,, s =1,2,..., and n(B — vI)
=0pt=12,....

In the general case in which 4 — pJ and B — »I are nilpotent, n,(4 — pl)
is the number of the square matrices of order s of the form (3.29) in the
Jordan normal form of 4 — pl, and the same is true of n,(B — »I). This
proves (3.28) in the general case and (3.22). Q.E.D.

In the following special cases, (a) is due to T. Ando.

COROLLARY 3.8. The same hypothesis as in Lemma 3.7.
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(@)
nl(d®I+IQ®B-M®I)
o0
= 3 2 (nul(4 — pI)® — nul(4 - uI)P7")
(m»)Eoc(A)Xo(B) p=1
ptymA

+(nul(B — »I)® — nul(B — »I)?7").

(b) For A #+ 0,

nl(A®B-ANQI)
= 3 S (nul( - ) - ml(d - )Y

(p»)Eo(A)Xo(B) p=1
=X

«(nul(B — »I)" — nul(B - »I)?7")
and
nul(4A ® B)y=nul4-dim Y + dim X - nul B — nul 4 - nul B.

Here both the sums are finite.

Proor. We only note that in both the cases the n(p, ¢; p, ») in Lemma 3.7
are given by n(p, ¢; p, ») = min(p, g). An elementary calculation will yield
the formulae. Q.E.D.

Next we consider the case where one of X and Y, say Y, is of finite
dimension while the other, X, is of infinite dimension.

When P (£, v) — A = 0 for some » € o(B), it is easy to see in view of (3.4)
that both nul P, and def P, are infinite. Therefore the interest is in the case
where P(§, v) — A 2 0 for each fixed » € o(B). In this case P(§, ») — A is
written as (3.16).

LEMMA 3.9. Let dim X = o0 and dim Y < 0. Let P € ?,(A, B). Assume
that P (¢, v) — A 2 0 for each fixed v € o(B) or, in particular, that A does not
belong to (3.9)'. Then:

(@

p(pv) 1(B;v)

(322)" mlPy= Y 2 n(p g pv)i,(A — pl)n(B — vI).
(mr)ELR) pP=1 g=1

(b) Assume R[P,] is closed.

(1) t(B;») -
(323)" defPy= S 2 n(p g pv)d, (A — pI)d,(B - vl).
(B7) €8N =1 g=1

Here the #i,(A — pl) and d,(A — pl) are given by (3.27).
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PRrOOF. (a) Recall (3.11). The proof is reduced to the proof of
2 ©(N[P(4,7)-M]®N[B~-l])C N[P,],
vEo(B)

NR]c 3 (NP -N)"]ey,).

vEo(B)

(3.30)

In fact, suppose this is established. Set P,(§, v) = P (£ ») — A again. It is
readily seen from (3.30) in view of Propositions 1.2 and 1.4 that nul P, is
finite if and only if nul P,(4, ») is finite for each » € o(B) if and only if
nul(4 — pl) is finite for each (p, ») € Ay(A). In this case we show (3.30)
yields (3.22)”. Proposition 1.4 implies that for every positive integer j,
N[P,(4, v)'®"] is a finite-dimensional subspace of D[4/] invariant under
A’. Consequently N[P,(4, »)] ® Y,, which is a subspace of D[4/] ® Y for
every positive integer j, is a finite-dimensional subspace of X ® Y invariant
under P,. It follows that P, in X ® Y and its restriction to the space on the
right of the second inclusion in (3.30) have the same null space. Let 4, be the
part of A in N[P,(4, vY®")] and B, the part of B in Y,; the identity
operators in both spaces are denoted by the same I,. Then Lemma 3.7 with
(3.30) yields
nulPy,= > nul(P{4,®1,1,®B,} —\I,®1,))

vEo(B)
(331) p(p,v) t(B;»)
= 2 2 2 2 n(p, q; L V)np(Ar - “Iv)nq(Bv - ”Ir)‘

vEa(B) uco(4,) r=1 g=1
P(pp)=A

For the upper bound p(u, ») of the summation in p in (3.31) note Remark at
the end of §3.3. Clearly 0(4,) C 6(4) and if p is an eigenvalue of 4 with
P(p,v) = A then

