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BOUNDED POINT EVALUATIONS AND
SMOOTHNESS PROPERTIES OF FUNCTIONS IN R?(X)(")
BY
EDWIN WOLF

ABSTRACT. Let X be a compact subset of the complex plane C. We denote
by Ry(X) the algebra consisting of the (restrictions to X of) rational
functions with poles off X. Let m denote 2-dimensional Lebesgue measure.
Forp > 1,let LP(X) = L?(X, dm). The closure of Ry(X) in LP(X) will be
denoted by RP(X). Whenever p and ¢ both appear, we assume that
1/p+1/g=1

If x is a point in X which admits a bounded point evaluation on R?(X),
then the map which sends f to f(x) for all f € Ry(X) extends to a
continuous linear functional on R?(X). The value of this linear functional
at any f € RP(X) is denoted by f(x). We examine the smoothness proper-
ties of functions in R?(X) at those points which admit bounded point
evaluations. For p > 2 we prove in Part I a theorem that generalizes the
“approximate Taylor theorem” that James Wang proved for R (X).

In Part II we generalize a theorem of Hedberg about the convergence of
a certain capacity series at a point which admits a bounded point evalua-
tion. Using this result, we study the density of the set X at such a point.

PART 1. SMOOTHNESS PROPERTIES OF FUNCTIONS IN R? (X')

Let X be a compact subset of the complex plane C. We denote by Ry(X)
the algebra consisting of the (restrictions to X) of rational functions with
poles off X. Let m denote 2-dimensional Lebesgue measure. For p > 1, let
L?(X) = L?P(X, dm). The closure of Ry(X) in L?(X) will be denoted by
R?(X). Whenever p and g both appear, we will assume that 1/p + 1/ = 1.

1. Bounded point derivations.

DErINITION (1.1). For x € X we say that x admits a bounded point deriva-
tion of order s on RP(X) if there exists a constant C such that |f¥(x)| <
ClIfll, for all f € Ry(X).

When x admits a bounded point derivation of order s on R?(X), the map
S f9(x)/s! extends from Ry(X) to a bounded linear functional on R?(X).
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We denote this bounded linear functional by D;.

DEFINITION (1.2). When x admits a bounded point derivation of order 0, we
say that x admits a bounded point evaluation. For f € R?(X) we define
f(x)=DX.

DEeFINITION (1.3). For each p > 2 the inner set for R? (X) is the set of points
in X which admit bounded point evaluations, and we denote it by S?(X).

ProposITION (1.1). For eachp > 2, S?(X) is an F, set.
Proor. Write S7(X) = U 2., S?(X) where
S2(X) = {x € X||f(x)| < n|f], for allf € R? (X)}.

We show that each set S?(X) is closed. Suppose that {x,} C S?(X) and that
X, — x € X. Let L, f = f(x,) and observe that the L, are a family of linear
functionals bounded in norm by n. Since L, f—> f(x) for f € Ry(X), and
Ry(X) is dense in RP(X), it follows that x € S7(X). Thus each S?(X) is
closed.

2. Potentials and representing functions. In this paper z will denote the
identity function.
DEFINITION (2.1). Let ¢ be a positive nondecreasing function on (0, ). For
eachg € LI(X), ¢ > 1, we define the y-potential of g, U}, by
_ &l

¥
WO =[ =

If 1/¢(]z]) is locally summable with respect to m, Fubini’s theorem implies
that Uy is locally summable; hence U < oo a.e. (m).

DEFINITION (2.2). When y(r) = r, we denote Uy by &.

DEFINITION (2.3). When ¢/(r) = r%, 1< ¢ < 2, we denote U} by UZ.

DEFINITION (2.4). We define the Cauchy transform of g to be

£ -_-f(z —y)"'g dm for all y where g (y) < .

For the proof of the following lemma we refer the reader to Sinanjan [16]
or Brennan [1, pp. 10-11]. Brennan’s proof uses the Cauchy transform.

LEMMA (2.1). Let X C C be compact and have no interior. Then R?(X) =
L?(X)for1 < p<2.

It follows from the Riesz representation theorem that if x € S7(X), then
there is a g € LY(X) such that f(x) = [ fg dm for all f € R?(X). We call
such a g a representing function for x. If R?(X) # L?(X), there is a nonzero
function g € L7(X) such that [ fg dm = 0 for all f € R?(X). We call such a
g an annihilating function.
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The following lemma was proved by Bishop for the sup norm case: We
assume that 1 < ¢ < 2.

