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BOUNDED POINT EVALUATIONS AND
SMOOTHNESS PROPERTIES OF FUNCTIONS IN RP(X)(X)

BY

EDWIN WOLF

Abstract. Let X be a compact subset of the complex plane C. We denote

by R0(X) the algebra consisting of the (restrictions to X of) rational

functions with poles off X. Let m denote 2-dimensional Lebesgue measure.

For/» > 1, let L"(X) = L"(X, dm). The closure of R0(X) in LP(X) will be
denoted by Rr(X). Whenever p and q both appear, we assume that

\/p + \/q = 1.
If x is a point in X which admits a bounded point evaluation on RP(X),

then the map which sends / to f(x) for all / £ R0(X) extends to a

continuous linear functional on RP(X). The value of this linear functional

at any/ e RP(X) is denoted by/(x). We examine the smoothness proper-

ties of functions in RP(X) at those points which admit bounded point

evaluations. For p>2we prove in Part I a theorem that generalizes the

"approximate Taylor theorem" that James Wang proved for R (X).

In Part II we generalize a theorem of Hedberg about the convergence of

a certain capacity series at a point which admits a bounded point evalua-

tion. Using this result, we study the density of the set X at such a point.

Part I. Smoothness properties of functions in Rp (X)

Let A" be a compact subset of the complex plane C. We denote by R0(X)

the algebra consisting of the (restrictions to A') of rational functions with

poles off X. Let m denote 2-dimensional Lebesgue measure. For p > 1, let

Lp(X) = Lp(X, dm). The closure of R0(X) in L"(X) will be denoted by

RP(X). Wheneverp and q both appear, we will assume that 1/p + l/q = 1.

1. Bounded point derivations.

Definition (1.1). For x E X we say that x admits a bounded point deriva-

tion of order s on RP(X) if there exists a constant C such that |/{í)(jí:)| <

CU/U, for aU/£*„(*).
When x admits a bounded point derivation of order s on RP(X), the map

f\-+f{s)(x)/s\ extends from R0(X) to a bounded linear functional on RP(X).
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We denote this bounded linear functional by Dx.

Definition (1.2). When x admits a bounded point derivation of order 0, we

say that x admits a bounded point evaluation. For / G RP(X) we define

fix) = D$.
Definition (1.3). For eachp > 2 the inner set for RP(X) is the set of points

in X which admit bounded point evaluations, and we denote it by Sp (X).

Proposition (1.1). For eachp > 2, SP(X) is an F„ set.

Proof. Write SP(X) = U T~isS(x)where

Sp (X) = {xEX\ |/(x)| < «Ml, for all/ E R» (X)}.

We show that each set SP(X) is closed. Suppose that {xk} c SP(X) and that

xk->x E X. Let LXJ = f(xk) and observe that the Lx are a family of linear

functionals bounded in norm by n. Since LxJ^>f(x) for / E RQ(X), and

R0(X) is dense in RP(X), it follows that x E SP(X). Thus each Sp(X) is

closed.

2. Potentials and representing functions. In this paper z will denote the

identity function.

Definition (2.1). Let ^ be a positive nondecreasing function on (0, co). For

each g E Lq(X), q > 1, we define the ̂ -potential of g, If*, by

J +(\z-y\)

If l/i|/(|z|) is locally summable with respect to m, Fubini's theorem implies

that U* is locally summable; hence U* < co a.e. (m).

Definition (2.2). When ^(r) = r, we denote U* by g.

Definition (2.3). When i>(r) = rq, 1 < q < 2, we denote U* by U¡.

Definition (2.4). We define the Cauchy transform of g to be

i(y) = j (z — y)~X g dm   for ally where g (y) < co.

For the proof of the following lemma we refer the reader to Sinanjan [16]

or Brennan [1, pp. 10-11]. Brennan's proof uses the Cauchy transform.

Lemma (2.1). Let X c C be compact and have no interior. Then RP(X) =

Lp(X)for 1 < p < 2.

It follows from the Riesz representation theorem that if x E SP(X), then

there is a g E L"(X) such that f(x) = J fg dm for all / E RP(X). We call

such a g a representing function for x. If RP(X) =t LP(X), there is a nonzero

function g E Lq(X) such that / fg dm = 0 for all/ E RP(X). We call such a

g an annihilating function.
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The following lemma was proved by Bishop for the sup norm case: We

assume that 1 < q < 2.

Lemma (2.2). Let g E Lq(X) be an annihilating function. Suppose that g(y)

is defined and ¥= 0, and that (z - y)~xg E Lq(X). Then g(y)~x(z - y)~xg is a

representing function for y.

