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SPECTRAL PROPERTIES OF TENSOR PRODUCTS
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Abstract. The aim of the present paper is to obtain, for tensor products of

linear operators, their essential spectra in the sense of F. E. Browder, F.

Wolf and M. Schechter and explicit formulae of their nullity, deficiency and

index. The theory applies toA®I+I®BaadA®B.

Introduction. Let A and B be densely defined closed linear operators in

complex Banach spaces X and Y respectively with domains D[A] and D[B]

and with nonempty resolvent sets p(A) and p(P). Associated with each

polynomial of degrees m in £ and n in tj

(o.i) p (fei)-2<3*iV
jk

is a polynomial operator

(0.2) P{A ®I,I®B) = ^cjkAJ®Bk
jk

in the tensor product X ®a Y, the completion of X ® Y with respect to a

quasi-uniform reasonable norm a. In particular, the operators A ® I + I ®

B and A ® B correspond respectively to the polynomials £ + n and £n. The

symbol 7 stands for the identity operators in both X and Y. The domain of

(0.2), which is by definition r\Jk-c¡i^oD[AJ] ® D[Bk], can be shown to

coincide with D[Am] ® D[B"]. Assume (0.2) is closable in X ®a Y and

denote its closure by P {A ® I, I ® B).

The main concern of the present paper is with the problem of what spectral

contributions A and B make to P{A ® I, I ® B). For a certain class of

polynomials P(£, n), the spectrum of P {A ® I, I ® B) has been determined

in Ichinose [11] and [12] (cf. Reed and Simon [20]):

a(P [A®I,I®B}) = P(o(A),o(B)),
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where the spectrum is denoted by o. The present paper gives exact représen-

tions of the essential spectra of P {A ® /, / ® B} in terms of the parts of the

spectra of A and B. By the essential spectra are meant those in the sense of F.

E. Browder [3], F. Wolf [26] and M. Schechter [22]; they are closed subsets in

the complex plane C and denoted respectively by atb, om and aem. As

by-products, their complementary sets, i.e. the set of all isolated, finite-dimen-

sional eigenvalues and the intersection of the Browder essential spectrum and

the Fredholm domain, are also represented. Further, formulae expressing the

nullity, deficiency and index for P{A ® I, I ® B) in terms of the quantities

concerning A and B are derived. The class of admissible polynomials depends

on A and B and therefore on their spectra.

The results may be of use as basic principles in the spectral theory of

many-body Schrödinger operators (e.g. Balslev and Combes [1] and B. Simon

[23]).
In §1 there are given some preliminary results on linear operators and

tensor products which play underlying roles in the next sections.

§2 is devoted to the study of some useful properties of the admissible

polynomials, the class of which is denoted by ^?e(A,B) and defined as

follows.

A polynomial P(£, r¡) is said to belong to ^Pe(A,B) if it satisfies that

P(a(A), a(B))¥zC when both o (A) and o(B) are nonempty and that for

every k £ P(o(A), a(B)) with dist(ic, P(a(A), a(B))) > 0 (for every «EC

when either a(A) or a(B) is empty) there exist nonempty open sets U and V

with CtV c p(A) and CV c p(B) having the following properties:

(i) for each sufficiently large r > 0, the restrictions of the boundaries 91/

and 9V to the closed disc Kr = (f; |f | < r} consist of a finite number of

rectifiable Jordan arcs and have a length O (r) as r -» oo;

(ii)dist(K, P(U, K))>0;

(iii) |||(|/ - A)~x\\ is uniformly bounded on Ci/ and ||tj(tj/ - J5)_1|| is

uniformly bounded on C V;

(iv)_for some t > 0, |jP(£, ij)|(|£| + |tj|)-t is bounded away from zero on

U X V for sufficiently large |£| + |ij|.

Note that if both A and B are bounded every polynomial belongs to

<6'e(A, B). §3 contains the main results. A full use of the properties of the

polynomials in 9e(A, B) studied in §2 proves the theorems on the Browder

and Wolf essential spectra of P{A ® 1,1 ® B) that for P E 9e(A, B)

oeb(P (A®I,I®B}) = P(oeb(A), a(B)) U P(o(A), a^B));

aew(P{A ®I,I®B}) = P(aew(A),c(B)) U P(a(A), a^B)).

On the proof of the inclusion c it works that P(£, tj) belongs to ^e(A, B)

which implies that |P(£, ti)| becomes large on o(A) x a(B) with |£| + \r¡\ so
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that it prevents "cancellations" at infinity. The other inclusion d , however, is

valid in fact for every polynomial P(£, t/). A further elaboration enables one

to derive formulae of the nullity, deficiency and index for_P{.d ® I, I ® B).

With this very index the Schechter essential spectrum of P {A ® I, I ® B } is

also exactly determined. It will be also observed that, if, in addition, the

crossnorm a is faithful, then all the results are valid for another associated

polynomial operator

(0.3) P[A ® I, I ® B] = 2 CfiA* ®a Rk
jk

in X ®a Y, where the Aj ®a Bk are the closures of the AJ ® Bk since they

are closable (see [12]).

§4 gives a concise summary of the main results, in particular, in two special

cases for the polynomials £ + tj and £r/, which may be of importance in

applications. The polynomial £ + n belongs to ^e(A, B) if the spectra of A

and B are included respectively in the sectors

S(9A )={i£C; |arg £| < 9A }   and   S(9B ) - {n G C; |arg r¡\ < 9B )

with 0 < 9A + 9B < it and if

\\^I-A)-l\\<MA(axg^      t$S(9A),

\\n(vl - B)-x\\< MB(argr,),      r, £ S(9B),

where MT(9) is a constant depending only on T and 9. The polynomial £n

belongs to tye (A, B) if it does not occur that one of the extended spectra of A

and B contains 0 while the other contains oo.

An exact representation of the essential spectrum of P {A ® I, I ® B } in

the sense of T. Kato [15] will be given in a forthcoming paper.

For the basic notions and results on linear operators and tensor products

used here see T. Kato [15] and R. Schatten [21] (see also [5], [14], [24], [25]
and [7], [8D.

1. Preliminary resulte.

"1.1. Essential spectra of linear operators. Let Z be a complex Banach space

with Z' its topological dual space. Let T be a closed linear operator with both

domain D[T] and range R [T] in Z. The identity operator in Z is denoted by

7. For T densely defined, the adjoint of T is denoted by 7". We denote the

spectrum and resolvent set of T by o(T) and p(T), respectively.

The nullity of T, null T, is the dimension of the null space N[T] of T. The

deficiency of T, def T, is the dimension of Z/R [T]. The index of T, ind T, is

defined as ind T = nul T - def T, if at least one of null T and def T is finite.

T is said to be semi-Fredhelm if R [T] is closed and at least one of null T and
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def T is finite. In addition, if both nul T and def T are finite, T is said to be

Fredholm.

The semi-Fredholm (resp. Fredholm) domain of T, denoted by pek(T) (resp.

Pew(T)\ is by definition the set of all X in the complex plane C for which

T — XI is semi-Fredholm (resp. Fredholm).

We shall use also the notions of the approximate nullity and approximate

deficiency of T, which are denoted by nulT and defT, respectively. It is

known that nulT (resp. def'T) coincides with nuir (resp. def T) if R[T] is

closed, and is infinite if R [T] is not closed [15, IV, §5, Theorem 5.10]. nulTis

positive if and only if there is a sequence {z¡}JLx c D[T] of unit vectors with

Tz, -»0 as /-» oo, and nul'Tis infinite if and only if this sequence {z¡)f^x of

unit vectors can be chosen to be noncompact ([15, IV, §5, Theorem 5.11] and

[26]). Here we say a sequence {z,}flx c Z is compact if every subsequence of

it contains a convergent subsequence.

The approximate point spectrum of T, av(T), is the set of all X in C such that

nul'(T - XI) > 0. The point spectrum of T, ap(T), is a subset of o„(T). Let

a+(T) (resp. o_(T)) he the set of all X in C such that nul'(T - XI) = oo

(resp. def'(r - XI) = oo).

T. Kato [15], F. Wolf [26], F. E. Browder [3] and M. Schechter [22] have

defined the essential spectrum of T differently.

The Kato essential spectrum of T, aek(T), is the complementary set in C of

the semi-Fredholm domain pek(T) for T. The Wolf essential spectrum of T,

aew(T)' is tne complementary set in C of the Fredholm domain pm(T) for T.

It is easily seen that oek(T) = a+(T) n a_(T) and a^T) = o+(T) u

o_(T). The Schechter essential spectrum of T, aem(T), is the union of am(T)

and the set of all X in a(T) for which T - XI is Fredholm with ind(T - XI)

=h 0. The Browder essential spectrum of T, aeb(T), is the set of all X in o(T)

such that at least one of the following conditions holds: (i) R[T - XI] is not

closed; (ii) A is a limit point of a(T); (iii) Un>0N[(T - XI)"] is of infinite

dimension.

If X is an isolated point of o(T), by the projection associated with X is

meant the bounded linear operator P in Z defined by

P~i2m)-l({SI-T)-xdl,
Jc

where C is a circle round X such that X is the only point of o(T) contained in

C. If P is finite dimensional, i.e. of finite rank, X is an eigenvalue of T with

algebraic multiplicity t(T;X) = dim P, which is coincident with

dim \J N[(T-XI)"].
«>o

Such an eigenvalue will be referred to, throughout this paper, as "an isolated,
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finite-dimensional eigenvalue". Then the set o(T)\ oeb(T) is the set of all

isolated, finite-dimensional eigenvalues of T.

All the four essential spectra as above are closed subsets of the complex

plane C; they are empty if the Banach space Z is of finite dimension. They

coincide if T is selfadjoint.

Among these various parts of the spectrum and their boundaries there are

the following inclusion relations. The boundary of a set U in the complex

plane C is denoted by dU.

Proposition 1.1. (a)

(1-1) ^(T^llmlo^T) C oem(T) C oeb(T) C o(T).

(1.2) oek(T) U op(T) = on(T) c o(T).

(b)

(1.3) ooeb(T) c3oem(T) Cdo^T^tÚllc^eÁn

(1.4) do(T) = (o(T)\oeb(T))(jdoeb(T) cdov(T).

Proof. (1.1) and (1.2) are obvious. (1.3) will be shown with the aid of [14,

Theorem 6] or [15, IV, §5, Theorem 5.17]; for T bounded with D[T] = Z, it

has been shown in D. Milicic and K. Veselic [17]. For (1.4) see e.g. [10].

Q.E.D.
Associated with each polynomial of degree m in £

m

(1.5) />(£)= 2 ^',    «m*o,
j-Q

is a linear operator

m

(1.6) P(T) = 2 "jP
7-0

in Z. If the resolvent set p(T) or, more generally, the Fredholm domain

Pew(T) °f T is not empty, then p(T) is closed with domain D[Tm] (see e.g.

[22]). It follows by virtue of the closed graph theorem that the graph norm of

p(T) is equivalent to that of Tm and hence to the norm

m

(1.7) |z||+ 2 \\TJz\\,      zED[Tm}.
7-1

In this case, it will be shown thatp(T)' = p(T) it 7/is densely defined.

The relationships between the various parts of the spectrum of T and those

of p(T) are given by the following

Proposition 1.2. Let T; D\T] c Z-» Z be a densely defined closed linear
operator with nonempty resolvent set p(T). Then
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(a)   o(p(T))=p(o(T)); (b)   ap(p(T)) = p(op(T));

(c)   o„(p(T)) = p(o„(T));       (d)   o+(p(T))=p(o+(T));

(e) o_(p(T))=p(o_(T)); (f) oeb(p(T)) = p(oeb(T));

(g) aw(/?(r))=/?(aw(r)); (h) oek(p(T)) D p(oek(T));

(0   ^ÁP{T))EP{oem{T)).

