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WITH NO SMALL DIVISORS
BY

R. CUSHMAN

Abstract. Any analytic symplectic diffeomorphism 4> of a symplectic

manifold M is the Poincaré map of a real analytic Hamiltonian vector field

XH. If $ does not have an analytic integral, then XH has no analytic integral

which is not a power series in H. Let M = R2. If i> has a finite contact

homoclinic point, then $ is nonintegrable. Also Moser's polynomial

mapping is nonintegrable.

Throughout this paper all maps, manifolds and vector fields will be real

analytic, unless explicitly stated otherwise.

1. The first theorem states that every symplectic diffeomorphism may be

"suspended" to a Hamiltonian vector field. This is an extension of a well

known construction [S, p. 797] to Hamiltonian vector fields. In particular

every symplectic diffeomorphism is the Poincaré mapping of some

Hamiltonian vector field, which answers a question in [A, p. 100].

Let XH be a Hamiltonian vector field on a symplectic manifold (N, ti)

whose flow is $H: U Q R X JV-» N where U is an open set in R X N

containing {0} X N. A manifold Mh is a cross section of XH in the energy

surface H ~ l(h) if (1) Mh is a submanifold of H ~ x(h) of codimension one such

that u = i*Q is nondegenerate where /: Mh -» H~\h) is the embedding of

Mh in H~x(h); (2) for every m E Mh, XH(m) is not tangent to AfA at m; and

(3) if p E H~\h) then there is t = t(p) G R\ {0} such that (t,p) E U and

®H(t,p) EMh. For each p E H~\h) let T(p) = {inf |i| | t =£ 0 and

®H(t,p) G Mh). Then the diffeomorphism <S>: Mh-*Mh:m^>$H(T(m), m)

is the Poincaré map of XH corresponding to the cross section Mh. It is well

known [AM, p. 178] that 4> is a symplectic diffeomorphism of (Mh, u).

Theorem 1.1. Let $: M -+ M be a symplectic diffeomorphism of the connec-

ted symplectic manifold (M, u). Then there is a connected symplectic manifold

(N, £2) and a Hamiltonian vector field XH on N such that in every energy

Received by the editors June 7, 1976.

AMS (MOS) subject classifications (1970). Primary 58F05; Secondary 70H99.
Key  words  and phrases.   Symplectic  diffeomorphism,   suspension,  integrable,   Moser's

diffeomorphism, homoclinic point

© American Mathematical Society 1978

45



46 R. CUSHMAN

surface H ~ x(s), XH has

(\)a cross section Ms diffeomorphic to M byjs and

(2) a Poincaré map 3>f : Ms -> Ai,, where <¡>H is the flow of XH such that

*-/, °*f °Js~l-

Proof. On the symplectic manifold M x R2 with symplectic form Û = <o

+ dt /\ds define an action of the integers by

Z: Z X (M X R2) -» M X R2: («, (m, t, s)) -» (0"(m), t - n, s).

Say that two points (m, t, s) and (m', t', s') of Af X R2 are equivalent if and

only if they lie in the same orbit of the action Z, that is, if and only if for

some n E Z, (m', t', s') = Z(n, (m, t, s)). Let A^ be the set of all orbits of the

action Z and let tt: M X R2 -» N be the map which assigns to (m, t, s) the

orbit [Z(n, (m, t, s)) E M X R2\n E Z}. Then N is a manifold and tt is a

diffeomorphism because Z is a free and properly discontinuous action [KN, p.

44]. Also N is connected because tt is continuous and M X R2 is connected.

Since

Z*Ù = ($")*w + d(t - n) A ds = w + dt A ds = Û,

the two form Û on M X R2 induces a two form Q on A^ such that Û = tt*Q.

Because tt is à local diffeomorphism and fi is closed and nondegenerate, fi is

closed and nondegenerate. Hence (N, ß) is a symplectic manifold.