Proof. If / e R0(X), then / = f(y) + (z - y)h for some h E R0(X).

Hence

j(z-y)-lfgdm=f(y)g(y) +fhgdm = f(y)g(y).

Corollary (2.1). Let g E Lq(X) be a representing function for x. Let

c(y) =J(z-x)(z-y)~xgdm= 1 + (y - x)g(y).

Then c(y)~x(z — x)(z — y)~xg is a representing function for y  whenever c(y)

is defined and ¥= 0.

Proof, (z — x) g is an annihilating function.

We now present a lemma of Brennan in [2, p. 288] which will be very

useful.

Lemma (2.3). If p > 2, then RP(X) ̂  L"(X) if and only if SP(X) has
positive 2-dimensional measure.

Proof. Suppose that SP(X) i= 0 and x E SP(X) is represented by a

nonzero function g E Lq(X). Then RP(X) =<= LP(X) because (z - x)g E

Lq(X), and j(z - x)gfdm = 0 for all/ G RP(X).

Now suppose that RP(X) ¥= LP(X) and let g E Lq(X) be a nonzero

annihilating function. Then g fails to vanish on a set of positive measure in X.

Hence there is a set S c X of positive measure such that for.y e S, g(y) ¥= 0

and g(y)~\z - y)~xg E Lq(X). It follows from Corollary (2.1) that S c

SP(X), and the lemma is proved.

Remark. If we know that there is an x E S2(X), the difficulty in showing

that there are other points in S2(X) by the above method is that z~x g. LXoc.

3. Admissible functions. Fix x E C and let A„ — [y E C: \y - x\ < l/n).

We say that a set E c C has full area density at x if lim„_>00m(£ n

A„)/m(A„) = 1. Let F be a function defined on^x£ X. We say that a is

the approximate limit of F at x, and write app lim),_>JCF(-y) = a if there exists

a subset E of X having full area density at x, such that lim),_>x;j,s£F(>') - a.

We say that F is approximately continuous at x if app limy^xF(y) = F(x).

If 4> is a positive function on (0, oo) with lim,._,0<f>(r) = 0, we say that F

admits $ as a modulus of approximate continuity at x if |F(.y) — F(;e)| <
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<|>(|y — x|) for all y in a set having full area density at x. We say that F

satisfies an approximate Holder condition of order a at x if F admits Cr" as a

modulus of approximate continuity at x for some constant C.

Definition (3.1). We say that <f> is an admissible function if

(a) <|> is a positive, nondecreasing function defined on (0, co), and

(b) the associated function \p, defined by \¡/(r) = r/<b(r), is nondecreasing,

with i^(0 + ) = 0.

Example. For any a, 0 < a < 1, 4>(r) = ra is admissible.

Remarks. 1. If ^ is admissible and 0 < ß < 1, then <bß is also admissible

because r/$ß(r) = (r/<b(r)) • <i>1_/3(r).

2. In using an admissible function <#> we will often refer to the triangle

inequality: <b(r) < (b(rx) + <b(r2) whenever r < r, + r2. This follows from the

definition of an admissible function since

<b(r) < <b(rx + r2) = (rx + r2)/^(rx + r2)

< rj*(rx) + r2/$(r2) = <t>(rx) + <¡>(r2).

Wang introduced a special kind of admissible function in [17, p. 349].

Definition (3.2). We say that the admissible function <j> is nice if

Jl<b(r)-l dr < co.

For each q, 1 < q < 2, we will be interested in a subset of the set of nice

admissible functions.

Definition (3.3). We say that the admissible function <b is #-nice if

iy-q<t>(r)-q dr < co.

Note that a nice admissible function is 1-nice and that <b(r) = ra is <7-nice

for a < (2 — q)/q. Whenp > 2, the g-nice admissible functions will be the

most likely ones to be moduli of approximate continuity for functions in the

unit ball of RP(X) at points in SP(X).

The following lemma is due to Wang [17]:

Lemma (3.1). Let g E Lq(X), q > I, and let x E X. Then there exists a nice

admissible function <b with <b(0 + ) = 0 such that <b(\z - x\)~lg E L"(X).

Proof. See Wang [17].

Our proof of the next lemma is in the spirit of Browder's result [3, p. 157].

It will be useful for studying the density of X at points in SP(X). Let E c X

he measurable. Define p„ by -rrp2 = m(à„ \ E). Denote /n|A„ \ E by m„.