Remark. Proposition 1.2 is valid for T' in place of T. Further, it will be

shown that Proposition 1.2 is true also for T with nonempty Fredholm

domain.

Proof of Proposition 1.2 and Comment. The relations (a), (b) and (c) are

well known. The other relations have been shown in B. Gramsch and D. Lay

[6], for T bounded with D[T] = Z. In (h) and (i), equality does not in general

hold; they give also simple examples in which these inclusions are proper. For

general T, the relation (f) has been shown in R. D. Nussbaum [18] and (g) in

E. Balslev and T. W. Gamelin [2]. The relations (g) and (h) follow readily

from (d) and (e). The relations (d), (e) and (i) will be shown with the aid of

[14, Lemma 341], [5, Theorem 2.1] and the following lemma.

Lemma 1.3. Let T: D[T] c Z -» Z be a (not necessarily densely defined)

closed linear operator with nonempty resolvent set p(T). Let m be a positive

integer. If nul'(T -XI)>0 there exists a sequence {e,}JLx C D[Tm] of unit

vectors such that, for 0 < / < m - 1, P(T — À/)e, -»0 as /-> oo. In addi-

tion, if nul'(r — XI) = oo the sequence {e¡}fLx can be chosen to be noncom-

pact.

Proof. Let {z,}fLx C D[T] be a sequence of unit vectors with (T - XI)z,

-» 0 as / -» oo. Then setting

e, = \\(T- piy(m-"zl+k\rl(T - piy°"-l)z¡+k,   / - 1,2,...,

for some large A fixed and p E p(T) fixed will give a desired sequence.

Further, if nul'(T - XI) = oo and if {^)~_i is noncompact, {e,)fm,x is non-

compact.   Q.E.D.

We shall need the following result, a more precise one than the relation (b)

in Proposition 1.2. It is a slight extension of [25, Theorem 5.9-D], and can be

shown by modifying the proof as in the proof of [26, Lemma 3.8].

Proposition 1.4. Let T: D[T]cZ-^>Z be a linear operator and let

/>(£) = dWjmX{¿, — Pj)mj,  a ^ 0,  be  a polynomial in  £  with  distinct  zeros

Ml» «2.Mr- Then

N[P(T)] - N[(TX - u,/)""] © • • • 0 N[(T - prI)m'].
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1.2. Tensor products of Banach spaces. Let X and Y be Banach spaces with

A" and Y' their topological dual spaces.

A norm a on the tensor product X ® Y is said to be reasonable if it is a

crossnorm on X ® Y whose dual norm a' is also a crossnorm on X' ® Y'.

X ®aY denotes the completion of X ® Y with respect to a.

We shall introduce a slightly generalized notion of uniform crossnorms,

which is useful in the present work. L(Z) denotes the linear space of all

bounded linear operators T of the Banach space Z into itself.

A crossnorm a on X ® Y is said to be quasi-uniform with constant k on

x® y if

a((r®5)«)^||(r®S)«|a<A||71|||5||||«||a

for every pair (T, S) E L(X) X L(Y) and all u E X ® Y. A uniform

crossnorm is quasi-uniform with constant k = 1.

Note that if a is a quasi-uniform reasonable norm on X ® Y the dual norm

a' satisfies

a'((T ® S')u') = \\(T ® S')u'\\a> < k\\T'\\ \\S'\\ \\u'\\a,

for every pair (T, S) E L(X) X L(Y) and all u' E X' ® Y'.

The smallest reasonable norm e and the greatest one it are uniform. The

prehilbertian norm a on X ® Y with both X and Y Hubert spaces, which is

the norm induced by the inner product (xx ®yx, x2 ® y2) = (x,, x2)(j>,, j>2),

is uniform.

A crossnorm a (a > e) on X ® Y is said to be faithful if the natural

continuous linear mapping j": X ®a Y -» X ®e Y is one-to-one.

In the following, let P G L(X) and Q E L(Y) be^continuous projections.

Then PX ® QY is a normed linear subspace of X ®a Y equipped with the

norm 5 induced by the norm a of X ®a Y. We denote the closure of

PX ® QY in X ®a Y by PX ®a QY.
We shall also use the notion of ®-norms [8], which are defined on XQ ® Y0

for each pair of Banach spaces X0 and Y0. For a a ®-norm, we denote the

norm of u as an element of X0 ® Y0 sometimes by a(u; X0, Y0).

Proposition 1.5. (a) If a is a quasi-uniform reasonable norm on X ® Y with

constant k, then ä is a quasi-uniform reasonable norm on PX ® QY with

constant k\\P\\ \\Q\\. In this case, P ®aQ is a continuous projection ofX ®a Y

into itself and the range R[P ®a Q]of P ®a Q is the closure of PX ® QY in

X®aY:

R[P ®« Q] =(P ®« Q)(X ®« Y) = PX ®-aQY.

In addition, if a is faithful on X ® Y, so is ä on PX ® QY.

(b) If a is a ®-norm then a is equivalent to 5 on PX ® QY.
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Proof, (a) First we show a is a reasonable norm on PX ® QY. a is

induced on PX ® QY by a and so is a crossnorm on it. To show that the

dual norm «' of ä is a crossnorm on (PX)' X (QY)', let (x'„ y\) G (PX)' X

(QY)'. It suffices to show

¿F(xi®/,)<||x',||||y;||,

since the reverse inequality is always valid. By the Hahn-Banach theorem

there exist x' G X' and/ G Y' with

¡x'|| = ||xi||,       <x1,x'> = <x1,x'1>,      xxEPX,

and

Then

öY>i ®/,) = sup{|<«„xi ®/,>|; », G PX ® f2^«(«i) < 1}

= sup{|<M,,x' ®/>|; uxEPX® QY,E(ux) < 1}

= sup{|<w, x' ®/>|; «GA-07, a(«) < 1},

which, by definition of the dual norm a', equals

a'(x'®/)=||x'||||v'|| = lx'I||||/1||.

This proves that ä is reasonable on PX ® QY.

Next, we show that ä is quasi-uniform on PX ® QY. Let Ax G L(PX) and

Bx E L(QY), and set A = AXP and B = 5,0. Then v4 G L(AT) and 5 G

L(Y) with IMII < ||¿,|| \\P\\ and ||P|| < \\BX\\ ||ß||. If «, G PX ® QY, so
that (Ax ® Bx)ux EPX ® QY, we obtain

a((Ax ® Bx)ux) = 5((A ® B)ux) = a((A ® B)ux)

< k\W\ FH«.) < k\\P\\ \\Q\\ \\AX\\ 115,115(1..),
since a is quasi-uniform with constant k. Thus ä is quasi-uniform with

constant*||P||||e||.
Since o is quasi-uniform, P ®aQ belongs to L(A^ ®0 Y) and (P ®a Q)2

— P ®aQ, that is, P ®ag is a continuous projection of X ®a Y into itself

and so R[P ®a Q] is a closed subspace of X ®a Y. It is evident that

PX ®Agy is included dense in R[P ®a Q], so that the closure of PX ® QY

in X ®a Y coincides with R [P ®a Q].

The last assertion for a faithful is evident.

(b) First note the induced norm ä is defined precisely by

«(«) = ct((jP ®jQ)u),       uEPX® QY,

where jP (resp.jQ) is the injection of PX (resp. QY) into X (resp. Y). We have

to show <*(«) is equivalent to a(u; PX, QY).
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For uE PX ® QYwe have

5(«i) = a((jP ®jQ)u; X, Y) < \\jP\\ \\jQ\\a(u; PX, QY) = a(u; PX, QY),

a(u; PX, QY) = a((P ® Q)(jP ®jQ)u; PX, QY)

< \\P\\ WQHiJP ®jQ)u; X, Y) = ||P|| ||ß||5(«).   Q.E.D.

Note that in Proposition 1.5, if P or Q is of finite rank then R [P ®a Q] -

PX ® QY.

2. Polynomial operators. In this section we shall study the properties of the

polynomials in the class ^e(A,B) defined in the Introduction, which are

useful in the next section.

Throughout this section and the next, X and Y are complex Banach spaces

and a is a reasonable norm on X ® Y unless otherwise specified. Let A:

D[A] c X -> X and B: D[B] c Y-> Y be densely defined closed linear

operators with nonempty resolvent sets p(A) and p(B). The identity operators

in both X and Y are denoted by the same /.

It is assumed that both dim X and dim Y are positive and at least one of

them is infinite. Only polynomials (0.1) of degrees m > 1 in £ and n > 1 in tj

are considered. For convenience in treating the essential spectra we assume

the operator (0.2) associated with (0.1) is closable in X ®a Y with closure

P{A ® I, I ® B). This is the case, for instance, if a is faithful on X ® Y

[12, Theorem 1.1]. For general a it is open whether or not (0.2) is closable. In

fact, it is possible that the norm m is not faithful on X ® Y for some pairs of

Banach spaces X and Y, for there is a Banach space without the approxima-

tion property, according to P. Enflo [4].

To simplify the notation we often write

(2.1) Px = P {A ® I, I ® B ) - XI ®a I,      P = P0.

For a polynomial P(£, tj) and subsets oA, aB of a(A), o(B), respectively, we

understand P(oA, aB) = 0 if either oA or aB is empty, while otherwise it offers

no problem to define P(aA, oB). For r > 0, Kr denotes the closed disc {£;

If I < '}•
It is easy to see that if P(& tj) is in ^e(A, B) the set P(a(A), o(B)) is

closed in C. The class *3(A,B) introduced in [12] is included in 9t{A, B).

We shall use the following result on the spectrum of P{A ® I, I ® B). It

has been shown in [12] for P E 9(A,B), but the same proof as there is valid

in the present case.

Theorem 2.1. Let abe a quasi-uniform reasonable norm on X ® Y and let

P E <$e(A, B). Then

(2.2) "(P{A ®I,I®B}) = P(o(A), a(B)).
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By this is meant that (2.2) holds valid if both a (A) and o(B) are nonempty, and

further that the spectrum of P {A ® I, I ® ß) is empty if and only if either

o(A) or a(B) is empty.

Now we observe some properties of the polynomials in ^e(A, B). P{A' ®

I', I' ® B') stands for the operator (0.2) with A', B' and /' in place of A, B

and /, respectively; it is considered as an operator with domain D[(A')m] ®

D [(£')"] in (X ®a Y)' as well as in X' ®a. Y'.

When either X ox Y is of finite dimension, all reasonable norms on X ® Y

are equivalent, and hence quasi-uniform and faithful. We have X ®a Y =

X ® Y, in which (0.2) is closable, and (X ®a Y)' - X' ®a. Y' = X' ® Y'.

Proposition 2.2. Assume either X or Y, say Y, is of finite dimension. Let

P(Z, tj) be a polynomial (0.1) in 9e(A, B). Then

(a) for each fixed v E a(B)

D[P(A, v)] = D[Am],       D[P(A\ v)] = D[(A')m];

(b)for every positive integer t

D[P{A ® 1,1® £}'] = D[A'm] ®D[B'n],

D[P {A' ® I', I' ® B'}'] = D[(A')'m] ® D[(B')'n];

(c)P{A ® I, I ® B) = P{A ® I, I 0 B},

P {A ® I, I ® B)' = P{A ® I, I ® B)' = P{A'® I',r® B');

(d) for every v and every X there exists a constant C such that for all
uED[A'm]® Y

\[(P(A, v) - XI)' ® /]«[< C[\\P{A ® I, I ®B}'u\\a+\\u\\a]

and for all u' E D[(A')'m] ® Y'

\\[(P(A', v) - XI')' ® /']«'[< C[\\P {A' ® I', I' ® B'}'u'\\a, + \\u'\\a.].