Let T be the vector field on Af X R2 whose flow is

^: R X (M X R2) -> M X R2: (ti, (m, t, s)) -+(m,t + u, s);

then because iTÛ = ds, T is the Hamiltonian vector field corresponding to the

Hamiltonian function H: M X R2 -» R: (m, t, s) -> s, that is, X¿ = T.

Because

Zn o %(m, t, s) = Zn(m, t + u,s) = (4>n(w), t + u- n,s)

= %($"(m), t- n,s) = Vu° Zn(m, t, s),

i¡r induces a flow ¥ on N which gives rise to a vector field X on N such that

tt*X = A^. // induces a function H: N -» R such that 7/ = tt*H because

(Z*H)(m, t, s) - ^(Sn(m, /, i)) = H{$n(m), t-n,s)

= s = H (m, t, s).

Now X = A^, the Hamiltonian vector field corresponding to the

Hamiltonian function H: N -» R, since

TT*dH = dH= ixß = i7r.A-(7r*ß) = tt*(íxQ)

implies dH = ixQ because tt is a local diffeomorphism.

Fix s E R. Because Ms = M X {(0, s)} is a cross section of X¿ in //"'(s),
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Ms = m(Ms) is a cross section of XHinH~ l(s). Note that m\Ms is injective for

(m\Ms)~\m(m, 0, s)) = m~l(m(m, 0, s)) D M,

= {($"(m), -n, s) EM X R2\n E Z } n Ms

= (m, 0, s),

which implies that m\Ms: Ms -» M is a diffeomorphism. The map is: M^> Ms:

m->(m,0,s) being a diffeomorphism implies that the mapy,: M-+Ms:

m -* m(is(m)) is a diffeomorphism. From

^(Sn(m,0,S)) = ^(O"(m),-n,S)

= (*""'(«(m)), -(n-l),s)

-Sn_0(m),O,s)

we obtain ^xm(m, 0, i) = 7r($(m), 0, s) which gives (1) ^P,: Ms -» M, and ^,

is the Poincaré map of XHinH~ l(s) with respect to the cross section Ms and

(2) O =Jrl^Js- This proves the theorem.   □

The Hamiltonian vector field XH constructed in the above theorem is the

Hamiltonian suspension of the symplectic diffeomorphism <E>.

Quite unusual Hamiltonian vector fields can be constructed using the

Hamiltonian suspension theorem. For example on (R2, dx A dy) the Hamil-

tonian suspension of the symplectic diffeomorphism

^:R2^R2:fí)->(C0Sf    _sin/)(v)
* \y)   \s\n0   cost? )\y)

where 0/27T is irrational, has exactly one periodic orbit in every energy

surface H~x(s) (which is compact) because ($) is the only fixed point of R¡

and fixed points of some iterate of Rg correspond to periodic orbits of XH and

conversely.

The rest of this paper applies the Hamiltonian suspension theorem to

constructing nonintegrable Hamiltonian vector fields. A function G: N -> R

is an integral of the Hamiltonian vector field XH on the connected symplectic

manifold (N, ß) if and only if the Lie derivative of G with respect to XH is

identically zero. The Hamiltonian vector field XH on (A^, ß) is nonintegrable if

every integral is of the form H*g: N -» R: n -» g(H(nj) for some function g:

R -» R. XH is integrable if there is an integral which is not equal to H*g for

any g: R->R. We also define the concepts of integral, integrable and

nonintegrable for symplectic diffeomorphisms. A function F: M -» R is an

integral of the symplectic diffeomorphism $: M -* M of the connected

symplectic manifold (M, a) if for every m EM, F($(m)) - F(m). $ is

nonintegrable if it has no constant integral, while O is integrable if it has a
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nonconstant integral. Recall that in the above definitions all maps, manifolds

and vector fields are real analytic.

The next theorem reduces the problem of constructing nonintegrable

Hamiltonian vector fields to constructing nonintegrable symplectic

diffeomorphisms.