Lemma (3.2). Let ^ be associated with an admissible <b. For q, 0 < q < 2, let

T = \pq. Then if g E L\X),

¿™ J^ f'(\y - xDus(y) dmn(y) = o.
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Proof. Define

FM) - *<pr2fH\y - x\)'-H\S-y\)~'d»h.(y)-

Then Fn(x) < co and if f 1=- x, we have for large n

\Pn(n\ < nqpW(n-x)q-t(\x-S\-n-x)U0   as/t^oo.

Next, we will show that the Fn are bounded independently of n. Let Dn =

A(£, p„). Since \pq is increasing,

\F«(n\ < n'PrM»--)"^ - S\)~"dmn(y)

< nipytyn-1)9 ( 4>(\y - S\)~"dm(y)
JD„

= 2TTnqpq-2^(n-x)" [P>(r)-?r or
-'o

< 2ra'PrV(«-I)V(p„)'rV-'a>
•'o

= 277«^-^(»-1)%(Pn)?P2-?(2 - a)"'

< 277(2-9)"'.

Thus, the Fn converge boundedly a.e. to zero. We apply the dominated

convergence theorem and Fubini's theorem to obtain the lemma.

Lemma (3.3). Let \p be associated with an admissible <j>. For 0 < q < 2, let

t = $*. Then if g E LX(X), and 8 > 0, the set E = {y E C: t(|>> - x\)U¡(y)

< 8 } has full area density at x.

Proof. It is sufficient to prove that limM_00m(An \ F)/m(An) = 0 where

A„ = A(x, l/n). We observe that since

m(An \ E) < 5 -1 f r(\y - x\)U¡ (y) dm(y),

it is sufficient to prove that

Urn n2j^(\y - x\)U¡(y) dm(y) = 0.

This follows from Lemma (3.2) if we take E in that lemma to be the empty

set.

4. The main theorem. The following lemma in the sup norm case is due to

Wilken [20]. For x G SP(X), p > 2, it gives a condition for x to admit a

bounded point derivation of order s.

Lemma (4.1). Suppose there exist a representing function g E Lq(X) for
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x E SP(X), p > 2, and a nonnegative integer s such that    (z — x) sg E

Lq(X). Let Cj = j(z - x)-jg dm (0 < j < s) and define G0,..., Gs by:

G0 = g,       Gj = (z - x)-jg - 2 Cj_kGk.
k<j

Then DJX exists, and DJJ = ifG} dm for allf E R"(X), 0 < j < s.

An additional lemma will be needed in proving the theorem.

Lemma (4.2). Let s be a nonnegative integer, and g E Lq(X), 1 < q < 2.

Suppose that (z - x)~sg E Lq(X). Set Hj = (z - x)~Jg (0 < f < s). For any

/E Lp(X)andy EC

j(z-y)~lfgdm

= t(y~ *)'"' ffHj dm + (y- x)s f(z - y)~xfHs dm.
j-\ J J

Proof. Since H} = (z — x)Hj+, for 0 < / < s,

f(z - yyxfHj dm =ffHJ+x dm + (y - x)j(z - y)~xfHJ+x dm

which implies the lemma.

Our main theorem generalizes the "approximate Taylor's theorem" which

Wang obtained for functions in R (X) [17, p. 352].

Theorem (4.1). Let <b be an admissible function and s a nonnegative integer.

Suppose that p > 2 and that there is an x E SP(X) represented by a g E

Lq(X) such that (z - x)_^(|z - x\)~xg E Lq(X). Then for every e > 0 there

is a set E in X having full area density at x such that for every f E RP(X)

(0/ = 2sj.0(Dif)(z - xy1 + R where R E RP(X) satisfies

(ii) |*O0| < e\y - xMy - x\)\\f\\pforally E E, and
(iii) app lim^itfOVIy - x\*<b(\y - x\)) - 0.

Proof. Since (z - x)~*g E Lq(X), Lemma (4.1) implies that the DJX exist

for 0 < / < s. To each D{, 0 < j < s, there corresponds a constant Cj such

that \D{f\ < Cj\\f\\p for all/ E RP(X). By Minkowski's inequality there is

another constant C such that if R is defined as in (i), \\R\\P < C\\f\\p for all

/ E Rp(X).
Choose 8 > 0 so that 0 < C8(l - 8)~x < e/2. If y E Ex = {y E C: \y -

x\g(y) < 5), then c(y) = 1 + (y - x)g(y) is well defined, and |c(y)| > 1

- 8. By Corollary (2.1),
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R(y) = c(y)-xf[R(z - x)/(z-y)]gdm

= c(y)-xfR[l + (y- x)/(z-y)]gdm

= c(yyx(y - x)J[R/ (z - y)]g dm.