N[A4 - ] c N[Py(4,%)] C N[ Py (4, )]
by Proposition 1.4, whence p € a(4,). For every positive integer ¢, we have
n,(B, — vl,) = n(B — vl) and

n,(4 — pI) 1< p<p(mv)
n,(A4, = ul,) ={nul(4 — pI)? —nul(4 — pI)?~', p=p(mv),
0’ y4 >p(p" V).

It follows that (3.31) is nothing but (3.22)".

Thus the proof of (3.22)” will be complete if (3.30) is established. In view of
(3.4) the first inclusion in (3.30) is evident. Since P, is decomposed by the
X ® Y,, to establish the second inclusion in (3.30) it suffices to show for each
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v € o(B) thatif uisin N[P,] N (X @ Y,) then u is in N[P,(4, »)®] ® ¥,.
To simplify the notation write Y for Y, and ¢ for ¢(B; v). Y has the direct
sum decomposition (3.12) with (3.13). Then u = 3% _,u,, where u, is in
D[A™ ® N,, 1 < k < 1. We show u; is in N[P,(4, »)'"*~ D] ® N,.
The proof is by induction on k from k = ¢ to k = 1. For k = t we have by
34

0=[1@B~-v)""[[P{ARLI®B} - NI ®I)]u
=[Pr(4,7) ® (B = vI)"'u,

If N, # {0}, let u, = 3i¥ x; ® y,, where the sequences {x,}'® ¢ D[4™] and
{7,}{9, C N, are linearly independent. Since (B — vI)*~! is one-to-one on N,

so that {(B — »I)'~Y,}’?, is linearly independent, there exists a sequence

i=1
{(¥/Y9, c Y’ with (B — vIY Y,y =8, i,j=1,2,...,i(f). It follows
that Py(4, »)x; = 0 for all i. Hence u, is in N[P,(4, »)] ® N,. Assume the
assertion is valid for k > s, 1 < s < t. Notice this implies in particular

2=+ 1ty belongs to D[4/]1 ® Y for every positive integer j. Then
s h
0=[I®B~-v) '|[P(ARLI® B} - NI®I)]u
=[PA(4,9) ® (B~ Iy ']y,

t
+[1®(B-»1)"'[[P{ACLI®B)-MI®I)] I u,.
h=s+1
By the induction hypothesis the second term of the last equation above
belongs to N[Py(4, »)'"*] ® Y and hence to D[4/] ® Y for every positive
integer j. If N, # {0}, let u, = 29\ x; ® y,, where {x,}®), c D[4™] and
{7}, C N, are linearly independent. Since (B — »I¥~! is one-to-one on

N,, the same argument as in the proof of Proposition 2.2(b) shows

Py (4, »)x,}9, is included in D[A4’] for every positive integer j. It follows
A i

i=1

that {x,}i¥, is in D[4/] and hence u, is in D[47] ® N, for every positive
integer j.

Thus we can apply P,(4, »)’"° ® I to the last equation above. Then we

obtain by the induction hypothesis,
[P (4, )"V @ (B = w1y u, = 0.

Since (B — »I)*~! is one-to-one on N;, the same argument as for k = ¢ above
will show u, belongs to N[P,(4, »)'~¢~D] ® N,. This proves (3.30).