Theorem 1.2. If $: M -> M is a nonintegrable symplectic diffeomorphism of

a connected symplectic manifold (M, u>), then the Hamiltonian suspension of $,

XH, is a nonintegrable Hamiltonian vector field on the connected symplectic

manifold (N,Q).

Proof. The same notation as in the proof of Theorem 1.1 will be used.

Suppose that J:N->R, then for all (m, t, s) E M X R2

(TT*J){W(m),t,s) = (TT*J){Zn(m,t,s))

(*) = d(Tr(Z„(m, t, s))) = J(iT(m, t, s))

by definition of tt

= (TT*J)(m, t, s).

Furthermore suppose that J: N^>R is an integral of XH, then for all u ER,

TT*J(m, t + u,s) = TT*j(ßru(m, t, s))   where ¥„ is the flow of T

= J{rr^u(m, t, s)) = J(VuTr(m, t, s))

(**) by definition of the flow V of XH

= J {ir(m, t, s))   since J is an integral of XH

= TT*J(m, t,s),

that is, tt*J: M X R2~>R is an integral of X¿ = T. From (*) and (**) we

obtain

w*J ($"(m), t, s) = TT*J(m, t + n,s) = TT*J(m, t, s),

that is, for all (t, s) E R2 the map tt*J(-, t, s): M -» R: m -> m*J(m, t, s) is an

integral of the diffeomorphism i>: M -» M which is constant by hypothesis.

From (**) we see that the map <ö: R-»R: s->ir*J(-, -, s) is well defined.

Since H: M X R2 -» R: (m, t, s) -» s, we have

H**$(m, t, s) = %H{m, t, s) = $(s) = TT*J(m, t, s).

Because H = H ° tt, tt*J = (H ° tt)*^ = tt*(H*^) which implies / = H*<5

since tt is a local diffeomorphism. Therefore XH is nonintegrable.   □

2. Here we show that the polynomial mapping

(x + y3)cos 9 - y sin 9

(x + y3)sin 9 + y cos 9
M:R2^R2:(J)
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where t?/2:r is irrational is a nonintegrable symplectic diffeomorphism of (R2,

dx Ady).
The mapping M has the following properties: (1) for every positive integer

n, M2" has at most 32" fixed points; (2) in every open neighbourhood U of 0

there is a positive integer p and a w E U \ {0} such that M^w = w. Property

(1) is proved by the following argument which is taken from [SM, pp.

246-247]. The map

„_i.R2    tí2-(x\     | * cos0 + y sin0 + (xsint? - y coso)3\

'\y'     \ -x sind + v cosö /

is also a polynomial mapping. The point (*) is a fixed point of M2n if and

only if (*-») = M ~"(y) = M"(*) = (£) which is equivalent to the polynomial

equations

x-n - x„ = 0,

y-n-yn = 0-

Introducing complex conjugate "coordinates" z = x + ty, z = x — iy on R2,

the map M becomes z, = M(z, z) = X(z + (//8)(z - z)3) and M~x becomes

z_, = M~x(z, z) = Xz + l(iXz + Xz)3 where X = e'e. A straightforward

induction argument shows that the terms of highest degree of the polynomials

x_„ — x„ andy_„ - yn are respectively

X = aJcos 6¡y3" - (x sino -y cosö)3"]   and   Y=ansin0y3"

where a„ = (sin 0)3+32+ ■ ■ ■ +3""'. Since an 9- 0 for al! n and sin f? ̂  0, Z and

y are relatively prime polynomials which implies that x_„ — y„ and v_„ — y„

ave relatively prime. Hence by Bezout's theorem x_n — x„ and y_„ — y„

have at most 31" common zeroes which proves property (1). To prove

property (2) we observe that the symplectic diffeomorphism S of an open

neighbourhood F of 0 of R2 whose generating function is

G(x, ij) = xr, - ±(x3 + XT,2) + ¿(x4 - 6xV + 7}4)

(recall that £= Gx,y = Gv implicitly defines S) conjugates M into Birkhoff

normal form up to terms of order three, that is

SMS-X:VCR2->R2:(XV)^(C0S*    ~ sin*Ví) + í^1 (X,y))

\y)     \sin$      cos$ )\y)     \R2(x,y)J

where $(x,y) = 0 + ß(x2 + y2), ß= - § and Rx, R2 are real analytic

functions beginning with terms of order four. Since ß =£ 0 we may apply the

Birkhoff fixed point theorem [SM, pp. 174-179] to obtain property (2).