LeEMMA (2.2). Let g € L9(X) be an annihilating function. Suppose that §(y)
is defined and # 0, and that (z — y)~'g € LY(X). Then §(y) Nz — y) 'gisa
representing function for y.

Proor. If f € Ry(X), then f= f(y) + (z — y)h for some h € Ry(X).
Hence

[ =y g dm=5(»)E () + [hg dm = F(») 2 (»).
COROLLARY (2.1). Let g € L9(X) be a representing function for x. Let

()= [(z=x)(=y)"gdm=1+(y - )0

Then c¢(y)~'(z — x)(z — y)~'g is a representing function for y whenever c(y)
is defined and # 0.

PROOF. (z — x) g is an annihilating function.
We now present a lemma of Brennan in [2, p. 288] which will be very
useful.

LeMMA (2.3). If p > 2, then R?(X) # LP(X) if and only if S?(X) has
positive 2-dimensional measure.

PrROOF. Suppose that SP(X) # @ and x € SP(X) is represented by a
nonzero function g € LY(X). Then R?(X) # LP(X) because (z — x)g €
L9(X), and [(z — x)gf dm = O for all f € R?(X).

Now suppose that R?(X)# L?(X) and let g € LY(X) be a nonzero
annihilating function. Then g fails to vanish on a set of positive measure in X.
Hence there is a set S C X of positive measure such thatfory € S, §(y) # 0
and g(y)~'(z = y)~'g € LY(X). It follows from Corollary (2.1) that S C
S?(X), and the lemma is proved.

REMARK. If we know that there is an x € S(X), the difficulty in showing
that there are other points in S?(X) by the above method is that z~! & L2 .

3. Admissible functions. Fix x € Cand let A, = {y €C: |y — x| < 1/n}.
We say that a set E C C has full area density at x if lim, . m(E N
A,))/m(4,) = 1. Let F be a function defined on X, x € X. We say that a is
the approximate limit of F at x, and write app lim, ,, F(y) = a if there exists
a subset E of X having full area density at x, such that lim,_,,.,c .F(y) = a.
We say that F is approximately continuous at x if app lim,_,, F(y) = F(x).

If ¢ is a positive function on (0, o0) with lim,_o¢(r) = 0, we say that F
admits ¢ as a modulus of approximate continuity at x if |F(y) — F(x)| <



74 EDWIN WOLF

¢(ly — x|) for all y in a set having full area density at x. We say that F
satisfies an approximate Holder condition of order a at x if F admits Cr* as a
modulus of approximate continuity at x for some constant C.

DEFINITION (3.1). We say that ¢ is an admissible function if

(a) ¢ is a positive, nondecreasing function defined on (0, o), and

(b) the associated function ¢, defined by ¥(r) = r/¢(r), is nondecreasing,
with ¢(0 + ) = 0.

ExAMPLE. For any a, 0 < a < 1, ¢(r) = r® is admissible.

ReMARKS. 1. If ¢ is admissible and 0 < B < 1, then ¢ is also admissible
because r/$8(r) = (r/9(r)) - $' A ().

2. In using an admissible function ¢ we will often refer to the triangle
inequality: ¢(r) < ¢(r)) + ¢(r,) whenever r < r; + r,. This follows from the
definition of an admissible function since

o(r) < o(ry + 1)) = (ry + 1) /Y(ry + 1)
< n/Y(n) + r/d(ry) = o(r) + o(r).

Wang introduced a special kind of admissible function in [17, p. 349].

DErFINITION (3.2). We say that the admissible function ¢ is nice if
Jao(r) "V dr < o.

For each ¢, 1 < ¢ < 2, we will be interested in a subset of the set of nice
admissible functions.

DEerINITION (3.3). We say that the admissible function ¢ is g-nice if
Jort=9%(r) "% dr < co.

Note that a nice admissible function is 1-nice and that ¢(r) = r® is g-nice
for « < (2 — g)/q. When p > 2, the g-nice admissible functions will be the
most likely ones to be moduli of approximate continuity for functions in the
unit ball of R?(X) at points in S?(X).

The following lemma is due to Wang [17]:

LemMMA (3.1). Let g € L9(X), q > 1, and let x € X. Then there exists a nice
admissible function ¢ with $(0 + ) = 0 such that ¢(|z — x|)~'g € LI(X).