Proof, (a) Let v E o(B). It is obvious if *2?k*,r¡cmkvk does not vanish. If it

vanishes we have only to show A is bounded; note it implies by closedness

D[Am] = X and D[(A')m] = A". Let X £ P(a(A), o(B)). Since P E

%(A, B) there are nonempty open sets U D a(A) and V D o(B) such that

X & P(U, V) and £(£/ - A)~x is uniformly bounded in Ct7. In view of [15,

III, §6, Theorem 6.13] it suffices to show U is bounded. To see it choose a

small 8 > 0 with {tj; |tj - v\ < 5} c V such that '2Jk*oCmkr\k does not vanish

on the circumference |tj - v\ = 5. There is a large r0 > 0 such that for each

fixed | with ||| > r0 the polynomial in tj, 'Zk=0cmkj\k — X£~m, has a zero in

the open disc |tj — v\ < 8. If U is unbounded we can choose a large £0 in U
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such that

2 ^m**!* ~ A£o
*=o

>
m-l

so      Zj   so
(m-7-1)

2    CjkV'
Jt»=0

on |n — v\ = 8. Then by virtue of the theorem of Rouché, P(£0,17) — X has at

least a zero in |tj — v\ < 8, a contradiction.

(b) We show only for P {A ® I, I ® B}. For A bounded it is trivial. If A is

unbounded then by the proof of (a), "2,nk„ocmkrlk does not vanish on o(B), so

that, by Proposition 1.2, 2Z"k=0cmkBk has an everywhere defined bounded

inverse in Y. Then the assertion can be shown by induction on t.

(c) B is bounded with D[B]= Y. Proving the first equality is equivalent to

proving the closedness of (0.2). For A bounded it is obvious. Therefore

assume A is unbounded. Let {«/}£., be in D[P{A ® I, I ® B)] = D[Am]

® Y and let u,^u, P{A® I, I ® B)ut^*v in X ® Y in the norm a as

/ -* 00. Then by continuity we obtain for p E p(A)

2
7-0

Ai (A -ill)  m® 2cjkBk
fc-0

u=[(A -pi)  m®l]v.

u has a representation u = 2;_iX(. ®y¡, where both the sequences {x,}¿_j C

X and {y,}'»! C Y are linearly independent. Since 2Z"k=0cmkBk is one-to-one

as seen in the proof of (a), we see by (b) that for 1 < p < r

Am(A - pl)-mxp + ¿2 CjAJ(A - ¡iI)-mXi

1=1 j-0

is in D[Am], where c, are certain constants. Hence {*,}/_ 1 C D[Am] and

u E D [A m] ® Y. Thus (0.2) is closed.

To establish the second equality we have only to show the domain of

P {A ® I, I ® B}' is included in D [(A')m] ® Y'. Let u' be in

D[P [A ® I, I ® B)'},   m'=2x;®v/,
i-l

where both the sequences {x'¡yi=x c X' and {y,'}^_, c Y' are linearly inde-

pendent. Since 1"k.0cmkBk maps onto Y there exists a sequence {y¡)r¡mX c Y

with <2nk-0CmkB%, y'g) = 8pq, p,q=l,2,...,r. Then for all x G D[Am]
and for 1 < p < r we have

OT-l

<Amx,x;) + 2 2(Aix,x;)l Zc^y;
1 = 1 y=o \*;=0

= <P{>l®7,7®P}(x®y;,),M'>

= <x®^,P{>l®7,/(8i5}V>.
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Hence it is easy to see inductively that {x/}'_, c D[(A')m], whence u' E
D[(A')m]® Y'.

(d) We show only the first inequality. By (b) and (c), both A'm ® I

and P {A ® I, I ® B}' are closed in the Banach space X ® Y equipped with

the norm a and have the same domain. It is easy to verify that there is a

constant C, such that for all u E D[A'm] ® Y

\\P{A®I,I®B)'u\\a<Cx[l[A""®l]u\l+\\u\\a].

Here recall that all reasonable norms on X ® Y are equivalent, because Y is

of finite dimension. Then by virtue of the closed graph theorem, the graph

norm of P {A ® I, I ® B )' is equivalent to that of A,m ® I. Since PA(|, v) =

P(£, v) - X is of degree < m in {, the graph norm of PK(A, v)' ® I is

majorized by that of A"" ® I and hence by that of P{A ® I, I ® B)'.

Q.E.D.
Remark. From the proof it is seen that the assertions (a) and (b) in

Proposition 2.1 are valid for both X and Y of infinite dimension.

The proofs of the theorems in the next section will depend on examining

the properties of the parts of P in its suitable invariant subspaces.

Associated with each finite subset {a,}"., of a(A) \ aeb(A) is the projection

Pin A':

P = (2ni)-1t    [ (H-A)-ld^.

Here G, 1 < / < a, are disjoint circles round a,- such that ctj is the only point

of a (A) contained in Cj. In the same way, associated with each finite subset

{ ßk)bk~i of a(B) \ aeb(B) is the projection Q in Y. P and Q aie finite-dimen-

sional and commute with A and B, respectively, i.e. PA c AP, QB C BQ. By

Proposition 1.5,

X®aY= R[P ®a Q] © R[P ®a (I-Q)]

© R[(I - P) ®a Q] © R[(I - P) ®a (I - Q)],

where

R[P ®a Q] = PX ® QY,

RÍP ®a (I - Q)] = PX ®a(I - Q)Y - PX ® (I - Q)Y,
(2 3) »

R[(I - P) ®tt Q] - (/ - P)X ês QY=(I- P)X ® QY,

R[(I-P) ®a(I-Q)] = (I-P)X®-(I-Q)Y.

The projections P ®a Q, P ®a(I - Q), (I - P)®aQ and (/ - P) ®a (I

— Q) commute with Px. Consequently Px is decomposed by these four
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subspaces of X ®a Y in (2.3). Its parts in the respective subspaces in (2.3) are

denoted by PA1„ PM2, PX21 and PX22; for X = 0 set P^ = P0Jk,j, k=l,2.

The parts of A in PX, (I - P)X are denoted by A,, A2 and the parts of B

in QY, (I - Q)Y by Bx, B2. Then Ax and Bx are bounded on PX, QY,

respectively, with o(Ax) = {a,}"_j, o(Bx) = {¿S*}*.., while A2 and B2 are

closed in (7 - P)X, (I — Q)Y, respectively, with spectra

o{A2) = o(A)\{aJ}a._v       o(B2) = o(B)\{ßk}bk_l.

The identity operators in PX, QY (resp. (7 - P)X, (I - Q)Y) are denoted

by the same 7, (resp. IJ.

Proposition 2.3. 7/P(£, n) is in <$e(A,B) then it is also in ^e(Aj, Bk)for

j, * - 1,2.

Proof. Let P G ??e(A, B). Since Ax and Bx are bounded every polynomial

belongs to 9e(Ax, Bx). The proofs of the other three cases are analogous and

so we show only the case/ = k = 2.

We may assume both o(A2) and o(B2) nonempty. Let X G P(o(A2), aiPj))

with dist(X, P(o(A2), o(B2))) > 0. We may assume X is in P(o(A), o(B));

otherwise the assertion is obvious. We must find nonempty open sets U2 and

V2with Ci/2 c p(AJ and CV2 c p(BJ having the properties with (7 - P)X,

(I - Q)Y, A2, B2, U2, V2 and X in place of X, Y,A, B, U, V and k, respec-

tively, in definition of $e(A, B).

Since P G ^e(A, B) we can choose, for some fixed n g P(o(A), o(B)),

nonempty open sets U, F with Ci/ c p(A), CV c p(B) having the properties

mentioned in definition of <3'e(A, B) and a large r > 0 such that both

a(Af) n Kr and a(B2) n Kr are nonempty and such that

(2.4) |P(£,n)|>|A| + l    onU + V,     |£| + |n| > r.

Then if U n CKr (resp. V n CKr) is nonempty,

dist(X, P(U n CTs;, V)) > 1   (resp. dist(X, P(U,Vr\CKr))> 1).

Since o(A2) n ATf and o(B2) n ATr are compact, there exist nonempty,

bounded open sets Ux and Vx with boundaries consisting of a finite number

of rectifiable Jordan curves such that

o(A2) nK,cUxcU,      o(B2) n Kr C Vx c V,

dist(X,P(Ux,Vx))>0.

Set t/2= (t/ n C/Q u (i/i n Kr), V2=(Vn CKr) u (K, n Kr). It is clear
that U2 and F2 are the desired open sets.   Q.E.D.

The closability of P{A ® I, I ® B) implies the closability of P{A®

Ik, Ij® Bk) for/, k = 1, 2. As a consequence of Proposition 2.3 we see that if
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P E <3'e(A, B) then Theorem 2.1 is valid with Aj and Bk,j, A = 1, 2, in place

of A and B, respectively.

Proposition 2.4. If P E ^e(A,B) then

(2.5) PXX = P{AX®IX,IX®BX),

(2.6) PX2 = P{AX®I2,IX®B2),

(2.7) P2X = P{A2®IX,12®BX),

(2.8) P22 = P{A2®I2,I2®B2).

Proof. (2.5) is obvious. If A £ P(a(A), o{B)), by Theorem 2.1 PA has an

everywhere defined bounded inverse. Then the same is true of the parts PX12,

PA21 and PA22. They are extensions of the operators on the right of (2.6)-{2.8).

Therefore it suffices to show that the operators on the right of (2.6)-(2.8) are

closed and that all their resolvent sets contain A. However, it is readily seen

from Proposition 2.2 and Theorem 2.1 with Proposition 2.3 and from the fact

that the operator on the right of (2.8) is the closure of P {A2 ® I2,12 ® B2).

Q.E.D.
Throughout this paper, each of the parts of PA, that is, PA11, PA12, PA21 and

PA-22, will be referred to as the part of PA relative to the sets {a,.}"., and

Finally we introduce several subsets of a (A) X a (B):

(2.9) A0(A) - {($, tj) E a(A) X a(B); /»({, tj) - A},

(2.10) A,(A) = {(fe tj) E (o(A) \ oeb(A)) X (o(B) \ oeb(B)); P({, tj) = A},

(2.11) AI0(A) - {(fe tj) E {o(A) \ aeb(A)) X (a(B)\ am(B)); P& tj) = A},

(2.12)AOI(A) = {(£ tj) E (o(A) \ o^A)) X (o(B) \ oeb(B)); P(i, tj) = A),

(2.13)AI2(A) = {(£, tj) E (o(A) \ oeb(A)) X (oeb(B) \ o^B)); P(t tj) = A},

(2.14)A21(A) = {(I, tj) E (aeb(A) \ o^A)) X (o(B)\ aeb(B)); P(¿ tj) = A}.

3. Essential spectra for tensor products of linear operators. For the closed

linear operator P{A ® I, I ® B) in X ®a Y,we shall first give exact repre-

sentations of its Browder and Wolf essential spectra in terms of the parts of

the spectra of A and B, next derive formulae for its nullity, deficiency and

index, and finally determine its Schechter essential spectrum with this very

index.

We follow the same conventions as in §2.