Next, we claim that R (y) = c(y)~x(y - x)s+xf(z - x)~s(z - y)~xRg dm.

This claim depends on Lemma (4.2). Each of the functions (z - x)~jg,

0 < / < s, is a linear combination of functions representing Z)*, 0 < k < j,

which implies that f(z — x)~JRg dm = 0 for 0 < / < s, and the claim is

proved.

Factoring g = <p(\z - x\)h where h E Lq(X), we obtain by the "triangle

inequality" that

\g\< <b(\z - y\)\h\+<b(\y - x\)\h\.

Consequently,

I* 001 <\c(y)\~ V - xrl[f\z - y\~]\z ~ *P<Klz - y\)\Rh\dm

+ f\z - y\~x\z - xfs<i>(\y - x\)\Rh\dm .

Denote the first integral by Ix and the second by I2. We have

Ii =\c(y)\~l\y - *M\y - x\pP(\y - x\)f^(\z - y\)-X\z - x\-s\Rh\ dm.

Let r = 4/q,k = (z - xysqhq, and

£2={7GC:T(|.y-x|)[/;(.y)<5<}.

For y E E2 we apply Holder's inequality to obtain

t 1x/p
IX<(1- 8)~x\y - x\s<t>(\y - x\)r(\y - x\)X/" ̂ ¡¡Rf dm j     {U^(y))X/"

<(l-8)-l\y-x\'<j>(\y-x\)C\\f\\p8

< (*/2)\y - x\*<t>(\y - x\)\\f\\p.

To estimate I2 we define

£3={^EC:|;- xfUg (y) < 8q }    and let.v G E2 n E3.

By Holder's inequality,
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1/î

h < (i - *) V - x\**(\y - x\)\y - x\f\z -y\~x\z - x\ °\Rh\ dm

< (1 - Syx\y - x\s<t>(\y - x\)\y - *|{/|Ä|' ¿m)   '{Ug_(y)}

<(l-8)-x\y-x\s<?(\y-x\)C\\f\\p8

< (e/2)|y - x\s<b(\y - x up

By Lemma (3.3) the set E = E2 n E3 has full area density at x, and we have

proved that for y E E

\R(y)\<Ix + I2<e\y-x\s<b(\y-x\)\\f\\p

for any/ E RP(X). To prove (iii) let L/= R(y)/\y - x\s<b(\y - x\). The

above result implies that ||Zj,|| < e for y E E. Let y -» x in such a way that y

stays in E. Then /.,,/-> 0 as y -» x for / E Äo(A'), and since R0(X) is dense

in Rp(X), (iii) follows.
An interesting consequence of the above theorem is that we can take the

limit of Newton quotients in the set E to evaluate D/f. For / a function

defined on a subset of X, h E C, we set

àhf = f(z + h)-f

so AJ is a function defined on a subset of X. We define inductively A° = id,

A¿ = AA » A7-1 for y > 1. The sup norm version of the following corollary is

proved in [17].

Corollary (4.1). // x admits a bounded point derivation of order s on

Rp(X),p > 2, then for all f E RP(X)

W(x)
Z>^=applim —— .

/i-*0        s-n

Lemma (4.3). Let <f> be a q-nice admissible function. If x E SP(X), p > 2,

then {y EX: 3 a function gy that represents y for RP(X) and satisfies

4>(\z - y\)~lgy e £?(*)} has full area density at x.

Proof. Let g E Lq(X) represent x.

Let

F =i[y EC: f\z - y\-q<t>(\z - y\)~q\g\g dm < oo).

Since |z|-<7<i>(|z|)~'7 is locally summable with respect to m, m(C\ F) = 0. Fix

8, 0 < 8 < 1, and put E = F n Ex where Ex = {y E C: \y - x\g(y) < 8).
By Lemma (3.3) the set E has full area density at x. For each y E E the

function gy = c(y)~\(z - x)/(z - y)]g representsy. Moreover,
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f<b(\z - y\)~q\gy\q dm =\c(y)\-"j\z - y\~q<p(\z - y\)~'\z - x\"\g\q dm

< cj\z - yfq<j>(\z - y\)~"\g\q dm < co.

This proves the lemma.

Corollary (4.2). Suppose that <i> is q-nice. Then at almost every point of

Sp(X),p > 2, the functions in the unit ball of Rp(X) admit <b as a modulus of

approximate continuity.

Proof. Combine Theorem (4.1) with Lemma (4.3).