ProOF. See Wang [17].

Our proof of the next lemma is in the spirit of Browder’s result [3, p. 157].
It will be useful for studying the density of X at points in S?(X). Let E C X
be measurable. Define p, by mp2 = m(4, \ E). Denote m|A, \ E by m,.

LEMMA (3.2). Let  be associated with an admissible ¢. For q,0 < q < 2, let
T =y% Thenif g € L(X),

lim 2= [(ly = x|)U; () dmy(y) = O.

n—o0 p:'q
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PRrOOF. Define

Fo(8) = n% 72 [y (| = <) (s = y)~" dmy(»).
Then F,(x) < o and if §{ # x, we have for large n
IF, )| < no%p@(n™ ) y(x = ¢|-n"")">0 asn— 0.

Next, we will show that the F, are bounded independently of n. Let D, =
A(S, p,)- Since Y7 is increasing,

IFa($)] < n93= (v [(|y = §) 7" dmy(»)
< ntpty(n™)' [ Wl - §) " dm(y)
= 27 (n ™Y ["4() O dr
< 2mn%0f H(n™ ) o(on)" [0 ar
= 2mn%pg~ 3 (n ") 9(p,) 0292 ~ q)”"

<2r2-¢q)"\

Thus, the F, converge boundedly a.e. to zero. We apply the dominated
convergence theorem and Fubini’s theorem to obtain the lemma.

LEMMA (3.3). Let  be associated with an admissible ¢. For 0 < q < 2, let
7=y Thenifg € L'(X),and § > 0, the set E = {y € C: 7(ly — xDU; (»)
< 8} has full area density at x.

Proor. It is sufficient to prove that lim
A, = A(x, 1/n). We observe that since

m8,\ E) < 6"fAf(ly — x|)U; (») dm(y),
it is sufficient to prove that

lim nzfAf(|y ~ x|)U; (y) dm(y) = 0.

n—o0

m(A,\ E)/m(A,) = 0 where

n—»00

This follows from Lemma (3.2) if we take E in that lemma to be the empty
set.

4. The main theorem. The following lemma in the sup norm case is due to
Wilken [20]. For x € S?(X), p > 2, it gives a condition for x to admit a
bounded point derivation of order s.

LEMMA (4.1). Suppose there exist a representing function g € LI(X) for
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x € SP(X), p > 2, and a nonnegative integer s such that (z — x)™°g €
L(X). Let ¢; = [(z - x)~g dm (0 < j < s) and define G, . . ., G, by:

Go=8 G=(z— x)7g-3 -1 Gy
k<j

Then D} exists, and Dif = [fG; dm for all f € R”(X),0 < j < s.
An additional lemma will be needed in proving the theorem.

LEMMA (4.2). Let s be a nonnegative integer, and g € L9(X), 1 < ¢ < 2.
Suppose that (z — x)™°g € LY(X). Set H; = (z — x) g (0 < j < s). For any
fELP(X)andy € C

f(z - y) "' fg dm
= i (- x)"‘ffH, dm + (y — x)’f(z - y)"'fH, dm.

Jj=1

PROOF. Since H; = (z — x)H;,, for0 < j < s,

f(z —-y)"lflfjdm =fij+ldm+ (y_x)f(z—)’)_lij.,.ldm

which implies the lemma.
Our main theorem generalizes the “approximate Taylor’s theorem” which
Wang obtained for functions in R (X) [17, p. 352].

THEOREM (4.1). Let ¢ be an admissible function and s a nonnegative integer.
Suppose that p > 2 and that there is an x € SP(X) represented by a g €
L9(X) such that (z — x)"°¢(|z — x|)~'g € LI(X). Then for every ¢ > 0 there
is a set E in X having full area density at x such that for every f € R?(X)

() f = Z35-o(Di{f)(z = xY + R where R € R?(X) satisfies

@) [RO)| < e[y = xF(ly — xDIIfIl, for all y € E, and

(iii) app lim, _,, (R(»)/| = xP'é(ly = x]} = 0.

PRrOOF. Since (z — x)~°g € LY(X), Lemma (4.1) implies that the DJ exist
for 0 < j < s. To each D/, 0 < j < s, there corresponds a constant G such
that |D/f| < G| fl|, for all f € R?(X). By Minkowski’s inequality there is
another constant C such that if R is defined as in (i), | R||, < C||f]|, for all
f € RP(X).