3.1. The Browder essential spectrum.

Theorem 3.1. Let a be a quasi-uniform reasonable norm on X ® Y and let

P E <$e(A, B). Then
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(3.1) oeb(P{A ® 1,1 ® B)) = P(oeb(A),o(B)) U P(o(A),oeb(B)).

By this is meant that (3.1) holds valid if both oeb(A) and a(B) are nonempty or

if both o (A) and aeb(B) are nonempty, and further that oeb(P{A ® I, I ® B))

is empty if and only if either o(A) — 0 or o(B) = 0 or oeb(A) = oeb(B) = 0.

As will be seen from the proof of Theorem 3.1, the inclusion

(3.2) oeb(P [A®I,I®B))D P(oeb(A), o(B)) u P(o(A), oeb(B))

holds valid in fact for every polynomial P(£, tj). To prove (3.2) we need

Lemma 3.2 below. To prove the reverse inclusion we simply modify the

method of R. D. Nussbaum [18] to fit the setting of tensor products.

Lemma 3.2. Let P(£, tj) be a polynomial (0.1).

(a) // both nul'(^l - fil) and nul'(B - vl) are positive and if at least one of

them is infinite, then nul'Px is infinite with X — P(p,v).

(b) // both def'(A - pi) and def'(B - vl) are positive and if at least one of

them is infinite, then def'Px is infinite with X = P([i, v).

(c) Let P E<$e(A,B). If both nul'(P(^, v) - XI) and nul'(P - vl) are

positive and if at least one of them is infinite, then nul'PA is infinite.

(d) Let P E <$e(A, B). If both def'(P(A, v) - XI) and def'(B - vl) are
positive and if at least one of them is infinite, then defPx is infinite.

Proof. First note

(3.3) P(£, tj) - P(p, v) - 2MÍ - tfOl - ")*'       ¿oo = 0,
/*

and

P(ti)-X = (P(£, n) - P(£, v)) + (P(£, v) - X)

(3.4) n       m

= 2   2aJkZJ('n-v)k+(P(t,v)-X).
k-iy-o

(a) By the hypothesis with Lemma 1.3 there exist sequences of unit vectors,

{x,}?mX C D[Am] and {y,)JLx C D[Bn], such that AJ(A - /i/)x,->0 as

/ -> oo for 0 < / < m - 1 and Bk(B - vl)y, -H>0as/-»oofor0< k < n -

1. Since either nul'(^ - pi) or nul'(5 - vl) is infinite, by Lemma 1.3 either

{*/}/" i or {yt}T-\ can be chosen to be noncompact. Then {xi®y,)fmX is

noncompact in X ®c Y (e.g. [9, Theorem 1]) and hence in X ®a Y because

e < a. It is a sequence of unit vectors in X ®a Y, since a is reasonable. By

(3.3) we obtain with X = P(p,v)

Px(x,®y,) =[P{A®I,I®B)- P(p,v)I® l](xx ®yx),

=    2    bJk(A-piyxl®(B-vI)kyl,
j + k>0
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which approaches 0 in A!" ®a Y as / -» oo. Hence nul'PA = oo.

(b) In this case, nul'(^' - pi') and nul'(B' - vl') are positive and one of

them is infinite. By the same argument as in (a) the approximate nullity of the

closed linear operator

(3.5) P{A' ® I', I' ®B')-P(p, v)I' ®a. I'
A

in X' ®a, Y' is infinite. Since PA with A = P(pur) is an extension of (3.5),

both as closed operators in the dual space (X ®a Y)', we obtain def'PA =

nul'PA = oo with A = P(p, v).

(c) By the hypothesis with Lemma 1.3 we can choose a sequence {.V/}/li C

D[Bn] of unit vectors with Bk(B - vI)y,->0 as /-> oo for 0 < A < n - 1.

Note that by Proposition 2.2(a) with its Remark D[P(A, v)] = D[Am] for

v E o(B) and choose a sequence {x,}'£mX c D[Am] of unit vectors with

(P(A, v) - XI)xl^>0 as /-» oo. Since the graph norm of P(A, v) is equiv-

alent to the norm (1.7) with T = A, each sequence {AJx,}°fLx, 0 < / < m, is

bounded. By hypothesis either {x,}f=x or {yt)f.x can be chosen to be

noncompact. Then an argument analogous to (a) using (3.4) will yield the

desired result.

(d) The hypothesis implies that both

n\xl'(P(A', v) - XI')   and   nul'(5' - vl')

are positive and one of them is infinite. The same argument as in (c) and (b)

will yield the result.   Q.E.D.

Proof of Theorem 3.1. (a) Proof of the inclusion (3.2). Because of

symmetry it suffices to show P(aeb(A), a(B)) c oeb(P), assuming aeb(A) and

a(B) are nonempty.

Let A E P(oeb(A), o(B)). By Theorem 2.1, A belongs to o(P). We want to

show A E oeb(P). Assume not, so that A is an isolated, finite-dimensional

eigenvalue of P. So A is an isolated point of a(P) and hence P(oeb(A), o(B)).

Both oeb(A) and o(B) are nonempty, closed proper subsets of C. It is then

easy to see that there are boundary points £0 of oeb(A) and rj0 of a(B) with

P(£o> Vo) = A- Bv Proposition 1.1, £0 E oek(A) and tj0 £ o„(B), so that

nul'(^ - y) = oo   and   nul'(B - tjq/) > 0.

Then by Lemma 3.2(a) nul'PA = oo. Since the range R[PX] of PA is closed it

follows that nul PA = oo, that is, A is an infinite-dimensional eigenvalue of P,

contrary to assumption. This proves A E oeb(P).

(b) Proof of the reverse inclusion. Let A E oeb(P). Since P E^e(A,B)

there are nonempty open sets U D o (A), V D o(B) and a large r > 0 such

that (2.4) holds. For each small e > 0, set

Ut = (f; dist(£, oeb(A) n Kr) < e} U (U n CÄ*,)
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and

Vt = {£; dist(f, oeb(B) n Kr) < e} u (V n CKr),

if both oeb(A) n Kr and af6(5) n /<",. are nonempty, while if oeb(A) n Kr — 0

(resp. oié(£) n 7Ç = 0), set £/, = U n CKr (resp. Ke = V n C/Q. If e is

sufficiently small i/e is included in U and Vt in F.

To prove that X belongs to the right member of (3.1) it suffices to show

that, for every sufficiently small e > 0, X belongs to P(Ut,o(B))\j

P(o(A), Ve). In fact, suppose this is established. For each sufficiently large

integer / choose (£,, tj,) with P(£,, tj,) = X in

{(i/,,, n Kr) x (o(B) n K,)) u {(o(A) n *,) x (vx/l n ä;)}.

Since {(£,, vi)}7-i *s bounded, we may assume, by taking subsequences, that it

is convergent to (£0, tj0) as /-» oo. Obviously (£0, tj0) belongs to (otb(A) X

o(B)) u (a(A) X oeb(B)) and P(£0, tj0) = X, whence X belongs to the right

member of (3.1).

If o(A) c Ut or o(B) c Vt then the desired assertion is evident by Theo-

rem 2.1. Otherwise both the sets

o(A)\Ue = {ai);,1   and   o(B)\ Vt = {&}»_.

are nonempty and finite. Let P and Q be the projections associated with

{«/}y-i and {&}**_,, respectively.

In view of (2.4) choose (a0, ß0) E U X V such that \P(a0, ß0)\ > \X\ + 1.

Consider the operator

P{/l®7 + >l0®e,7®7i-l-P®P0}

(3-6) J    k i  \iu\
= 2^2  2 U)(kt)A¿P<AJ->® Q'B¡yBk-'

jk      s-Qt-0XAJXl/

in X ®a Y with domain D [A m] ® D [Btt], where AQ = a0P - AP and B0 =

ßoQ ~ PQ are bounded linear operators of finite rank on X, Y which

commute with A, B, respectivelyvIt is easy to check that there exists a

bounded linear operator R on X ®a Y of finite rank which commutes with

(0.2) and such that for u E D [A m] ® D [Bn],

P{A®I + A0®Q,I®B + P®B0}u-P{A®I,I®B)u = Ru.

Since (0.2) is closable, (3.6) is closable; we denote the closure of (3.6) by Q.

Then D [Q] = D [P]. R commutes with P. For u E DJ?] we have Qu-Pu =

Rm. Q is decomposed by the four subspaces of X ®a Y in (2.3). Its parts in

the respective subspaces are

Q1I = P(a0,^0)(71®71),       Q12 = PI2,       Q2i = P2i   and   Q22 = P22.

Since the Browder essential spectrum of a closed operator T remains
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invariant under perturbations of T by compact operators commuting with T

([16], [13]), we obtain

MP) - °eb(Q) C o(Q) - o(Qxx) U o(Q12) U o(Q2x) U a(Q22).

It is easy to verify by Theorem 2.1 with Propositions 2.3 and 2.4

o(Qn) - {^(«o, A,)}, °(Q,2) = P{o(Ax),o(B2)),

°(Q2l) = ^C^). °(*l)). ^(Q22) - ^OO^). *(A))-

It follows that c;e6(P) is included in

(%A)) U P(a(^,),o(52)) U P(0(/f2),a(5,)) U P(o(¿2), a(2ï2)).

Since A ̂  P(et0, ß0), X belongs to

P«A)\{aj)^vo(B))uP(o(A),a(B)\(ßk)bkml)

CP(U€, o(B)) U P(o(A), Vt).   Q.E.D.

Theorems 2.1 and 3.1 determine the set of all isolated, finite-dimensional

eigenvalues of P{A ® I, I ® B).

Corollary 3.3. The same hypothesis as in Theorem 3.1. Then

o(P {A®I,I®B))\ aebiP {A®I,I®B})

(3.7) =P(o(A)\oeb(A),o(B)\oeb(B))

\{P(oeb(A),o(B))u P(c(A),oeb(B))}.

For each X in the set (3.7), the set (2.10), A¡(A), is finite, A0(A) = A,(A) and

(3.8) tiP{A®I,I®B};X)=      2      t(A; p)t(B; v),
(ii,i.)SA,(X)

where t(T; k) is the algebraic multiplicity of an isolated eigenvalue k of T.

Proof. We shall be concerined only with the algebraic multiplicity of A,

because the other assertions are easy to see from definition of the Browder

essential spectrum.

Denote the image of the projection of A,(A) into the £ (resp. tj) coordinate

by A^A; A) (resp. A^A ; B)). Then both of them are finite, for A,(A) is finite.

Since PA is Fredholm, the parts PAI1, PA12, PA21 and PA22 relative to A^A ; A)

and A,(A ; B) are Fredholm. In the same way as in the proof of Theorem 3.1

we obtain

o(Pu) = P{àx(X;A),Ax(X;B)),

o(PX2) = P{Ax{X;A),o{B)\Ax(X;B)),

a(P21) - P(c(A) \ A,(A ;A), AX(X ; B)),

o(P22) = P{o{A)\Ax{X;A),o{B)\Ax{X;B)).
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By definition of A,(a), X belongs to ct(Pu) but not to the other three sets.

Consequently t(P ; X) = t(Pxx;X). On the other hand, t{Pn; X) is equal to the

dimension of the projection 2((liP)6il(x)P/i ®„ Q,> f°r if (f*. v) ll in A,(\; A) x

A,(a; B) with P(p,v)¥=X then the part of P„ in R^ ®a Q„] has the

spectrum not containing X. Hence follows the result. Here Pa and Qr are the

projections associated with p and v, respectively. Q.E.D.