(b) If R[P,] is closed then nul P, = def P,. We note that o(4) = o(4’),
o(B) = o(B’) and P(A’, v) = P(4, v). Although D[A’] is dense in X’ in the
weak* topology but not in the strong topology in general, the same argument
as in (a) will justify that def P, (= nul P}) is finite if and only if nul Py (A4, N)
is finite for each » € o(B) if and only if nul(4’ — pI’) is finite for each
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(p, ») € Ay(A). In this case, both P, (4, ») and A — pl necessarily have closed
ranges, so that nul P,(4’,») and nul(4’ — pl’) can be replaced by
def P,(A4,v) and def(4 — pl), respectively. In fact, otherwise both the
approximate nullity and approximate deficiency of P,(4, ») for some » €
o(B) (resp. of A — pI for some (p,») € A(A)) are infinite. Then since
nul(B — »I) = def(B — »I) > 0, by Lemma 3.2 and by closedness of R[P,]
we obtain nul P, = def P, = 0, a contradiction.

The formula (3.23)” will be now obtained readily from (3.22)” with the
above facts. Q.E.D.

PrROOF OF THEOREM 3.6. I. The case where A is in the set (3.7). In this case
note the sums for (y, ») in Aj,(A) and A,,(A) in (3.22) and (3.23) disappear.
Following the proof of Corollary 3.3, we have nul P, = nul P,,, and def P,
= def P,,,. Hence by Lemma 3.7 we have the formulae (3.22) and (3.23) with
A;;(A) and A, (M) deleted, since

n(Ay = ply) = n(4 = pl), d(4, = pl,)=d(4 - )
and the same is true of B. It is clear that ind P, = 0.

I1. The case where A is in the set (3.15). Denote the image of the projection
of Ag(A) (resp. Ay (A)) into the & (resp. m) coordinate by A,o(A; A4) (resp.
Ag(A; B)). Since P, is Fredholm, the parts Py;;, Py15, Py and Py, of Py
relative to Ag(A\; 4) and Ay (A; B) are Fredholm. Since P € ?,(4, B) it
follows by Propositions 2.3 and 2.4 with Theorem 2.1 that

0(Ps) = P((42), 0(B,)) = P(o(4) \ Ag(X; 4), (B) \ B; B)).
Consequently A £ o(P,,) and
nul P, = nul P,;, + nul P,;, + nul P,
def P, = def Py, + def Py, + def Py,,.

We apply Lemmas 3.7 and 3.9 to P,,, P,,, and P,,,. Before this, note that
8,(N) = {(6 ) € Ay 4) X Ag(A; B); P(§m) = A},
Bo) = {(& m) € Ao; 4) X (9(B)\Ao(A; B)); P(§,m) = A},
Byy(A) = {(& ) € (a(4) \ Ayo(A; 4)) X Ay(A; B); P(§m) = A}

Then we obtain
1(4;p) 1(B;v)
Py = 3 2 2 n(p, g v)n (4, — pIy)ny(B, - vly),
(mr)EAQ) p=1 g=1
#(4;p) q(n.») 3
wlPy,= X 2 2 n(p, g pr)n,(Ay = ply)iy (B, - vh),
(1) E4(N) P=1 q=1
p(1.») t(B;»)
niPy= I 3 3 n(p g m0)i(d; - wy)n (B = o).
(p¥)EDH(A) =1 g=1
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However, for p € 0(A)\ 0,,(4), n,(4, = pl)) = n,(4 — W) and for p €
0,5(A)\ 0,,(A4), Ai,(4;, — plp) = 7 (A pI), and the same is true of B. This
establishes (3.22).
Similarly, formula (3.23) for def P, will be derived.
To get formula (3.24) for ind P, note that ind P, = ind P,,, + ind P,,,,
because nul P,,, = def P,;;, and that

(4 = uI) = d,(A = pIy = {ind(A —ul), p=p(m7)

0, otherwise;

i(B—vI)—d, (B—-vl)= {ind(B- vI), q=q(p,»),
o ) =4 ) 0, otherwise.

Hence (3.24) follows. Q.E.D.

REMARK. The ascent a(T) (resp. descent 8 (T)) of T is the smallest nonnega-
tive integer p such that N[T?] = N[T?*!] (resp. R[T?] = R[T?*")). If no
such p exists, set a(T) = oo and §(T) = oo (see [24], [25]). Then n(T)=0
for p > a(T) and d,(T) = 0 for p > §(T). If A is an isolated, finite-dimen-
sional eigenvalue of T then a(T — AI) = §(T — N) < ¢(T; A).