We now suppose that H(x, y) = Hm(x,y) + ... is a nonconstant real

analytic integral of M which begins with mth order terms m > 1. On

comparing mth order terms of H(M (x,y)) = H(x,y) we obtain
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(*) Hm(x,y) = Hm(Re(x,y))

where

d (x\_ /coso    - sin0\/-M
e\y)     \sin9      cos9 )\y)

and 0/27T is irrational. Introducing complex conjugate co-ordinates z, z for

R2 the real homogeneous polynomial Hm of degree m becomes

Qm(z>z) =    2    I^P

where q^ = q . The map R¡ becomes Rxz = Xz, X = e'9. Therefore (*)

implies Qm(z, z) = Qm(Xz, Xz) which upon comparing coefficients gives

(**) %„ - a"a\„ = \"-'V

Since Hm + 0, Qm¥=0 and therefore for some /x0, i^, r7Moyo ^ 0. Thus 1 =

^-"o = e/(fo-"o)9 by (**). Since 9/2tt is irrational (/i0 -vq)(9/2tt) is an

integer if and only if /% = i»o- Thus m = pq + v0-2vQ> 2 and

flU*.*) = ?(zzT/2= ?(x2 + v2f/2= tfffl(x, v)

where ? = q^ ^ 0.

Upon dividing H by q we may assume that the integral of M is of the form

H(x,y) = (x2 + y2)m/2 + Hm+X(x, y) where Hm+X is a real analytic function

beginning with terms of order at least m + 1.

Modifying an argument in [Ml, pp. 416-417], we construct a differentiable

diffeomorphism

P:^-=]0,p[x[0,27r[^R2\{0}

such that M = P ° M ° P-1: Ap^Ap: (*)->(^+AaW). First the mapping

is a differentiable diffeomorphism with

Second, we show that for p E ]0, 1[ sufficiently small the mapping

P2:Ap^Ap
(;)-.(*)-(*<'■(*•»)

is a diffeomorphism.

Since det dP2 = dh/dR = 1 + dHm+x(Px(R, &))/dR and
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sup
(R,V)£A,

%!(/>,(*,*)) <±-px/m~x    sup     \f(R,&)\
m (R^)£A„

where/(/?, & ) = cos &     OT+1 (R 1/mcos #, R '/msin # )

+ sin 0 —jp1 (R '/mcos #, Ä '/"sin #)

1 m

< _L p i /« -1 (p i /"■ ) c    since 3//m+, / 3x, dHm., / 9v are real analytic
m

and begin with terms of order at least m.

Also c = supde[0,2,r]|/(l, #)| does not depend on

pord.

= lpl/m
m

for some p E ]0, 1[,

for all (Ä, #) E ^p and det dP2 ¥= 0 for all (R, &) E /lp. Thus P2 is a local

diffeomorphism. Because limÄ_,0+ h(R, &) = 0, limÄ_>0+ 3A(Ä, &)/dR = 1

and (**), there is p E ]0, 1[ such that for all d £ [0, 2tt[ the function

V]0,p|>]0,p[ :/?->/!(/?,#)

is a diffeomorphism. Thus P2 is one-to-one and hence is a diffeomorphism.

Also (iY')*(i¿ií2/m A de) = p(h, &) dh A d& where p(h, &) =

(P2-X)*q(h,&)md

l(R> *)-r^—-
*v       ;     Ä'-2/m3A(/?,d)/9i?