3.2. The Wolf essential spectrum.

Theorem 3.4. Let a be a quasi-uniform reasonable norm on X ® Y and let

P E <$e(A,B).Then

(3.9) om(P [A®I,I®B}) = P(om(A), o(B)) U P(o(A), 0ew(B)).

By this is meant that (3.9) holds valid if both o^A) and o(B) are nonempty or

if both o(A) and o^B) are nonempty, and further that oew(P{A ® I, I ® 77})

■is empty if and only if either o(A) = 0 or o(B) = 0 or o^A) = o^B) = 0.

It will be seen from the proof of Theorem 3.4 that the inclusion

(3 10)  ^(P{A®I,I®B)) D P(oew(A),o(B)) ij P(o(A), o^B))

UP(oeb(A),aeb(B))

holds valid in fact for every polynomial P(£, tj).

Proof of Theorem 3.4. (a) Proof of the inclusion (3.10). First note the

right member of (3.10) coincides with the right member of (3.9). In fact, by

Proposition 1.1 both $A = oeb(A) \ oew(A) and $A = aeb(B) \ om(B) are

open in C. If both of them are nonempty, we have only to see that P($A, $B)

is a subset of the'right member of (3.9). Let XE P($A, <f>B). Then it is seen

(e.g. [11, Lemma 3.7]) that there exists a boundary point (£0, tj0) of $A X $B

C C2 with P(£0, tj0) = X, which belongs to om(A) X o(B) or o(A) X a„(B)

by Proposition 1.1. Hence X = P(£0, tj0) belongs to the right member of (3.9).

Thus, to prove (3.10) it suffices to show P^^A), o(B)) c o^ÇP).

Let X E P(aew(A), o(B)). If R [Px] is not closed, A belongs to om(P). In the

sequel we may therefore assume it is closed. The proof relies greatly upon

Lemma 3.2.

Let (ju, v) E oew(A) x o(B) with P(p, v) = X. The proof is divided into six

cases. Note v E o(B) if and only if nul(P - vl) > 0 or def(fi - vl) > 0.

It is easy to check that the hypothesis in (a) or (b) of Lemma 3.2 is satisfied

in the following four cases:

I. R[A - pi] is not closed and nul(5 - vl) > 0;

II. R [A - pi] is not closed and def(S - vl) > 0;

III. R [A - pi] is closed, nu\(A - pi) = co and nul(5 - vl) > 0;

IV. R [A - pi] is closed, def(^ - pi) = co and def(5 - vl) > 0;

so that the desired assertion follows from Lemma 3.2.
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V. In case R [A —pi] is closed, nul(A — pi) = oo and def(5 — vl) > 0,

we may assume in view of the cases III and IV that def(i4 — pi) < oo and

nul(5 - vl) = 0. If R [B - vl] is not closed this case is reduced to the case I

with A and B replaced by each other. Therefore assume R[B — vl] is also

closed. Then p lies in the semi-Fredholm domain pek(A) of A and v in the

semi-Fredholm domain pek(B) of B. By Proposition 1.1 both

*A = oeb(A)\oek(A)   and   *B = oeb(A) \ oek(B)

are open in C. Then by [14, Theorem 6],

nul(P - tj/) = 0,       def(B - tj7) = def(77 - vl) > 0

in a neighbourhood of rj = v in ^tB. Further, def(P - tj/) > def(P - vl) > 0

in the component ^B(v) in ¥B containing v. In the same way nnl(A - £7) =

oo in the component VA(p) in ¥A containing p. Then by an analogous

argument used previously, there is a boundary point (\p0, tjq) of ^A(p) X

*aO0 C C2 with P(£0, TJo) = P(p, v) - X, so that £0 G oek(A) or tj0 G aeJt(7i)

by Proposition 1.1. If (£0, tj0) is in oek(A) X VB(v) then def'04 - £07) = oo

and def (P. - tj07) > 0. If it is in *A(p) X oek(B) then

nul(A - £07) = nul'(7i - tj,/) = oo.

Finally if it is in oek(A) X oek(B) then nv\'(A - £07) = nul'(77 - Vo1) " °°-

Thus anyway the assertion follows from Lemma 3.2 (a) and (b).

VI. In the remaining case that R [A — pi] is closed, def(^4 — pi) = oo and

nul(P — vl) > 0, we may assume in view of Lemma 3.2 that nul(^4 — pJ) <

oo and R [B - vl] is closed with def(B - vl) = 0. Then jtt (resp. v) lies in the

semi-Fredholm domain of A (resp. B). By [14, Theorem 6]

def(/7 - tj7) = 0, nul(B - tj7) = nul(77 - vl) > 0

in a neighbourhood of tj = v in ^lB. Further nul(Z? — tj7) > nul(P - vl) > 0

in the component in ^B containing v and def(^4 — £7) = oo in the component

in tyA containing p. Then the same argument using Lemma 3.2 as in the case

V will yield the result.
(b) Proof of the reverse inclusion.

I. The case in which one ofX and Y, say Y, is of finite dimension. In this case

let us keep in mind Proposition 2.2 and P = P{A ® I, I ® B), then (3.9)

becomes

(3.9') om(P [A®I,I®B)) = P(om(A), a(P)).

B is bounded with D [B] = Y and the spectrum o(B) of B consists of a finite

number of eigenvalues. We have

y = 2  © y*   y,m n[(b - viy18^].
peo(B)
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B is decomposed by the Y„. The part of B in Yp is the sum of vl, and a

nilpotent operator in Yv, where 7, is the identity operator in Yr. Then X ® Y

is decomposed into the topological direct sum

(3.11) X®Y=    2     ®{X®YP)
vSa(B)

and P is decomposed by the X ® Yp.

Let A E ffw(P). By Theorem 3.1 there are points u E aeb(A) and v E o(B)

with P(p, v) — A. By the reduction method we have only to show that A

belongs to the right member of (3.9)', assuming that v is the only eigenvalue

of B with algebraic multiplicity t(B; v) = t = dim Y, so that B - vl is

nilpotent.

If P (|, i») - A = 0 then by Theorem 2.1, a(P) consists of only one point A.

Then taking a boundary point u' of aeb(A) we have A = P(p', v).

Therefore we consider the case P(£, v) - A ̂  0. Recall that A E aw(P) if

and only if either nul' PA or def PA is infinite.

In case nul' PA is infinite, by Lemma 1.3 with Proposition 2.2(b) there exists

a noncompact sequence {t//}/lt of unit vectors in D[A'm] ® Y such that for

K P < /,

Pp-xPxu, = P{A®I,I® B)P~X[P{A ®I,I®B)-X(I® I)]u,-*0

inAr ® yas/-»oo.

As Y is of finite dimension, we can choose a sequence {y¡)fLi in Y' of unit

vectors such that {<«/, J^yjjli is not compact. Here set

r

<u,y'>Y='2<yi,y'>xi,
i-i

where m = S/.jX,- ®y¡ in X ® Y and y' E Y'. We may assume, by taking

subsequences, that {{phy'i)y)f^\ is noncompact and bounded away from

zero. Set

*/=ii<«/^;>yir,<«„^;>r»    / = 1, 2,....
Then {x,} Ji, is a noncompact sequence of unit vectors in D [A ""].

To prove that A belongs to the right member of (3.9)' it suffices to show

[PX(A, v)' ® 7]«,-0,      Px(|, v) = P(i, v) - A,

in X ® Y as /-» oo. In fact, this implies PXC<4, v)'xt-*0 as /-> oo, so that

nul' PX(A, v)' =oo and 0 E aw(Px(^, v)'). By Proposition 1.2 there is a

p' E ffw(yi) with P(u', p) - A = 0, whence follows the assertion.

Now we turn to the proof of [PX(A, v)' ® I]u¡ -» 0 as /-» oo. The /-dimen-

sional space Y has the direct sum decomposition

(3.12) y = Nx © • • • © N,
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such that

(3.13) A, 0 • • • 0 Nk = N[(B - vl)k],       1 < k < t.

Hence X ® Y is decomposed into the topological direct sum

X ® Y = (X ® Nx ) © • • • 8 (X ® N,).

Then u, = 2*_i%, uk, E X ® Nk, 1 < k < t, I = 1, 2.Each sequence

{%}J1, is bounded. We have to show for each k,l<k<t,

[Px(A,v)' ®l]ukl->0   as/^oo.

In fact, we show [PX(A, vf ® I]uk, ->0 as /-» co for t - (k - 1) < p < /.

The proof is by induction on /: from k = / to k = 1.

For /: = r, we see with the aid of (3.4) and Proposition 2.2(d) that for

1 < P < t,

[Px(A,v)"~1®(B- vI)'~x][P{A ®I,I®B) -X(I ®I)]u,

= [Px(A,v)p®(B-vI)-i]ull

approaches 0 in AT ® Y as / -> oo. If {y¡)'^2i is a basis of N, then u„ = S'lV//

® y„ where {x,,}^, c D[A'm], I = 1,2,_We have only to consider the

case N, =£ {0}. Then {(B - vl)'~1y¡y¡-2x is linearly independent. It is easy to

see that for 1 < / < i(t), PX(A, vYxu approaches 0 in X as /-> oo, whence

[PX(A, vy ® I]u„ -» 0 in X ® Y as / -» oo.

Assume now that the assertion is valid for k > s, 1 < s < t. Similarly, for

t - (s - 1) < p < t,

[Px04, r)'-1® (73-*/)*-'][> {/I ®7,7®P} -X(/®/)]M/

= [Px(A,v)p®(B-viy-x]usl

+ [Px(A,v)"-l®(B-viy-x]

•[P{A®I,I®B)-X(I®I)]   2   ««
A-j+l

approachesOinX® 7as/^oo.

First observe the second term above. By (3.4) rewrite it as

2 ( 2 ajkA\
c-l\y-0 /

\p-lPx(A,v)"-,®(B-vI)
s-l + k

+ [Px(A,v)p®(B-viy-x] 2 »,
A-i+l

hi'
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whose norm is, as easily seen, majorized by

t

2   (||[Px04, v)p ® I]uh\a +\\[PX(A, v)"-1 ® I]uu\\a).
h^s+ 1

Therefore by the induction hypothesis the second term concerned approaches

0 in X ® Y as / -» oo, since t — (s — 1) </?</. It follows from the first

term that, for / - (s — 1) < p < t,

[Px(A,v)p®(B-vI)>-l]usl^0

as /-» oo. The same argument as for A = t yields that [PX(A, vf ® I]usl

approaches OinA'®yas/->oo unless A', ¥= {0}. This proves the desired

assertion.

In case def Px is infinite, the same argument as above applies to

P{A'®I',I'®B'} -X(I'®I')

which is by Proposition 2.2(c) the adjoint of Px, since the approximate

deficiency of a densely defined closed linear operator coincides with the

approximate nullity of its adjoint. There exists a noncompact sequence

{«;}$!, of unit vectors in D[(A')'m] ® Y' such that for 1 < /? < t

p{a' ® /', /' ® B')p~x[p{A' ® /', r ® B') - X(r ® /')]»;->o

in X' ® y as / -» oo. In the same way it can be shown that

[Px(A',v)'®I']u¡

approaches 0 in A"' eg) y as /-» oo. This implies that nul' PX(A', v)' = co and

hence def PX(A, A)' = oo. Therefore by Proposition 1.2, A belongs to the

right member of (3.9)'.

II. The general case. Let A E cr^fP). Since P E %(A, B) there are

nonempty open sets U D o(A), V d a(B) and a large r > 0 such that (2.4)

holds. For this r take the same open sets Ue and Vt as in the proof (b) of

Theorem 3.1.