In particular, it follows that at a.e. x E SP(X), p > 2, the unit ball of

RP(X) satisfies an approximate uniform Holder condition of order a for

every a < (2 — q)/q.

Lemma (4.4). Let <p be admissible and g E Lq(X), 1 < q < 2. Then if

<b(\z - x\)-xg E Lq(X), 5 > 0, and

E= {y E C: \y - xf f\y - z\-q\g\q dm < s},

it follows that m(A„ \ E) = o(<b(n~x)2/n2).

Proof. We observe that

m(An\£)<5-I/|^-x|?/|z->-f9|gr^^(>')-

Factor g - <b(\z - x\)h where h E Lq(X). Then

\g\<<C[<j>(\Z-y\)<\h\'> + 4>(\y-x\)<\h\'']

where C is some constant. We have

m(\\E) < 8-xc\ j\y - x\"f\z -yf<b(\z - y\)"\h\q dm dmn(y)

+ f\y - x\qj\z-y\-\(\y - x\)"\h\qdmdmn(y)

By substituting \y - x\q = <p(\y - x\)q\l/(\y - x\)q in the first integral, and

using the fact that <p(\y - x\)q < <¡>(n~x)q for y G A„, we obtain

w(A„\F) < 8-xC<b(n~x) H\y - x\)"fH\z - y\)~"\h\q dm dm„(y)

+ J\y-x\qf\z-y\-q\h\dmdmn(y)

Let An denote the sum of the two integrals on the right. Replacing m(A„ \ E)

by 7rp2, we obtain

TTP2<8-xC<p(n-x)qp2-qn-q(A„)
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where limn_>00^n = 0 by Lemma (3.2). Divide both sides by p2~q to get

TTpq<S-xC<p(n-x)qn-q(An).

Now raise both sides to the power 2/q, and the conclusion of the lemma

follows.

In the next corollary we consider functions/ E RP(X) to be defined on C

by setting/(x) = 0 for x E X.

Corollary (4.3). Let e > 0. If x E SP(X), p > 2, is represented by

g E Lq(X), and (z — x)~ag E Lq(X) for some a > q — 1, then there is an

integer Nx depending on x such that for n > Nx

m(An)-x f \f- f(x)\ dm < e\\f\\p  for allf E R» (X).

Proof. Let E he the set in the conclusion of Theorem (4.1) when e/2 and

x E SP(X) are given and <b(r) = 1.

m(A„)-x(\f-f(x)\dm
ja„

<m(Anyx\f      \f-f(x)\dm+f     \f-f(x)\dm

< (*/2)||./i»i(A„r1m(\ n E) + TT-Xn2j     \f - f(x)\ dm

<(e/2)\\f]\p+TT-xn2}     \f-f(x)\dm.

Let Xa \e be the characteristic function of A„ \ E. Then by Holder's inequal-

ity,

T-1"2/"     |/-/0)| dm = ^-'zz2(xa„ne|/-/0)| dm
Ja„\e j

<Cn2[m(An\E)]X,q\\f\\LPl^E)

where C is a constant. By Lemma (4.4)

[m(An\E)]yq=o(n-Wq)-W>\

Thus if a > q - 1, we can choose an integer Nx so that n > Nx implies that

Q72[w(A„ \ £)]'/? < e/2. Hence,

m(KyXí I/-/WI dm < (e/2)||y]|p+ (*/2)\\f\\LP{

< «114-
This completes the proof.
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Corollary (4.4). Ifp > 2 + V2 , then for a.e. x E SP(X),

fon m(Anyxj \f~f(x)\ dm = 0   for any f E R»(X).

Proof. This follows from Lemma (4.3) and Corollary (4.3).

Given/ G Lx(dm), the set of points x£C such that

lim m(An)-xJjf-f(x)\ dm = 0

is called the Lebesgue set of /. For an arbitrary / G Lx(dm), a.e. (m) point

x E C belongs to the Lebesgue set of/(see [5, p. 156]). The above corollary

identifies points belonging to the Lebesgue sets of all/ G RP(X). It would be

interesting to know whether the corollary holds forp > 2.

Part II. Capacity and bounded point evaluations

1. Capacity theorems. Before proving a capacity result about bounded point

evaluations, we will need two lemmas of Hedberg [9]. Let ß denote the

complex plane whenp > 2 and the unit disk whenp = 2.

Definition (1.1). Let A' c ß be a compact set. Then

r,(.Y)-inf J|grad <ofa/n

where the inf is taken over Lipschitz functions « with compact support

contained in ß such that u>(z) > 1 on X.