Choose § > 0sothat0 < C8(1 — 8) ' <e/2.Ify € E,={y EC: |y —
x|g(») < 8}, then ¢(y) =1 + (¥ — x)§(») is well defined, and |c(y)] > 1
— 6. By Corollary (2.1),



FUNCTIONS IN R” (X)) 77
R() = ()" [[R(z = %)/ (z = y)] g dm
= () [R[1+ (7 = %)/ (z — )] g dm
=)' = %) [[R/ (z = »)]g dm.

Next, we claim that R(y) = ¢(»)"(y — x)**'f(z — x)~°(z — y)~'Rg dm.
This claim depends on Lemma (4.2). Each of the functions (z — x)7g,
0 < j < s, is a linear combination of functions representing DX, 0 < k < j,
which implies that f(z — x)Rgdm =0 for 0 < j < s, and the claim is
proved.

Factoring g = ¢(|z — x|)h where h € L7(X), we obtain by the “triangle
inequality” that

|g|< (]2 = y])Jh|+ o(|y — x])|A|-
Consequently,

RO <le)] ™y - xl’“[f l = 77"l = x| *9(1z = y)|RA| dm
+flz =y = % "°¢(|y = x|)|Rh| dm|.

Denote the first integral by I, and the second by 7,. We have

Li=le)| ™"y = *l'9(1y = xDw (1 = x|) [¥(1z = y) 7'z = x| ”'|Rh| dm.
Lett = y% k = (z — x)7*h9 and
E,= {y €C:r(ly — xUf (») < 8"}.

Fory € E, we apply Holder’s inequality to obtain
1/p
B (1= 0)y = xf'6(ly = <y = )7 [IRF dm} (7 ()}
<(1=8)""y = #'9(ly - *)C| 1,8
< /D1y = x[¢(|y = <D

To estimate I, we define
Ey={y€C|y-x"Ui(y) <87} andlety € E,N E;.
By Holder’s inequality,
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L<(1=8)""y = x's(ly = x|y = x| [|z = »|"|z = x|”'|Rh| dm

1/p
<=8y = x4y = x)ly = xI{ [IRf dm} " {Uz (1))

<(1=8)7"Iy = xfe(|y = x|)C| A8
<(e/2)y = x['¢(|y = x|,

By Lemma (3.3) the set E = E, N E, has full area density at x, and we have
proved that fory € E

RO < I + L < ey = x['s(|y = x))| A,

for any f € R?(X). To prove (iii) let L .f = R(»)/|y — xI’¢(ly — x|). The
above result implies that ||L || < ¢ fory € E. Let y — x in such a way that y
stays in E. Then L,f—0 as y — x for f € Ry(X), and since Ry(X) is dense
in R?(X), (iii) follows.

An interesting consequence of the above theorem is that we can take the
limit of Newton quotients in the set E to evaluate DJf. For f a function
defined on a subset of X, h € C, we set

Af=fz+h)-f
so A,f is a function defined on a subset of X. We define inductively A) = id,

A = A, o MV~ for j > 1. The sup norm version of the following corollary is
proved in [17].

COROLLARY (4.1). If x admits a bounded point derivation of order s on
RP(X),p > 2, then for all f € RP(X)

s . A (x)
Dxf— aphpll(x)m W .

LEMMA (4.3). Let ¢ be a g-nice admissible function. If x € SP(X), p > 2,
then {y € X: 3 a function g, that represents y for R?(X) and satisfies
&(|z = y|)~'g, € L9(X)} has full area density at x.

PRrROOF. Let g € L9(X) represent x.
Let

F= [y EC: f|z -y %(|z = y)) "|g|" dm < oo}.

Since |z]|~9¢(]z])~? is locally summable with respect to m, m(C\ F) = 0. Fix
8,0<8<l,andput E=Fn E, where E, = {y €C: |y — x|g(y) < 8}.
By Lemma (3.3) the set E has full area density at x. For each y € E the
function g, = ¢( »)"(z = x)/(z — y)] g represents y. Moreover,



FUNCTIONS IN R?(X) 79
Jotlz = )" dm =1e)] ™" [ |2 = 1" 8(1z = y) "l = x| 8] dm

< Cflz =y 7%(z = ¥)|g]" dm < oo.
This proves the lemma.

COROLLARY (4.2). Suppose that ¢ is g-nice. Then at almost every point of
S?(X), p > 2, the functions in the unit ball of R?(X) admit ¢ as a modulus of
approximate continuity.