It suffices to show that for every sufficiently small e > 0, A belongs to the

union of three sets

(3.14)    P(aew(A), o(B) \ Vt) ij P(o(A) \ Ut, o^B)) U P(UC, Vt).

In fact, suppose this is established. If, for some e > 0, A belongs to either of

the first and second sets in (3.14) there is nothing more to prove. Therefore

assume A belongs to P(t7e, Ve) for every e > 0. For each positive integer /

choose (£„ tj,) in (Ux/l n Kr) x (Vx/, n Kr) with P(£„ tj,) = A. By the same

reasoning as in the proof of Theorem 3.1 the sequence {(£,, Tj/)}", is

bounded, so that we may assume it converges to (£0, tío) as /-»oo. Then

(¿o> Vo) ues in aeb(A) x aeb(P) and hence A = P(£0, tj0) belongs to the set on



98 TAKASHIICHIN0SE

the right of (3.10) and so on the right of (3.9), because they coincide as seen in

the proof (a).

Now we come to the proof that X belongs to the set (3.14) for all e. As in

the proof of Theorem 3.1, let o(A) \ Ut - {a,}?.,, o(B) \ Ve = { ßk)bk.x, and

let P, Q be the projections associated with them. Then using the same

notations as (2.5)-(2.8) we obtain

°«(P) = <UPn) U om(PX2) U om(?2X) U ^(P^).

Since PX and QY are of finite dimension, «^(Pji) is empty. Since P G

^t(A, B), we have by Propositions 2.3 and 2.4 and by case I,

<W(Pi2) - P({«j)U> <U*2)) = P(°(¿) \ U„ o„(B)),

<UP2i) = ^M^2). {ßkrt-J - P(aw(^),a(P)\ Ke),

and by Theorem 2.1,

'«(Pa) C «(P*) = Pio{A2), o(B2)) CP(U„ V.).

Thus putting all this together shows that am(P) is included in (3.14). In

particular, X belongs to (3.14).   Q.E.D.

By Theorems 3.1 and 3.4, the intersection of the Browder essential

spectrum and the Fredholm domain of P{A ® 7, 7 ® 77} is determined.

Corollary 3.5. 77ie same hypothesis as in Theorem 3.4. Then

oeb(P {A®I,I®B))\ ffw(P [A ® I, I ® B })

= {P(o(A) \ oeb(A), oeb(B) \ o„(B))
Í3.15)

UP(oeb(A)\om(A),o(B)\oeb(B))}

\ {P(am(A), o(B)) U P(a(A), a^B))}.

For each X in the set (3.15) the sets (2.11), A,0(a), and (2.12), ̂ (X), are finite

and

A10(a) = A,(X) u A12(X),      Ao,(a) = A,(X) u A21(X),

AoW-A.oWuAo.tX).
Proof. Obvious.

3.3. The nullity, deficiency and index. For P G %(A, 77), the operator (2.1),

Px, is Fredholm and at least one of nul Px and def Px does not vanish if and

only if X is in the union of the sets (3.7) and (3.15) in Corollaries 3.3 and 3.5.

This implies in view of (3.4) that if dim X = oo then P(£, v) - X 3è 0 for each

fixed v G o(B) \ oeb(B), in which case we write

(3.16)   P(£, v) - X = d(v)       u       (£ - itf01"*,       d(v) = 2 '„(,).*"*.
n;P(u,i>)m\ k-0
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where m(v) is the degree in £ of P(£, i»), m(v) = ~2l¡;P,l¡¡p).xm(p, v) < m.

Similarly, if dim Y = oo then P(p, tj) - A ̂  0 for each fixed p E o(A)\

oeb(A), in which case we write

(3.17) P(u,T,)-A=e(u)      Ü      (7, - p)n^'\      e{p) - § <*»(»My.
»¡/'(ji.iO-x y-o

where «(ji) is the degree in tj of P(p, tj), n(p) = "2KP(:1l¡y).xn(p, v) < n.

Set

(3.18) p(p, v) = t(B; v)m(p, v),      q(p, v) = t(A; p)n(p, v).

Let r(p, q; p, v) be the rank of the coefficient matrix of the system of the pq

linear equations with the pq unknowns ust

(3.19) 2   bs-j,,-k«jk = 0,       Ks< p,l<t<q,
Kj<s
Kk<t

where the bJk are the coefficients of the Taylor expansion (3.3) of P(|, tj) at

(/*.")• Set

(3.20) n(p, q; p, v) = pq - r(p,q; p, v) > 1.

We shall now establish explicit formulae for the nullity, deficiency and

index of (2.1).

For a linear operator T: D [ T] c Z -» Z and a positive integer p set

nJT) = 2 nul Tp - nul Tp~x - nul Tp+l,
Í3 211
v     ' dp(T) = 2 def Tp - def F""1 - def Tp+l,

when they are well defined. Here note (cf. [25, Lemma 3.3]) that nul Tp (resp.

def Tp) is finite if and only if nul T (resp. def T) is finite.

The following result amplifies Corollaries 3.3 and 3.5.

Theorem 3.6. Let a be a quasi-uniform reasonable norm on X ® Y and let

P E$e(A,B). Then for X in the set (3.7) or (3.15) the following formulae hold:

nul[P [A ® I, I ® B } - XI ®a I]

(3-22) ~
2 Z   n(p, a; u, v)ñp(A - pI)ñq(B - vl);

(ji.iOeAKAjuAuMu^iPO p>i=i

def[P {A ®I,I®B)-XI®al]

(3.23) 00
= 22   n(p,q;p,v)dp(A-pJ)dq(B-vI);

(/i,i')GAl(A)uA12(X)uA21(X) P.9-1
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ind[P [A ® /, / ® B } - XI ®a I]

t(A;y.)

(3.24) =       2       ind(P - vl)  2  n(p, q(p, v); p, v)np(A - pi)
(¡i,r)eAl2(\) p=l

t(B;y)

+       2       ind(^ - pi)  2  n(p(p,v),q; p, v)nq(B - vl).
(H,r)eà2l(\) q-\

Here for (p,v) E A, (A),

ñp(A - pi) = np(A - pi), dp(A -pI) = dp(A- pi),

(3.25) P = 1. 2.
ñq(B - vl) = nq(B - vl), dq(B - vl) = dq(B - vl),

q — 1,2,... ;

for(p,v)EAx2(X),

ñp(A - pi) = np(A - pi),   dp(A -pl) = dp(A - pi),

P = 1, 2, . . . ,

ñq(B - vl) =

(3.26)

dq(B -vl) =

nq(B - vl),

nul(fi - vl)q - nul(S - vl)"'1,

0,

dq(B - vl),

def(B- vl)q -def(B-vI)q-x,

0,

and for (p, v) G A21(X),

\(A - pi)

ñp(A -pl) = i nul(A - pl)p - nul(A - pl)"~\

0,

(3.27)

dp(A-pI) =

dp(A-liI),

1 < q < q( p, v),

q = q(p,v),

q> q(p,v),

1 < q < q(p,v),

4 = q(p,v),

q> q(p,v);

1 < p <p(p,v),

P=P(l>->v),

P >/»(M>")>

1 < p <p(p,v),

def (A -pi Y - def (A - pi)"'1,    p = p(p, v),
p-\

0, P > P(P> v),

ñq(B - vl) = nq(B - vl),  dq(B - vl) = dq(B - vl),

q - 1, 2.

Therefore the sum 2"g_! is finite and in fact taken over those p and q with
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1 < /? < t(A; p) and 1 < q < t(B; v) for (u, v) E A,(A), with 1 < p <

t(A; p) and 1 < a < q(p, v) for (p,v) E A12(A), and with 1 < p < p(p, v)

and 1 < q < t(B; v) for (p,v)E A21(A).

The proof of Theorem 3.6 will need a thorough investigation of the case in

which either A" or y is of finite dimension. Let us keep in mind again

Proposition 2.2.

First we consider the case where both X and Y are of finite dimension. In

this case every polynomial P(£, tj) belongs to 9e{A, B).

Lemma 3.7. Let dim X < oo and dim Y < oo. Then for every polynomial

P(£, tj) and every A E C

t(A;p) t(B;v)

(3.22)' nul Px =      2 2     2  n(p, q; u, v)np(A - pI)nq(B - vl),
(ft^eioW p-l   l"l

t'A;p) t{B;v)

(3.23)'  def Px =      2        2     2  n(p, q; p, v)dp(A - pI)dq(B - vl).
(/t.iOeioi.A) P"\   «-1

Proof. A and B may be considered as matrices. Both o(A) and o(B)

consist of a finite number of eigenvalues. We show (3.22)'; (3.23)' follows

from this, since the nullity and deficiency of a matrix coincide.

We may assume A and B are of the Jordan normal form. We have

A-=    2     ©¿V       *„ = N[(A - pi)'"'1*],
p£a(A)

y= 2  ©n.    y, - n[{b - vif**].
rEo'B)

A is decomposed by the Aj, and the part of A in A^ is the sum of plß and a

nilpotent matrix where Iß is the identity matrix in X . The nullity of (A - pi)'

for 1 < s < t(A ; p) is equal to the nullity of its part in Xf. The same is true

of B. It follows that

X ® Y = 2 0 (*„ ® y,)
fp,v)eo(A)Xo(B)

and P is decomposed by the X^ ® Y„. The part of Px in A^ ® Yp is

one-to-one if P(p, v) =£ X. The nullity of Px is the sum of the nullities of the

parts of Px in Ar/1 ® Yp with (u, v) E o(A) X o(B), P(p, v) = A.

Therefore, to establish (3.22)' it suffices to show that

p    q
(3.28) nulPx =22 «(*, t; p, v)ns(A - pI)n,(B - vl)

*-lr-l

in the case where
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X = N[(A - pi)"],   dimX = p = t(A; p);

Y = N[(B - vl)q],   dimY = q = t(B; v);

c(A) = {p},      o(B) = {v},       P(p,v) = X.

In this case note that A — pi and B — vl are nilpotent.

First consider the special case in which nul(^4 — pi) = nul(B — vl) = 1.

In this case A — pi (resp. B — vl) is a square matrix of order p (resp. q) of

the form

(3.29)

0
1    0

1    0

O

O

1    0

Choose bases {es)ps_x of A!" and {/,}?_. of y such that

Every « in X ® 7 is represented as m = 2f » ,2?. i«Jfe, ® /,. We have

0 = [P{A®I,I®B} -X(7®7)]u

=    2   bjk[(A-pI)J®(B-vI)k]u
j+k>0

=    22   bs_Jtt_kuJkes ® ft
l<.s<p Kj<s
\<.t<q \<k<t

in view of (3.3) and hence (3.19). Then with (3.20) we obtain

nul PA = pq - r(p, q; p, v) = n(p, q; ji, v),

which proves (3.28) because ns(A — pi) = 8sp, s = 1, 2,..., and n,(B - vl)

= 8lq, t = 1,2,....
In the general case in which A - pi and B - vl are nilpotent, n,(A — pi)

is the number of the square matrices of order s of the form (3.29) in the

Jordan normal form of A — pi, and the same is true of «,(5 — vl). This

proves (3.28) in the general case and (3.22)'.   Q.E.D.

In the following special cases, (a) is due to T. Ando.

Corollary 3.8. The same hypothesis as in Lemma 3.7.
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(a)

nul(A ®I+I®B-XI®I)

= 22 H(¿ - pI)P - nul(A - pi)"-1)
'p,v)&o(A)Xo(B) p-l

p + r—X

•(nul(5 - vl)p - nul(B - vl)"'1).