For noncompact sets F, ^-capacity is defined by Tq(F) = s\xpKcFTq(K), K

compact.

Let U be an open set (bounded if p = 2) in the complex plane and denote

by LP(U) the space of analytic functions in LP(U). If / is analytic in ß \ X

where X c ß is compact, we write a(f) = (2Tri)~xJcf(z) dz where C is any

Jordan curve in ß enclosing X.

Lemma (1.1). Let X c ß be compact. Then there are positive constants Cx

and C2, depending only onp, such that

CxTq(X)x/q<sup\a(f)\ < C2Tq(X)x/q

where the sup is taken over functions f in LP(Q¡), 2 < p < oo, with

fasxlMl" dm < I.

We denote the annulus {z: 2"n_1 < \z - x\ < 2'"} by An(X). We write

An - ^„(0).

Lemma (1.2). Let X c ß be compact. There is a constant C, depending only

onp, such that for z G An_x U An U An+X
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er (a \ x)x^q

|/(Z)| <      |jz|-2-|      l|yW"

for f analytic outside An \ X,f(oo) = 0 and JQ\X\f(z)\p dm < co.

The following theorem was proved in the sup norm case by Wang [18, p.

223]. Wang essentially followed O'Farrell [13], who elaborated on a method

of Gamelin [7, p. 206]. We assume that x = 0 and that 0 £ dX.

Theorem (1.1). Let <§> be an admissible function and s a nonnegative integer.

Suppose that there is a function v E Lq(X) which represents 0 for Rp(X) such

that Izl-^Klzlr'ü E Lq(X). Then

^2q(s+»nc>(2-nyqYq(An\X) < oo.

i

Proof. Suppose that

22*(i+»>(2-n)  qT(A„\X) = oo.
i

We will show that this leads to a contradiction. We may assume that for each

n

2q{s+l)nTT(2-n)~'1Tq(An\X) < 1.

If not, choose Yn compact, Yn c A„ such that

i < 2^+')"<|,(2-")"%(^\^ u Y„) < 1,

and set Y » (J Y„ u X. Then define v*(z) = v(z) for z EX and v*(z) = 0

for z E Y\X. Clearly, |z|-^(|z|)_1tj* E Lq(Y) and v* represents 0 for

Rp(Y).

Now choose integers Mx < Nx < M2 < N2< • • • so that

nj

1 <  2  2q(s+l)n<b(2-")  qTq(An\X) < 2.
n = Mj

For each n we choose by Lemma (1.1) compact sets K„ c An \ X and

functions/, E LP(Q\ Kn) so that:

/ •*>//>

(i) |«(/„)| > Cx2-%(An\X)x/q\f     \fn(z)\Pdm

(ii) =Cx2-*Tq(An\xfq\\fn\\QXK„p,

/„ = 0    on K„ and

(«0 \\fnh,P= 2q^^(2'")-qTq(A„ \ Xf.
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Let gj(z) = tf\z\)z*+l2%mM/n(z). We will show that \\gj\\Xj> < C for all/.

In the following discussion C will denote any constant that is independent of

n and/. Lemma (II. 1.2) implies that for z G Ak, k < n — I,

\f„(z)\ < C2q^x)n+k<l>(2-'>)-qrq(An\X),

and for z G Ak, k > n + 1,

|/„(z)| < C2q^+x^+^(2-n)'qTq(A„\X).

We may assume that X c {|z| < 1}. Then for z E Ak (~) X, k < n - 1,

4»(|z|)|z|i+1|/nW| < C2q(*+V<p(2-»)-qrq(An\X).

For z G y4t, A: > « + 1,

<í»(|z|)|z|í+1|/„(z)| < C2^+1>"+"-<i+1>"«i,(2-'')1-?r^n\A')

< C29(j+1)',(i>(2-n)r?(^n\A').

Now

,p

f\8J(z)\Pdm=fl   f
Ni

2 <KH)z'+1/„(z)dm

k=oJAknx

N,

n = Af,;n^/fc-l,A:,Jfc+l
♦(|z|)|r|'+,|/,(-)|

k+i

2
/7 = >t— 1

+ 2 WM^ruwi)1dm.

By the above estimates and the choice of Mp Np we have for z E Ak

N,

2 *(M)M'+Uv*)l < C 2   2q^x^(2-")-qYq(An\X) < C.
n = ma\(k + 2,Mj) n = M,

Similarly,

mm(k-2,Nj) N}

2       *(M)M'+I|/«(*)I < C 2  2^+l>>(2-")-%(^\A') < C.
n = M: n = M,

Thus

00     /•

s     *(mk+U(-)idm < C.