Proor. Combine Theorem (4.1) with Lemma (4.3).
In particular, it follows that at a.e. x € S?(X), p > 2, the unit ball of
RP?(X) satisfies an approximate uniform Holder condition of order a for

everya < (2 - q)/q.

LEMMA (4.4). Let ¢ be admissible and g € L4(X), 1 < ¢ < 2. Then if
o(z — x|)"'g € LY(X),8 > 0,and

E= {y EC: |y - x|qf|y —z|-q|g[qdm < 8},
it follows that m(A,\ E) = o(¢(n~")?/n?).
PRrROOF. We observe that
m(A,\E) < 8‘1f|y - x|qf|z - |7’ g|" dm dm, ().
Factor g = ¢(|z — x|)h where h € L(X). Then
|gl"< Ca(lz = »)IA)" + o(]y = =)}Al"]
where C is some constant. We have
m(d,\E) < a-'c[f|y = x| [Jz = 2%z = Y dm dim, ()

+ [l = 5l =170 = < dm )]

By substituting |y — x|? = ¢(|y — x)%(|y — x|)? in the first integral, and
using the fact that ¢(|y — x[)? < ¢p(n~")? fory € A,, we obtain

mA,\NE)< § "C¢(n"’)q[xp(|y - x|)qf\,b(|z - y[)_q|h|q dm dm,(y)

+f]y - x|qf|z = y|"%|h| dm dm,,(y)].

Let 4, denote the sum of the two integrals on the right. Replacing m(A, \ E)
by 7p2, we obtain

7o < 87'Co(n~")"p2"m7(4,)
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where lim,_, A4, = 0 by Lemma (3.2). Divide both sides by p;~7 to get

7p? < 87 'Co(n=")'n"9(4,).
Now raise both sides to the power 2/¢, and the conclusion of the lemma
follows.

In the next corollary we consider functions f € R?(X) to be defined on C
by setting f(x) = 0 for x & X.

COROLLARY (4.3). Let ¢ > 0. If x € SP(X), p > 2, s represented by
g € LX), and (z — x)™°g € LI(X) for some a > q — 1, then there is an
integer N, depending on x such that for n > N,

m(A,,)"fA |f = f(x)| dm < || ], for allf € R?(X).

PrOOF. Let E be the set in the conclusion of Theorem (4.1) when ¢/2 and
x € §?(X) are given and ¢(r) = 1.

m(A)™" [ |7 = ()| dm
< m(An)"[ fA,nsl - f(x)| dm + fA NIREC dm]
< (/2| A,m(8) " Mm@, 0 E) + 7~'n? fA 1@ dm

< (e/D A+ 7' fA \E| £ = f(x)| dm.

Let x, \g be the characteristic function of A, \ E. Then by Holder’s inequal-
ity,
7~ n? - f(x)| dm = 7~ 'n? ~ f(x)| dm
RO JXenslf = F ()

1/q
< Cn’ [ m@,\ E) [ Ml ey
where C is a constant. By Lemma (4.4)

[m(8,\ E)]'""= o(n=C/0-Co/9),

Thus if @ > g — 1, we can choose an integer N, so that n > N, implies that
Cnm(A, \ E)]V/? < ¢/2. Hence,

m(8)7 [ 1f = )] dm < /Dl /DM rane
< e"j]]p.

This completes the proof.
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COROLLARY (4.4). If p > 2 + V2, then for a.e. x € SP(X),

nllngom(An)"fA |f = f(x)| dm =0 forany f € R”(X).

ProOF. This follows from Lemma (4.3) and Corollary (4.3).
Given f € L'(dm), the set of points x € C such that

Jim m(8)7" [ | = ()| dm =0

is called the Lebesgue set of f. For an arbitrary f € L'(dm), a.e. (m) point
x € C belongs to the Lebesgue set of f (see [5, p. 156]). The above corollary
identifies points belonging to the Lebesgue sets of all f € R?(X). It would be
interesting to know whether the corollary holds forp > 2.

PART I1. CAPACITY AND BOUNDED POINT EVALUATIONS

1. Capacity theorems. Before proving a capacity result about bounded point
evaluations, we will need two lemmas of Hedberg [9]. Let © denote the
complex plane when p > 2 and the unit disk when p = 2.