A careful check will see that all #(4; p) and #(B; ») in Theorem 3.6,
Lemmas 3.7 and 3.9 may be replaced by a(4 — pI) and a(B — ul), respec-
tively.

3.4. The Schechter essential spectrum.

THEOREM 3.10. Let a be a quasi-uniform reasonable norm on X ® Y and let
P € 9,(4, B). Then o,,,(P{A®I,1Q® BY)) is the union of the set on the
right of (3.9) and the set of all X contained in the set

(332) P(0,,,(4), 6(B)) U P(o(4), 0.(B))
but not in the set on the right of (3.9) such that the index (3.24) does not vanish.

ProOF. In view of Theorem 3.4, Corollary 3.5 and Theorem 3.6, it suffices
to show that every A in o,,,(P) \ o,,,(P) belongs to (3.32). Since ind P, # 0, by
(3.24) there is a pair (g, ») in ApN) U Ay(\) with ind(B — »I) % 0 or
ind(4 — pJ) % 0. Hence either » € o,,(B) or pE g em(A4), in which case
A = P(p, ») belongs to (3.32). Q.E.D.

3.5. Another polynomial operator. Assume a is in addition faithful on
X ® Y. Associated with (0.1) is another polynomial operator (0.3) in X ® Y.
In this case, both (0.2) and (0.3) are also closable. Further, if P € & (4, B),
they have the same closure by [12, Theorem 3.1]; there it has been shown in
fact for P € 9(4, B) but the same proof is valid in the present case.
Therefore all the results in this section are valid for the closure of (0.3).
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4. Two special cases. In this section the operators (0.2) and (0.3) in
X ®_ Y associated with the polynomials P(£, 1) = £ + 1 and P(£ ) = &,
are considered. Throughout, X and Y are complex Banach spaces and a is a
quasi-uniform reasonable norm on X ® Y.

We follow the same conventions as in §§2 and 3.

We denote Ay(A), A/(A) and A, () (in (2.9)2.14)) for P(§, ) =+ n by
Ay, A\ and A (A), and for P (£, 1) = &y by II;), IT,(A) and IL (A).

4.1. The case for P(£,m) = § + 1. The corresponding operators are 4 ® I
+I1®Band4 ®,1+ I ®, B, which we consider in the same situation as
in §4 of [12].

Z being a complex Banach space, a densely defined closed linear operator
T:D[T]c Z— Z is said to be of type (07, M7(0)), 0 < 07 <, if the
resolvent set p(T) includes the complementary set in C of the sector S (8y) =
(& larg | < 6;) and [$QT — T)7'|| < My(6), 8 = arg §, outside S(8y),
where M, () is a constant depending only on 8 = arg{. In view of the
resolvent equation, it is seen that if T is of type (6, M(8)) then for each
fixed 05 with 0. < 0; < «, |S(§I — T)™'|| is uniformly bounded in the
closure of CS (67).

We assume that 4 and B are respectively of type (6,, M,(9)) and
(05, Mp(0)) with 0 < f, + 05 < 7 and that 4 ® I + I ® B is closable in
X ®, Y with closure (4 ® I + I ® B)". In this case { + n is in 9,(4, B).

THEOREM 4.1. (a) The Browder essential spectrum.
@4.1) o,((A® I+ 1.8 BY)=(0,(4)+ o(B)) U (6(4) + 0,,(B)).
(b) The set of all isolated, finite-dimensional eigenvalues.
o((A®I+I1®B))\o,((4®1+1QBY)
4.2) = {(o(4) \ 05 (4)) + (0(B) \ 0.6(B))}
\{(es(4) + 0(B)) U (o(4) + 0,4(B))}-
If N is in the set (4.2) then

4.3) H((AQI+I®BY;N)= X  1(4;p)(B;»).
(B EAN)

(c) The Wolf essential spectrum.
44 0, ((4®1+1®B))=(o,,(A) + o(B)) U (a(4) + o,,(B)).