(b) For X^O,

nul(A ®B -XI ®I)

= 22 (raú(A - pl)p - nul(A - pl)p-x)
(p,v)Sa(A)Xa'B) p-l

pv—X

■(nul(B - vl)p - nul(B - vl)p-1)

and

nul(A ® B) = nul A • dim Y + dim X • nul B - nul A • nul B.

Here both the sums are finite.

Proof. We only note that in both the cases the n(p, q; u, v) in Lemma 3.7

are given by n(p, q; p, v) = min(p, q). An elementary calculation will yield

the formulae.   Q.E.D.
Next we consider the case where one of X and Y, say Y, is of finite

dimension while the other, X, is of infinite dimension.

When P(£, v) - X = 0 for some v E o(B), it is easy to see in view of (3.4)

that both nul Px and def Px are infinite. Therefore the interest is in the case

where P(£, v) - A ̂  0 for each fixed v E o(B). In this case P(£, v) — X is

written as (3.16).

Lemma 3.9. Let dim X = oo and dim Y < oo. Let P E ^e(A, B). Assume

that P(t,v) — X^ Ofor each fixed v E o(B) or, in particular, that X does not

belong to (3.9)'. Then:

(a)

^(,1,»-)  t{B;v)

(3.22)" nul Px =      2 2      2 n(p, a; u, v)ñp(A - pI)nq(B - vl).

(b) Assume R [Px] is closed.

p'p,y) t(,B;y)

(3.23)"   def Px =      2 2     2  n(p, a; u, v)dp(A - pI)dq(B - vl).
(/i.>0eAo(A)   p-l    9-1

Here the ñp(A — pi) and dp(A - pi) are given by (3.27).
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Proof, (a) Recall (3.11). The proof is reduced to the proof of

(3.30)

2     ®(N[P(A,v)-Xl]®N[B-vl])cN[Px],
>>eo(B)

*[Px]c   2    ®(n\(p(a,v)-xi)'(b")]®yA

In fact, suppose this is established. Set PA(£, v) = P (£,?) — X again. It is

readily seen from (3.30) in view of Propositions 1.2 and 1.4 that nul Px is

finite if and only if nul PX(A, v) is finite for each v E a(B) if and only if

nul(,4 - pi) is finite for each (p,v)E A0(X). In this case we show (3.30)

yields (3.22)". Proposition 1.4 implies that for every positive integer /,

N[PX(A, v)'^B'^] is a finite-dimensional subspace of D[AJ] invariant under

AJ. Consequently N[PX(A, v)] ® Y„, which is a subspace of D[AJ] ® Y for

every positive integer/, is a finite-dimensional subspace of X ® Y invariant

under Px. It follows that Px in X ® Y and its restriction to the space on the

right of the second inclusion in (3.30) have the same null space. Let Ar be the

part of A in N[PX(A, v),(B'v)] and Bv the part of B in Yt; the identity

operators in both spaces are denoted by the same /„. Then Lemma 3.7 with

(3.30) yields

nul Px =    2    nul(P [A, ® /„ /, ® B„} - X(I„ ® Iv ))
v<S.o(B)

(3.31) p(p,v) t{B;v)

=    2 2 2      2   n(p, q; p, v)np(A„ - pIt)nq(Bv - vl„).
vGa(B)   uBo(Ay)     p = \      9=1

For the upper boundp(p, v) of the summation in/? in (3.31) note Remark at

the end of §3.3. Clearly a (A,) c o(A) and if p is an eigenvalue of A with

P(p,v) = X then

N[A - pi] C N[PX(A, v)] c N[PX(A, v)'™]

by Proposition 1.4, whence p E o(Ap). For every positive integer q, we have

nq(Bv - vlv) = nq(B - vl) and

nP(A, - M7„) =

np(A - pi)

n\xl(A - pl)p - nul(A

0,

pi)
p-\

1 < p <p(p,v),

P = P(^v),

P   > P(PrV).

It follows that (3.31) is nothing but (3.22)".

Thus the proof of (3.22)" will be complete if (3.30) is established. In view of

(3.4) the first inclusion in (3.30) is evident. Since Px is decomposed by the

X ® Y„, to establish the second inclusion in (3.30) it suffices to show for each
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v E o(B) that if u is in N[PX] n (X ® Yp) then u is in N[PX(A, v)'^r)] ® Yp.

To simplify the notation write Y for Yp and t for t(B; v). Y has the direct

sum decomposition (3.12) with (3.13). Then u = ~2,'k_xuk, where uk is in

D [A m] ® Nk, 1 < k < t. We show uk is in N[PX(A, v)'-{k~X)] ® Nk.

The proof is by induction on A from A = / to A = 1. For k — twe have by

(3.4)

0 = [l ®(B- vI)'~1][P{A ® 1,1 ® B) -X(I ®I)]u

= {Px(A,v)®(B-vI)-x]ut.

If N, =h {0}, let ut = S'/fjX, ®y¡, where the sequences {x,.}%>, c D[Am] and

{yt}fHi C N, are linearly independent. Since (B - vl)'~x is one-to-one on Nt

so that {(B — vl)'~xy¡)'l'2x is linearly independent, there exists a sequence

{y¡Yi% C y with <(P- - viy-y^yf) m 8y, i,j = 1, 2,..., /(/). It follows

that PX(A, v)x¡ = 0 for all i. Hence u, is in N[PX{A, v)] ® Nr Assume the

assertion is valid for A > s, 1 < s < t. Notice this implies in particular

S'/,-J+\Uh belongs to D [Aj] ® Y for every positive integer/. Then

0 = [l ®(B- vI)'-l][P{A ®I,I®B) -X(I ®I)]u

= [Px(A,v)®(B-viy-]]us

t
+ ¡1 ®(B - vI)s~l][P{A® 1,1 ® B) -X(I ®I)]   2   "a-

A-j+1

By the induction hypothesis the second term of the last equation above

belongs to N[PX(A, v)'~s] ® Y and hence to D[AJ] ® Y for every positive

integer /. If Ns i- {0}, let us = Hf&x, ®y„ where {x,.}^, C D[Am] and

{ytYi'-x E Ns are linearly independent. Since (B — vlj~x is one-to-one on

Nt, the same argument as in the proof of Proposition 2.2(b) shows

{PX(A, v)x¡y^x is included in D[Aj] for every positive integer/. It follows

that {x,}'^, is in D[Aj] and hence us is in D[Aj] ® Ns for every positive

integer/.

Thus we can apply PX(A, v)'~s ® I to the last equation above. Then we

obtain by the induction hypothesis,

[Px(A,v)'-(s-l)®(B-viy-x]us = 0.

Since (B — vl)s~x is one-to-one on Ns, the same argument as for A = / above

will show us belongs to N[PX(A, ?)'-(*->)] ® Ns. This proves (3.30).

(b) If P[PX] is closed then nul Px = def Px. We note that o{A) = o(A'),

a(P) = o{B') and P(A', v) = P(A, v)'. Although D[A'] is dense in A" in the

weak* topology but not in the strong topology in general, the same argument

as in (a) will justify that def Px (= nul Px) is finite if and only if nul PX(A', X)

is finite for each v £ o(B) if and only if nul(A' - pi') is finite for each
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(p, v) E Afj(X). In this case, both PX(A, v) and A — pi necessarily have closed

ranges, so that nul PX(A', v) and nul(A' -pi') can be replaced by

defPx(y4,y) and def (A — pi), respectively. In fact, otherwise both the

approximate nullity and approximate deficiency of Px(.r4, v) for some v G

o(B) (resp. of A — pi for some (p, v) E Ao(X)) are infinite. Then since

nul(5 - vl) = def(B - vl) > 0, by Lemma 3.2 and by closedness of R [Px]

we obtain nul Px = def Px = oo, a contradiction.

The formula (3.23)" will be now obtained readily from (3.22)" with the

above facts.   Q.E.D.
Proof of Theorem 3.6.1. The case where X is in the set (3.7). In this case

note the sums for (p, v) in A12(X) and A21(X) in (3.22) and (3.23) disappear.

Following the proof of Corollary 3.3, we have nul Px = nul Pxu and def Px

= def Pxn. Hence by Lemma 3.7 we have the formulae (3.22) and (3.23) with

A12(X) and A2I(X) deleted, since

np(Ax - plx) = np(A - pi),      dp(Ax -plx) = dp(A - pi)

and the same is true of P. It is clear that ind Px = 0.

II. The case where X is in the set (3.15). Denote the image of the projection

of A10(X) (resp. Ao,(X)) into the £ (resp. tj) coordinate by A10(X; A) (resp.

Ao,(X; B)). Since Px is Fredholm, the parts PX11, PXI2, PX21 and PX22 of Px

relative to A,0(X; A) and A^X; B) are Fredholm. Since P E^e(A,B) it

follows by Propositions 2.3 and 2.4 with Theorem 2.1 that

a(P22) - P(o(A2), o(B2)) = P(o(A)\AX0(X; A), o(B)\A0X(X; B)).

Consequently X G o-(P22) and

nul Px = nul Pxu + nul PX12 + nul PX21,

def Px = def Pxu + def PXI2 + def P^,.

We apply Lemmas 3.7 and 3.9 to PX11, PXI2 and PX21. Before this, note that

A.(a) - {& -n) e Aio(a; A) X Ao,(X; B); P(£,tj) = X},

A,2(A) = {(£, tj) G A10(X; A) X (o(B) \ A01(X; B)); P(£, tj) = X},

A21W = {(t V) e (o(A) \ A10(X; A)) X A0I(X; B); P(£,tj) = X}.

Then we obtain
t(A;y.) t(B;v)

nul PKn =2 2     2  "(P. ?; /i. v)np(Ax - pIx)nq(Bx - vlx),
(m»)EAi(X) p-\   9-1

t(A,f) q(p,v)

Qul P\i2 =2 2     2  n(p, q; p, v)np(Ax - plx)ñq(B2 - vl2),
(n,v)e¡iti(\) p-\   «-I

;>(/».') t(B:v)

nulP^,-       2 2     2  rt(p,q;p,v)ñp(A2-pI2)nq(Bx-vIx).
(p,r)eb2i(\)   p-l    9-1
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However, for p E o(A) \ oeb(A), np(Ax - plx) - np(A - pi) and for p E

oeb(A) \ o^A), ñp(A2 - pl¡) - ñp(A - pi), and the same is true of B. This

establishes (3.22).

Similarly, formula (3.23) for def Px will be derived.

To get formula (3.24) for ind Px note that ind Px = ind PXI2 + ind Pnx,

because nul Pxu = def Pxn, and that

ñp(A -pI)-dp(A-pI)={ind^ "M    P= P(* ")'

10, otherwise;

ñq(B - vl) -dq (B -»/)-( ind(5 " vI)>    q = «<"• ")'
10, otherwise.

Hence (3.24) follows.   Q.E.D.

Remark. The ascent a(T) (resp. descent 8(T)) of 2"is the smallest nonnega-

tive integer/? such that N[TP] = N[TP+X] (resp. R[TP] = R[TP+X]). If no

such/? exists, set a(T) = oo and 8(T) = oo (see [24], [25]). Then np(T) » 0

for/? > a(T) and dp(T) = 0 for/? > 8(T). If A is an isolated, finite-dimen-
sional eigenvalue of T then a(T - XI) = 8(T-XI) < t(T; A).

A careful check will see that all t(A;p) and t(B; v) in Theorem 3.6,

Lemmas 3.7 and 3.9 may be replaced by a(A - pi) and a(B - pi), respec-

tively.