DErINITION (1.1). Let X C © be a compact set. Then

T(X) = inf [ |grad o|* dm

where the inf is taken over Lipschitz functions w with compact support
contained in € such that w(z) > 1 on X.

For noncompact sets F, g-capacity is defined by T'j(F) = supg LK), K
compact.

Let U be an open set (bounded if p = 2) in the complex plane and denote
by L?(U) the space of analytic functions in L?(U). If f is analytic in @\ X
where X C @ is compact, we write a(f) = (2mi)~'ff(z) dz where C is any
Jordan curve in Q enclosing X.

LeMMA (1.1). Let X C Q@ be compact. Then there are positive constants C,
and C,, depending only on p, such that

CT (X)) <supla(f)| < CT (X))
f

where the sup is taken over functions f in L?(Q), 2 < p < o0, with
Jax|f @) dm < 1.

We denote the annulus {z: 27"7! < |z — x| < 27"} by 4,(X). We write
A4, = 4,(0).

LemMA (1.2). Let X C Q be compact. There is a constant C, depending only
onp, such that forz 2 A,_, U A, U A4,,,
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el CT (4,\ X)"? A
7)[ < -n " |9 X,

llz|= 27" i
JSor f analytic outside A, \ X, f(0) = 0and [g x| f(2)|P dm < co.

The following theorem was proved in the sup norm case by Wang [18, p.
223). Wang essentially followed O’Farrell [13], who elaborated on a method
of Gamelin [7, p. 206]. We assume that x = 0 and that 0 €3X.

THEOREM (1.1). Let ¢ be an admissible function and s a nonnegative integer.
Suppose that there is a function v € L9(X) which represents 0 for R? (X') such
that |z|~*¢(|z])"'v € LI(X). Then

0
2296+ (2=m) T (A, \ X ) < 0.
1

PRrROOF. Suppose that
[>e]
;2"(‘“)%(2'”) "I‘q(A,, \X) = oo.

We will show that this leads to a contradiction. We may assume that for each
n

24(‘+‘)"w(2‘")_ql'q(A,, \X)< L
If not, choose Y, compact, Y, C A, such that
3 < 206+ Dng(2=m7IT (4, \X U Y,) < ],

and set Y = U Y, U X. Then define v*(z) = v(z) for z € X and v*(z) = 0
for z € Y\ X. Clearly, |z|~*¢(]z])~'v* € L9(Y) and o* represents O for
RP(Y).

Now choose integers M; < N, < M, < N, < -+ so that

N,
1< X 206+ Dmp(2=m 7T (4,\ X) < 2.
n=M,

For each n we choose by Lemma (1.1) compact sets K, C 4,\ X and
functions f, € L? (2 \ X)) so that:

1/p
) la(f,)] > C27'T (4, \ X)'/"{melf,.(Z)Ip d'"}

= C27'T (AN X)) f ok,
£, =0 onk,and
(iii) I fillep= 27 D027 T (A, \ X )'7.

(id)
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Let g(2) = ¢(|z])z°* "2} )1 f,(2). We will show that || g)llx,, < C for all j.
In the following discussion C will denote any constant that is independent of
n and j. Lemma (I1.1.2) implies that forz € 4,, k < n — 1,

|£,(2)] < €206+ Dn+ky2=m) 7T (4, \ X),
andforz € 4,k > n + 1,
| £, (2)] € €296+ Dn¥ny(2=m)~T (4, \ X).
We may assume that X C {|z| < 1}. Thenforz € 4, N X,k <n-—1,
o(j2)|2] | £ (2)] € €296+ D12~ 7T (4, \ X).
Forz€A,k>n+1,
¢(|z|)|z|’+'|f,,(z)| < C2q(:+l)n+n—(:+l)nqb(z—n)l—qrq(An \ X)
< €296+ Dny(2=MT (A, \ X).