Since i(i?, #) > 0 for (R, 9) E Ap by (**),p(h, &)>0 for (A, #) E ¿p. Put

P = P2° Pf ', then

Af = P« M ° p-x:Ap-*Ap '(ihft)-tt)
because 77 is an integral for Af. Also, by the way P was constructed and

because M is symplectic

(+) (M)*(p(h, &))dhAdd = p(h,»)dhA d&.

Integrating (+) over the set S:

0<hQ< h < A0 + tj < p,

0 < #' < # < #" < 2tt

gives
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f   /?(/«, &) dh/\dd= f  M*(p(h, 0) <ft A <») = (/'(A, #) «* A <»
•'MS jms js

that is,

i çh°+irP(h0+„,*) o*u -1 rwr^«,+„,#) d») *%
1 Jh0       \JV J V Jh0       \J»[ }

which letting rj —»0 gives

(***) f   p(h0,&)d& = f&lp(hQ,d)d&   forall/«0G]0,p[.

Finally,  define the mapping P3: Ap-*A-p:  (#)-»(*) where <k(h,{r) =

2mftp(h, *) d$/f2«p(h, d) rffc
Since p(A, #) > 0 for all (A, #) G ^4-, ty is defined and maps [0, 27r[ into

itself. P3 is a local diffeomorphism of Ap into itself since det dP3 = dty/d& =

2«p(A, *) > 0. Since

tyh: [0,2«r[-»[0,2ff[:d->*(A,d)

is a diffeomorphism for every A G ]0, p[, P3 is injective and hence a

diffeomorphism.

LetP = P3° P = P3° P2° Px~x, then

*-'•*•'-=*-*($)-•(*,)-(!)■

From (***) we obtain

ty(h0, d") - ty(h0, #') = ^,(A0, &x" ) - tyx(h0, »I )

which implies that the function & -» tyx(h0, #,) — ty(h0, d) does not depend

on # and hence is a function a of h0 alone. Consequently

For some positive integer p, M2p has a fixed point (*¡¡) in P~x(Ap).

Therefore P(*°) = (^) is a fixed point of M2p in ¿-. But M2p&) = (*+2pa(h))

= (^) so 2pa(h0) = 2m77 for some positive integer m. Thus M leaves the

curve h = h0 fixed which implies M leaves the curve P~X{(X) G ̂ 4-|A = h0]

which is impossible, since M2q has only finitely many fixed points. Therefore

the assumption that M has a nonconstant analytic integral is false; that is, M

is nonintegrable.

In [B] it is shown that the set 9H of real analytic symplectic

diffeomorphisms of (R2, dx A dy) with the following properties is generic.

M E 9R, if and only if (1) M(0) = 0,

(2) dM (0) = f cos J    ~ sin/1   where 0/2tt is irrational,
v '     Vsin0      cosô /
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and (3) there is a sequence of positive integers m„ -» oo and points xn -» 0

such that x„ is an isolated fixed point of M"\ that is, there is an open

neighbourhood U„ of xn such that Mm- has no fixed points in Un\{xn).

Except in the last paragraph where property (3) is used to obtain the

contradiction, the above argument shows that every M E 9H is

nonintegrable.

3. Here we show that if M is a symplectic diffeomorphism of (R2, dx A dy)

with a finite contact homoclinic point, then Af is nonintegrable.

The point 0 E R2 is a hyperbolic fixed point of Af if A/(0) = 0 and dM(0)
has no eigenvalue of modulus 1. Since M is symplectic, dM(0) is conjugate by

an element of SI (2, R) to (£ °x/x) where |A| > 1. Without loss of generality we

may assume that dM(0) = (£ x/x) with |X| > 1.

The stable manifold of M at 0 is the set WsM(0) = {mE R^lim,,^ M"m -

0} which is clearly M invariant, that is M(WsM(0)) Q WSM(0).