Next, we estimate
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2   f    r   21   {*(\z\)VCVn(z)\)Pdm.

For each k,

í   MM)\*\'+l\f*-Á')\)'*»

< C(*(2-*+»)'2-**-'>||/*-i|iy

< C<b(2-k+1)P~PÇ2«-»l-p+pq(*+»]Tq(Ak_x \X)

< C2í(í+1)(*-I)<í)(2-A:+I)"<'r9(^_, \ X)

and similarly for/¿ andfk+x. Thus

2   í    y2   (<t>(\z\M+%(z)\)Pdm

< C 2  2^+1)*<í)(2-*)  9T¿Ak\X)
k-M¡

< C   by choice of A/, and Nr

Combining the above estimates, we obtain

f\g/dm< C   for ally.

Next we pass to a subsequence of the {gj} that converges weakly to

g E LP(X). Denote the subsequence also by (g). We form hy(z)—

z4>(\z\)~xgj(z) and Fj(z) = z_i-'/z,(z), which are analytic in C \ A(0, 2~MJ). By

the above estimates the functions hj and Fj are uniformly bounded on

compact subsets of C \ {0}. Hence, there are subsequences that converge

uniformly on compact subsets of C \ {0} to h(z) = z^(|z|)-1g(z) and F(z) =

z~s~lh(z) respectively.

We claim that h is a polynomial of degree s + 1 with h(0) = 0. The above

estimates show that there is a number M > 0 that bounds the hj in the

following sense: to any z E A(0, 1) \ {0} there corresponds an integer J such

that for y > J and |f | > \z\, \hj(Ç)\ < M. This implies that h is bounded near

0, so h is entire and limz_i0/z(z) = 0. To show that A is a polynomial we

consider

lim z~s-xh(z) = F(cjo) = lim F(oo).
z->oo v  ' x     '      j-too   JK     '

For ally, f)(oo) = lFnLMfn(<x>) lies in [C,/2, 3C2] where C, and C2 are the

constants of Lemma (1.1). Therefore, we have that lim._>0O/J(oo) = ß E [Cx,

2C2], and
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h(z) = ßzs+x + 2 ßiZ1   where /3, is a constant for each i.
i

Thus

g, = <i,(|z|)z-1Ä,.-^«p(|2|)z-,Ä = j8*(|*|)z' + ¿ ß4>(\*\V--

weakly and pointwise on each bounded subset of C \ {0}.

This means that if m G Lq(X), then

[gjU dm->Jß<b(\z\)zsu dm+^ ß,ftf\z\)z'~'u dm-

Wilkin's lemma (Lemma (1.4.1)) and the original hypothesis imply that there

is a function vs E Lq(X) which is a linear combination of the functions z~Jv,

0 < / < s, such that

ft    A /í)(0)Jfvsdm = ̂ r

for all/ G R0(X). Taking u = ^(Izl)-1^, we get a contradiction.

The next theorem may be proved in a similar way, and we omit many of

the details.

Theorem (1.2). Let <b be an admissible function and s a nonnegative integer.

Suppose that there is a function v E Lq(X) representing 0 for RP(X) such that

\z\-s<b(\z\)-xv E Lq(X). Then

limr-qs-q<b(r)~qTq(A(0, r)\X) = 0.
r-*0

Proof. Suppose that there is a sequence rn -» 0 and a b > 0 such that

^-^(rnVXWO, rn)\X)>b   for all rn.

We may assume as before that

2q(s+x)n<b(2-")~qTq(An \ X) < 1    for all n.

Note that if 2~k > rn, and |2_* - r„\ < 2-*-1,

2i(i+D j 2?(i+1)rt<i.(2-',)"'?r?(^n\Ar) > b.

n = k

Thus there is a sequence of integers Mx < Nx < M2 < N2 < • • • such that

2> 2 2q(s+x)n<p(2-") qTq(A„\X)>2-q(s+x)b

n = Mj

for all/. The proof then proceeds as before.

2. Density at bounded point evaluations. We will get an estimate for T

capacity in terms of the measure m. The following lemma is in [4].
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Lemma (2.1). Let p be a measure of total mass  1  (i.e. f dp = 1). //

1 < q < 2 andp = q/(q — 1), then

íc{í\S-zfldp(n)   dm<cl[swpcf\t-z\q-2dp(t)\

where C is some constant depending only on p.

Lemma (2.2). For each q, 1 < q < 2, there is a positive constant C such that

Tq(X) > Cm(Xf-q)/2

for all compact sets X c C.