Now

-/)‘(I gj(z)lp dm = k%o Lknx

P

A{’.
EM #(|z)z"* ¥, (2)| dm

4

<c3 [ s lme“qu

k=0"ANX| | n=M;ntk-1Lkk+

k+1

P
+ % l(qs(|z|)|z|""| 5 (2)) t dm.
ne=k—
By the above estimates and the choice of M;, N;, we have for z € 4,
W/ N,
> (12D £ (2)] € € X 296+ Dnp(2=m) 7T (4,\ X) < C.
n=max(k+2,]tll) "-A[j
Similarly,
min(k—2,N;) N;
EM o(j2Dl2I" | £ (2)| < € EM 206+ Dng(2-m) 7T (4,\ X) < C.
n=2M;

n= I;

Thus

P
N;

zJ S eEDEILE| dn<c

k=0"ANX| n=Min¥k—1kk+

Next, we estimate
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k+1

S 3 (U1 dn

k=0
For each k,

[, SOl ey ) o
< C(¢(2—k+1)P2-p(k-1)"1;(_1"%)

_ P=Pdn -1l —
< Cp27*+1) k-1l p+pq(s+l)1rq(Ak_l\X)
< CoTIED Q) T (4, \ )

and similarly for f, and f, ;. Thus
k+1

S (42Dl | (2)]) dm

k-oLan-k—l

Y -
< C Y 206+ Dkg2=%) T (4, \ X)
k=M,

< C by choice of M; and N;.

Combining the above estimates, we obtain
f |gj|p dm < C forallj.
X

Next we pass to a subsequence of the {g;} that converges weakly to
g € L?(X). Denote the subsequence also by {g}. We form hy(z) =
2¢(|z])'g;(2) and Fj(z) = z~*~'i;(2), which are analytic in C\ A(0, 2~*). By
the above estimates the functions 4 and F; are uniformly bounded on
compact subsets of C\ {0}. Hence, there are subsequences that converge
uniformly on compact subsets of C\ {0} to h(z) = z¢(|z])~'g(z) and F(z) =
2757 h(z) respectively.

We claim that 4 is a polynomial of degree s + 1 with A(0) = 0. The above
estimates show that there is a number M > 0 that bounds the A; in the
following sense: to any z € A(0, 1) \ {0} there corresponds an integer J such
that for j > J and [{| > |z, |4($)| < M. This implies that 4 is bounded near
0, so h is entire and lim, yh(z) = 0. To show that 4 is a polynomial we
consider

. _S_l — — .
zangoz h(z) = F() = JIE&E(OO)
For all j, Fj(x) = =Y. mJn(0) lies in [C,/2, 3C;] where C, and C; are the

constants of Lemma (1.1). Therefore, we have that lim; ,  F;(e0) = B8 € [C,,
2C,), and
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h(z) = Bz°*' + ) Biz' where B; is a constant for each i.
1
Thus
g = ¢(|z|)z"hj—)¢(]z|)z—'h = Bo(|z|)z* + 21: Bi¢(|zl)zi"

weakly and pointwise on each bounded subset of C\ {0}.
This means that if ¥ € LI(X), then

[ g am = [ Bo(jz)ztudm + 5 B, [ (e’ am

Wilkin’s lemma (Lemma (I.4.1)) and the original hypothesis imply that there
is a function v, € L9(X) which is a linear combination of the functions z o,
0 < j < s, such that
f9(0)
f fo, dm = s!

for all f € Ry(X). Taking u = ¢(|z])~'v,, we get a contradiction.

The next theorem may be proved in a similar way, and we omit many of
the details.

THEOREM (1.2). Let ¢ be an admissible function and s a nonnegative integer.
Suppose that there is a function v € L9(X) representing 0 for R? (X)) such that
|2]~*¢(|z])" o € LI(X). Then

lgrg)r‘q"q¢(r)_qrq(A(0, H\X)=0.
PrOOF. Suppose that there is a sequence 7, — 0 and a b > 0 such that
rr e 99(r,) T (A, r, )\ X) > b forallr,.
We may assume as before that
206+ V2" 7T (4,\ X) < 1 foralln.
Note thatif 27% > r,,and [27% — r | < 275,

0
206+D 37 296+ Dg(2=m) T (4,\ X) > b.
n=k

Thus there is a sequence of integers M, < N; < M, < N, < --- such that
N
2> 2 2q(s+l)n¢(2—n)'qrq(An \ X) > 2-als+1)p

n=M;
for all j. The proof then proceeds as before.

2. Density at bounded point evaluations. We will get an estimate for r,
capacity in terms of the measure m. The following lemma is in [4].
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LEMMA (2.1). Let p be a measure of total mass 1 (i.e. fdu=1). If
1< qg<22andp = q/(q — 1), then

fc{fk' - 2|—I d#(f)]pdm < c{zsg%flg 3 zlq_z dp(g)}p-|

where C is some constant depending only on p.
LEMMA (2.2). For each q, 1 < q < 2, there is a positive constant C such that
2-49)/2
T(X) > Cm(X)2~9/
Jor all compact sets X C C.