Similarly the unstable manifold of Af at 0 is the set 1^(0) = {m E

R^lim,,^^ M~"m = 0} which is also M invariant. By the stable manifold

theorem [S, p. 751] WSM(0) and W^(0) are oriented injectively immersed

submanifolds of R2 with tangent space at 0 equal to the v-axis and x-axis

respectively. Actually, by a theorem of Moser [M4, p. 674] there is a rectangle

R = {(*) E R2| |£| < 2dx, \r¡\ < 2d2) and a symplectic diffeomorphism P:

RCR2-> R2: (*) -» Ç) such that

N= P~XMP:R CR2->R2:Í£]^ÍM

where P(0) - Q(0) = 0 and 1 = (X + P«t,))(1/A + g (£,))•
Thus W^(0) n R is the ï]-axis in R while W£(0) n R is the f axis in R.
Moreover for (£, ij)ei\ {(j,) E R |£ = 0 or tj = 0} the following esti-

mates hold |£,| > A*|£| and |t?,| < 1/A'|tj| for some X* > 1 and X' > 1, which

describe the hyperbolic behaviour of A^ in R.

A point p ER2\ {0} is a homoclinic point of M if p E Ws(0) n Wu(0).

The homoclinic point p is of finite contact if for some nonnegative integer k

the &-jets of WSM(0) and W¡^(0) at/? are equal but the (k + l)-jets at/? are

unequal.

Now suppose that M has a homoclinic point p of finite contact. Since

p E W*M(0) there is a positive integer n such that p = M"p E P(R). Since

Wm(0) and Wj^(0) have finite contact at/? and M is a diffeomorphism, they

have finite contact at/?. Hence there is q E W^(0) n P(R) with <? E W^,(°)

n P(7?) such that the connected submanifold of W^(0) with boundary

{P) U {q} has the same orientation as W^(0).

Let /?, = P~xp   and  ?, = P~'i - (|).   Then  | ^ 0  because  qx &

Ux + P(tn))i¡
(1A+Ô(^j))t? '
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P~\Wm(®) n P(R)) = W and r} ¥= 0 because <¥ is injectively immersed.

Iterating the inequality |£,| > \*||| where X* > 1 shows that for every

c E ]0, dx[ there is a positive integer /, depending on qx and c, such that

|£,| > c, where (|;) = #'<?,. Thus ^ intersects the line £ = c or £ = - c.

Moreover, |rjy| < 2i/2, since qx E R, implies |f}| < 2d2. Thus the inequality

|r/,| < 1/X'|tj| where A' > 1 may be iterated. Repeating the above argument

withpA+1 = Nkpx replacing px shows that for an infinite sequence of distinct

c¡ with \Cj\ < dx, <¥ intersects the hne segment (. = {([) E R2|£ = c¡, |tj| <

2d2) in an infinite set Rc¡ (here we use the fact that % is injectively

immersed).

Now suppose that M has an integral H with H(0) = h, then Wjt,(0) Q

H~\h) for if m E W^(0) then h = H(0) - lim^ H(M-"m) = //(w)
because H(M~"m) = H(m).

Leti/ = H° P:R Q R2 -> R2, then 7/ is an integral for N = P~xMPinR

and thus % Q H~x(h). Since Rc has an accumulation point and H\RC¡ = h,

H\lc¡ = h by the identity theorem for real analytic functions. For every

t, G ]0, 2d2[ consider the function

Hn: {€||i|<d,} QR-+R:i^H(S,n).

Because H\lc¡ = h, H^(c¡) = h for all n G ]0, 2d2[ and therefore Hv = h since

¿Z, is analytic and {c,} has an accumulation point.

Therefore H = h on R which implies H is constant. This contradicts the

assumption that H is an integral of M. Therefore if M is an integrable

symplectic diffeomorphism of (R2, dx A dy) then M has no homoclinic points

of finite contact.

A recent result of Zehnder [Z] shows that a generic set of symplectic

diffeomorphisms of (R2, dx A dy) have transversal (contact 0) homoclinic

points. Also numerical evidence seems to indicate that Moser's polynomial

mapping in §2 has a homoclinic point, although the author knows of no

mathematical proof of this.
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