(d) The intersection of the Browder essential spectrum and the Fredholm
domain.
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0,(A®I1+1®B))\o,, ((A®I+1QBY))
=[{(s(4)\ 0.,(4)) + (00s(B) \ 0 (B))}
U {(0,5(4) \ 00(4)) + (5(B)\ 05(B))} ]
\ {(om(A) + o(B)) U (o(4) + aew(B))}.
(e) For A in the set (4.2) or (4.5) the following formulae hold:

(4.5)

nul((A® I+ 1®B)y—M®,I)

- ) { S (nul(4 - u)? - mul(4 - wry"?)

(4.6) (L) EAQUA LA UA;A) \ p=1

.(nu](B - vl)p - nul(B - VI)P-!)};
def((A®I+I1®BY -\ ®,1)

§_°‘, (def(4 — pI)” — def(4 — puI)*™")

@n = {
(L) EAAUAZA)UANRA) | p=1

-(def(B — »I)? — def(B - vz)"')];

ind(A®1+I®BY~M®,I)
) t(A;p) , -
“8) = >  ind(B-vl) ¥ (nul(4 — pI)’ - nul(4 — pI)?7")
(#r)EALQR) p=1
t(B;v)
+ Y ind(4-p) 3 (nul(B - »I)” - nul(B - vI)P7").
(#2) EAH(D) p=1
The sum Z;., is finite and in fact taken over those p with 1 < p <
min(¢(4; p), t(B; v)) for (p, v) € A\QA), with 1 < p < t(A4; p) for (p, v) €
Aj(N) and with 1 < p < t(B; ») for (p, v) € Ay (A). All t(A; p) and t(B; v)
may be replaced by a(A — pI) and a(B — vI), respectively.
(f) The Schechter essential spectrum.
4.9 O((A®IT+1®B))=0,Uo0,
where o, is the set on the right of (4.4) and o, is the set of all \ in the set
{(0am(4) + 0(B)) U (o(4) + o,,(B))} \ 0y
Jor which the index (4.8) does not vanish.

For a in addition faithful on X ® Y,sothat A® I + I @ B and 4 é, I
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+1I éa B are not only closable but also have the same closure in X éa Y,
Theorem 4.1 is also valid with the closure (4 ®, I + I ®, B)” in place of
(AQ®I+1Q BY.

Theorem 4.1 enriches Theorem 4.6 in [12], where X and Y are Hilbert
spaces, a is the prehilbertian norm ¢, and 4 and B are m-sectorial operators
with semiangles §, and 05 with 0 < 6, + 65 < 7/2; in this case 4 ®,I+1
®, Bis closed itself in X &, Y.

4.2. The case for P (§, v) = &n. The corresponding operators are 4 ® B and

A ®, B.

We assume that it is not the case that one of the extended spectra of 4 and
B contains 0 while the other contains oo, or, equivalently, that (i) 4 and B are
bounded or (ii) A and B have everywhere defined bounded inverses or (iii)
one of 4 and B is bounded and has an everywhere defined bounded inverse
while the other is arbitrary (see [10], [11]). Further assume that 4 ® B is
closable in X ® Y with closure 4 ® B and that a(A4) - 6(B) # C. In this
case énisin @, (A B).

THEOREM 4.2. (a) The Browder essential spectrum.
(4.10) ¢,,(A ® B) = 0,,(4)-a(B) U o(4)- 0, (B).
(b) The set of all isolated, finite-dimensional eigenvalues.

o(4 ®, B)\ o4(4 ®, B)
@.11) = (o(4)\ 0,,(4)) (a(B) \ 05(B))
\ (00(4) - 0(B) U 0(4) - 0,5(B)).