PrOOF. Define f = m(X)~!fy(z — £)~! dm($). Then f is analytic in C\ X
and f'(c0) = 1. To estimate | f||,c\x We apply Lemma (IL.2.1) with p =
m(X)~'x, where xy is the characteristic function of X. We get

1/q
IMlewk, < € {jgg m(X)™' fxlz ki dm(:)}

We will use C to denote any constant depending only on p. Choose R > 0 so
that R?2 = m(X), and let D = A(¢, R). Then since r?72 is a decreasing
function of r,

1 _ pa-2 e m-1g-2( |5 — 92
m(X) fx|z Q77 2dm(¢) < 'R fpp 7 dm(¢)
— _—lp-2 27 Rq__2
7~ 'R fo j(;r r dr d

R
=2R72[| rilgr
0

=2(g—1)"'R™2R7=2(q - 1)"'R?2.
Applying the above inequality for || f|lc\x,, we have
"f"C\X,p < CRW-2/q,

Define g = f/|| fllc\x,- Then g is analytic in C\ X and || g|lc\x, = 1. More-
over,

g(0) = f(0)/|flek,> CRE™P/4> Cm(X )2/,
By Lemma (I1.1.1) we conclude that
T (X) > Cm(X)?~ 97,
and the proof is complete.

COROLLARY (2.1). Let ¢ be an admissible function and s a nonnegative
integer. Suppose that there is a function v € L9(X) representing O for R? (X),
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p > 2, such that |z|7*¢(|z|)"'o € L9(X). Then
m(A0, n" )\ X) = o(4>(n")2'(n")2'(s“)), wheret = q/ (2 — q).

ProOF. This follows from Theorem (I1.1.2) and Lemma (11.2.2).

3. An example. In this section we use Hedberg’s capacity theorems to
construct a Swiss cheese Y such that M ;3,8”(Y) = {0}. Let X, be the
closure of a set having positive measure whose boundary consists of finitely
many analytic curves. The first step is to show that for a given ¢ > 0 and
P > 2 one can construct a Swiss cheese X = X\ U2,D; such that:

(1) 22.,r279 < ¢ where r, is the radius of D;; and

(2) for some p’, p > p’' > 2, SP(X)=@. For n=1,2,... we define X,
inductively by letting X, = X,_, \ G, where G, = U {A(127", (e2™")*/@-9),
where the summation is taken over all Gaussian integers 7 such that [£27"| <
1}. Then set X = N %, X,. Since each G, consists of < 22" disks

0 0 ) o ya2—

S <3 2@y =

i=1 i=1
Now choose ¢, ¢ < ¢’ < 2, so that 32 — ¢')/2 — 9) < ¢'. Let x € X. We
claim that x & S”(X) where 1/p’ + 1/4’' = 1. Within any disk centered at x
and having radius 27", there is a disk in C\ X having radius at least
4~ (e27%)*/@~9, Hence

nll»n;lo 2MT (A(x, 27"\ X)
> 4q/_2 . nli)ﬂzl” 2n¢(£2_")3(2—q’)/(2—q) > 0'

Thus by Theorem (I1.1.2), x £ S9(X), and X is the desired set.

Given g0 and p;|2, it is possible by the above construction to remove open
disks D of radius r; from A4;(0) to obtain a Swiss cheese ¥; such that
ey (1/pj+ 1/q = 1), and $%(Y)) = @ for somepl,pj>pj > 2.
Choose the & o that 3¢ 2.12%; < o0, and define Y = U 2,Y; U {0).

We will use Hedberg s theorem [9] to prove that for any p > 2,0 € S?(Y).
Letp > 2. There is an integer J such thatp > p; > 2 forj > J. Hence,

22"’1‘(A(0)\X)<C22”2rk "<C22"’e < o0.
Jj=J k=1 j=J

By Hedbergs theorem 0 € SP(Y), and since p > 2 was arbitrary, 0 €
Np>287(Y). That 0 is the only point in N,,S?(Y) follows from the
construction of Y and the fact that x € §”(Y) if and only if
x € §7(Y N A(x,r))foranyr > 0.

Given any compact set X it would be interesting to find necessary and
sufficient conditions for N ,-,S?(X) to have positive measure. Lemma (1.2.3)
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implies that a sufficient condition is that there exist a single g which
represents 0 for R?(X) for allp > 2.
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