3.4. The Schechter essential spectrum.

Theorem 3.10. Let abe a quasi-uniform reasonable norm on X ® Y and let

P E <$e(A, B). Then oem(P{A ® I, I ® B)) is the union of the set on the

right of (3.9) and the set of all X contained in the set

(3.32) P(oem(A), o(B)) U P(o(A), aem(B))

but not in the set on the right of (3.9) such that the index (3.24) does not vanish.

Proof. In view of Theorem 3.4, Corollary 3.5 and Theorem 3.6, it suffices

to show that every A in oem(P) \ om(P) belongs to (3.32). Since ind PA =£ 0, by

(3.24) there is a pair (p, v) in A12(A) u A21(A) with ind(5 - vl)¥=0 or

ind(/l - pi) ,* 0. Hence either v E aem(5) or p E crim(^), in which case

A = P(p,v) belongs to (3.32).   Q.E.D.

3.5. Another polynomial operator. Assume o is in addition faithful on

X ® Y. Associated with (0.1) is another polynomial operator (0.3) in X ®a Y.

In this case, both (0.2) and (0.3) are also closable. Further, if P E ^e(A, B),

they have the same closure by [12, Theorem 3.1]; there it has been shown in

fact for P E ^(A, B) but the same proof is valid in the present case.

Therefore all the results in this section are valid for the closure of (0.3).
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4. Two special cases. In this section the operators (0.2) and (0.3) in

X ®a Y associated with the polynomials P(£, tj) = £ + tj and P(£, tj) = £tj

are considered. Throughout, X and Y are complex Banach spaces and a is a

quasi-uniform reasonable norm on X ® Y.

We follow the same conventions as in §§2 and 3.

We denote A^X), A,(X) and AJk(X) (in (2.9M2.14)) for P(£, tj) = £ + tj by

Ao(X), A,(X) and Ajk(X), and for P(£, tj) = £tj by n0(X), n,(X) and Ujk(X).

4.1. The case for P(£, tj) = £ + tj. The corresponding operators are A ® I

+ I ® B and A ®aI + I ®„ B, which we consider in the same situation as

in §4 of [12].
Z being a complex Banach space, a densely defined closed linear operator

T : D[T] c Z-> Z is said to be of type (9T, MT(9)), 0 < 9T < it, if the

resolvent set p(T) includes the complementary set in C of the sector S(9T) =

{Í; largfl < 9T) and U(U ~ Tyl\\ < MT(9), 9 - arg?, outside S(9T),
where MT(9) is a constant depending only on 9 = arg f. In view of the

resolvent equation, it is seen that if T is of type (9T, MT(9)) then for each

fixed 9'T with 9T<9'T< it, ||f (f/ - 7/)~'|| is uniformly bounded in the

closure of C S (9j).
We assume that A and B are respectively of type (9A, MA(9)) and

(9BvMB(9)) with 0 < 9A + 9B < tt and that A ® I + I ® B is closable in

X ®a Y with closure (A ® I + I ® B)~. In this case £ + tj is in $e(A, B).

Theorem 4.1. (a) The Browder essential spectrum.

(4.1) oeb((A ®I + I.® B)-) = (oeb(A) + o(B)) u (o(A) + oeb(B)).

(b) The set of all isolated, finite-dimensional eigenvalues.

a((A ® I + I ® B)')\ oeb((A ®I+ I®Bf)

(4.2) = {(o(A) \ oeb(A)) + (o(B) \ oeb(B))}

\{(oeb(A) + o(B))u(o(A) + oeb(B))}.

IfXis in the set (4.2) then

(4.3) t((A ®I + I®B)~;X)=       2      t(A; p)t(B; v).
(cOeA.W

(c) The Wolf essential spectrum.

(4.4) om((A ®I+I® P)") = (om(A) + o(B)) U (o(A) + om(B)).

(d) The intersection of the Browder essential spectrum and the Fredholm

domain.
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oeb((A ®I + I ® B)~) \ o„i{A ® I + I ® Bf)

= [{«A)\oeb(A)) + (oeb(B)\oew(B))}

U {(oeb(A)\aew(A)) + (o(B)\oeb(B))}]

\{(oew(A) + o(B))u(o(A) + aew(B))}.

(e) For X in the set (4.2) or (4.5) the following formulae hold:

nul((A ®I + I®B)~-XI®al)

2 j 2 (nul(i< - pl)p - nul(A - pl)p~x)
uA12(A)uA2|(A) I p-l

•(nul(P - vl)p - nul(B - vl)p-x)\;

def(\(A ®I + I®B)~-XI®al)

(4.7)    = 2 Í 2 (def(i4 - pI)P - def(A - pi)"-1)
(M,»)eA1(A)uA1j(A)uA21(A) I p-l

(4 6)    (''•"^'Wu^Wu^iW vp-i

•(def(P - vl)p - def(B - vl)"~l) j;

ind((/l ® / + / ® Bf- XI ®a I)

(4 8)=       2       ind(P - vl)  2   H(yl - pi)" - wú(A - pi)"-*)
(M,»)eAtt(X) P-l

r(B;r)

+       2       ind(A - pi) *2  (nul(B - vl)p - nul(B - vl)p~x).
(u,v)eA2l(X) p-l

The sum  2™„i  is finite and in fact taken over those p  with   1 < p <

min(/(^; p), t(B; v)) for (p,v)E AX(X), with 1 < p < t(A; p) for (p,v)E

AX2(X) and with 1 < p < t(B; v) for (p,v)E A2X(X). All t(A; p) and t(B; v)

may be replaced by a(A — pi) and a(B — vl), respectively.

(f) TAe Schechter essential spectrum.

(4.9) aem((A ®I + I®By) = oxUa2,

where ox is the set on the right of (4.4) and o2 is the set of all A in the set

{(oem(A) + o(B))u(o(A) + oem(B))}\al

for which the index (4.8) does not vanish.

For a in addition faithful on X ® Y, so that A ® I + I ® B and A ®a I
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+ I ®a B are not only closable but also have the same closure in X ®„ Y,

Theorem 4.1 is also valid with the closure (A ®a I + I ®a B)~ in place of

(A ® I + I ® B)".
Theorem 4.1 enriches Theorem 4.6 in [12], where X and Y are Hilbert

spaces, a is the prehilbertian norm o, and A and B are m-sectorial operators

with semiangles 9A and 9B with 0 < 9A + 9B < m/2; in this case A ®a I + I

®a B is closed itself in X ®a Y.

4.2. The case for P(£, v) = £tj. The corresponding operators are A ® B and

A ®aB.
We assume that it is not the case that one of the extended spectra of A and

B contains 0 while the other contains oo, or, equivalently, that (i) A and B are

bounded or (ii) A and B have everywhere defined bounded inverses or (hi)

one of A and B is bounded and has an everywhere defined bounded inverse

while the other is arbitrary (see [10], [11]). Further assume that A ® B is

closable in X ®a Y with closure A ®aB and that a(A) • a(B) ¥= C. In this

case £tj is in ^e(A, B).

Theorem 4.2. (a) The Browder essential spectrum.

(4.10) aeb(A ®a B) = oeb(A)-o(B) U a(A)-oeb(B).

(b) The set of all isolated, finite-dimensional eigenvalues.

o(A ®aB)\oeb(A®aB)

(4.11) = (o(A)\ oeb(A))• (o(B)\ oeb(B))

\{otb(A)-a(B)\Jo(A)-oeb(B)).

IfX¥=0 is in the set (4.11) then

(4.12) t(A®aB;X)=       2      t(A; p)t(B;v).
(M,»)en,(X)

(c) The Wolf essential spectrum.

(4.13) om(A ®aB) = aew(A)-o(B)Uo(A)-aew(B).

(d) The intersection of the Browder essential spectrum and the Fredholm

domain.

aeb(A®aB)\oew(A®aB)

= {(a(A)\oeb(A))-(oeb(B)\oew(B))

U(oeb(A)\oew(A))-(o(B)\otb(B))}

\(oew(A)-o(B)Uo(A)-aew(B)).



TENSOR PRODUCTS OF LINEAR OPERATORS. I 111

(e) For X^Oin the set (4.11) or (4.14) the following formulae hold:

nul(A ®aB-XI®al)

2 Í 2 H04 -
(4.15) (p..»Oen1(/\)un,2(\)un2,(A) I p-i

•(nul(P

def(A ®a B - XI ®a I)

2 f 2 (def(^
(4.16) (/i,r)6n,(A)un12(A)un21(A)   l/>-i

•(def(P

ind(A ®aB-XI®al)

t(.A.p)

2      ind(5 - vl) 2  (™KA -
(4.17) (iM0en12(A) p-i

t(.B;p)

+       2      ind(/l - /^)  2   (nul(5 - vIY - nul(5 - vl)"'1).
(^)en21(A) p=1

TAe iw/M 2"_, « .rî/uïe a«a" m fact taken over those p with 1 < /? <

min(t(A; u), *(P; v)) for (p,v)E n,(A), wAA K p < t(A; p) for (p,v)E

II12(A) and 1 < p < t(B; v) for (p,v)E n21(A). ,47/ t(A; p) and t(B; v) may

be replaced by a(A — pi) and a(B — vl), respectively.

(f) The Schechter essential spectrum.

(4.18) oem(A ®ttB) = oxöo2,

where ox is the set on the right of (4.13) and o2 is the set of all nonzero X in the

set

(oem(A)-o(B)öo(A)-aem(B))\ox

for which the index (4.17) does not vanish.

A

Remark 1. For the case A = 0 we make some comments. nul(^4 ®a B) = 0

implies nul A = nul B = 0; the converse is valid if a is in addition faithful on

X ® Y. In case nul A > 0 or nul B > 0, we have

nul(A ®a B) - nm(A ® B) = dim(N[A] ® D[B] + D[A] ® N[B]),
A

if either A" or y is of finite dimension, while otherwise nul(^4 ®a B) = oo. An

analogous argument is possible for def(A ®a B) in case R [A ®a B] is

closed.

pl)p - nul(A - u/)'-1)

- vl)p - nul(B - vl)"'1)];

- pl)p - def(A - pi)1"1)

- vl)p - def(B - vl)"'1)];

■ pi)" - nul(A - pl)"~x)
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A A

For A ®VB closed, R [A ® 9 B ] is complementary if and only if both R [A ]

and R[B] are complementary, in which case R[A ®„ B] is the closure of

R[A] ® R[B] and N[A ®v B] the closure of N[A ® B] in X ®„ Y. For

both X and Y Hubert spaces, R [A ®a B] is^closed if and only if both R[A]

and R[B] are closed, in which case R[A ®a B] is the closure of R[A] ®

R [B] and N[A ®„ B] the closure of N[A® B] in X ®a Y.

Remark 2. A very special case of (4.15) is obtained by J. Piepenbrink and

P. Rejto [19, (3.37)].
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"Spectral and scattering theory and related topics" (January 30-February 1,

1975), both held at the Research Institute for Mathematical Sciences, Kyoto

University [Brochure No. 228 (Japanese) and 242 (English)].

After the present paper had been accepted for publication it came to the

attention of the author that M. Schechter and M. Snow used a different

method to treat Theorems 3.1 and 3.4 for the special case where both A and B

are bounded linear operators [M. Schechter and M. Snow, The Fredholm

spectrum on tensor products, Proc. Roy. Irish Acad. Sect. A 75 (1975),

121-127; M. Snow, A joint Browder essential spectrum, Proc. Roy. Irish Acad.

Sect. A 75 (1975), 129-131].
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