Proof. Define/= m(X)~ljx(z - f)_1 dm($). Then/is analytic in C\X

and f'(oo) = 1. To estimate H/H^cvr we apply Lemma (II.2.1) with p =

m(X)~xXx where Xx IS the characteristic function of X. We get

WñcKX,P< C\ snpm(X)-xf\z-tlq-2dm(S)\
(zee Jx )

We will use C to denote any constant depending only on p. Choose R > 0 so

that R2 = m(X), and let D = A(f, R). Then since rq~2 is a decreasing

function of r,

m(Xyxj\z - $\q-2dm(S) < TT-lR-2f\z - $\q-2 dm(£)

- tt-xR-2 f27' ['\q~2r dr d9

= 2R-2(Rrq~l dr

= 2(<7 - iyxR-2Rq = 2(q - l)-xRq~2.

Applying the above inequality for ||/||C\a>> we have

||JW„< CR<q-»/q.

Define g = //|[/||C\^- Then g is analytic in C \ X and HgHc^ = 1. More-

over,

g'(oo)=/'(oo)/||yl|c^> CR(-2~qyq> Cm(Xf-q)'2q.

By Lemma (II. 1.1) we conclude that

Tq(X) > Cm(Xf-q)/2,

and the proof is complete.

Corollary (2.1). Let <j> be an admissible function and s a   nonnegative

integer. Suppose that there is a function v E Lq(X) representing 0 for RP(X),
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p > 2, such that \z\~s<l>(\z\)-xv E Lq(X). Then

m(A(0, n~x) \ X) = o(<b(n-x)2'(n-x)2'U+l)),   where t = q/(2- q).

Proof. This follows from Theorem (II. 1.2) and Lemma (II.2.2).

3. An example. In this section we use Hedberg's capacity theorems to

construct a Swiss cheese Y such that np>2Sp(Y) = {0}. Let X0 be the

closure of a set having positive measure whose boundary consists of finitely

many analytic curves. The first step is to show that for a given e > 0 and

p > 2 one can construct a Swiss cheese X = X0 \ U," XD¡ such that:

(l)2£.1r2_9 < e where r¡ is the radius of £>,; and

(2) for some p\ p > p' > 2, SP'(X) = 0. For n - 1, 2,... we define X„

inductively by letting Xn - *„_, \ G„ where G„ = U {A(/2-", (e2-n)3/(2-q)),

where the summation is taken over all Gaussian integers t such that |r2_n| <

1}. Then set X = fl ^0Xn. Since each G„ consists of < 22n disks

2 r}-q < I 22<[(e2-')3/(2-?)r'= ,
/-i /-i     L J

Now choose q', q < q' < 2, so that 3(2 - q')/(2 - q) < q'. Let x E X. We

claim that x g SP'(X) where 1/p' + 1/a' = 1. Within any disk centered at x

and having radius 2~", there is a disk in C\X having radius at least

4-x(t2-r)3^2-q\ Hence

lim 2nq'TJA(x, 2~n)\X)
n—»oo H v '

>4q'~2- lim 2n«'(£2-fly3(2_'7')/(2"'?) > 0.
«-»00

Thus by Theorem (II. 1.2), x G Sq'(X), and X is the desired set.

Given EjlO andp,-|2, it is possible by the above construction to remove open

disks Djk of radius r* from Aj(0) to obtain a Swiss cheese Yj such that

2"-i0*"* < e> OM + l/lj - 0. and 5^'(y;) = 0 for some />;,/>, > p] > 2.
Choose the Ej so that Sjl^e, < oo, and define y = (JfL^Yj u {0}.

We will use Hedberg's theorem [9] to prove that for anyp > 2, 0 G SP(Y).

Letp > 2. There is an integer / such thatp > p7 > 2 for/ > /. Hence,

2 27?r9(^(0) \ a-) < c 2 27? 2 o*"' < c 2 2^ < «>.
y=y y=y     *-i y-y

By Hedberg's theorem 0 G SP(Y), and since p > 2 was arbitrary, 0 G

n/)>25J'(y). That 0 is the only point in np>2Sp(Y) follows from the

construction of Y and the fact that x E SP(Y) if and only if

x E SP(Y n A(x, /•)) for any r > 0.

Given any compact set A' it would be interesting to find necessary and

sufficient conditions for r\p>2Sp(X) to have positive measure. Lemma (1.2.3)



88 EDWIN WOLF

implies that a sufficient condition is that there exist a single g which

represents 0 for RP(X) for allp > 2.
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