If\ # O s in the set (4.11) then

@.12) HAB,B;N) = 3 1(4; u)i(B; ).
(wr)EILM)

(c) The Wolf essential spectru;n.
@.13) 0o(4 ®, B) = 0,,(4)- 0(B) U 0(4)- 0,,(B).

(d) The intersection of the Browder essential spectrum and the Fredholm
domain.
05(4 ®, B)\ 0,,(4 &, B)

= {(o(4) \ 0,5(4)) - (0,(B) \ 0,,,(B))
U (0,5(4) \ 6,,(4)) - (6(B) \ 0,4(B))}
\ (0,,,(4)* 6(B) U 6(4)"0,,(B)).

4.149)
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(e) For X % 0 in the set (4.11) or (4.14) the following formulae hold:
nul(4 ®, B -\ ®, 1)
0
- s { S (ul(a - 1)? = mil(d - 1))
(4.15) (W) EMLOUTMUTE) | 7=1
«(nul(B - #I)® - nul(B - vI)"’)};

def(4 ®, B~ ®, 1)
= S { § (def(4 — uI)? — def(4 — uI)?™")

(4.16) (pr)emA)UI,AM)UTR) \ P=1
«(def(B — vI)? — def(B - vI)”")};

ind(4 ®, B — M ®, 1)
t(4;p)
= 3 indB-v) 3 (nul(4 - )’ - nul(4 - uI)?7")
(4.17) (wr)em,R) p=1
t(B;v)

+ X indd-pl) ¥ (nul(B-ol) —nul(B - )"
(p¥) ENH(A) p=1
The sum 2., is finite and in fact taken over those p with 1 < p <

min(#(4; p), 1(B; v)) for (p, v) € ILQ), with 1 < p < t(4; p) for (p,») €
I1;,(A) and 1 < p < t(B; v) for (p, v) € II,,(A). All t(A; p) and t(B; v) may
be replaced by a(A — pI) and a(B — vl), respectively.

(f) The Schechter essential spectrum.
4.18) Oum(4 B, B) = 0, U 05,
where o, is the set on the right of (4.13) and a, is the set of all nonzero X in the
set

(0m(4)-0(B) U 0(4)- 0,,(B))\ 0,

Jor which the index (4.17) does not vanish.

REMARK 1. For the case A = 0 we make some comments. nul(4 é,, B)=0
implies nul 4 = nul B = 0; the converse is valid if « is in addition faithful on
X ® Y.Incasenul 4 > 0 ornul B > 0, we have

nul(4 ®, B) = nul(4 ® B) = dim(N[4] ® D[B] + D[4] ® N[B]),
if either X or Y is of finite dimension, while otherwise nul(4 éa B) = c0. An
analogous argument is possible for def(4 ®, B) in case R[4 ®, B] is
closed.
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For 4 ®,, B closed, R[4 é, B]is complementary if and only if both R[4]
and R[B] are complementary, in which case R[4 ®, B] is the closure of
R[A]® R[B] and N[4 @, B] the closure of N[4 ® B] in X ®, Y. For
both X and Y Hilbert spaces, R[4 ®, B] is closed if and only if both R[A4]
and R[B] are closed, in which case R[4 ®, B] is the closure of R[4] ®
R[B]and N[4 ®, B] the closure of N[4 ® B]linX ®, Y.

REMARK 2. A very special case of (4.15) is obtained by J. Piepenbrink and
P. Rejto [19, (3.37)].
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1975), both held at the Research Institute for Mathematical Sciences, Kyoto
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After the present paper had been accepted for publication it came to the
attention of the author that M. Schechter and M. Snow used a different
method to treat Theorems 3.1 and 3.4 for the special case where both 4 and B
are bounded linear operators [M. Schechter and M. Snow, The Fredholm
spectrum on tensor products, Proc. Roy. Irish Acad. Sect. A 75 (1975),
121-127; M. Snow, A joint Browder essential spectrum, Proc. Roy. Irish Acad.
Sect. A 75 (1975), 129-131].
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